concurrentMark.cpp 169.2 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
27
#include "gc_implementation/g1/concurrentMark.inline.hpp"
28 29 30
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32
#include "gc_implementation/g1/g1Log.hpp"
33
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
34
#include "gc_implementation/g1/g1RemSet.hpp"
35
#include "gc_implementation/g1/heapRegion.inline.hpp"
36 37
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
38
#include "gc_implementation/shared/vmGCOperations.hpp"
S
sla 已提交
39 40 41
#include "gc_implementation/shared/gcTimer.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
42 43 44 45 46 47
#include "memory/genOopClosures.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
Z
zgu 已提交
48
#include "services/memTracker.hpp"
49

50
// Concurrent marking bit map wrapper
51

52 53
CMBitMapRO::CMBitMapRO(int shifter) :
  _bm(),
54
  _shifter(shifter) {
55 56
  _bmStartWord = 0;
  _bmWordSize = 0;
57 58 59 60 61 62 63 64
}

HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
                                               HeapWord* limit) const {
  // First we must round addr *up* to a possible object boundary.
  addr = (HeapWord*)align_size_up((intptr_t)addr,
                                  HeapWordSize << _shifter);
  size_t addrOffset = heapWordToOffset(addr);
65 66 67
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
68 69 70 71 72 73 74 75 76 77 78 79
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
                                                 HeapWord* limit) const {
  size_t addrOffset = heapWordToOffset(addr);
80 81 82
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || !isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  return (int) (diff >> _shifter);
}

#ifndef PRODUCT
98
bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
99
  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
100
  assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
101
         "size inconsistency");
102 103
  return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
         _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
104 105 106
}
#endif

107 108 109 110
void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  _bm.print_on_error(st, prefix);
}

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
bool CMBitMap::allocate(ReservedSpace heap_rs) {
  _bmStartWord = (HeapWord*)(heap_rs.base());
  _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  if (!brs.is_reserved()) {
    warning("ConcurrentMark marking bit map allocation failure");
    return false;
  }
  MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
  // For now we'll just commit all of the bit map up front.
  // Later on we'll try to be more parsimonious with swap.
  if (!_virtual_space.initialize(brs, brs.size())) {
    warning("ConcurrentMark marking bit map backing store failure");
    return false;
  }
  assert(_virtual_space.committed_size() == brs.size(),
         "didn't reserve backing store for all of concurrent marking bit map?");
  _bm.set_map((uintptr_t*)_virtual_space.low());
  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
         _bmWordSize, "inconsistency in bit map sizing");
  _bm.set_size(_bmWordSize >> _shifter);
  return true;
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
void CMBitMap::clearAll() {
  _bm.clear();
  return;
}

void CMBitMap::markRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
          ((HeapWord *) mr.end())),
         "markRange memory region end is not card aligned");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), true);
}

void CMBitMap::clearRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), false);
}

MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
                                            HeapWord* end_addr) {
  HeapWord* start = getNextMarkedWordAddress(addr);
  start = MIN2(start, end_addr);
  HeapWord* end   = getNextUnmarkedWordAddress(start);
  end = MIN2(end, end_addr);
  assert(start <= end, "Consistency check");
  MemRegion mr(start, end);
  if (!mr.is_empty()) {
    clearRange(mr);
  }
  return mr;
}

CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
  _base(NULL), _cm(cm)
#ifdef ASSERT
  , _drain_in_progress(false)
  , _drain_in_progress_yields(false)
#endif
{}

182 183 184 185 186 187
bool CMMarkStack::allocate(size_t capacity) {
  // allocate a stack of the requisite depth
  ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
  if (!rs.is_reserved()) {
    warning("ConcurrentMark MarkStack allocation failure");
    return false;
188
  }
189 190 191 192 193 194 195 196 197 198 199 200
  MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
  if (!_virtual_space.initialize(rs, rs.size())) {
    warning("ConcurrentMark MarkStack backing store failure");
    // Release the virtual memory reserved for the marking stack
    rs.release();
    return false;
  }
  assert(_virtual_space.committed_size() == rs.size(),
         "Didn't reserve backing store for all of ConcurrentMark stack?");
  _base = (oop*) _virtual_space.low();
  setEmpty();
  _capacity = (jint) capacity;
201
  _saved_index = -1;
202
  _should_expand = false;
203
  NOT_PRODUCT(_max_depth = 0);
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  return true;
}

void CMMarkStack::expand() {
  // Called, during remark, if we've overflown the marking stack during marking.
  assert(isEmpty(), "stack should been emptied while handling overflow");
  assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
  // Clear expansion flag
  _should_expand = false;
  if (_capacity == (jint) MarkStackSizeMax) {
    if (PrintGCDetails && Verbose) {
      gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
    }
    return;
  }
  // Double capacity if possible
  jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
  // Do not give up existing stack until we have managed to
  // get the double capacity that we desired.
  ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
                                                           sizeof(oop)));
  if (rs.is_reserved()) {
    // Release the backing store associated with old stack
    _virtual_space.release();
    // Reinitialize virtual space for new stack
    if (!_virtual_space.initialize(rs, rs.size())) {
      fatal("Not enough swap for expanded marking stack capacity");
    }
    _base = (oop*)(_virtual_space.low());
    _index = 0;
    _capacity = new_capacity;
  } else {
    if (PrintGCDetails && Verbose) {
      // Failed to double capacity, continue;
      gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
                          SIZE_FORMAT"K to " SIZE_FORMAT"K",
                          _capacity / K, new_capacity / K);
    }
  }
}

void CMMarkStack::set_should_expand() {
  // If we're resetting the marking state because of an
  // marking stack overflow, record that we should, if
  // possible, expand the stack.
  _should_expand = _cm->has_overflown();
250 251 252
}

CMMarkStack::~CMMarkStack() {
253
  if (_base != NULL) {
254 255
    _base = NULL;
    _virtual_space.release();
256
  }
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
}

void CMMarkStack::par_push(oop ptr) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index+1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      _base[index] = ptr;
      // Note that we don't maintain this atomically.  We could, but it
      // doesn't seem necessary.
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index + n;
    if (next_index > _capacity) {
      _overflow = true;
      return;
    }
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      for (int i = 0; i < n; i++) {
296
        int  ind = index + i;
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
        assert(ind < _capacity, "By overflow test above.");
        _base[ind] = ptr_arr[i];
      }
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint start = _index;
  jint next_index = start + n;
  if (next_index > _capacity) {
    _overflow = true;
    return;
  }
  // Otherwise.
  _index = next_index;
  for (int i = 0; i < n; i++) {
    int ind = start + i;
319
    assert(ind < _capacity, "By overflow test above.");
320 321
    _base[ind] = ptr_arr[i];
  }
322
  NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
323 324 325 326 327 328 329 330 331 332
}

bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint index = _index;
  if (index == 0) {
    *n = 0;
    return false;
  } else {
    int k = MIN2(max, index);
333
    jint  new_ind = index - k;
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    for (int j = 0; j < k; j++) {
      ptr_arr[j] = _base[new_ind + j];
    }
    _index = new_ind;
    *n = k;
    return true;
  }
}

template<class OopClosureClass>
bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
  assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
         || SafepointSynchronize::is_at_safepoint(),
         "Drain recursion must be yield-safe.");
  bool res = true;
  debug_only(_drain_in_progress = true);
  debug_only(_drain_in_progress_yields = yield_after);
  while (!isEmpty()) {
    oop newOop = pop();
    assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
    assert(newOop->is_oop(), "Expected an oop");
    assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
           "only grey objects on this stack");
    newOop->oop_iterate(cl);
    if (yield_after && _cm->do_yield_check()) {
359 360
      res = false;
      break;
361 362 363 364 365 366
    }
  }
  debug_only(_drain_in_progress = false);
  return res;
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
void CMMarkStack::note_start_of_gc() {
  assert(_saved_index == -1,
         "note_start_of_gc()/end_of_gc() bracketed incorrectly");
  _saved_index = _index;
}

void CMMarkStack::note_end_of_gc() {
  // This is intentionally a guarantee, instead of an assert. If we
  // accidentally add something to the mark stack during GC, it
  // will be a correctness issue so it's better if we crash. we'll
  // only check this once per GC anyway, so it won't be a performance
  // issue in any way.
  guarantee(_saved_index == _index,
            err_msg("saved index: %d index: %d", _saved_index, _index));
  _saved_index = -1;
}

384
void CMMarkStack::oops_do(OopClosure* f) {
385 386 387
  assert(_saved_index == _index,
         err_msg("saved index: %d index: %d", _saved_index, _index));
  for (int i = 0; i < _index; i += 1) {
388 389 390 391 392
    f->do_oop(&_base[i]);
  }
}

bool ConcurrentMark::not_yet_marked(oop obj) const {
393
  return _g1h->is_obj_ill(obj);
394 395
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
CMRootRegions::CMRootRegions() :
  _young_list(NULL), _cm(NULL), _scan_in_progress(false),
  _should_abort(false),  _next_survivor(NULL) { }

void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
  _young_list = g1h->young_list();
  _cm = cm;
}

void CMRootRegions::prepare_for_scan() {
  assert(!scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  assert(_next_survivor == NULL, "pre-condition");
  _next_survivor = _young_list->first_survivor_region();
  _scan_in_progress = (_next_survivor != NULL);
  _should_abort = false;
}

HeapRegion* CMRootRegions::claim_next() {
  if (_should_abort) {
    // If someone has set the should_abort flag, we return NULL to
    // force the caller to bail out of their loop.
    return NULL;
  }

  // Currently, only survivors can be root regions.
  HeapRegion* res = _next_survivor;
  if (res != NULL) {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    // Read it again in case it changed while we were waiting for the lock.
    res = _next_survivor;
    if (res != NULL) {
      if (res == _young_list->last_survivor_region()) {
        // We just claimed the last survivor so store NULL to indicate
        // that we're done.
        _next_survivor = NULL;
      } else {
        _next_survivor = res->get_next_young_region();
      }
    } else {
      // Someone else claimed the last survivor while we were trying
      // to take the lock so nothing else to do.
    }
  }
  assert(res == NULL || res->is_survivor(), "post-condition");

  return res;
}

void CMRootRegions::scan_finished() {
  assert(scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  if (!_should_abort) {
    assert(_next_survivor == NULL, "we should have claimed all survivors");
  }
  _next_survivor = NULL;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    _scan_in_progress = false;
    RootRegionScan_lock->notify_all();
  }
}

bool CMRootRegions::wait_until_scan_finished() {
  if (!scan_in_progress()) return false;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    while (scan_in_progress()) {
      RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
    }
  }
  return true;
}

