g1CollectedHeap.hpp 78.4 KB
Newer Older
1
/*
S
sla 已提交
2
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

#include "gc_implementation/g1/concurrentMark.hpp"
S
sla 已提交
29
#include "gc_implementation/g1/evacuationInfo.hpp"
30
#include "gc_implementation/g1/g1AllocRegion.hpp"
31
#include "gc_implementation/g1/g1HRPrinter.hpp"
32
#include "gc_implementation/g1/g1MonitoringSupport.hpp"
S
sla 已提交
33 34
#include "gc_implementation/g1/g1RemSet.hpp"
#include "gc_implementation/g1/g1YCTypes.hpp"
35
#include "gc_implementation/g1/heapRegionSeq.hpp"
36
#include "gc_implementation/g1/heapRegionSets.hpp"
37
#include "gc_implementation/shared/hSpaceCounters.hpp"
38
#include "gc_implementation/shared/parGCAllocBuffer.hpp"
39 40 41
#include "memory/barrierSet.hpp"
#include "memory/memRegion.hpp"
#include "memory/sharedHeap.hpp"
42
#include "utilities/stack.hpp"
43

44 45 46 47 48
// A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
// It uses the "Garbage First" heap organization and algorithm, which
// may combine concurrent marking with parallel, incremental compaction of
// heap subsets that will yield large amounts of garbage.

J
johnc 已提交
49
// Forward declarations
50
class HeapRegion;
T
tonyp 已提交
51
class HRRSCleanupTask;
52 53
class GenerationSpec;
class OopsInHeapRegionClosure;
54
class G1KlassScanClosure;
55 56 57 58 59 60 61 62 63 64 65 66
class G1ScanHeapEvacClosure;
class ObjectClosure;
class SpaceClosure;
class CompactibleSpaceClosure;
class Space;
class G1CollectorPolicy;
class GenRemSet;
class G1RemSet;
class HeapRegionRemSetIterator;
class ConcurrentMark;
class ConcurrentMarkThread;
class ConcurrentG1Refine;
S
sla 已提交
67
class ConcurrentGCTimer;
68
class GenerationCounters;
S
sla 已提交
69 70 71 72
class STWGCTimer;
class G1NewTracer;
class G1OldTracer;
class EvacuationFailedInfo;
J
johnc 已提交
73
class nmethod;
74

Z
zgu 已提交
75 76
typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
77

78 79 80
typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )

81 82 83 84 85 86
enum GCAllocPurpose {
  GCAllocForTenured,
  GCAllocForSurvived,
  GCAllocPurposeCount
};

Z
zgu 已提交
87
class YoungList : public CHeapObj<mtGC> {
88 89 90 91 92
private:
  G1CollectedHeap* _g1h;

  HeapRegion* _head;

93 94
  HeapRegion* _survivor_head;
  HeapRegion* _survivor_tail;
95 96 97

  HeapRegion* _curr;

98 99
  uint        _length;
  uint        _survivor_length;
100

101 102 103 104
  size_t      _last_sampled_rs_lengths;
  size_t      _sampled_rs_lengths;

  void         empty_list(HeapRegion* list);
105 106 107 108

public:
  YoungList(G1CollectedHeap* g1h);

109 110 111 112 113
  void         push_region(HeapRegion* hr);
  void         add_survivor_region(HeapRegion* hr);

  void         empty_list();
  bool         is_empty() { return _length == 0; }
114 115
  uint         length() { return _length; }
  uint         survivor_length() { return _survivor_length; }
116

117 118 119 120 121 122 123
  // Currently we do not keep track of the used byte sum for the
  // young list and the survivors and it'd be quite a lot of work to
  // do so. When we'll eventually replace the young list with
  // instances of HeapRegionLinkedList we'll get that for free. So,
  // we'll report the more accurate information then.
  size_t       eden_used_bytes() {
    assert(length() >= survivor_length(), "invariant");
124
    return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
125 126
  }
  size_t       survivor_used_bytes() {
127
    return (size_t) survivor_length() * HeapRegion::GrainBytes;
128 129
  }

130 131 132 133 134 135 136 137 138 139 140
  void rs_length_sampling_init();
  bool rs_length_sampling_more();
  void rs_length_sampling_next();

  void reset_sampled_info() {
    _last_sampled_rs_lengths =   0;
  }
  size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }

  // for development purposes
  void reset_auxilary_lists();
141 142 143 144 145 146 147 148
  void clear() { _head = NULL; _length = 0; }

  void clear_survivors() {
    _survivor_head    = NULL;
    _survivor_tail    = NULL;
    _survivor_length  = 0;
  }

149 150
  HeapRegion* first_region() { return _head; }
  HeapRegion* first_survivor_region() { return _survivor_head; }
151
  HeapRegion* last_survivor_region() { return _survivor_tail; }
152 153 154

  // debugging
  bool          check_list_well_formed();
155
  bool          check_list_empty(bool check_sample = true);
156 157 158
  void          print();
};

159 160 161 162 163 164 165 166 167
class MutatorAllocRegion : public G1AllocRegion {
protected:
  virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
  virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
public:
  MutatorAllocRegion()
    : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
};

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
class SurvivorGCAllocRegion : public G1AllocRegion {
protected:
  virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
  virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
public:
  SurvivorGCAllocRegion()
  : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
};

class OldGCAllocRegion : public G1AllocRegion {
protected:
  virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
  virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
public:
  OldGCAllocRegion()
  : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
};

J
johnc 已提交
186 187 188 189 190 191 192 193 194 195 196 197
// The G1 STW is alive closure.
// An instance is embedded into the G1CH and used as the
// (optional) _is_alive_non_header closure in the STW
// reference processor. It is also extensively used during
// reference processing during STW evacuation pauses.
class G1STWIsAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  bool do_object_b(oop p);
};

198
class RefineCardTableEntryClosure;
199

200 201 202 203 204
class G1CollectedHeap : public SharedHeap {
  friend class VM_G1CollectForAllocation;
  friend class VM_G1CollectFull;
  friend class VM_G1IncCollectionPause;
  friend class VMStructs;
205
  friend class MutatorAllocRegion;
206 207
  friend class SurvivorGCAllocRegion;
  friend class OldGCAllocRegion;
208 209

  // Closures used in implementation.
B
brutisso 已提交
210 211
  template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  friend class G1ParCopyClosure;
212 213 214 215 216 217 218 219 220 221
  friend class G1IsAliveClosure;
  friend class G1EvacuateFollowersClosure;
  friend class G1ParScanThreadState;
  friend class G1ParScanClosureSuper;
  friend class G1ParEvacuateFollowersClosure;
  friend class G1ParTask;
  friend class G1FreeGarbageRegionClosure;
  friend class RefineCardTableEntryClosure;
  friend class G1PrepareCompactClosure;
  friend class RegionSorter;
222
  friend class RegionResetter;
223 224
  friend class CountRCClosure;
  friend class EvacPopObjClosure;
225
  friend class G1ParCleanupCTTask;
226 227 228 229 230 231 232 233

  // Other related classes.
  friend class G1MarkSweep;

private:
  // The one and only G1CollectedHeap, so static functions can find it.
  static G1CollectedHeap* _g1h;

234 235
  static size_t _humongous_object_threshold_in_words;

236
  // Storage for the G1 heap.
237 238 239 240 241 242
  VirtualSpace _g1_storage;
  MemRegion    _g1_reserved;

  // The part of _g1_storage that is currently committed.
  MemRegion _g1_committed;

243 244 245 246 247 248 249 250
  // The master free list. It will satisfy all new region allocations.
  MasterFreeRegionList      _free_list;

  // The secondary free list which contains regions that have been
  // freed up during the cleanup process. This will be appended to the
  // master free list when appropriate.
  SecondaryFreeRegionList   _secondary_free_list;

T
tonyp 已提交
251 252 253
  // It keeps track of the old regions.
  MasterOldRegionSet        _old_set;

254 255
  // It keeps track of the humongous regions.
  MasterHumongousRegionSet  _humongous_set;
256 257

  // The number of regions we could create by expansion.
258
  uint _expansion_regions;
259 260 261 262

  // The block offset table for the G1 heap.
  G1BlockOffsetSharedArray* _bot_shared;

T
tonyp 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
  // Tears down the region sets / lists so that they are empty and the
  // regions on the heap do not belong to a region set / list. The
  // only exception is the humongous set which we leave unaltered. If
  // free_list_only is true, it will only tear down the master free
  // list. It is called before a Full GC (free_list_only == false) or
  // before heap shrinking (free_list_only == true).
  void tear_down_region_sets(bool free_list_only);

  // Rebuilds the region sets / lists so that they are repopulated to
  // reflect the contents of the heap. The only exception is the
  // humongous set which was not torn down in the first place. If
  // free_list_only is true, it will only rebuild the master free
  // list. It is called after a Full GC (free_list_only == false) or
  // after heap shrinking (free_list_only == true).
  void rebuild_region_sets(bool free_list_only);
278 279

  // The sequence of all heap regions in the heap.
280
  HeapRegionSeq _hrs;
281

282 283 284
  // Alloc region used to satisfy mutator allocation requests.
  MutatorAllocRegion _mutator_alloc_region;

285 286 287 288
  // Alloc region used to satisfy allocation requests by the GC for
  // survivor objects.
  SurvivorGCAllocRegion _survivor_gc_alloc_region;

289 290 291
  // PLAB sizing policy for survivors.
  PLABStats _survivor_plab_stats;

292 293 294 295
  // Alloc region used to satisfy allocation requests by the GC for
  // old objects.
  OldGCAllocRegion _old_gc_alloc_region;