474 475 476 477
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

478 479
uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
  return MAX2((n_par_threads + 2) / 4, 1U);
480 481
}

482 483
ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
  _g1h(g1h),
484 485
  _markBitMap1(log2_intptr(MinObjAlignment)),
  _markBitMap2(log2_intptr(MinObjAlignment)),
486
  _parallel_marking_threads(0),
487
  _max_parallel_marking_threads(0),
488 489 490 491
  _sleep_factor(0.0),
  _marking_task_overhead(1.0),
  _cleanup_sleep_factor(0.0),
  _cleanup_task_overhead(1.0),
492
  _cleanup_list("Cleanup List"),
493 494 495 496
  _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
  _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
            CardTableModRefBS::card_shift,
            false /* in_resource_area*/),
497

498 499 500 501 502 503
  _prevMarkBitMap(&_markBitMap1),
  _nextMarkBitMap(&_markBitMap2),

  _markStack(this),
  // _finger set in set_non_marking_state

504
  _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
505 506
  // _active_tasks set in set_non_marking_state
  // _tasks set inside the constructor
507 508
  _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
  _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
509 510 511

  _has_overflown(false),
  _concurrent(false),
512 513 514
  _has_aborted(false),
  _restart_for_overflow(false),
  _concurrent_marking_in_progress(false),
515 516 517 518 519 520 521 522

  // _verbose_level set below

  _init_times(),
  _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
  _cleanup_times(),
  _total_counting_time(0.0),
  _total_rs_scrub_time(0.0),
523 524 525 526

  _parallel_workers(NULL),

  _count_card_bitmaps(NULL),
527 528
  _count_marked_bytes(NULL),
  _completed_initialization(false) {
529 530
  CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
  if (verbose_level < no_verbose) {
531
    verbose_level = no_verbose;
532 533
  }
  if (verbose_level > high_verbose) {
534
    verbose_level = high_verbose;
535
  }
536 537
  _verbose_level = verbose_level;

538
  if (verbose_low()) {
539 540
    gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
                           "heap end = "PTR_FORMAT, _heap_start, _heap_end);
541
  }
542

543 544 545 546 547 548 549 550
  if (!_markBitMap1.allocate(heap_rs)) {
    warning("Failed to allocate first CM bit map");
    return;
  }
  if (!_markBitMap2.allocate(heap_rs)) {
    warning("Failed to allocate second CM bit map");
    return;
  }
551 552

  // Create & start a ConcurrentMark thread.
553 554 555
  _cmThread = new ConcurrentMarkThread(this);
  assert(cmThread() != NULL, "CM Thread should have been created");
  assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
556 557 558
  if (_cmThread->osthread() == NULL) {
      vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
  }
559

560
  assert(CGC_lock != NULL, "Where's the CGC_lock?");
561 562
  assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
  assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
563 564

  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
565
  satb_qs.set_buffer_size(G1SATBBufferSize);
566

567 568
  _root_regions.init(_g1h, this);

569
  if (ConcGCThreads > ParallelGCThreads) {
570 571 572 573
    warning("Can't have more ConcGCThreads (" UINT32_FORMAT ") "
            "than ParallelGCThreads (" UINT32_FORMAT ").",
            ConcGCThreads, ParallelGCThreads);
    return;
574 575 576 577
  }
  if (ParallelGCThreads == 0) {
    // if we are not running with any parallel GC threads we will not
    // spawn any marking threads either
578 579 580 581
    _parallel_marking_threads =       0;
    _max_parallel_marking_threads =   0;
    _sleep_factor             =     0.0;
    _marking_task_overhead    =     1.0;
582
  } else {
583 584
    if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
      // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
585 586 587
      // if both are set
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
J
johnc 已提交
588
    } else if (G1MarkingOverheadPercent > 0) {
589 590
      // We will calculate the number of parallel marking threads based
      // on a target overhead with respect to the soft real-time goal
J
johnc 已提交
591
      double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
592
      double overall_cm_overhead =
J
johnc 已提交
593 594
        (double) MaxGCPauseMillis * marking_overhead /
        (double) GCPauseIntervalMillis;
595 596 597 598 599 600 601 602
      double cpu_ratio = 1.0 / (double) os::processor_count();
      double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
      double marking_task_overhead =
        overall_cm_overhead / marking_thread_num *
                                                (double) os::processor_count();
      double sleep_factor =
                         (1.0 - marking_task_overhead) / marking_task_overhead;

603
      FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
604 605 606
      _sleep_factor             = sleep_factor;
      _marking_task_overhead    = marking_task_overhead;
    } else {
607 608 609 610
      // Calculate the number of parallel marking threads by scaling
      // the number of parallel GC threads.
      uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
      FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
611 612 613 614
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
    }

615 616 617 618
    assert(ConcGCThreads > 0, "Should have been set");
    _parallel_marking_threads = (uint) ConcGCThreads;
    _max_parallel_marking_threads = _parallel_marking_threads;

619
    if (parallel_marking_threads() > 1) {
620
      _cleanup_task_overhead = 1.0;
621
    } else {
622
      _cleanup_task_overhead = marking_task_overhead();
623
    }
624 625 626 627 628 629 630 631 632 633 634
    _cleanup_sleep_factor =
                     (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();

#if 0
    gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
    gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
    gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
    gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
    gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
#endif

635
    guarantee(parallel_marking_threads() > 0, "peace of mind");
636
    _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
637
         _max_parallel_marking_threads, false, true);
638
    if (_parallel_workers == NULL) {
639
      vm_exit_during_initialization("Failed necessary allocation.");
640 641 642
    } else {
      _parallel_workers->initialize_workers();
    }
643 644
  }

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
  if (FLAG_IS_DEFAULT(MarkStackSize)) {
    uintx mark_stack_size =
      MIN2(MarkStackSizeMax,
          MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
    // Verify that the calculated value for MarkStackSize is in range.
    // It would be nice to use the private utility routine from Arguments.
    if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
      warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
              "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
              mark_stack_size, 1, MarkStackSizeMax);
      return;
    }
    FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
  } else {
    // Verify MarkStackSize is in range.
    if (FLAG_IS_CMDLINE(MarkStackSize)) {
      if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
        if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
          warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
                  "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
                  MarkStackSize, 1, MarkStackSizeMax);
          return;
        }
      } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
        if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
          warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
                  " or for MarkStackSizeMax (" UINTX_FORMAT ")",
                  MarkStackSize, MarkStackSizeMax);
          return;
        }
      }
    }
  }

  if (!_markStack.allocate(MarkStackSize)) {
    warning("Failed to allocate CM marking stack");
    return;
  }

  _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
  _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);

  _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
  _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);

  BitMap::idx_t card_bm_size = _card_bm.size();

  // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
  _active_tasks = _max_worker_id;

  size_t max_regions = (size_t) _g1h->max_regions();
  for (uint i = 0; i < _max_worker_id; ++i) {
    CMTaskQueue* task_queue = new CMTaskQueue();
    task_queue->initialize();
    _task_queues->register_queue(i, task_queue);

    _count_card_bitmaps[i] = BitMap(card_bm_size, false);
    _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);

    _tasks[i] = new CMTask(i, this,
                           _count_marked_bytes[i],
                           &_count_card_bitmaps[i],
                           task_queue, _task_queues);

    _accum_task_vtime[i] = 0.0;
  }

  // Calculate the card number for the bottom of the heap. Used
  // in biasing indexes into the accounting card bitmaps.
  _heap_bottom_card_num =
    intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
                                CardTableModRefBS::card_shift);

  // Clear all the liveness counting data
  clear_all_count_data();

721
  // so that the call below can read a sensible value
722
  _heap_start = (HeapWord*) heap_rs.base();
723
  set_non_marking_state();
724
  _completed_initialization = true;
725 726 727 728
}

void ConcurrentMark::update_g1_committed(bool force) {
  // If concurrent marking is not in progress, then we do not need to
729
  // update _heap_end.
730
  if (!concurrent_marking_in_progress() && !force) return;
731 732

  MemRegion committed = _g1h->g1_committed();
733
  assert(committed.start() == _heap_start, "start shouldn't change");
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
  HeapWord* new_end = committed.end();
  if (new_end > _heap_end) {
    // The heap has been expanded.

    _heap_end = new_end;
  }
  // Notice that the heap can also shrink. However, this only happens
  // during a Full GC (at least currently) and the entire marking
  // phase will bail out and the task will not be restarted. So, let's
  // do nothing.
}

void ConcurrentMark::reset() {
  // Starting values for these two. This should be called in a STW
  // phase. CM will be notified of any future g1_committed expansions
  // will be at the end of evacuation pauses, when tasks are
  // inactive.
  MemRegion committed = _g1h->g1_committed();
  _heap_start = committed.start();
  _heap_end   = committed.end();

755 756 757 758
  // Separated the asserts so that we know which one fires.
  assert(_heap_start != NULL, "heap bounds should look ok");
  assert(_heap_end != NULL, "heap bounds should look ok");
  assert(_heap_start < _heap_end, "heap bounds should look ok");
759

760 761
  // Reset all the marking data structures and any necessary flags
  reset_marking_state();
762

763
  if (verbose_low()) {
764
    gclog_or_tty->print_cr("[global] resetting");
765
  }
766 767 768 769

  // We do reset all of them, since different phases will use
  // different number of active threads. So, it's easiest to have all
  // of them ready.
770
  for (uint i = 0; i < _max_worker_id; ++i) {
771
    _tasks[i]->reset(_nextMarkBitMap);
772
  }
773 774 775 776 777 778

  // we need this to make sure that the flag is on during the evac
  // pause with initial mark piggy-backed
  set_concurrent_marking_in_progress();
}

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795

void ConcurrentMark::reset_marking_state(bool clear_overflow) {
  _markStack.set_should_expand();
  _markStack.setEmpty();        // Also clears the _markStack overflow flag
  if (clear_overflow) {
    clear_has_overflown();
  } else {
    assert(has_overflown(), "pre-condition");
  }
  _finger = _heap_start;

  for (uint i = 0; i < _max_worker_id; ++i) {
    CMTaskQueue* queue = _task_queues->queue(i);
    queue->set_empty();
  }
}

796
void ConcurrentMark::set_concurrency(uint active_tasks) {
797
  assert(active_tasks <= _max_worker_id, "we should not have more");
798 799 800 801 802 803 804