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
  // PLAB sizing policy for tenured objects.
  PLABStats _old_plab_stats;

  PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
    PLABStats* stats = NULL;

    switch (purpose) {
    case GCAllocForSurvived:
      stats = &_survivor_plab_stats;
      break;
    case GCAllocForTenured:
      stats = &_old_plab_stats;
      break;
    default:
      assert(false, "unrecognized GCAllocPurpose");
    }

    return stats;
  }

316 317 318 319
  // The last old region we allocated to during the last GC.
  // Typically, it is not full so we should re-use it during the next GC.
  HeapRegion* _retained_old_gc_alloc_region;

320 321 322 323 324 325 326 327
  // It specifies whether we should attempt to expand the heap after a
  // region allocation failure. If heap expansion fails we set this to
  // false so that we don't re-attempt the heap expansion (it's likely
  // that subsequent expansion attempts will also fail if one fails).
  // Currently, it is only consulted during GC and it's reset at the
  // start of each GC.
  bool _expand_heap_after_alloc_failure;

328 329 330 331 332
  // It resets the mutator alloc region before new allocations can take place.
  void init_mutator_alloc_region();

  // It releases the mutator alloc region.
  void release_mutator_alloc_region();
333

334
  // It initializes the GC alloc regions at the start of a GC.
S
sla 已提交
335
  void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
336

337
  // It releases the GC alloc regions at the end of a GC.
S
sla 已提交
338
  void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
339 340 341 342

  // It does any cleanup that needs to be done on the GC alloc regions
  // before a Full GC.
  void abandon_gc_alloc_regions();
343

344 345 346
  // Helper for monitoring and management support.
  G1MonitoringSupport* _g1mm;

347
  // Determines PLAB size for a particular allocation purpose.
348
  size_t desired_plab_sz(GCAllocPurpose purpose);
349

350 351 352 353
  // Outside of GC pauses, the number of bytes used in all regions other
  // than the current allocation region.
  size_t _summary_bytes_used;

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
  // This is used for a quick test on whether a reference points into
  // the collection set or not. Basically, we have an array, with one
  // byte per region, and that byte denotes whether the corresponding
  // region is in the collection set or not. The entry corresponding
  // the bottom of the heap, i.e., region 0, is pointed to by
  // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
  // biased so that it actually points to address 0 of the address
  // space, to make the test as fast as possible (we can simply shift
  // the address to address into it, instead of having to subtract the
  // bottom of the heap from the address before shifting it; basically
  // it works in the same way the card table works).
  bool* _in_cset_fast_test;

  // The allocated array used for the fast test on whether a reference
  // points into the collection set or not. This field is also used to
  // free the array.
  bool* _in_cset_fast_test_base;

  // The length of the _in_cset_fast_test_base array.
373
  uint _in_cset_fast_test_length;
374

375
  volatile unsigned _gc_time_stamp;
376 377 378

  size_t* _surviving_young_words;

379 380
  G1HRPrinter _hr_printer;

381 382 383 384
  void setup_surviving_young_words();
  void update_surviving_young_words(size_t* surv_young_words);
  void cleanup_surviving_young_words();

385 386 387 388 389
  // It decides whether an explicit GC should start a concurrent cycle
  // instead of doing a STW GC. Currently, a concurrent cycle is
  // explicitly started if:
  // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
  // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
390
  // (c) cause == _g1_humongous_allocation
391 392
  bool should_do_concurrent_full_gc(GCCause::Cause cause);

393 394 395 396 397 398 399
  // Keeps track of how many "old marking cycles" (i.e., Full GCs or
  // concurrent cycles) we have started.
  volatile unsigned int _old_marking_cycles_started;

  // Keeps track of how many "old marking cycles" (i.e., Full GCs or
  // concurrent cycles) we have completed.
  volatile unsigned int _old_marking_cycles_completed;
400

S
sla 已提交
401 402
  bool _concurrent_cycle_started;

403 404 405 406 407 408 409 410
  // This is a non-product method that is helpful for testing. It is
  // called at the end of a GC and artificially expands the heap by
  // allocating a number of dead regions. This way we can induce very
  // frequent marking cycles and stress the cleanup / concurrent
  // cleanup code more (as all the regions that will be allocated by
  // this method will be found dead by the marking cycle).
  void allocate_dummy_regions() PRODUCT_RETURN;

411 412 413 414 415 416 417
  // Clear RSets after a compaction. It also resets the GC time stamps.
  void clear_rsets_post_compaction();

  // If the HR printer is active, dump the state of the regions in the
  // heap after a compaction.
  void print_hrs_post_compaction();

418 419 420 421
  double verify(bool guard, const char* msg);
  void verify_before_gc();
  void verify_after_gc();

422 423 424
  void log_gc_header();
  void log_gc_footer(double pause_time_sec);

425 426 427
  // These are macros so that, if the assert fires, we get the correct
  // line number, file, etc.

T
tonyp 已提交
428
#define heap_locking_asserts_err_msg(_extra_message_)                         \
429
  err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
T
tonyp 已提交
430
          (_extra_message_),                                                  \
431 432 433
          BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
          BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
          BOOL_TO_STR(Thread::current()->is_VM_thread()))
434 435 436 437 438 439 440

#define assert_heap_locked()                                                  \
  do {                                                                        \
    assert(Heap_lock->owned_by_self(),                                        \
           heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
  } while (0)

T
tonyp 已提交
441
#define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
442 443
  do {                                                                        \
    assert(Heap_lock->owned_by_self() ||                                      \
444
           (SafepointSynchronize::is_at_safepoint() &&                        \
T
tonyp 已提交
445
             ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
           heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
                                        "should be at a safepoint"));         \
  } while (0)

#define assert_heap_locked_and_not_at_safepoint()                             \
  do {                                                                        \
    assert(Heap_lock->owned_by_self() &&                                      \
                                    !SafepointSynchronize::is_at_safepoint(), \
          heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
                                       "should not be at a safepoint"));      \
  } while (0)

#define assert_heap_not_locked()                                              \
  do {                                                                        \
    assert(!Heap_lock->owned_by_self(),                                       \
        heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
  } while (0)

#define assert_heap_not_locked_and_not_at_safepoint()                         \
  do {                                                                        \
    assert(!Heap_lock->owned_by_self() &&                                     \
                                    !SafepointSynchronize::is_at_safepoint(), \
      heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
                                   "should not be at a safepoint"));          \
  } while (0)

T
tonyp 已提交
472
#define assert_at_safepoint(_should_be_vm_thread_)                            \
473
  do {                                                                        \
474
    assert(SafepointSynchronize::is_at_safepoint() &&                         \
T
tonyp 已提交
475
              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
476 477 478 479 480 481 482 483 484
           heap_locking_asserts_err_msg("should be at a safepoint"));         \
  } while (0)

#define assert_not_at_safepoint()                                             \
  do {                                                                        \
    assert(!SafepointSynchronize::is_at_safepoint(),                          \
           heap_locking_asserts_err_msg("should not be at a safepoint"));     \
  } while (0)

485 486
protected:

487
  // The young region list.
488 489 490 491 492
  YoungList*  _young_list;

  // The current policy object for the collector.
  G1CollectorPolicy* _g1_policy;

493
  // This is the second level of trying to allocate a new region. If
494 495 496 497
  // new_region() didn't find a region on the free_list, this call will
  // check whether there's anything available on the
  // secondary_free_list and/or wait for more regions to appear on
  // that list, if _free_regions_coming is set.
T
tonyp 已提交
498 499 500 501 502 503
  HeapRegion* new_region_try_secondary_free_list();

  // Try to allocate a single non-humongous HeapRegion sufficient for
  // an allocation of the given word_size. If do_expand is true,
  // attempt to expand the heap if necessary to satisfy the allocation
  // request.
504
  HeapRegion* new_region(size_t word_size, bool do_expand);
505

T
tonyp 已提交
506 507 508
  // Attempt to satisfy a humongous allocation request of the given
  // size by finding a contiguous set of free regions of num_regions
  // length and remove them from the master free list. Return the
509 510
  // index of the first region or G1_NULL_HRS_INDEX if the search
  // was unsuccessful.
511 512
  uint humongous_obj_allocate_find_first(uint num_regions,
                                         size_t word_size);
513

T
tonyp 已提交
514 515 516
  // Initialize a contiguous set of free regions of length num_regions
  // and starting at index first so that they appear as a single
  // humongous region.
517 518
  HeapWord* humongous_obj_allocate_initialize_regions(uint first,
                                                      uint num_regions,
T
tonyp 已提交
519 520 521 522
                                                      size_t word_size);

  // Attempt to allocate a humongous object of the given size. Return
  // NULL if unsuccessful.
523
  HeapWord* humongous_obj_allocate(size_t word_size);
524 525 526 527 528 529 530 531 532 533 534 535 536

  // The following two methods, allocate_new_tlab() and
  // mem_allocate(), are the two main entry points from the runtime
  // into the G1's allocation routines. They have the following
  // assumptions:
  //
  // * They should both be called outside safepoints.
  //
  // * They should both be called without holding the Heap_lock.
  //
  // * All allocation requests for new TLABs should go to
  //   allocate_new_tlab().
  //
537
  // * All non-TLAB allocation requests should go to mem_allocate().
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
  //
  // * If either call cannot satisfy the allocation request using the
  //   current allocating region, they will try to get a new one. If
  //   this fails, they will attempt to do an evacuation pause and
  //   retry the allocation.
  //
  // * If all allocation attempts fail, even after trying to schedule
  //   an evacuation pause, allocate_new_tlab() will return NULL,
  //   whereas mem_allocate() will attempt a heap expansion and/or
  //   schedule a Full GC.
  //
  // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
  //   should never be called with word_size being humongous. All
  //   humongous allocation requests should go to mem_allocate() which
  //   will satisfy them with a special path.

  virtual HeapWord* allocate_new_tlab(size_t word_size);

  virtual HeapWord* mem_allocate(size_t word_size,
                                 bool*  gc_overhead_limit_was_exceeded);

559 560 561 562 563 564 565 566 567 568 569 570 571
  // The following three methods take a gc_count_before_ret
  // parameter which is used to return the GC count if the method
  // returns NULL. Given that we are required to read the GC count
  // while holding the Heap_lock, and these paths will take the
  // Heap_lock at some point, it's easier to get them to read the GC
  // count while holding the Heap_lock before they return NULL instead
  // of the caller (namely: mem_allocate()) having to also take the
  // Heap_lock just to read the GC count.