  _active_tasks = active_tasks;
  // Need to update the three data structures below according to the
  // number of active threads for this phase.
  _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
  _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
  _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
805 806 807 808
}

void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
  set_concurrency(active_tasks);
809 810 811

  _concurrent = concurrent;
  // We propagate this to all tasks, not just the active ones.
812
  for (uint i = 0; i < _max_worker_id; ++i)
813 814 815 816 817 818 819 820
    _tasks[i]->set_concurrent(concurrent);

  if (concurrent) {
    set_concurrent_marking_in_progress();
  } else {
    // We currently assume that the concurrent flag has been set to
    // false before we start remark. At this point we should also be
    // in a STW phase.
821
    assert(!concurrent_marking_in_progress(), "invariant");
822 823 824
    assert(_finger == _heap_end,
           err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
                   _finger, _heap_end));
825 826 827 828 829 830 831
    update_g1_committed(true);
  }
}

void ConcurrentMark::set_non_marking_state() {
  // We set the global marking state to some default values when we're
  // not doing marking.
832
  reset_marking_state();
833 834 835 836 837
  _active_tasks = 0;
  clear_concurrent_marking_in_progress();
}

ConcurrentMark::~ConcurrentMark() {
838 839
  // The ConcurrentMark instance is never freed.
  ShouldNotReachHere();
840 841 842
}

void ConcurrentMark::clearNextBitmap() {
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  // Make sure that the concurrent mark thread looks to still be in
  // the current cycle.
  guarantee(cmThread()->during_cycle(), "invariant");

  // We are finishing up the current cycle by clearing the next
  // marking bitmap and getting it ready for the next cycle. During
  // this time no other cycle can start. So, let's make sure that this
  // is the case.
  guarantee(!g1h->mark_in_progress(), "invariant");

  // clear the mark bitmap (no grey objects to start with).
  // We need to do this in chunks and offer to yield in between
  // each chunk.
  HeapWord* start  = _nextMarkBitMap->startWord();
  HeapWord* end    = _nextMarkBitMap->endWord();
  HeapWord* cur    = start;
  size_t chunkSize = M;
  while (cur < end) {
    HeapWord* next = cur + chunkSize;
865
    if (next > end) {
866
      next = end;
867
    }
868 869 870 871 872 873 874 875 876 877 878 879 880
    MemRegion mr(cur,next);
    _nextMarkBitMap->clearRange(mr);
    cur = next;
    do_yield_check();

    // Repeat the asserts from above. We'll do them as asserts here to
    // minimize their overhead on the product. However, we'll have
    // them as guarantees at the beginning / end of the bitmap
    // clearing to get some checking in the product.
    assert(cmThread()->during_cycle(), "invariant");
    assert(!g1h->mark_in_progress(), "invariant");
  }

881 882 883
  // Clear the liveness counting data
  clear_all_count_data();

884 885 886
  // Repeat the asserts from above.
  guarantee(cmThread()->during_cycle(), "invariant");
  guarantee(!g1h->mark_in_progress(), "invariant");
887 888 889 890 891 892
}

class NoteStartOfMarkHRClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
893
      r->note_start_of_marking();
894 895 896 897 898 899 900 901 902 903 904
    }
    return false;
  }
};

void ConcurrentMark::checkpointRootsInitialPre() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  _has_aborted = false;

905
#ifndef PRODUCT
906
  if (G1PrintReachableAtInitialMark) {
907
    print_reachable("at-cycle-start",
908
                    VerifyOption_G1UsePrevMarking, true /* all */);
909
  }
910
#endif
911 912 913

  // Initialise marking structures. This has to be done in a STW phase.
  reset();
914 915 916 917

  // For each region note start of marking.
  NoteStartOfMarkHRClosure startcl;
  g1h->heap_region_iterate(&startcl);
918 919 920 921 922 923
}


void ConcurrentMark::checkpointRootsInitialPost() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();

924 925 926 927 928 929 930 931
  // If we force an overflow during remark, the remark operation will
  // actually abort and we'll restart concurrent marking. If we always
  // force an oveflow during remark we'll never actually complete the
  // marking phase. So, we initilize this here, at the start of the
  // cycle, so that at the remaining overflow number will decrease at
  // every remark and we'll eventually not need to cause one.
  force_overflow_stw()->init();

932 933 934 935
  // Start Concurrent Marking weak-reference discovery.
  ReferenceProcessor* rp = g1h->ref_processor_cm();
  // enable ("weak") refs discovery
  rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
936
  rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
937 938

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
939 940 941 942
  // This is the start of  the marking cycle, we're expected all
  // threads to have SATB queues with active set to false.
  satb_mq_set.set_active_all_threads(true, /* new active value */
                                     false /* expected_active */);
943

944 945
  _root_regions.prepare_for_scan();

946 947 948 949 950 951 952
  // update_g1_committed() will be called at the end of an evac pause
  // when marking is on. So, it's also called at the end of the
  // initial-mark pause to update the heap end, if the heap expands
  // during it. No need to call it here.
}

/*
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
 * Notice that in the next two methods, we actually leave the STS
 * during the barrier sync and join it immediately afterwards. If we
 * do not do this, the following deadlock can occur: one thread could
 * be in the barrier sync code, waiting for the other thread to also
 * sync up, whereas another one could be trying to yield, while also
 * waiting for the other threads to sync up too.
 *
 * Note, however, that this code is also used during remark and in
 * this case we should not attempt to leave / enter the STS, otherwise
 * we'll either hit an asseert (debug / fastdebug) or deadlock
 * (product). So we should only leave / enter the STS if we are
 * operating concurrently.
 *
 * Because the thread that does the sync barrier has left the STS, it
 * is possible to be suspended for a Full GC or an evacuation pause
 * could occur. This is actually safe, since the entering the sync
 * barrier is one of the last things do_marking_step() does, and it
 * doesn't manipulate any data structures afterwards.
 */
972

973
void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
974
  if (verbose_low()) {
975
    gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
976
  }
977

978 979 980
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
981
  _first_overflow_barrier_sync.enter();
982 983 984
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
985 986 987
  // at this point everyone should have synced up and not be doing any
  // more work

988
  if (verbose_low()) {
989
    gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
990
  }
991

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
  // If we're executing the concurrent phase of marking, reset the marking
  // state; otherwise the marking state is reset after reference processing,
  // during the remark pause.
  // If we reset here as a result of an overflow during the remark we will
  // see assertion failures from any subsequent set_concurrency_and_phase()
  // calls.
  if (concurrent()) {
    // let the task associated with with worker 0 do this
    if (worker_id == 0) {
      // task 0 is responsible for clearing the global data structures
      // We should be here because of an overflow. During STW we should
      // not clear the overflow flag since we rely on it being true when
      // we exit this method to abort the pause and restart concurent
      // marking.
      reset_marking_state(true /* clear_overflow */);
      force_overflow()->update();

      if (G1Log::fine()) {
        gclog_or_tty->date_stamp(PrintGCDateStamps);
        gclog_or_tty->stamp(PrintGCTimeStamps);
        gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
      }
1014 1015 1016 1017 1018 1019 1020
    }
  }

  // after this, each task should reset its own data structures then
  // then go into the second barrier
}

1021
void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1022
  if (verbose_low()) {
1023
    gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1024
  }
1025

1026 1027 1028
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
1029
  _second_overflow_barrier_sync.enter();
1030 1031 1032
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
1033
  // at this point everything should be re-initialized and ready to go
1034

1035
  if (verbose_low()) {
1036
    gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1037
  }
1038 1039
}

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
#ifndef PRODUCT
void ForceOverflowSettings::init() {
  _num_remaining = G1ConcMarkForceOverflow;
  _force = false;
  update();
}

void ForceOverflowSettings::update() {
  if (_num_remaining > 0) {
    _num_remaining -= 1;
    _force = true;
  } else {
    _force = false;
  }
}

bool ForceOverflowSettings::should_force() {
  if (_force) {
    _force = false;
    return true;
  } else {
    return false;
  }
}
#endif // !PRODUCT

1066 1067 1068 1069 1070 1071
class CMConcurrentMarkingTask: public AbstractGangTask {
private:
  ConcurrentMark*       _cm;
  ConcurrentMarkThread* _cmt;

public:
1072
  void work(uint worker_id) {
1073 1074
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");
1075
    ResourceMark rm;
1076 1077 1078 1079 1080

    double start_vtime = os::elapsedVTime();

    ConcurrentGCThread::stsJoin();

1081 1082
    assert(worker_id < _cm->active_tasks(), "invariant");
    CMTask* the_task = _cm->task(worker_id);
1083 1084 1085 1086 1087
    the_task->record_start_time();
    if (!_cm->has_aborted()) {
      do {
        double start_vtime_sec = os::elapsedVTime();
        double start_time_sec = os::elapsedTime();
1088 1089 1090
        double mark_step_duration_ms = G1ConcMarkStepDurationMillis;

        the_task->do_marking_step(mark_step_duration_ms,
1091 1092
                                  true  /* do_termination */,
                                  false /* is_serial*/);
1093

1094 1095 1096 1097 1098 1099
        double end_time_sec = os::elapsedTime();
        double end_vtime_sec = os::elapsedVTime();
        double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
        double elapsed_time_sec = end_time_sec - start_time_sec;
        _cm->clear_has_overflown();

1100
        bool ret = _cm->do_yield_check(worker_id);
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

        jlong sleep_time_ms;
        if (!_cm->has_aborted() && the_task->has_aborted()) {
          sleep_time_ms =
            (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
          ConcurrentGCThread::stsLeave();
          os::sleep(Thread::current(), sleep_time_ms, false);
          ConcurrentGCThread::stsJoin();
        }
        double end_time2_sec = os::elapsedTime();
        double elapsed_time2_sec = end_time2_sec - start_time_sec;

#if 0
          gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
                                 "overhead %1.4lf",
                                 elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
                                 the_task->conc_overhead(os::elapsedTime()) * 8.0);
          gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
                                 elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
#endif
      } while (!_cm->has_aborted() && the_task->has_aborted());
    }
    the_task->record_end_time();
1124
    guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1125 1126 1127 1128

    ConcurrentGCThread::stsLeave();

    double end_vtime = os::elapsedVTime();
1129
    _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1130 1131 1132 1133 1134 1135 1136 1137 1138
  }

  CMConcurrentMarkingTask(ConcurrentMark* cm,
                          ConcurrentMarkThread* cmt) :
      AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }

  ~CMConcurrentMarkingTask() { }
};

1139 1140
// Calculates the number of active workers for a concurrent
// phase.
1141
uint ConcurrentMark::calc_parallel_marking_threads() {
1142
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1143
    uint n_conc_workers = 0;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
    if (!UseDynamicNumberOfGCThreads ||
        (!FLAG_IS_DEFAULT(ConcGCThreads) &&
         !ForceDynamicNumberOfGCThreads)) {
      n_conc_workers = max_parallel_marking_threads();
    } else {
      n_conc_workers =
        AdaptiveSizePolicy::calc_default_active_workers(
                                     max_parallel_marking_threads(),
                                     1, /* Minimum workers */
                                     parallel_marking_threads(),
                                     Threads::number_of_non_daemon_threads());
      // Don't scale down "n_conc_workers" by scale_parallel_threads() because
      // that scaling has already gone into "_max_parallel_marking_threads".
    }
1158 1159
    assert(n_conc_workers > 0, "Always need at least 1");
    return n_conc_workers;
1160
  }
1161 1162 1163 1164
  // If we are not running with any parallel GC threads we will not
  // have spawned any marking threads either. Hence the number of
  // concurrent workers should be 0.
  return 0;
1165 1166
}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  // Currently, only survivors can be root regions.
  assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  G1RootRegionScanClosure cl(_g1h, this, worker_id);

  const uintx interval = PrefetchScanIntervalInBytes;
  HeapWord* curr = hr->bottom();
  const HeapWord* end = hr->top();
  while (curr < end) {
    Prefetch::read(curr, interval);
    oop obj = oop(curr);
    int size = obj->oop_iterate(&cl);
    assert(size == obj->size(), "sanity");
    curr += size;
  }
}

class CMRootRegionScanTask : public AbstractGangTask {
private:
  ConcurrentMark* _cm;

public:
  CMRootRegionScanTask(ConcurrentMark* cm) :
    AbstractGangTask("Root Region Scan"), _cm(cm) { }

  void work(uint worker_id) {
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");

    CMRootRegions* root_regions = _cm->root_regions();
    HeapRegion* hr = root_regions->claim_next();
    while (hr != NULL) {
      _cm->scanRootRegion(hr, worker_id);
      hr = root_regions->claim_next();
    }
  }
};

void ConcurrentMark::scanRootRegions() {
  // scan_in_progress() will have been set to true only if there was
  // at least one root region to scan. So, if it's false, we
  // should not attempt to do any further work.
  if (root_regions()->scan_in_progress()) {
    _parallel_marking_threads = calc_parallel_marking_threads();
    assert(parallel_marking_threads() <= max_parallel_marking_threads(),
           "Maximum number of marking threads exceeded");
    uint active_workers = MAX2(1U, parallel_marking_threads());

    CMRootRegionScanTask task(this);
1216
    if (use_parallel_marking_threads()) {
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
      _parallel_workers->set_active_workers((int) active_workers);
      _parallel_workers->run_task(&task);
    } else {
      task.work(0);
    }

    // It's possible that has_aborted() is true here without actually
    // aborting the survivor scan earlier. This is OK as it's
    // mainly used for sanity checking.
    root_regions()->scan_finished();
  }
}

1230 1231 1232 1233 1234 1235 1236 1237 1238
void ConcurrentMark::markFromRoots() {
  // we might be tempted to assert that:
  // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  //        "inconsistent argument?");
  // However that wouldn't be right, because it's possible that
  // a safepoint is indeed in progress as a younger generation
  // stop-the-world GC happens even as we mark in this generation.

  _restart_for_overflow = false;
1239
  force_overflow_conc()->init();
1240 1241 1242 1243 1244 1245

  // _g1h has _n_par_threads
  _parallel_marking_threads = calc_parallel_marking_threads();
  assert(parallel_marking_threads() <= max_parallel_marking_threads(),
    "Maximum number of marking threads exceeded");

1246
  uint active_workers = MAX2(1U, parallel_marking_threads());
1247

1248 1249
  // Parallel task terminator is set in "set_concurrency_and_phase()"
  set_concurrency_and_phase(active_workers, true /* concurrent */);
1250 1251

  CMConcurrentMarkingTask markingTask(this, cmThread());
1252
  if (use_parallel_marking_threads()) {
1253 1254 1255 1256
    _parallel_workers->set_active_workers((int)active_workers);
    // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
    // and the decisions on that MT processing is made elsewhere.
    assert(_parallel_workers->active_workers() > 0, "Should have been set");
1257
    _parallel_workers->run_task(&markingTask);
1258
  } else {
1259
    markingTask.work(0);
1260
  }
1261 1262 1263 1264 1265 1266 1267
  print_stats();
}

void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
1268

1269 1270 1271 1272 1273 1274 1275 1276
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

1277 1278
  SvcGCMarker sgcm(SvcGCMarker::OTHER);

1279 1280 1281
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    Universe::heap()->prepare_for_verify();
1282 1283
    Universe::verify(VerifyOption_G1UsePrevMarking,
                     " VerifyDuringGC:(before)");
1284 1285
  }

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
  G1CollectorPolicy* g1p = g1h->g1_policy();
  g1p->record_concurrent_mark_remark_start();

  double start = os::elapsedTime();

  checkpointRootsFinalWork();

  double mark_work_end = os::elapsedTime();

  weakRefsWork(clear_all_soft_refs);

  if (has_overflown()) {
    // Oops.  We overflowed.  Restart concurrent marking.
    _restart_for_overflow = true;
1300
    if (G1TraceMarkStackOverflow) {
1301
      gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1302
    }
1303 1304 1305 1306 1307

    // Verify the heap w.r.t. the previous marking bitmap.
    if (VerifyDuringGC) {
      HandleMark hm;  // handle scope
      Universe::heap()->prepare_for_verify();
1308 1309
      Universe::verify(VerifyOption_G1UsePrevMarking,
                       " VerifyDuringGC:(overflow)");
1310 1311 1312 1313 1314
    }

    // Clear the marking state because we will be restarting
    // marking due to overflowing the global mark stack.
    reset_marking_state();
1315
  } else {
1316 1317 1318 1319
    // Aggregate the per-task counting data that we have accumulated
    // while marking.
    aggregate_count_data();

1320
    SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1321
    // We're done with marking.
1322 1323
    // This is the end of  the marking cycle, we're expected all
    // threads to have SATB queues with active set to true.
1324 1325
    satb_mq_set.set_active_all_threads(false, /* new active value */
                                       true /* expected_active */);
1326 1327

    if (VerifyDuringGC) {
1328 1329
      HandleMark hm;  // handle scope
      Universe::heap()->prepare_for_verify();
1330 1331
      Universe::verify(VerifyOption_G1UseNextMarking,
                       " VerifyDuringGC:(after)");
1332
    }
1333
    assert(!restart_for_overflow(), "sanity");
1334 1335
    // Completely reset the marking state since marking completed
    set_non_marking_state();
1336 1337
  }

1338 1339 1340 1341 1342
  // Expand the marking stack, if we have to and if we can.
  if (_markStack.should_expand()) {
    _markStack.expand();
  }

1343 1344 1345 1346 1347 1348 1349
  // Statistics
  double now = os::elapsedTime();
  _remark_mark_times.add((mark_work_end - start) * 1000.0);
  _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  _remark_times.add((now - start) * 1000.0);

  g1p->record_concurrent_mark_remark_end();
S
sla 已提交
1350 1351 1352

  G1CMIsAliveClosure is_alive(g1h);
  g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1353 1354
}

1355 1356 1357 1358
// Base class of the closures that finalize and verify the
// liveness counting data.
class CMCountDataClosureBase: public HeapRegionClosure {
protected:
1359
  G1CollectedHeap* _g1h;
1360
  ConcurrentMark* _cm;
1361 1362
  CardTableModRefBS* _ct_bs;

1363 1364 1365
  BitMap* _region_bm;
  BitMap* _card_bm;

1366
  // Takes a region that's not empty (i.e., it has at least one
1367 1368 1369 1370 1371 1372 1373
  // live object in it and sets its corresponding bit on the region
  // bitmap to 1. If the region is "starts humongous" it will also set
  // to 1 the bits on the region bitmap that correspond to its
  // associated "continues humongous" regions.
  void set_bit_for_region(HeapRegion* hr) {
    assert(!hr->continuesHumongous(), "should have filtered those out");

1374
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1375 1376
    if (!hr->startsHumongous()) {
      // Normal (non-humongous) case: just set the bit.
1377
      _region_bm->par_at_put(index, true);
1378 1379
    } else {
      // Starts humongous case: calculate how many regions are part of
1380
      // this humongous region and then set the bit range.
1381
      BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1382
      _region_bm->par_at_put_range(index, end_index, true);
1383 1384 1385
    }
  }

1386
public:
1387
  CMCountDataClosureBase(G1CollectedHeap* g1h,
1388
                         BitMap* region_bm, BitMap* card_bm):
1389 1390 1391
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
    _region_bm(region_bm), _card_bm(card_bm) { }
1392 1393 1394 1395 1396 1397 1398 1399 1400
};

// Closure that calculates the # live objects per region. Used
// for verification purposes during the cleanup pause.
class CalcLiveObjectsClosure: public CMCountDataClosureBase {
  CMBitMapRO* _bm;
  size_t _region_marked_bytes;

public:
1401
  CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1402
                         BitMap* region_bm, BitMap* card_bm) :
1403
    CMCountDataClosureBase(g1h, region_bm, card_bm),
1404 1405
    _bm(bm), _region_marked_bytes(0) { }

1406 1407
  bool doHeapRegion(HeapRegion* hr) {

I
iveresov 已提交
1408
    if (hr->continuesHumongous()) {
1409 1410 1411 1412 1413 1414 1415
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
I
iveresov 已提交
1416 1417
      return false;
    }
1418

1419 1420
    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* start = hr->bottom();
1421

1422
    assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1423
           err_msg("Preconditions not met - "
1424 1425
                   "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
                   start, ntams, hr->end()));
1426

1427
    // Find the first marked object at or after "start".
1428
    start = _bm->getNextMarkedWordAddress(start, ntams);
1429

1430 1431
    size_t marked_bytes = 0;

1432
    while (start < ntams) {
1433 1434
      oop obj = oop(start);
      int obj_sz = obj->size();
1435
      HeapWord* obj_end = start + obj_sz;
1436

1437
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);

      // Note: if we're looking at the last region in heap - obj_end
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }
1449

1450 1451
      // Set the bits in the card BM for the cards spanned by this object.
      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1452 1453

      // Add the size of this object to the number of marked bytes.
1454
      marked_bytes += (size_t)obj_sz * HeapWordSize;
1455

1456
      // Find the next marked object after this one.
1457
      start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1458
    }
1459 1460 1461

    // Mark the allocated-since-marking portion...
    HeapWord* top = hr->top();
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
    if (ntams < top) {
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);

      // Note: if we're looking at the last region in heap - top
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }
      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1476 1477 1478

      // This definitely means the region has live objects.
      set_bit_for_region(hr);
1479 1480 1481 1482
    }

    // Update the live region bitmap.
    if (marked_bytes > 0) {
1483
      set_bit_for_region(hr);
1484
    }
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501

    // Set the marked bytes for the current region so that
    // it can be queried by a calling verificiation routine
    _region_marked_bytes = marked_bytes;

    return false;
  }

  size_t region_marked_bytes() const { return _region_marked_bytes; }
};

// Heap region closure used for verifying the counting data
// that was accumulated concurrently and aggregated during
// the remark pause. This closure is applied to the heap
// regions during the STW cleanup pause.

class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1502
  G1CollectedHeap* _g1h;
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
  ConcurrentMark* _cm;
  CalcLiveObjectsClosure _calc_cl;
  BitMap* _region_bm;   // Region BM to be verified
  BitMap* _card_bm;     // Card BM to be verified
  bool _verbose;        // verbose output?