  // First-level mutator allocation attempt: try to allocate out of
  // the mutator alloc region without taking the Heap_lock. This
  // should only be used for non-humongous allocations.
  inline HeapWord* attempt_allocation(size_t word_size,
572 573
                                      unsigned int* gc_count_before_ret,
                                      int* gclocker_retry_count_ret);
574 575 576 577 578

  // Second-level mutator allocation attempt: take the Heap_lock and
  // retry the allocation attempt, potentially scheduling a GC
  // pause. This should only be used for non-humongous allocations.
  HeapWord* attempt_allocation_slow(size_t word_size,
579 580
                                    unsigned int* gc_count_before_ret,
                                    int* gclocker_retry_count_ret);
581 582 583

  // Takes the Heap_lock and attempts a humongous allocation. It can
  // potentially schedule a GC pause.
584
  HeapWord* attempt_allocation_humongous(size_t word_size,
585 586
                                         unsigned int* gc_count_before_ret,
                                         int* gclocker_retry_count_ret);
587

588 589 590 591
  // Allocation attempt that should be called during safepoints (e.g.,
  // at the end of a successful GC). expect_null_mutator_alloc_region
  // specifies whether the mutator alloc region is expected to be NULL
  // or not.
592
  HeapWord* attempt_allocation_at_safepoint(size_t word_size,
593
                                       bool expect_null_mutator_alloc_region);
594 595 596 597 598 599

  // It dirties the cards that cover the block so that so that the post
  // write barrier never queues anything when updating objects on this
  // block. It is assumed (and in fact we assert) that the block
  // belongs to a young region.
  inline void dirty_young_block(HeapWord* start, size_t word_size);
600 601 602 603 604 605 606 607 608 609 610

  // Allocate blocks during garbage collection. Will ensure an
  // allocation region, either by picking one or expanding the
  // heap, and then allocate a block of the given size. The block
  // may not be a humongous - it must fit into a single heap region.
  HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);

  // Ensure that no further allocations can happen in "r", bearing in mind
  // that parallel threads might be attempting allocations.
  void par_allocate_remaining_space(HeapRegion* r);

611 612
  // Allocation attempt during GC for a survivor object / PLAB.
  inline HeapWord* survivor_attempt_allocation(size_t word_size);
613

614 615
  // Allocation attempt during GC for an old object / PLAB.
  inline HeapWord* old_attempt_allocation(size_t word_size);
616

617 618 619
  // These methods are the "callbacks" from the G1AllocRegion class.

  // For mutator alloc regions.
620 621 622 623
  HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
  void retire_mutator_alloc_region(HeapRegion* alloc_region,
                                   size_t allocated_bytes);

624
  // For GC alloc regions.
625
  HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
626 627 628 629
                                  GCAllocPurpose ap);
  void retire_gc_alloc_region(HeapRegion* alloc_region,
                              size_t allocated_bytes, GCAllocPurpose ap);

630
  // - if explicit_gc is true, the GC is for a System.gc() or a heap
631 632 633
  //   inspection request and should collect the entire heap
  // - if clear_all_soft_refs is true, all soft references should be
  //   cleared during the GC
634
  // - if explicit_gc is false, word_size describes the allocation that
635 636 637 638
  //   the GC should attempt (at least) to satisfy
  // - it returns false if it is unable to do the collection due to the
  //   GC locker being active, true otherwise
  bool do_collection(bool explicit_gc,
639
                     bool clear_all_soft_refs,
640 641 642 643
                     size_t word_size);

  // Callback from VM_G1CollectFull operation.
  // Perform a full collection.
644
  virtual void do_full_collection(bool clear_all_soft_refs);
645 646 647 648 649 650 651 652 653

  // Resize the heap if necessary after a full collection.  If this is
  // after a collect-for allocation, "word_size" is the allocation size,
  // and will be considered part of the used portion of the heap.
  void resize_if_necessary_after_full_collection(size_t word_size);

  // Callback from VM_G1CollectForAllocation operation.
  // This function does everything necessary/possible to satisfy a
  // failed allocation request (including collection, expansion, etc.)
654
  HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
655 656 657 658 659

  // Attempting to expand the heap sufficiently
  // to support an allocation of the given "word_size".  If
  // successful, perform the allocation and return the address of the
  // allocated block, or else "NULL".
660
  HeapWord* expand_and_allocate(size_t word_size);
661

662 663
  // Process any reference objects discovered during
  // an incremental evacuation pause.
J
johnc 已提交
664
  void process_discovered_references(uint no_of_gc_workers);
665 666 667

  // Enqueue any remaining discovered references
  // after processing.
J
johnc 已提交
668
  void enqueue_discovered_references(uint no_of_gc_workers);
669

670
public:
671

672 673 674 675
  G1MonitoringSupport* g1mm() {
    assert(_g1mm != NULL, "should have been initialized");
    return _g1mm;
  }
676

677
  // Expand the garbage-first heap by at least the given size (in bytes!).
678 679
  // Returns true if the heap was expanded by the requested amount;
  // false otherwise.
680
  // (Rounds up to a HeapRegion boundary.)
681
  bool expand(size_t expand_bytes);
682 683 684 685 686

  // Do anything common to GC's.
  virtual void gc_prologue(bool full);
  virtual void gc_epilogue(bool full);

687 688 689 690 691
  // We register a region with the fast "in collection set" test. We
  // simply set to true the array slot corresponding to this region.
  void register_region_with_in_cset_fast_test(HeapRegion* r) {
    assert(_in_cset_fast_test_base != NULL, "sanity");
    assert(r->in_collection_set(), "invariant");
692
    uint index = r->hrs_index();
693
    assert(index < _in_cset_fast_test_length, "invariant");
694 695 696 697 698 699 700 701 702 703 704 705
    assert(!_in_cset_fast_test_base[index], "invariant");
    _in_cset_fast_test_base[index] = true;
  }

  // This is a fast test on whether a reference points into the
  // collection set or not. It does not assume that the reference
  // points into the heap; if it doesn't, it will return false.
  bool in_cset_fast_test(oop obj) {
    assert(_in_cset_fast_test != NULL, "sanity");
    if (_g1_committed.contains((HeapWord*) obj)) {
      // no need to subtract the bottom of the heap from obj,
      // _in_cset_fast_test is biased
706
      uintx index = (uintx) obj >> HeapRegion::LogOfHRGrainBytes;
707 708 709 710 711 712 713 714 715 716 717
      bool ret = _in_cset_fast_test[index];
      // let's make sure the result is consistent with what the slower
      // test returns
      assert( ret || !obj_in_cs(obj), "sanity");
      assert(!ret ||  obj_in_cs(obj), "sanity");
      return ret;
    } else {
      return false;
    }
  }

718 719 720
  void clear_cset_fast_test() {
    assert(_in_cset_fast_test_base != NULL, "sanity");
    memset(_in_cset_fast_test_base, false,
721
           (size_t) _in_cset_fast_test_length * sizeof(bool));
722 723
  }

724 725 726 727
  // This is called at the start of either a concurrent cycle or a Full
  // GC to update the number of old marking cycles started.
  void increment_old_marking_cycles_started();

728
  // This is called at the end of either a concurrent cycle or a Full
729
  // GC to update the number of old marking cycles completed. Those two
730 731 732
  // can happen in a nested fashion, i.e., we start a concurrent
  // cycle, a Full GC happens half-way through it which ends first,
  // and then the cycle notices that a Full GC happened and ends
733 734 735 736 737
  // too. The concurrent parameter is a boolean to help us do a bit
  // tighter consistency checking in the method. If concurrent is
  // false, the caller is the inner caller in the nesting (i.e., the
  // Full GC). If concurrent is true, the caller is the outer caller
  // in this nesting (i.e., the concurrent cycle). Further nesting is
738
  // not currently supported. The end of this call also notifies
739 740
  // the FullGCCount_lock in case a Java thread is waiting for a full
  // GC to happen (e.g., it called System.gc() with
741
  // +ExplicitGCInvokesConcurrent).
742
  void increment_old_marking_cycles_completed(bool concurrent);
743

744 745
  unsigned int old_marking_cycles_completed() {
    return _old_marking_cycles_completed;
746 747
  }

S
sla 已提交
748 749 750 751 752 753
  void register_concurrent_cycle_start(jlong start_time);
  void register_concurrent_cycle_end();
  void trace_heap_after_concurrent_cycle();

  G1YCType yc_type();

754 755
  G1HRPrinter* hr_printer() { return &_hr_printer; }

756 757 758 759 760 761 762
protected:

  // Shrink the garbage-first heap by at most the given size (in bytes!).
  // (Rounds down to a HeapRegion boundary.)
  virtual void shrink(size_t expand_bytes);
  void shrink_helper(size_t expand_bytes);

763 764 765 766 767 768
  #if TASKQUEUE_STATS
  static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
  void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
  void reset_taskqueue_stats();
  #endif // TASKQUEUE_STATS

769 770 771 772 773 774 775 776 777 778
  // Schedule the VM operation that will do an evacuation pause to
  // satisfy an allocation request of word_size. *succeeded will
  // return whether the VM operation was successful (it did do an
  // evacuation pause) or not (another thread beat us to it or the GC
  // locker was active). Given that we should not be holding the
  // Heap_lock when we enter this method, we will pass the
  // gc_count_before (i.e., total_collections()) as a parameter since
  // it has to be read while holding the Heap_lock. Currently, both
  // methods that call do_collection_pause() release the Heap_lock
  // before the call, so it's easy to read gc_count_before just before.
779 780 781 782
  HeapWord* do_collection_pause(size_t         word_size,
                                unsigned int   gc_count_before,
                                bool*          succeeded,
                                GCCause::Cause gc_cause);
783 784

  // The guts of the incremental collection pause, executed by the vm
785 786 787
  // thread. It returns false if it is unable to do the collection due
  // to the GC locker being active, true otherwise
  bool do_collection_pause_at_safepoint(double target_pause_time_ms);
788 789

  // Actually do the work of evacuating the collection set.
S
sla 已提交
790
  void evacuate_collection_set(EvacuationInfo& evacuation_info);
791 792 793 794 795 796

  // The g1 remembered set of the heap.
  G1RemSet* _g1_rem_set;
  // And it's mod ref barrier set, used to track updates for the above.
  ModRefBarrierSet* _mr_bs;

797 798 799 800
  // A set of cards that cover the objects for which the Rsets should be updated
  // concurrently after the collection.
  DirtyCardQueueSet _dirty_card_queue_set;

801 802 803 804 805 806
  // The closure used to refine a single card.
  RefineCardTableEntryClosure* _refine_cte_cl;

  // A function to check the consistency of dirty card logs.
  void check_ct_logs_at_safepoint();

J
johnc 已提交
807 808 809 810 811 812
  // A DirtyCardQueueSet that is used to hold cards that contain
  // references into the current collection set. This is used to
  // update the remembered sets of the regions in the collection
  // set in the event of an evacuation failure.
  DirtyCardQueueSet _into_cset_dirty_card_queue_set;

813 814
  // After a collection pause, make the regions in the CS into free
  // regions.
S
sla 已提交
815
  void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
816

817 818 819 820
  // Abandon the current collection set without recording policy
  // statistics or updating free lists.
  void abandon_collection_set(HeapRegion* cs_head);

821 822
  // Applies "scan_non_heap_roots" to roots outside the heap,
  // "scan_rs" to roots inside the heap (having done "set_region" to
823 824
  // indicate the region in which the root resides),
  // and does "scan_metadata" If "scan_rs" is
825 826 827 828
  // NULL, then this step is skipped.  The "worker_i"
  // param is for use with parallel roots processing, and should be
  // the "i" of the calling parallel worker thread's work(i) function.
  // In the sequential case this param will be ignored.
829
  void g1_process_strong_roots(bool is_scavenging,
830
                               ScanningOption so,
831 832
                               OopClosure* scan_non_heap_roots,
                               OopsInHeapRegionClosure* scan_rs,
833
                               G1KlassScanClosure* scan_klasses,
834 835 836 837 838
                               int worker_i);

  // Apply "blk" to all the weak roots of the system.  These include
  // JNI weak roots, the code cache, system dictionary, symbol table,
  // string table, and referents of reachable weak refs.
839
  void g1_process_weak_roots(OopClosure* root_closure);
840

T
tonyp 已提交
841
  // Frees a non-humongous region by initializing its contents and
842 843 844 845 846 847 848 849 850 851
  // adding it to the free list that's passed as a parameter (this is
  // usually a local list which will be appended to the master free
  // list later). The used bytes of freed regions are accumulated in
  // pre_used. If par is true, the region's RSet will not be freed
  // up. The assumption is that this will be done later.
  void free_region(HeapRegion* hr,
                   size_t* pre_used,
                   FreeRegionList* free_list,
                   bool par);

T
tonyp 已提交
852 853 854 855 856 857 858
  // Frees a humongous region by collapsing it into individual regions
  // and calling free_region() for each of them. The freed regions
  // will be added to the free list that's passed as a parameter (this
  // is usually a local list which will be appended to the master free
  // list later). The used bytes of freed regions are accumulated in
  // pre_used. If par is true, the region's RSet will not be freed
  // up. The assumption is that this will be done later.
859 860 861 862 863
  void free_humongous_region(HeapRegion* hr,
                             size_t* pre_used,
                             FreeRegionList* free_list,
                             HumongousRegionSet* humongous_proxy_set,
                             bool par);
864

865 866 867 868 869
  // Notifies all the necessary spaces that the committed space has
  // been updated (either expanded or shrunk). It should be called
  // after _g1_storage is updated.
  void update_committed_space(HeapWord* old_end, HeapWord* new_end);

870 871 872 873 874 875 876 877 878 879 880 881 882 883
  // The concurrent marker (and the thread it runs in.)
  ConcurrentMark* _cm;
  ConcurrentMarkThread* _cmThread;
  bool _mark_in_progress;

  // The concurrent refiner.
  ConcurrentG1Refine* _cg1r;

  // The parallel task queues
  RefToScanQueueSet *_task_queues;

  // True iff a evacuation has failed in the current collection.
  bool _evacuation_failed;

S
sla 已提交
884
  EvacuationFailedInfo* _evacuation_failed_info_array;
885 886 887 888 889

  // Failed evacuations cause some logical from-space objects to have
  // forwarding pointers to themselves.  Reset them.
  void remove_self_forwarding_pointers();

890 891 892
  // Together, these store an object with a preserved mark, and its mark value.
  Stack<oop, mtGC>     _objs_with_preserved_marks;
  Stack<markOop, mtGC> _preserved_marks_of_objs;
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925

  // Preserve the mark of "obj", if necessary, in preparation for its mark
  // word being overwritten with a self-forwarding-pointer.
  void preserve_mark_if_necessary(oop obj, markOop m);

  // The stack of evac-failure objects left to be scanned.
  GrowableArray<oop>*    _evac_failure_scan_stack;
  // The closure to apply to evac-failure objects.

  OopsInHeapRegionClosure* _evac_failure_closure;
  // Set the field above.
  void
  set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
    _evac_failure_closure = evac_failure_closure;
  }

  // Push "obj" on the scan stack.
  void push_on_evac_failure_scan_stack(oop obj);
  // Process scan stack entries until the stack is empty.
  void drain_evac_failure_scan_stack();
  // True iff an invocation of "drain_scan_stack" is in progress; to
  // prevent unnecessary recursion.
  bool _drain_in_progress;

  // Do any necessary initialization for evacuation-failure handling.
  // "cl" is the closure that will be used to process evac-failure
  // objects.
  void init_for_evac_failure(OopsInHeapRegionClosure* cl);
  // Do any necessary cleanup for evacuation-failure handling data
  // structures.
  void finalize_for_evac_failure();

  // An attempt to evacuate "obj" has failed; take necessary steps.
S
sla 已提交
926
  oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
927 928
  void handle_evacuation_failure_common(oop obj, markOop m);

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
#ifndef PRODUCT
  // Support for forcing evacuation failures. Analogous to
  // PromotionFailureALot for the other collectors.

  // Records whether G1EvacuationFailureALot should be in effect
  // for the current GC
  bool _evacuation_failure_alot_for_current_gc;

  // Used to record the GC number for interval checking when
  // determining whether G1EvaucationFailureALot is in effect
  // for the current GC.
  size_t _evacuation_failure_alot_gc_number;

  // Count of the number of evacuations between failures.
  volatile size_t _evacuation_failure_alot_count;

  // Set whether G1EvacuationFailureALot should be in effect
  // for the current GC (based upon the type of GC and which
  // command line flags are set);
  inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
                                                  bool during_initial_mark,
                                                  bool during_marking);

  inline void set_evacuation_failure_alot_for_current_gc();

  // Return true if it's time to cause an evacuation failure.
  inline bool evacuation_should_fail();

  // Reset the G1EvacuationFailureALot counters.  Should be called at
S
sla 已提交
958
  // the end of an evacuation pause in which an evacuation failure occurred.
959 960 961
  inline void reset_evacuation_should_fail();
#endif // !PRODUCT

962 963
  // ("Weak") Reference processing support.
  //
S
sla 已提交
964
  // G1 has 2 instances of the reference processor class. One
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
  // (_ref_processor_cm) handles reference object discovery
  // and subsequent processing during concurrent marking cycles.
  //
  // The other (_ref_processor_stw) handles reference object
  // discovery and processing during full GCs and incremental
  // evacuation pauses.
  //
  // During an incremental pause, reference discovery will be
  // temporarily disabled for _ref_processor_cm and will be
  // enabled for _ref_processor_stw. At the end of the evacuation
  // pause references discovered by _ref_processor_stw will be
  // processed and discovery will be disabled. The previous
  // setting for reference object discovery for _ref_processor_cm
  // will be re-instated.
  //
  // At the start of marking:
  //  * Discovery by the CM ref processor is verified to be inactive
  //    and it's discovered lists are empty.
  //  * Discovery by the CM ref processor is then enabled.
  //
  // At the end of marking:
  //  * Any references on the CM ref processor's discovered
  //    lists are processed (possibly MT).
  //
  // At the start of full GC we:
  //  * Disable discovery by the CM ref processor and
  //    empty CM ref processor's discovered lists
  //    (without processing any entries).
  //  * Verify that the STW ref processor is inactive and it's
  //    discovered lists are empty.
  //  * Temporarily set STW ref processor discovery as single threaded.
  //  * Temporarily clear the STW ref processor's _is_alive_non_header
  //    field.
  //  * Finally enable discovery by the STW ref processor.
  //
  // The STW ref processor is used to record any discovered
  // references during the full GC.
  //
  // At the end of a full GC we:
  //  * Enqueue any reference objects discovered by the STW ref processor
  //    that have non-live referents. This has the side-effect of
  //    making the STW ref processor inactive by disabling discovery.
  //  * Verify that the CM ref processor is still inactive
  //    and no references have been placed on it's discovered
  //    lists (also checked as a precondition during initial marking).