  BitMap* _exp_region_bm; // Expected Region BM values
  BitMap* _exp_card_bm;   // Expected card BM values

  int _failures;

public:
1515
  VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1516 1517 1518 1519 1520
                                BitMap* region_bm,
                                BitMap* card_bm,
                                BitMap* exp_region_bm,
                                BitMap* exp_card_bm,
                                bool verbose) :
1521 1522
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
    _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
    _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
    _failures(0) { }

  int failures() const { return _failures; }

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    int failures = 0;

    // Call the CalcLiveObjectsClosure to walk the marking bitmap for
    // this region and set the corresponding bits in the expected region
    // and card bitmaps.
    bool res = _calc_cl.doHeapRegion(hr);
    assert(res == false, "should be continuing");

    MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
                    Mutex::_no_safepoint_check_flag);

    // Verify the marked bytes for this region.
    size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
    size_t act_marked_bytes = hr->next_marked_bytes();

    // We're not OK if expected marked bytes > actual marked bytes. It means
    // we have missed accounting some objects during the actual marking.
    if (exp_marked_bytes > act_marked_bytes) {
      if (_verbose) {
1560
        gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
                               "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
                               hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
      }
      failures += 1;
    }

    // Verify the bit, for this region, in the actual and expected
    // (which was just calculated) region bit maps.
    // We're not OK if the bit in the calculated expected region
    // bitmap is set and the bit in the actual region bitmap is not.
1571
    BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1572 1573 1574 1575 1576

    bool expected = _exp_region_bm->at(index);
    bool actual = _region_bm->at(index);
    if (expected && !actual) {
      if (_verbose) {
1577 1578 1579 1580
        gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
                               "expected: %s, actual: %s",
                               hr->hrs_index(),
                               BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
      }
      failures += 1;
    }

    // Verify that the card bit maps for the cards spanned by the current
    // region match. We have an error if we have a set bit in the expected
    // bit map and the corresponding bit in the actual bitmap is not set.

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());

    for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
      expected = _exp_card_bm->at(i);
      actual = _card_bm->at(i);

      if (expected && !actual) {
        if (_verbose) {
1598 1599 1600 1601
          gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
                                 "expected: %s, actual: %s",
                                 hr->hrs_index(), i,
                                 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1602
        }
1603
        failures += 1;
1604 1605 1606
      }
    }

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
    if (failures > 0 && _verbose)  {
      gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
                             "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
                             HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
                             _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
    }

    _failures += failures;

    // We could stop iteration over the heap when we
1617
    // find the first violating region by returning true.
1618 1619
    return false;
  }
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
};


class G1ParVerifyFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

  uint    _n_workers;

  BitMap* _expected_region_bm;
  BitMap* _expected_card_bm;

  int  _failures;
  bool _verbose;

public:
  G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
                            BitMap* region_bm, BitMap* card_bm,
                            BitMap* expected_region_bm, BitMap* expected_card_bm)
    : AbstractGangTask("G1 verify final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
      _failures(0), _verbose(false),
      _n_workers(0) {
    assert(VerifyDuringGC, "don't call this otherwise");

    // Use the value already set as the number of active threads
    // in the call to run_task().
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
    } else {
      _n_workers = 1;
    }

    assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
    assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");

    _verbose = _cm->verbose_medium();
  }

  void work(uint worker_id) {
    assert(worker_id < _n_workers, "invariant");

1669
    VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
                                            _actual_region_bm, _actual_card_bm,
                                            _expected_region_bm,
                                            _expected_card_bm,
                                            _verbose);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&verify_cl,
                                            worker_id,
                                            _n_workers,
                                            HeapRegion::VerifyCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&verify_cl);
    }

    Atomic::add(verify_cl.failures(), &_failures);
  }
1686

1687
  int failures() const { return _failures; }
1688 1689
};

1690 1691 1692 1693 1694 1695
// Closure that finalizes the liveness counting data.
// Used during the cleanup pause.
// Sets the bits corresponding to the interval [NTAMS, top]
// (which contains the implicitly live objects) in the
// card liveness bitmap. Also sets the bit for each region,
// containing live data, in the region liveness bitmap.
1696

1697
class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1698
 public:
1699
  FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1700 1701
                              BitMap* region_bm,
                              BitMap* card_bm) :
1702
    CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

  bool doHeapRegion(HeapRegion* hr) {

    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* top   = hr->top();

1720
    assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1721 1722 1723 1724 1725 1726

    // Mark the allocated-since-marking portion...
    if (ntams < top) {
      // This definitely means the region has live objects.
      set_bit_for_region(hr);

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
      // Now set the bits in the card bitmap for [ntams, top)
      BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
      BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);

      // Note: if we're looking at the last region in heap - top
      // could be actually just beyond the end of the heap; end_idx
      // will then correspond to a (non-existent) card that is also
      // just beyond the heap.
      if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
        // end of object is not card aligned - increment to cover
        // all the cards spanned by the object
        end_idx += 1;
      }

      assert(end_idx <= _card_bm->size(),
             err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
                     end_idx, _card_bm->size()));
      assert(start_idx < _card_bm->size(),
             err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
                     start_idx, _card_bm->size()));

      _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1749
    }
1750 1751 1752 1753 1754 1755 1756 1757 1758

    // Set the bit for the region if it contains live data
    if (hr->next_marked_bytes() > 0) {
      set_bit_for_region(hr);
    }

    return false;
  }
};
1759 1760 1761 1762

class G1ParFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
1763 1764 1765 1766
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

1767
  uint    _n_workers;
1768

1769
public:
1770 1771 1772 1773 1774
  G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
    : AbstractGangTask("G1 final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _n_workers(0) {
1775
    // Use the value already set as the number of active threads
1776
    // in the call to run_task().
1777 1778 1779 1780
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
1781
    } else {
1782
      _n_workers = 1;
1783
    }
1784 1785
  }

1786
  void work(uint worker_id) {
1787 1788
    assert(worker_id < _n_workers, "invariant");

1789
    FinalCountDataUpdateClosure final_update_cl(_g1h,
1790 1791 1792
                                                _actual_region_bm,
                                                _actual_card_bm);

1793
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1794 1795 1796
      _g1h->heap_region_par_iterate_chunked(&final_update_cl,
                                            worker_id,
                                            _n_workers,
1797
                                            HeapRegion::FinalCountClaimValue);
1798
    } else {
1799
      _g1h->heap_region_iterate(&final_update_cl);
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
    }
  }
};

class G1ParNoteEndTask;

class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  G1CollectedHeap* _g1;
  int _worker_num;
  size_t _max_live_bytes;
1810
  uint _regions_claimed;
1811
  size_t _freed_bytes;
T
tonyp 已提交
1812
  FreeRegionList* _local_cleanup_list;
T
tonyp 已提交
1813
  OldRegionSet* _old_proxy_set;
T
tonyp 已提交
1814 1815
  HumongousRegionSet* _humongous_proxy_set;
  HRRSCleanupTask* _hrrs_cleanup_task;
1816 1817 1818 1819 1820
  double _claimed_region_time;
  double _max_region_time;

public:
  G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
T
tonyp 已提交
1821 1822
                             int worker_num,
                             FreeRegionList* local_cleanup_list,
T
tonyp 已提交
1823
                             OldRegionSet* old_proxy_set,
T
tonyp 已提交
1824
                             HumongousRegionSet* humongous_proxy_set,
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
                             HRRSCleanupTask* hrrs_cleanup_task) :
    _g1(g1), _worker_num(worker_num),
    _max_live_bytes(0), _regions_claimed(0),
    _freed_bytes(0),
    _claimed_region_time(0.0), _max_region_time(0.0),
    _local_cleanup_list(local_cleanup_list),
    _old_proxy_set(old_proxy_set),
    _humongous_proxy_set(humongous_proxy_set),
    _hrrs_cleanup_task(hrrs_cleanup_task) { }

1835 1836
  size_t freed_bytes() { return _freed_bytes; }

1837
  bool doHeapRegion(HeapRegion *hr) {
1838 1839 1840
    if (hr->continuesHumongous()) {
      return false;
    }
1841 1842
    // We use a claim value of zero here because all regions
    // were claimed with value 1 in the FinalCount task.
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
    _g1->reset_gc_time_stamps(hr);
    double start = os::elapsedTime();
    _regions_claimed++;
    hr->note_end_of_marking();
    _max_live_bytes += hr->max_live_bytes();
    _g1->free_region_if_empty(hr,
                              &_freed_bytes,
                              _local_cleanup_list,
                              _old_proxy_set,
                              _humongous_proxy_set,
                              _hrrs_cleanup_task,
                              true /* par */);
    double region_time = (os::elapsedTime() - start);
    _claimed_region_time += region_time;
    if (region_time > _max_region_time) {
      _max_region_time = region_time;
1859 1860 1861
    }
    return false;
  }
1862 1863

  size_t max_live_bytes() { return _max_live_bytes; }
1864
  uint regions_claimed() { return _regions_claimed; }
1865 1866 1867 1868 1869 1870
  double claimed_region_time_sec() { return _claimed_region_time; }
  double max_region_time_sec() { return _max_region_time; }
};

class G1ParNoteEndTask: public AbstractGangTask {
  friend class G1NoteEndOfConcMarkClosure;
1871

1872 1873 1874 1875
protected:
  G1CollectedHeap* _g1h;
  size_t _max_live_bytes;
  size_t _freed_bytes;
1876 1877
  FreeRegionList* _cleanup_list;

1878 1879
public:
  G1ParNoteEndTask(G1CollectedHeap* g1h,
1880
                   FreeRegionList* cleanup_list) :
1881
    AbstractGangTask("G1 note end"), _g1h(g1h),
1882
    _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1883

1884
  void work(uint worker_id) {
1885
    double start = os::elapsedTime();
T
tonyp 已提交
1886
    FreeRegionList local_cleanup_list("Local Cleanup List");
T
tonyp 已提交
1887
    OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
T
tonyp 已提交
1888 1889
    HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
    HRRSCleanupTask hrrs_cleanup_task;
1890
    G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
T
tonyp 已提交
1891
                                           &old_proxy_set,
T
tonyp 已提交
1892 1893
                                           &humongous_proxy_set,
                                           &hrrs_cleanup_task);
1894
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1895
      _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1896
                                            _g1h->workers()->active_workers(),
1897
                                            HeapRegion::NoteEndClaimValue);
1898 1899 1900 1901 1902
    } else {
      _g1h->heap_region_iterate(&g1_note_end);
    }
    assert(g1_note_end.complete(), "Shouldn't have yielded!");

1903 1904 1905
    // Now update the lists
    _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
                                            NULL /* free_list */,
T
tonyp 已提交
1906
                                            &old_proxy_set,
T
tonyp 已提交
1907
                                            &humongous_proxy_set,
1908
                                            true /* par */);
1909 1910 1911 1912
    {
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
      _max_live_bytes += g1_note_end.max_live_bytes();
      _freed_bytes += g1_note_end.freed_bytes();
1913

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
      // If we iterate over the global cleanup list at the end of
      // cleanup to do this printing we will not guarantee to only
      // generate output for the newly-reclaimed regions (the list
      // might not be empty at the beginning of cleanup; we might
      // still be working on its previous contents). So we do the
      // printing here, before we append the new regions to the global
      // cleanup list.

      G1HRPrinter* hr_printer = _g1h->hr_printer();
      if (hr_printer->is_active()) {
        HeapRegionLinkedListIterator iter(&local_cleanup_list);
        while (iter.more_available()) {
          HeapRegion* hr = iter.get_next();
          hr_printer->cleanup(hr);
        }
      }

T
tonyp 已提交
1931 1932 1933 1934
      _cleanup_list->add_as_tail(&local_cleanup_list);
      assert(local_cleanup_list.is_empty(), "post-condition");

      HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
    }
  }
  size_t max_live_bytes() { return _max_live_bytes; }
  size_t freed_bytes() { return _freed_bytes; }
};

class G1ParScrubRemSetTask: public AbstractGangTask {
protected:
  G1RemSet* _g1rs;
  BitMap* _region_bm;
  BitMap* _card_bm;
public:
  G1ParScrubRemSetTask(G1CollectedHeap* g1h,
                       BitMap* region_bm, BitMap* card_bm) :
    AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1950
    _region_bm(region_bm), _card_bm(card_bm) { }
1951

1952
  void work(uint worker_id) {
1953
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1954
      _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1955
                       HeapRegion::ScrubRemSetClaimValue);
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
    } else {
      _g1rs->scrub(_region_bm, _card_bm);
    }
  }

};

void ConcurrentMark::cleanup() {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

T
tonyp 已提交
1975
  HRSPhaseSetter x(HRSPhaseCleanup);
1976 1977
  g1h->verify_region_sets_optional();

1978 1979 1980
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    Universe::heap()->prepare_for_verify();
1981 1982
    Universe::verify(VerifyOption_G1UsePrevMarking,
                     " VerifyDuringGC:(before)");
1983 1984
  }

1985 1986 1987 1988 1989
  G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  g1p->record_concurrent_mark_cleanup_start();

  double start = os::elapsedTime();

T
tonyp 已提交
1990 1991
  HeapRegionRemSet::reset_for_cleanup_tasks();

1992
  uint n_workers;
1993

1994
  // Do counting once more with the world stopped for good measure.
1995 1996
  G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);

1997
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1998
   assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1999 2000
           "sanity check");

2001 2002
    g1h->set_par_threads();
    n_workers = g1h->n_par_threads();
2003
    assert(g1h->n_par_threads() == n_workers,
2004
           "Should not have been reset");
2005
    g1h->workers()->run_task(&g1_par_count_task);
2006
    // Done with the parallel phase so reset to 0.
2007
    g1h->set_par_threads(0);
2008

2009
    assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
2010
           "sanity check");
2011
  } else {
2012
    n_workers = 1;
2013 2014 2015
    g1_par_count_task.work(0);
  }

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
  if (VerifyDuringGC) {
    // Verify that the counting data accumulated during marking matches
    // that calculated by walking the marking bitmap.

    // Bitmaps to hold expected values
    BitMap expected_region_bm(_region_bm.size(), false);
    BitMap expected_card_bm(_card_bm.size(), false);

    G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
                                                 &_region_bm,
                                                 &_card_bm,
                                                 &expected_region_bm,
                                                 &expected_card_bm);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      g1h->set_par_threads((int)n_workers);
      g1h->workers()->run_task(&g1_par_verify_task);
      // Done with the parallel phase so reset to 0.
      g1h->set_par_threads(0);

      assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
             "sanity check");
    } else {
      g1_par_verify_task.work(0);
    }

    guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  }

2045 2046 2047 2048 2049 2050 2051
  size_t start_used_bytes = g1h->used();
  g1h->set_marking_complete();

  double count_end = os::elapsedTime();
  double this_final_counting_time = (count_end - start);
  _total_counting_time += this_final_counting_time;

2052 2053 2054 2055 2056
  if (G1PrintRegionLivenessInfo) {
    G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
    _g1h->heap_region_iterate(&cl);
  }

2057 2058 2059 2060 2061 2062
  // Install newly created mark bitMap as "prev".
  swapMarkBitMaps();

  g1h->reset_gc_time_stamp();

  // Note end of marking in all heap regions.
2063
  G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2064
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2065
    g1h->set_par_threads((int)n_workers);
2066 2067
    g1h->workers()->run_task(&g1_par_note_end_task);
    g1h->set_par_threads(0);
2068 2069 2070

    assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
           "sanity check");
2071 2072 2073
  } else {
    g1_par_note_end_task.work(0);
  }
2074
  g1h->check_gc_time_stamps();
2075 2076 2077 2078 2079 2080 2081

  if (!cleanup_list_is_empty()) {
    // The cleanup list is not empty, so we'll have to process it
    // concurrently. Notify anyone else that might be wanting free
    // regions that there will be more free regions coming soon.
    g1h->set_free_regions_coming();
  }
2082 2083 2084 2085 2086 2087

  // call below, since it affects the metric by which we sort the heap
  // regions.
  if (G1ScrubRemSets) {
    double rs_scrub_start = os::elapsedTime();
    G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2088
    if (G1CollectedHeap::use_parallel_gc_threads()) {
2089
      g1h->set_par_threads((int)n_workers);
2090 2091
      g1h->workers()->run_task(&g1_par_scrub_rs_task);
      g1h->set_par_threads(0);
2092 2093 2094 2095

      assert(g1h->check_heap_region_claim_values(
                                            HeapRegion::ScrubRemSetClaimValue),
             "sanity check");
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
    } else {
      g1_par_scrub_rs_task.work(0);
    }

    double rs_scrub_end = os::elapsedTime();
    double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
    _total_rs_scrub_time += this_rs_scrub_time;
  }

  // this will also free any regions totally full of garbage objects,
  // and sort the regions.
2107
  g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2108 2109 2110 2111 2112

  // Statistics.
  double end = os::elapsedTime();
  _cleanup_times.add((end - start) * 1000.0);

2113
  if (G1Log::fine()) {
2114 2115 2116 2117 2118 2119
    g1h->print_size_transition(gclog_or_tty,
                               start_used_bytes,
                               g1h->used(),
                               g1h->capacity());
  }

2120 2121 2122 2123
  // Clean up will have freed any regions completely full of garbage.
  // Update the soft reference policy with the new heap occupancy.
  Universe::update_heap_info_at_gc();

2124 2125 2126 2127
  // We need to make this be a "collection" so any collection pause that
  // races with it goes around and waits for completeCleanup to finish.
  g1h->increment_total_collections();

2128 2129 2130 2131
  // We reclaimed old regions so we should calculate the sizes to make
  // sure we update the old gen/space data.
  g1h->g1mm()->update_sizes();

J
johnc 已提交
2132
  if (VerifyDuringGC) {
2133 2134
    HandleMark hm;  // handle scope
    Universe::heap()->prepare_for_verify();
2135 2136
    Universe::verify(VerifyOption_G1UsePrevMarking,
                     " VerifyDuringGC:(after)");
2137
  }
2138 2139

  g1h->verify_region_sets_optional();
S
sla 已提交
2140
  g1h->trace_heap_after_concurrent_cycle();
2141 2142 2143 2144 2145
}

void ConcurrentMark::completeCleanup() {
  if (has_aborted()) return;

2146 2147 2148
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  _cleanup_list.verify_optional();
T
tonyp 已提交
2149
  FreeRegionList tmp_free_list("Tmp Free List");
2150 2151 2152

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2153
                           "cleanup list has %u entries",
2154 2155 2156 2157 2158 2159 2160 2161
                           _cleanup_list.length());
  }

  // Noone else should be accessing the _cleanup_list at this point,
  // so it's not necessary to take any locks
  while (!_cleanup_list.is_empty()) {
    HeapRegion* hr = _cleanup_list.remove_head();
    assert(hr != NULL, "the list was not empty");
2162
    hr->par_clear();
T
tonyp 已提交
2163
    tmp_free_list.add_as_tail(hr);
2164 2165 2166 2167 2168 2169 2170