  // The (stw) reference processor...
  ReferenceProcessor* _ref_processor_stw;

S
sla 已提交
1014 1015 1016 1017 1018 1019
  STWGCTimer* _gc_timer_stw;
  ConcurrentGCTimer* _gc_timer_cm;

  G1OldTracer* _gc_tracer_cm;
  G1NewTracer* _gc_tracer_stw;

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
  // During reference object discovery, the _is_alive_non_header
  // closure (if non-null) is applied to the referent object to
  // determine whether the referent is live. If so then the
  // reference object does not need to be 'discovered' and can
  // be treated as a regular oop. This has the benefit of reducing
  // the number of 'discovered' reference objects that need to
  // be processed.
  //
  // Instance of the is_alive closure for embedding into the
  // STW reference processor as the _is_alive_non_header field.
  // Supplying a value for the _is_alive_non_header field is
  // optional but doing so prevents unnecessary additions to
  // the discovered lists during reference discovery.
  G1STWIsAliveClosure _is_alive_closure_stw;

  // The (concurrent marking) reference processor...
  ReferenceProcessor* _ref_processor_cm;
1037

1038 1039 1040 1041 1042 1043 1044
  // Instance of the concurrent mark is_alive closure for embedding
  // into the Concurrent Marking reference processor as the
  // _is_alive_non_header field. Supplying a value for the
  // _is_alive_non_header field is optional but doing so prevents
  // unnecessary additions to the discovered lists during reference
  // discovery.
  G1CMIsAliveClosure _is_alive_closure_cm;
1045

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
  // Cache used by G1CollectedHeap::start_cset_region_for_worker().
  HeapRegion** _worker_cset_start_region;

  // Time stamp to validate the regions recorded in the cache
  // used by G1CollectedHeap::start_cset_region_for_worker().
  // The heap region entry for a given worker is valid iff
  // the associated time stamp value matches the current value
  // of G1CollectedHeap::_gc_time_stamp.
  unsigned int* _worker_cset_start_region_time_stamp;

1056
  enum G1H_process_strong_roots_tasks {
1057
    G1H_PS_filter_satb_buffers,
1058 1059 1060 1061 1062 1063 1064
    G1H_PS_refProcessor_oops_do,
    // Leave this one last.
    G1H_PS_NumElements
  };

  SubTasksDone* _process_strong_tasks;

1065
  volatile bool _free_regions_coming;
1066 1067

public:
1068 1069 1070

  SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }

1071 1072
  void set_refine_cte_cl_concurrency(bool concurrent);

1073
  RefToScanQueue *task_queue(int i) const;
1074

1075 1076 1077
  // A set of cards where updates happened during the GC
  DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }

J
johnc 已提交
1078 1079 1080 1081 1082 1083 1084
  // A DirtyCardQueueSet that is used to hold cards that contain
  // references into the current collection set. This is used to
  // update the remembered sets of the regions in the collection
  // set in the event of an evacuation failure.
  DirtyCardQueueSet& into_cset_dirty_card_queue_set()
        { return _into_cset_dirty_card_queue_set; }

1085 1086 1087 1088 1089 1090
  // Create a G1CollectedHeap with the specified policy.
  // Must call the initialize method afterwards.
  // May not return if something goes wrong.
  G1CollectedHeap(G1CollectorPolicy* policy);

  // Initialize the G1CollectedHeap to have the initial and
1091
  // maximum sizes and remembered and barrier sets
1092 1093 1094
  // specified by the policy object.
  jint initialize();

1095 1096 1097
  // Return the (conservative) maximum heap alignment for any G1 heap
  static size_t conservative_max_heap_alignment();

1098
  // Initialize weak reference processing.
1099
  virtual void ref_processing_init();
1100

1101
  void set_par_threads(uint t) {
1102
    SharedHeap::set_par_threads(t);
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
    // Done in SharedHeap but oddly there are
    // two _process_strong_tasks's in a G1CollectedHeap
    // so do it here too.
    _process_strong_tasks->set_n_threads(t);
  }

  // Set _n_par_threads according to a policy TBD.
  void set_par_threads();

  void set_n_termination(int t) {
1113
    _process_strong_tasks->set_n_threads(t);
1114 1115 1116 1117 1118 1119 1120 1121 1122
  }

  virtual CollectedHeap::Name kind() const {
    return CollectedHeap::G1CollectedHeap;
  }

  // The current policy object for the collector.
  G1CollectorPolicy* g1_policy() const { return _g1_policy; }

1123 1124
  virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
  // Adaptive size policy.  No such thing for g1.
  virtual AdaptiveSizePolicy* size_policy() { return NULL; }

  // The rem set and barrier set.
  G1RemSet* g1_rem_set() const { return _g1_rem_set; }
  ModRefBarrierSet* mr_bs() const { return _mr_bs; }

  unsigned get_gc_time_stamp() {
    return _gc_time_stamp;
  }

  void reset_gc_time_stamp() {
    _gc_time_stamp = 0;
1138
    OrderAccess::fence();
1139 1140 1141
    // Clear the cached CSet starting regions and time stamps.
    // Their validity is dependent on the GC timestamp.
    clear_cset_start_regions();
1142 1143
  }

1144 1145
  void check_gc_time_stamps() PRODUCT_RETURN;

1146 1147 1148
  void increment_gc_time_stamp() {
    ++_gc_time_stamp;
    OrderAccess::fence();
1149 1150
  }

1151 1152 1153 1154 1155
  // Reset the given region's GC timestamp. If it's starts humongous,
  // also reset the GC timestamp of its corresponding
  // continues humongous regions too.
  void reset_gc_time_stamps(HeapRegion* hr);

J
johnc 已提交
1156 1157 1158
  void iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                  DirtyCardQueue* into_cset_dcq,
                                  bool concurrent, int worker_i);
1159 1160 1161 1162

  // The shared block offset table array.
  G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }

1163 1164 1165 1166 1167
  // Reference Processing accessors

  // The STW reference processor....
  ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }

S
sla 已提交
1168
  // The Concurrent Marking reference processor...
1169
  ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1170

S
sla 已提交
1171 1172 1173
  ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
  G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }

1174 1175
  virtual size_t capacity() const;
  virtual size_t used() const;
1176 1177 1178
  // This should be called when we're not holding the heap lock. The
  // result might be a bit inaccurate.
  size_t used_unlocked() const;
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
  size_t recalculate_used() const;

  // These virtual functions do the actual allocation.
  // Some heaps may offer a contiguous region for shared non-blocking
  // allocation, via inlined code (by exporting the address of the top and
  // end fields defining the extent of the contiguous allocation region.)
  // But G1CollectedHeap doesn't yet support this.

  // Return an estimate of the maximum allocation that could be performed
  // without triggering any collection or expansion activity.  In a
  // generational collector, for example, this is probably the largest
  // allocation that could be supported (without expansion) in the youngest
  // generation.  It is "unsafe" because no locks are taken; the result
  // should be treated as an approximation, not a guarantee, for use in
  // heuristic resizing decisions.
  virtual size_t unsafe_max_alloc();

  virtual bool is_maximal_no_gc() const {
    return _g1_storage.uncommitted_size() == 0;
  }

  // The total number of regions in the heap.
1201
  uint n_regions() { return _hrs.length(); }
1202

1203
  // The max number of regions in the heap.
1204
  uint max_regions() { return _hrs.max_length(); }
1205 1206

  // The number of regions that are completely free.
1207
  uint free_regions() { return _free_list.length(); }
1208 1209

  // The number of regions that are not completely free.
1210
  uint used_regions() { return n_regions() - free_regions(); }
1211 1212

  // The number of regions available for "regular" expansion.
1213
  uint expansion_regions() { return _expansion_regions; }
1214

1215 1216
  // Factory method for HeapRegion instances. It will return NULL if
  // the allocation fails.
1217
  HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
1218

1219 1220
  void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1221 1222 1223
  void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
  void verify_dirty_young_regions() PRODUCT_RETURN;

1224 1225 1226 1227 1228 1229 1230
  // verify_region_sets() performs verification over the region
  // lists. It will be compiled in the product code to be used when
  // necessary (i.e., during heap verification).
  void verify_region_sets();

  // verify_region_sets_optional() is planted in the code for
  // list verification in non-product builds (and it can be enabled in
S
sla 已提交
1231
  // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
1232 1233 1234 1235 1236 1237 1238 1239 1240
#if HEAP_REGION_SET_FORCE_VERIFY
  void verify_region_sets_optional() {
    verify_region_sets();
  }
#else // HEAP_REGION_SET_FORCE_VERIFY
  void verify_region_sets_optional() { }
#endif // HEAP_REGION_SET_FORCE_VERIFY

#ifdef ASSERT
T
tonyp 已提交
1241
  bool is_on_master_free_list(HeapRegion* hr) {
1242 1243 1244
    return hr->containing_set() == &_free_list;
  }

T
tonyp 已提交
1245
  bool is_in_humongous_set(HeapRegion* hr) {
1246
    return hr->containing_set() == &_humongous_set;
T
tonyp 已提交
1247
  }
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
#endif // ASSERT

  // Wrapper for the region list operations that can be called from
  // methods outside this class.

  void secondary_free_list_add_as_tail(FreeRegionList* list) {
    _secondary_free_list.add_as_tail(list);
  }

  void append_secondary_free_list() {
1258
    _free_list.add_as_head(&_secondary_free_list);
1259 1260
  }

T
tonyp 已提交
1261 1262 1263
  void append_secondary_free_list_if_not_empty_with_lock() {
    // If the secondary free list looks empty there's no reason to
    // take the lock and then try to append it.
1264 1265 1266 1267 1268 1269
    if (!_secondary_free_list.is_empty()) {
      MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
      append_secondary_free_list();
    }
  }

T
tonyp 已提交
1270 1271 1272 1273
  void old_set_remove(HeapRegion* hr) {
    _old_set.remove(hr);
  }

1274 1275 1276 1277
  size_t non_young_capacity_bytes() {
    return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
  }

1278 1279 1280 1281
  void set_free_regions_coming();
  void reset_free_regions_coming();
  bool free_regions_coming() { return _free_regions_coming; }
  void wait_while_free_regions_coming();
1282

1283 1284 1285 1286 1287 1288
  // Determine whether the given region is one that we are using as an
  // old GC alloc region.
  bool is_old_gc_alloc_region(HeapRegion* hr) {
    return hr == _retained_old_gc_alloc_region;
  }

1289 1290 1291 1292 1293 1294 1295 1296
  // Perform a collection of the heap; intended for use in implementing
  // "System.gc".  This probably implies as full a collection as the
  // "CollectedHeap" supports.
  virtual void collect(GCCause::Cause cause);

  // The same as above but assume that the caller holds the Heap_lock.
  void collect_locked(GCCause::Cause cause);

S
sla 已提交
1297
  // True iff an evacuation has failed in the most-recent collection.
1298 1299
  bool evacuation_failed() { return _evacuation_failed; }

1300 1301 1302 1303
  // It will free a region if it has allocated objects in it that are
  // all dead. It calls either free_region() or
  // free_humongous_region() depending on the type of the region that
  // is passed to it.
T
tonyp 已提交
1304 1305 1306
  void free_region_if_empty(HeapRegion* hr,
                            size_t* pre_used,
                            FreeRegionList* free_list,
T
tonyp 已提交
1307
                            OldRegionSet* old_proxy_set,
T
tonyp 已提交
1308 1309 1310
                            HumongousRegionSet* humongous_proxy_set,
                            HRRSCleanupTask* hrrs_cleanup_task,
                            bool par);
1311 1312 1313 1314 1315 1316 1317

  // It appends the free list to the master free list and updates the
  // master humongous list according to the contents of the proxy
  // list. It also adjusts the total used bytes according to pre_used
  // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  void update_sets_after_freeing_regions(size_t pre_used,
                                       FreeRegionList* free_list,
T
tonyp 已提交
1318
                                       OldRegionSet* old_proxy_set,
1319 1320
                                       HumongousRegionSet* humongous_proxy_set,
                                       bool par);
1321

S
stefank 已提交
1322
  // Returns "TRUE" iff "p" points into the committed areas of the heap.
1323 1324 1325 1326 1327 1328 1329
  virtual bool is_in(const void* p) const;

  // Return "TRUE" iff the given object address is within the collection
  // set.
  inline bool obj_in_cs(oop obj);

  // Return "TRUE" iff the given object address is in the reserved
1330
  // region of g1.
1331 1332 1333 1334
  bool is_in_g1_reserved(const void* p) const {
    return _g1_reserved.contains(p);
  }

1335 1336 1337 1338 1339 1340 1341
  // Returns a MemRegion that corresponds to the space that has been
  // reserved for the heap
  MemRegion g1_reserved() {
    return _g1_reserved;
  }

  // Returns a MemRegion that corresponds to the space that has been
1342 1343 1344 1345 1346
  // committed in the heap
  MemRegion g1_committed() {
    return _g1_committed;
  }

J
johnc 已提交
1347
  virtual bool is_in_closed_subset(const void* p) const;
1348 1349 1350 1351 1352 1353 1354 1355 1356

  // This resets the card table to all zeros.  It is used after
  // a collection pause which used the card table to claim cards.
  void cleanUpCardTable();

  // Iteration functions.

  // Iterate over all the ref-containing fields of all objects, calling
  // "cl.do_oop" on each.
1357
  virtual void oop_iterate(ExtendedOopClosure* cl);
1358 1359

  // Same as above, restricted to a memory region.
1360
  void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
1361 1362

  // Iterate over all objects, calling "cl.do_object" on each.
1363 1364
  virtual void object_iterate(ObjectClosure* cl);

1365
  virtual void safe_object_iterate(ObjectClosure* cl) {
1366
    object_iterate(cl);
1367
  }
1368 1369 1370 1371 1372 1373

  // Iterate over all spaces in use in the heap, in ascending address order.
  virtual void space_iterate(SpaceClosure* cl);

  // Iterate over heap regions, in address order, terminating the
  // iteration early if the "doHeapRegion" method returns "true".
1374
  void heap_region_iterate(HeapRegionClosure* blk) const;
1375

1376
  // Return the region with the given index. It assumes the index is valid.
1377
  HeapRegion* region_at(uint index) const { return _hrs.at(index); }
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

  // Divide the heap region sequence into "chunks" of some size (the number
  // of regions divided by the number of parallel threads times some
  // overpartition factor, currently 4).  Assumes that this will be called
  // in parallel by ParallelGCThreads worker threads with discinct worker
  // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  // calls will use the same "claim_value", and that that claim value is
  // different from the claim_value of any heap region before the start of
  // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  // attempting to claim the first region in each chunk, and, if
  // successful, applying the closure to each region in the chunk (and
  // setting the claim value of the second and subsequent regions of the
  // chunk.)  For now requires that "doHeapRegion" always returns "false",
  // i.e., that a closure never attempt to abort a traversal.
  void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
1393 1394
                                       uint worker,
                                       uint no_of_par_workers,
1395 1396
                                       jint claim_value);

1397 1398 1399
  // It resets all the region claim values to the default.
  void reset_heap_region_claim_values();

1400 1401 1402 1403
  // Resets the claim values of regions in the current
  // collection set to the default.
  void reset_cset_heap_region_claim_values();

1404 1405
#ifdef ASSERT
  bool check_heap_region_claim_values(jint claim_value);
1406 1407 1408 1409

  // Same as the routine above but only checks regions in the
  // current collection set.
  bool check_cset_heap_region_claim_values(jint claim_value);
1410 1411
#endif // ASSERT

1412 1413 1414 1415 1416 1417
  // Clear the cached cset start regions and (more importantly)
  // the time stamps. Called when we reset the GC time stamp.
  void clear_cset_start_regions();

  // Given the id of a worker, obtain or calculate a suitable
  // starting region for iterating over the current collection set.
1418 1419
  HeapRegion* start_cset_region_for_worker(int worker_i);

1420 1421 1422 1423 1424
  // This is a convenience method that is used by the
  // HeapRegionIterator classes to calculate the starting region for
  // each worker so that they do not all start from the same region.
  HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
  // Iterate over the regions (if any) in the current collection set.
  void collection_set_iterate(HeapRegionClosure* blk);

  // As above but starting from region r
  void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);

  // Returns the first (lowest address) compactible space in the heap.
  virtual CompactibleSpace* first_compactible_space();

  // A CollectedHeap will contain some number of spaces.  This finds the
  // space containing a given address, or else returns NULL.
  virtual Space* space_containing(const void* addr) const;

  // A G1CollectedHeap will contain some number of heap regions.  This
  // finds the region containing a given address, or else returns NULL.
1440 1441
  template <class T>
  inline HeapRegion* heap_region_containing(const T addr) const;
1442 1443 1444 1445

  // Like the above, but requires "addr" to be in the heap (to avoid a
  // null-check), and unlike the above, may return an continuing humongous
  // region.
1446 1447
  template <class T>
  inline HeapRegion* heap_region_containing_raw(const T addr) const;
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484

  // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  // each address in the (reserved) heap is a member of exactly
  // one block.  The defining characteristic of a block is that it is
  // possible to find its size, and thus to progress forward to the next
  // block.  (Blocks may be of different sizes.)  Thus, blocks may
  // represent Java objects, or they might be free blocks in a
  // free-list-based heap (or subheap), as long as the two kinds are
  // distinguishable and the size of each is determinable.