    // Instead of adding one region at a time to the secondary_free_list,
    // we accumulate them in the local list and move them a few at a
    // time. This also cuts down on the number of notify_all() calls
    // we do during this process. We'll also append the local list when
    // _cleanup_list is empty (which means we just removed the last
    // region from the _cleanup_list).
T
tonyp 已提交
2171
    if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2172 2173 2174
        _cleanup_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2175 2176
                               "appending %u entries to the secondary_free_list, "
                               "cleanup list still has %u entries",
T
tonyp 已提交
2177
                               tmp_free_list.length(),
2178 2179 2180 2181 2182
                               _cleanup_list.length());
      }

      {
        MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
T
tonyp 已提交
2183
        g1h->secondary_free_list_add_as_tail(&tmp_free_list);
2184 2185 2186 2187 2188 2189 2190
        SecondaryFreeList_lock->notify_all();
      }

      if (G1StressConcRegionFreeing) {
        for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
          os::sleep(Thread::current(), (jlong) 1, false);
        }
2191 2192 2193
      }
    }
  }
T
tonyp 已提交
2194
  assert(tmp_free_list.is_empty(), "post-condition");
2195 2196
}

2197 2198
// Supporting Object and Oop closures for reference discovery
// and processing in during marking
2199

2200 2201 2202 2203 2204
bool G1CMIsAliveClosure::do_object_b(oop obj) {
  HeapWord* addr = (HeapWord*)obj;
  return addr != NULL &&
         (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
}
2205

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
// 'Keep Alive' oop closure used by both serial parallel reference processing.
// Uses the CMTask associated with a worker thread (for serial reference
// processing the CMTask for worker 0 is used) to preserve (mark) and
// trace referent objects.
//
// Using the CMTask and embedded local queues avoids having the worker
// threads operating on the global mark stack. This reduces the risk
// of overflowing the stack - which we would rather avoid at this late
// state. Also using the tasks' local queues removes the potential
// of the workers interfering with each other that could occur if
// operating on the global stack.

class G1CMKeepAliveAndDrainClosure: public OopClosure {
2219 2220 2221 2222 2223
  ConcurrentMark* _cm;
  CMTask*         _task;
  int             _ref_counter_limit;
  int             _ref_counter;
  bool            _is_serial;
2224
 public:
2225 2226 2227
  G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
    _cm(cm), _task(task), _is_serial(is_serial),
    _ref_counter_limit(G1RefProcDrainInterval) {
2228
    assert(_ref_counter_limit > 0, "sanity");
2229
    assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2230 2231 2232 2233 2234 2235 2236 2237 2238
    _ref_counter = _ref_counter_limit;
  }

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    if (!_cm->has_overflown()) {
      oop obj = oopDesc::load_decode_heap_oop(p);
2239
      if (_cm->verbose_high()) {
2240
        gclog_or_tty->print_cr("\t[%u] we're looking at location "
2241
                               "*"PTR_FORMAT" = "PTR_FORMAT,
2242
                               _task->worker_id(), p, (void*) obj);
2243
      }
2244 2245 2246 2247 2248

      _task->deal_with_reference(obj);
      _ref_counter--;

      if (_ref_counter == 0) {
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
        // We have dealt with _ref_counter_limit references, pushing them
        // and objects reachable from them on to the local stack (and
        // possibly the global stack). Call CMTask::do_marking_step() to
        // process these entries.
        //
        // We call CMTask::do_marking_step() in a loop, which we'll exit if
        // there's nothing more to do (i.e. we're done with the entries that
        // were pushed as a result of the CMTask::deal_with_reference() calls
        // above) or we overflow.
        //
        // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
        // flag while there may still be some work to do. (See the comment at
        // the beginning of CMTask::do_marking_step() for those conditions -
        // one of which is reaching the specified time target.) It is only
        // when CMTask::do_marking_step() returns without setting the
        // has_aborted() flag that the marking step has completed.
2265 2266 2267
        do {
          double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
          _task->do_marking_step(mark_step_duration_ms,
2268 2269
                                 false      /* do_termination */,
                                 _is_serial);
2270 2271 2272 2273
        } while (_task->has_aborted() && !_cm->has_overflown());
        _ref_counter = _ref_counter_limit;
      }
    } else {
2274
      if (_cm->verbose_high()) {
2275
         gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2276
      }
2277 2278 2279 2280
    }
  }
};

2281 2282 2283 2284 2285 2286 2287 2288
// 'Drain' oop closure used by both serial and parallel reference processing.
// Uses the CMTask associated with a given worker thread (for serial
// reference processing the CMtask for worker 0 is used). Calls the
// do_marking_step routine, with an unbelievably large timeout value,
// to drain the marking data structures of the remaining entries
// added by the 'keep alive' oop closure above.

class G1CMDrainMarkingStackClosure: public VoidClosure {
2289
  ConcurrentMark* _cm;
2290
  CMTask*         _task;
2291
  bool            _is_serial;
2292
 public:
2293 2294 2295
  G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
    _cm(cm), _task(task), _is_serial(is_serial) {
    assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2296
  }
2297 2298 2299

  void do_void() {
    do {
2300
      if (_cm->verbose_high()) {
2301 2302
        gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
                               _task->worker_id(), BOOL_TO_STR(_is_serial));
2303
      }
2304

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
      // We call CMTask::do_marking_step() to completely drain the local
      // and global marking stacks of entries pushed by the 'keep alive'
      // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
      //
      // CMTask::do_marking_step() is called in a loop, which we'll exit
      // if there's nothing more to do (i.e. we'completely drained the
      // entries that were pushed as a a result of applying the 'keep alive'
      // closure to the entries on the discovered ref lists) or we overflow
      // the global marking stack.
      //
      // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
      // flag while there may still be some work to do. (See the comment at
      // the beginning of CMTask::do_marking_step() for those conditions -
      // one of which is reaching the specified time target.) It is only
      // when CMTask::do_marking_step() returns without setting the
      // has_aborted() flag that the marking step has completed.
2321 2322

      _task->do_marking_step(1000000000.0 /* something very large */,
2323 2324
                             true         /* do_termination */,
                             _is_serial);
2325 2326 2327 2328
    } while (_task->has_aborted() && !_cm->has_overflown());
  }
};

2329 2330 2331 2332
// Implementation of AbstractRefProcTaskExecutor for parallel
// reference processing at the end of G1 concurrent marking

class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2333 2334 2335 2336 2337 2338 2339
private:
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;
  WorkGang*        _workers;
  int              _active_workers;

public:
2340
  G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2341 2342 2343
                        ConcurrentMark* cm,
                        WorkGang* workers,
                        int n_workers) :
2344 2345
    _g1h(g1h), _cm(cm),
    _workers(workers), _active_workers(n_workers) { }
2346 2347 2348 2349 2350 2351

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

2352
class G1CMRefProcTaskProxy: public AbstractGangTask {
2353 2354 2355 2356 2357 2358
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;

public:
2359
  G1CMRefProcTaskProxy(ProcessTask& proc_task,
2360
                     G1CollectedHeap* g1h,
2361
                     ConcurrentMark* cm) :
2362
    AbstractGangTask("Process reference objects in parallel"),
2363
    _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2364 2365 2366
    ReferenceProcessor* rp = _g1h->ref_processor_cm();
    assert(rp->processing_is_mt(), "shouldn't be here otherwise");
  }
2367

2368
  virtual void work(uint worker_id) {
2369
    CMTask* task = _cm->task(worker_id);
2370
    G1CMIsAliveClosure g1_is_alive(_g1h);
2371 2372
    G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
    G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2373

2374
    _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2375 2376 2377
  }
};

2378
void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2379
  assert(_workers != NULL, "Need parallel worker threads.");
2380
  assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2381

2382
  G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2383

2384 2385 2386 2387 2388
  // We need to reset the concurrency level before each
  // proxy task execution, so that the termination protocol
  // and overflow handling in CMTask::do_marking_step() knows
  // how many workers to wait for.
  _cm->set_concurrency(_active_workers);
2389 2390 2391 2392 2393
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

2394
class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2395 2396 2397 2398
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
2399
  G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2400
    AbstractGangTask("Enqueue reference objects in parallel"),
2401
    _enq_task(enq_task) { }
2402

2403 2404
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
2405 2406 2407
  }
};

2408
void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2409
  assert(_workers != NULL, "Need parallel worker threads.");
2410
  assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2411

2412
  G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2413

2414 2415 2416 2417 2418 2419 2420
  // Not strictly necessary but...
  //
  // We need to reset the concurrency level before each
  // proxy task execution, so that the termination protocol
  // and overflow handling in CMTask::do_marking_step() knows
  // how many workers to wait for.
  _cm->set_concurrency(_active_workers);
2421 2422 2423 2424 2425
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

2426
void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
  if (has_overflown()) {
    // Skip processing the discovered references if we have
    // overflown the global marking stack. Reference objects
    // only get discovered once so it is OK to not
    // de-populate the discovered reference lists. We could have,
    // but the only benefit would be that, when marking restarts,
    // less reference objects are discovered.
    return;
  }

2437 2438 2439
  ResourceMark rm;
  HandleMark   hm;

2440 2441 2442 2443 2444 2445 2446 2447
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // Is alive closure.
  G1CMIsAliveClosure g1_is_alive(g1h);

  // Inner scope to exclude the cleaning of the string and symbol
  // tables from the displayed time.
  {
2448
    if (G1Log::finer()) {
2449 2450
      gclog_or_tty->put(' ');
    }
S
sla 已提交
2451
    GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm());
2452

2453
    ReferenceProcessor* rp = g1h->ref_processor_cm();
2454

2455 2456
    // See the comment in G1CollectedHeap::ref_processing_init()
    // about how reference processing currently works in G1.
2457

2458
    // Set the soft reference policy
2459 2460
    rp->setup_policy(clear_all_soft_refs);
    assert(_markStack.isEmpty(), "mark stack should be empty");
2461

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
    // Instances of the 'Keep Alive' and 'Complete GC' closures used
    // in serial reference processing. Note these closures are also
    // used for serially processing (by the the current thread) the
    // JNI references during parallel reference processing.
    //
    // These closures do not need to synchronize with the worker
    // threads involved in parallel reference processing as these
    // instances are executed serially by the current thread (e.g.
    // reference processing is not multi-threaded and is thus
    // performed by the current thread instead of a gang worker).
    //
    // The gang tasks involved in parallel reference procssing create
    // their own instances of these closures, which do their own
    // synchronization among themselves.
    G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
    G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);

    // We need at least one active thread. If reference processing
    // is not multi-threaded we use the current (VMThread) thread,
    // otherwise we use the work gang from the G1CollectedHeap and
    // we utilize all the worker threads we can.
    bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
    uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2485
    active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2486

2487
    // Parallel processing task executor.
2488
    G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2489
                                              g1h->workers(), active_workers);
2490
    AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2491

2492 2493 2494 2495
    // Set the concurrency level. The phase was already set prior to
    // executing the remark task.
    set_concurrency(active_workers);

2496 2497 2498 2499 2500 2501 2502
    // Set the degree of MT processing here.  If the discovery was done MT,
    // the number of threads involved during discovery could differ from
    // the number of active workers.  This is OK as long as the discovered
    // Reference lists are balanced (see balance_all_queues() and balance_queues()).
    rp->set_active_mt_degree(active_workers);

    // Process the weak references.
S
sla 已提交
2503 2504 2505 2506 2507 2508 2509
    const ReferenceProcessorStats& stats =
        rp->process_discovered_references(&g1_is_alive,
                                          &g1_keep_alive,
                                          &g1_drain_mark_stack,
                                          executor,
                                          g1h->gc_timer_cm());
    g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2510

2511 2512 2513
    // The do_oop work routines of the keep_alive and drain_marking_stack
    // oop closures will set the has_overflown flag if we overflow the
    // global marking stack.
2514

2515 2516
    assert(_markStack.overflow() || _markStack.isEmpty(),
            "mark stack should be empty (unless it overflowed)");
2517

2518
    if (_markStack.overflow()) {
2519
      // This should have been done already when we tried to push an
2520 2521 2522
      // entry on to the global mark stack. But let's do it again.
      set_has_overflown();
    }
2523

2524 2525 2526
    assert(rp->num_q() == active_workers, "why not");

    rp->enqueue_discovered_references(executor);
2527

2528
    rp->verify_no_references_recorded();
2529
    assert(!rp->discovery_enabled(), "Post condition");
2530 2531
  }

2532
  // Now clean up stale oops in StringTable
2533
  StringTable::unlink(&g1_is_alive);
2534 2535
  // Clean up unreferenced symbols in symbol table.
  SymbolTable::unlink();
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
}

void ConcurrentMark::swapMarkBitMaps() {
  CMBitMapRO* temp = _prevMarkBitMap;
  _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  _nextMarkBitMap  = (CMBitMap*)  temp;
}

class CMRemarkTask: public AbstractGangTask {
private:
2546 2547
  ConcurrentMark* _cm;
  bool            _is_serial;
2548
public:
2549
  void work(uint worker_id) {
2550 2551
    // Since all available tasks are actually started, we should
    // only proceed if we're supposed to be actived.
2552 2553
    if (worker_id < _cm->active_tasks()) {
      CMTask* task = _cm->task(worker_id);
2554 2555
      task->record_start_time();
      do {
2556
        task->do_marking_step(1000000000.0 /* something very large */,
2557 2558
                              true         /* do_termination       */,
                              _is_serial);
2559 2560 2561 2562 2563 2564 2565
      } while (task->has_aborted() && !_cm->has_overflown());
      // If we overflow, then we do not want to restart. We instead
      // want to abort remark and do concurrent marking again.
      task->record_end_time();
    }
  }

2566 2567
  CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
    AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
2568
    _cm->terminator()->reset_for_reuse(active_workers);
2569
  }
2570 2571 2572 2573 2574 2575 2576 2577 2578
};

void ConcurrentMark::checkpointRootsFinalWork() {
  ResourceMark rm;
  HandleMark   hm;
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  g1h->ensure_parsability(false);

2579
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2580
    G1CollectedHeap::StrongRootsScope srs(g1h);
2581
    // this is remark, so we'll use up all active threads
2582
    uint active_workers = g1h->workers()->active_workers();
2583 2584
    if (active_workers == 0) {
      assert(active_workers > 0, "Should have been set earlier");
2585
      active_workers = (uint) ParallelGCThreads;
2586 2587
      g1h->workers()->set_active_workers(active_workers);
    }
2588
    set_concurrency_and_phase(active_workers, false /* concurrent */);
2589 2590 2591 2592
    // Leave _parallel_marking_threads at it's
    // value originally calculated in the ConcurrentMark
    // constructor and pass values of the active workers
    // through the gang in the task.
2593

2594 2595 2596 2597
    CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
    // We will start all available threads, even if we decide that the
    // active_workers will be fewer. The extra ones will just bail out
    // immediately.
2598
    g1h->set_par_threads(active_workers);
2599 2600 2601
    g1h->workers()->run_task(&remarkTask);
    g1h->set_par_threads(0);
  } else {
2602
    G1CollectedHeap::StrongRootsScope srs(g1h);
2603
    uint active_workers = 1;
2604
    set_concurrency_and_phase(active_workers, false /* concurrent */);
2605

2606 2607 2608 2609 2610 2611 2612 2613
    // Note - if there's no work gang then the VMThread will be
    // the thread to execute the remark - serially. We have
    // to pass true for the is_serial parameter so that
    // CMTask::do_marking_step() doesn't enter the sync
    // barriers in the event of an overflow. Doing so will
    // cause an assert that the current thread is not a
    // concurrent GC thread.
    CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
2614 2615
    remarkTask.work(0);
  }
2616
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2617 2618 2619 2620 2621
  guarantee(has_overflown() ||
            satb_mq_set.completed_buffers_num() == 0,
            err_msg("Invariant: has_overflown = %s, num buffers = %d",
                    BOOL_TO_STR(has_overflown()),
                    satb_mq_set.completed_buffers_num()));
2622 2623 2624 2625

  print_stats();
}

2626 2627
#ifndef PRODUCT

2628
class PrintReachableOopClosure: public OopClosure {
2629 2630 2631
private:
  G1CollectedHeap* _g1h;
  outputStream*    _out;
2632
  VerifyOption     _vo;
2633
  bool             _all;
2634 2635

public:
2636 2637
  PrintReachableOopClosure(outputStream* out,
                           VerifyOption  vo,
2638
                           bool          all) :
2639
    _g1h(G1CollectedHeap::heap()),
2640
    _out(out), _vo(vo), _all(all) { }
2641

2642 2643
  void do_oop(narrowOop* p) { do_oop_work(p); }
  void do_oop(      oop* p) { do_oop_work(p); }
2644

2645 2646
  template <class T> void do_oop_work(T* p) {
    oop         obj = oopDesc::load_decode_heap_oop(p);
2647 2648 2649
    const char* str = NULL;
    const char* str2 = "";

2650 2651 2652 2653 2654
    if (obj == NULL) {
      str = "";
    } else if (!_g1h->is_in_g1_reserved(obj)) {
      str = " O";
    } else {
2655
      HeapRegion* hr  = _g1h->heap_region_containing(obj);
2656
      guarantee(hr != NULL, "invariant");
2657 2658
      bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
      bool marked = _g1h->is_marked(obj, _vo);
2659 2660

      if (over_tams) {
2661 2662
        str = " >";
        if (marked) {
2663
          str2 = " AND MARKED";
2664
        }
2665 2666
      } else if (marked) {
        str = " M";
2667
      } else {
2668
        str = " NOT";
2669
      }
2670 2671
    }

2672
    _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2673 2674 2675 2676
                   p, (void*) obj, str, str2);
  }
};

2677
class PrintReachableObjectClosure : public ObjectClosure {
2678
private:
2679 2680 2681 2682 2683
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
  HeapRegion*      _hr;
2684 2685

public:
2686 2687
  PrintReachableObjectClosure(outputStream* out,
                              VerifyOption  vo,
2688 2689
                              bool          all,
                              HeapRegion*   hr) :
2690 2691
    _g1h(G1CollectedHeap::heap()),
    _out(out), _vo(vo), _all(all), _hr(hr) { }
2692

2693
  void do_object(oop o) {
2694 2695
    bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
    bool marked = _g1h->is_marked(o, _vo);
2696 2697 2698 2699
    bool print_it = _all || over_tams || marked;

    if (print_it) {
      _out->print_cr(" "PTR_FORMAT"%s",
2700
                     (void *)o, (over_tams) ? " >" : (marked) ? " M" : "");
2701
      PrintReachableOopClosure oopCl(_out, _vo, _all);
2702
      o->oop_iterate_no_header(&oopCl);
2703
    }
2704 2705 2706
  }
};

2707
class PrintReachableRegionClosure : public HeapRegionClosure {
2708
private:
2709 2710 2711 2712
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
2713 2714 2715 2716 2717 2718

public:
  bool doHeapRegion(HeapRegion* hr) {
    HeapWord* b = hr->bottom();
    HeapWord* e = hr->end();
    HeapWord* t = hr->top();
2719
    HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2720
    _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2721
                   "TAMS: "PTR_FORMAT, b, e, t, p);
2722 2723 2724 2725 2726 2727 2728 2729
    _out->cr();

    HeapWord* from = b;
    HeapWord* to   = t;

    if (to > from) {
      _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
      _out->cr();
2730
      PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2731 2732 2733
      hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
      _out->cr();
    }
2734 2735 2736 2737

    return false;
  }

2738 2739
  PrintReachableRegionClosure(outputStream* out,
                              VerifyOption  vo,
2740
                              bool          all) :
2741
    _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2742 2743
};

2744
void ConcurrentMark::print_reachable(const char* str,
2745
                                     VerifyOption vo,
2746 2747 2748
                                     bool all) {
  gclog_or_tty->cr();
  gclog_or_tty->print_cr("== Doing heap dump... ");
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771

  if (G1PrintReachableBaseFile == NULL) {
    gclog_or_tty->print_cr("  #### error: no base file defined");
    return;
  }

  if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
      (JVM_MAXPATHLEN - 1)) {
    gclog_or_tty->print_cr("  #### error: file name too long");
    return;
  }

  char file_name[JVM_MAXPATHLEN];
  sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  gclog_or_tty->print_cr("  dumping to file %s", file_name);

  fileStream fout(file_name);
  if (!fout.is_open()) {
    gclog_or_tty->print_cr("  #### error: could not open file");
    return;
  }

  outputStream* out = &fout;
2772
  out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2773 2774
  out->cr();

2775
  out->print_cr("--- ITERATING OVER REGIONS");
2776
  out->cr();
2777
  PrintReachableRegionClosure rcl(out, vo, all);
2778
  _g1h->heap_region_iterate(&rcl);
2779
  out->cr();
2780

2781
  gclog_or_tty->print_cr("  done");
2782
  gclog_or_tty->flush();
2783 2784
}

2785 2786
#endif // PRODUCT

2787
void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2788 2789 2790
  // Note we are