  // Returns the address of the start of the "block" that contains the
  // address "addr".  We say "blocks" instead of "object" since some heaps
  // may not pack objects densely; a chunk may either be an object or a
  // non-object.
  virtual HeapWord* block_start(const void* addr) const;

  // Requires "addr" to be the start of a chunk, and returns its size.
  // "addr + size" is required to be the start of a new chunk, or the end
  // of the active area of the heap.
  virtual size_t block_size(const HeapWord* addr) const;

  // Requires "addr" to be the start of a block, and returns "TRUE" iff
  // the block is an object.
  virtual bool block_is_obj(const HeapWord* addr) const;

  // Does this heap support heap inspection? (+PrintClassHistogram)
  virtual bool supports_heap_inspection() const { return true; }

  // Section on thread-local allocation buffers (TLABs)
  // See CollectedHeap for semantics.

  virtual bool supports_tlab_allocation() const;
  virtual size_t tlab_capacity(Thread* thr) const;
  virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;

  // Can a compiler initialize a new object without store barriers?
  // This permission only extends from the creation of a new object
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
  // via a TLAB up to the first subsequent safepoint. If such permission
  // is granted for this heap type, the compiler promises to call
  // defer_store_barrier() below on any slow path allocation of
  // a new object for which such initializing store barriers will
  // have been elided. G1, like CMS, allows this, but should be
  // ready to provide a compensating write barrier as necessary
  // if that storage came out of a non-young region. The efficiency
  // of this implementation depends crucially on being able to
  // answer very efficiently in constant time whether a piece of
  // storage in the heap comes from a young region or not.
  // See ReduceInitialCardMarks.
1496
  virtual bool can_elide_tlab_store_barriers() const {
1497
    return true;
1498 1499
  }

1500 1501 1502 1503
  virtual bool card_mark_must_follow_store() const {
    return true;
  }

1504
  bool is_in_young(const oop obj) {
1505 1506 1507 1508
    HeapRegion* hr = heap_region_containing(obj);
    return hr != NULL && hr->is_young();
  }

1509 1510 1511 1512 1513 1514
#ifdef ASSERT
  virtual bool is_in_partial_collection(const void* p);
#endif

  virtual bool is_scavengable(const void* addr);

1515 1516 1517 1518
  // We don't need barriers for initializing stores to objects
  // in the young gen: for the SATB pre-barrier, there is no
  // pre-value that needs to be remembered; for the remembered-set
  // update logging post-barrier, we don't maintain remembered set
1519
  // information for young gen objects.
1520 1521
  virtual bool can_elide_initializing_store_barrier(oop new_obj) {
    return is_in_young(new_obj);
1522 1523 1524 1525
  }

  // Returns "true" iff the given word_size is "very large".
  static bool isHumongous(size_t word_size) {
1526 1527 1528 1529 1530 1531
    // Note this has to be strictly greater-than as the TLABs
    // are capped at the humongous thresold and we want to
    // ensure that we don't try to allocate a TLAB as
    // humongous and that we don't allocate a humongous
    // object in a TLAB.
    return word_size > _humongous_object_threshold_in_words;
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
  }

  // Update mod union table with the set of dirty cards.
  void updateModUnion();

  // Set the mod union bits corresponding to the given memRegion.  Note
  // that this is always a safe operation, since it doesn't clear any
  // bits.
  void markModUnionRange(MemRegion mr);

  // Records the fact that a marking phase is no longer in progress.
  void set_marking_complete() {
    _mark_in_progress = false;
  }
  void set_marking_started() {
    _mark_in_progress = true;
  }
  bool mark_in_progress() {
    return _mark_in_progress;
  }

  // Print the maximum heap capacity.
  virtual size_t max_capacity() const;

  virtual jlong millis_since_last_gc();

1558

1559 1560 1561 1562 1563 1564 1565
  // Convenience function to be used in situations where the heap type can be
  // asserted to be this type.
  static G1CollectedHeap* heap();

  void set_region_short_lived_locked(HeapRegion* hr);
  // add appropriate methods for any other surv rate groups

1566
  YoungList* young_list() { return _young_list; }
1567 1568 1569 1570 1571

  // debugging
  bool check_young_list_well_formed() {
    return _young_list->check_list_well_formed();
  }
1572 1573

  bool check_young_list_empty(bool check_heap,
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
                              bool check_sample = true);

  // *** Stuff related to concurrent marking.  It's not clear to me that so
  // many of these need to be public.

  // The functions below are helper functions that a subclass of
  // "CollectedHeap" can use in the implementation of its virtual
  // functions.
  // This performs a concurrent marking of the live objects in a
  // bitmap off to the side.
  void doConcurrentMark();

  bool isMarkedPrev(oop obj) const;
  bool isMarkedNext(oop obj) const;

  // Determine if an object is dead, given the object and also
  // the region to which the object belongs. An object is dead
  // iff a) it was not allocated since the last mark and b) it
  // is not marked.

  bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
    return
      !hr->obj_allocated_since_prev_marking(obj) &&
      !isMarkedPrev(obj);
  }

  // This function returns true when an object has been
  // around since the previous marking and hasn't yet
  // been marked during this marking.

  bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
    return
      !hr->obj_allocated_since_next_marking(obj) &&
      !isMarkedNext(obj);
  }

  // Determine if an object is dead, given only the object itself.
  // This will find the region to which the object belongs and
  // then call the region version of the same function.

  // Added if it is NULL it isn't dead.

1616
  bool is_obj_dead(const oop obj) const {
1617
    const HeapRegion* hr = heap_region_containing(obj);
1618
    if (hr == NULL) {
1619
      if (obj == NULL) return false;
1620 1621 1622 1623 1624
      else return true;
    }
    else return is_obj_dead(obj, hr);
  }

1625
  bool is_obj_ill(const oop obj) const {
1626
    const HeapRegion* hr = heap_region_containing(obj);
1627
    if (hr == NULL) {
1628
      if (obj == NULL) return false;
1629 1630 1631 1632 1633
      else return true;
    }
    else return is_obj_ill(obj, hr);
  }

J
johnc 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
  bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
  HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
  bool is_marked(oop obj, VerifyOption vo);
  const char* top_at_mark_start_str(VerifyOption vo);

  ConcurrentMark* concurrent_mark() const { return _cm; }

  // Refinement

  ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }

  // The dirty cards region list is used to record a subset of regions
  // whose cards need clearing. The list if populated during the
  // remembered set scanning and drained during the card table
  // cleanup. Although the methods are reentrant, population/draining
  // phases must not overlap. For synchronization purposes the last
  // element on the list points to itself.
  HeapRegion* _dirty_cards_region_list;
  void push_dirty_cards_region(HeapRegion* hr);
  HeapRegion* pop_dirty_cards_region();

  // Optimized nmethod scanning support routines

  // Register the given nmethod with the G1 heap
  virtual void register_nmethod(nmethod* nm);

  // Unregister the given nmethod from the G1 heap
  virtual void unregister_nmethod(nmethod* nm);

  // Migrate the nmethods in the code root lists of the regions
  // in the collection set to regions in to-space. In the event
  // of an evacuation failure, nmethods that reference objects
  // that were not successfullly evacuated are not migrated.
  void migrate_strong_code_roots();

  // During an initial mark pause, mark all the code roots that
  // point into regions *not* in the collection set.
  void mark_strong_code_roots(uint worker_id);

  // Rebuild the stong code root lists for each region
  // after a full GC
  void rebuild_strong_code_roots();

  // Verification

  // The following is just to alert the verification code
  // that a full collection has occurred and that the
  // remembered sets are no longer up to date.
  bool _full_collection;
  void set_full_collection() { _full_collection = true;}
  void clear_full_collection() {_full_collection = false;}
  bool full_collection() {return _full_collection;}

  // Perform any cleanup actions necessary before allowing a verification.
  virtual void prepare_for_verify();

  // Perform verification.

  // vo == UsePrevMarking  -> use "prev" marking information,
  // vo == UseNextMarking -> use "next" marking information
  // vo == UseMarkWord    -> use the mark word in the object header
  //
  // NOTE: Only the "prev" marking information is guaranteed to be
  // consistent most of the time, so most calls to this should use
  // vo == UsePrevMarking.
  // Currently, there is only one case where this is called with
  // vo == UseNextMarking, which is to verify the "next" marking
  // information at the end of remark.
  // Currently there is only one place where this is called with
  // vo == UseMarkWord, which is to verify the marking during a
  // full GC.
  void verify(bool silent, VerifyOption vo);

  // Override; it uses the "prev" marking information
  virtual void verify(bool silent);

1710 1711
  // The methods below are here for convenience and dispatch the
  // appropriate method depending on value of the given VerifyOption
J
johnc 已提交
1712 1713
  // parameter. The values for that parameter, and their meanings,
  // are the same as those above.
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737

  bool is_obj_dead_cond(const oop obj,
                        const HeapRegion* hr,
                        const VerifyOption vo) const {
    switch (vo) {
    case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
    case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
    case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
    default:                            ShouldNotReachHere();
    }
    return false; // keep some compilers happy
  }

  bool is_obj_dead_cond(const oop obj,
                        const VerifyOption vo) const {
    switch (vo) {
    case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
    case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
    case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
    default:                            ShouldNotReachHere();
    }
    return false; // keep some compilers happy
  }

J
johnc 已提交
1738
  // Printing
1739

J
johnc 已提交
1740 1741 1742
  virtual void print_on(outputStream* st) const;
  virtual void print_extended_on(outputStream* st) const;
  virtual void print_on_error(outputStream* st) const;
1743

J
johnc 已提交
1744 1745
  virtual void print_gc_threads_on(outputStream* st) const;
  virtual void gc_threads_do(ThreadClosure* tc) const;
1746

J
johnc 已提交
1747 1748 1749 1750 1751 1752
  // Override
  void print_tracing_info() const;

  // The following two methods are helpful for debugging RSet issues.
  void print_cset_rsets() PRODUCT_RETURN;
  void print_all_rsets() PRODUCT_RETURN;
1753

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
public:
  void stop_conc_gc_threads();

  size_t pending_card_num();
  size_t cards_scanned();

protected:
  size_t _max_heap_capacity;
};

1764 1765 1766 1767 1768
class G1ParGCAllocBuffer: public ParGCAllocBuffer {
private:
  bool        _retired;

public:
1769
  G1ParGCAllocBuffer(size_t gclab_word_size);
1770

1771
  void set_buf(HeapWord* buf) {
1772 1773 1774 1775
    ParGCAllocBuffer::set_buf(buf);
    _retired = false;
  }

1776
  void retire(bool end_of_gc, bool retain) {
1777 1778 1779 1780 1781
    if (_retired)
      return;
    ParGCAllocBuffer::retire(end_of_gc, retain);
    _retired = true;
  }
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870

  bool is_retired() {
    return _retired;
  }
};

class G1ParGCAllocBufferContainer {
protected:
  static int const _priority_max = 2;
  G1ParGCAllocBuffer* _priority_buffer[_priority_max];

public:
  G1ParGCAllocBufferContainer(size_t gclab_word_size) {
    for (int pr = 0; pr < _priority_max; ++pr) {
      _priority_buffer[pr] = new G1ParGCAllocBuffer(gclab_word_size);
    }
  }

  ~G1ParGCAllocBufferContainer() {
    for (int pr = 0; pr < _priority_max; ++pr) {
      assert(_priority_buffer[pr]->is_retired(), "alloc buffers should all retire at this point.");
      delete _priority_buffer[pr];
    }
  }

  HeapWord* allocate(size_t word_sz) {
    HeapWord* obj;
    for (int pr = 0; pr < _priority_max; ++pr) {
      obj = _priority_buffer[pr]->allocate(word_sz);
      if (obj != NULL) return obj;
    }
    return obj;
  }

  bool contains(void* addr) {
    for (int pr = 0; pr < _priority_max; ++pr) {
      if (_priority_buffer[pr]->contains(addr)) return true;
    }
    return false;
  }

  void undo_allocation(HeapWord* obj, size_t word_sz) {
    bool finish_undo;
    for (int pr = 0; pr < _priority_max; ++pr) {
      if (_priority_buffer[pr]->contains(obj)) {
        _priority_buffer[pr]->undo_allocation(obj, word_sz);
        finish_undo = true;
      }
    }
    if (!finish_undo) ShouldNotReachHere();
  }

  size_t words_remaining() {
    size_t result = 0;
    for (int pr = 0; pr < _priority_max; ++pr) {
      result += _priority_buffer[pr]->words_remaining();
    }
    return result;
  }

  size_t words_remaining_in_retired_buffer() {
    G1ParGCAllocBuffer* retired = _priority_buffer[0];
    return retired->words_remaining();
  }

  void flush_stats_and_retire(PLABStats* stats, bool end_of_gc, bool retain) {
    for (int pr = 0; pr < _priority_max; ++pr) {
      _priority_buffer[pr]->flush_stats_and_retire(stats, end_of_gc, retain);
    }
  }

  void update(bool end_of_gc, bool retain, HeapWord* buf, size_t word_sz) {
    G1ParGCAllocBuffer* retired_and_set = _priority_buffer[0];
    retired_and_set->retire(end_of_gc, retain);
    retired_and_set->set_buf(buf);
    retired_and_set->set_word_size(word_sz);
    adjust_priority_order();
  }

private:
  void adjust_priority_order() {
    G1ParGCAllocBuffer* retired_and_set = _priority_buffer[0];

    int last = _priority_max - 1;
    for (int pr = 0; pr < last; ++pr) {
      _priority_buffer[pr] = _priority_buffer[pr + 1];
    }
    _priority_buffer[last] = retired_and_set;
  }
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
};

class G1ParScanThreadState : public StackObj {
protected:
  G1CollectedHeap* _g1h;
  RefToScanQueue*  _refs;
  DirtyCardQueue   _dcq;
  CardTableModRefBS* _ct_bs;
  G1RemSet* _g1_rem;

1881 1882 1883
  G1ParGCAllocBufferContainer  _surviving_alloc_buffer;
  G1ParGCAllocBufferContainer  _tenured_alloc_buffer;
  G1ParGCAllocBufferContainer* _alloc_buffers[GCAllocPurposeCount];
1884
  ageTable            _age_table;
1885 1886 1887 1888 1889 1890 1891 1892

  size_t           _alloc_buffer_waste;
  size_t           _undo_waste;

  OopsInHeapRegionClosure*      _evac_failure_cl;
  G1ParScanHeapEvacClosure*     _evac_cl;
  G1ParScanPartialArrayClosure* _partial_scan_cl;

S
sla 已提交
1893
  int  _hash_seed;
1894
  uint _queue_num;
1895

1896
  size_t _term_attempts;
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909

  double _start;
  double _start_strong_roots;
  double _strong_roots_time;
  double _start_term;
  double _term_time;

  // Map from young-age-index (0 == not young, 1 is youngest) to
  // surviving words. base is what we get back from the malloc call
  size_t* _surviving_young_words_base;
  // this points into the array, as we use the first few entries for padding
  size_t* _surviving_young_words;

1910
#define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937

  void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }

  void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }

  DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  CardTableModRefBS* ctbs()                      { return _ct_bs; }

  template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
    if (!from->is_survivor()) {
      _g1_rem->par_write_ref(from, p, tid);
    }
  }

  template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
    // If the new value of the field points to the same region or
    // is the to-space, we don't need to include it in the Rset updates.
    if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
      size_t card_index = ctbs()->index_for(p);
      // If the card hasn't been added to the buffer, do it.
      if (ctbs()->mark_card_deferred(card_index)) {
        dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
      }
    }
  }

public:
1938
  G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num);
1939 1940

  ~G1ParScanThreadState() {
Z
zgu 已提交
1941
    FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
1942 1943 1944 1945 1946
  }

  RefToScanQueue*   refs()            { return _refs;             }
  ageTable*         age_table()       { return &_age_table;       }

1947
  G1ParGCAllocBufferContainer* alloc_buffer(GCAllocPurpose purpose) {
1948
    return _alloc_buffers[purpose];
1949 1950
  }

1951 1952
  size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  size_t undo_waste() const                      { return _undo_waste; }
1953 1954

#ifdef ASSERT
1955 1956 1957 1958
  bool verify_ref(narrowOop* ref) const;
  bool verify_ref(oop* ref) const;
  bool verify_task(StarTask ref) const;
#endif // ASSERT
1959

1960 1961 1962
  template <class T> void push_on_queue(T* ref) {
    assert(verify_ref(ref), "sanity");
    refs()->push(ref);
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
  }

  template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
    if (G1DeferredRSUpdate) {
      deferred_rs_update(from, p, tid);
    } else {
      immediate_rs_update(from, p, tid);
    }
  }

  HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
    HeapWord* obj = NULL;
1975 1976
    size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
    if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
1977
      G1ParGCAllocBufferContainer* alloc_buf = alloc_buffer(purpose);
1978

1979
      HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
1980
      if (buf == NULL) return NULL; // Let caller handle allocation failure.
1981 1982 1983

      add_to_alloc_buffer_waste(alloc_buf->words_remaining_in_retired_buffer());
      alloc_buf->update(false /* end_of_gc */, false /* retain */, buf, gclab_word_size);
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

      obj = alloc_buf->allocate(word_sz);
      assert(obj != NULL, "buffer was definitely big enough...");
    } else {
      obj = _g1h->par_allocate_during_gc(purpose, word_sz);
    }
    return obj;
  }

  HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
    HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
    if (obj != NULL) return obj;
    return allocate_slow(purpose, word_sz);
  }

  void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
    if (alloc_buffer(purpose)->contains(obj)) {
      assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
             "should contain whole object");
      alloc_buffer(purpose)->undo_allocation(obj, word_sz);
    } else {
      CollectedHeap::fill_with_object(obj, word_sz);
      add_to_undo_waste(word_sz);
    }
  }

  void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
    _evac_failure_cl = evac_failure_cl;
  }
  OopsInHeapRegionClosure* evac_failure_closure() {
    return _evac_failure_cl;
  }

  void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
    _evac_cl = evac_cl;
  }

  void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
    _partial_scan_cl = partial_scan_cl;
  }

  int* hash_seed() { return &_hash_seed; }
2026
  uint queue_num() { return _queue_num; }
2027

2028
  size_t term_attempts() const  { return _term_attempts; }
2029
  void note_term_attempt() { _term_attempts++; }
2030 2031 2032 2033 2034 2035 2036

  void start_strong_roots() {
    _start_strong_roots = os::elapsedTime();
  }
  void end_strong_roots() {
    _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  }
2037
  double strong_roots_time() const { return _strong_roots_time; }
2038 2039 2040 2041 2042 2043 2044 2045

  void start_term_time() {
    note_term_attempt();
    _start_term = os::elapsedTime();
  }
  void end_term_time() {
    _term_time += (os::elapsedTime() - _start_term);
  }
2046
  double term_time() const { return _term_time; }
2047

2048
  double elapsed_time() const {
2049 2050 2051
    return os::elapsedTime() - _start;
  }

2052 2053 2054 2055 2056
  static void
    print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  void
    print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;

2057 2058 2059 2060 2061 2062 2063 2064
  size_t* surviving_young_words() {
    // We add on to hide entry 0 which accumulates surviving words for
    // age -1 regions (i.e. non-young ones)
    return _surviving_young_words;
  }

  void retire_alloc_buffers() {
    for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2065
      size_t waste = _alloc_buffers[ap]->words_remaining();
2066
      add_to_alloc_buffer_waste(waste);
2067 2068 2069
      _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
                                                 true /* end_of_gc */,
                                                 false /* retain */);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
    }
  }

  template <class T> void deal_with_reference(T* ref_to_scan) {
    if (has_partial_array_mask(ref_to_scan)) {
      _partial_scan_cl->do_oop_nv(ref_to_scan);
    } else {
      // Note: we can use "raw" versions of "region_containing" because
      // "obj_to_scan" is definitely in the heap, and is not in a
      // humongous region.
      HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
      _evac_cl->set_region(r);
      _evac_cl->do_oop_nv(ref_to_scan);
    }
  }

2086 2087 2088 2089 2090 2091
  void deal_with_reference(StarTask ref) {
    assert(verify_task(ref), "sanity");
    if (ref.is_narrow()) {
      deal_with_reference((narrowOop*)ref);
    } else {
      deal_with_reference((oop*)ref);
2092 2093
    }
  }
2094 2095

  void trim_queue();
2096
};
2097 2098

#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP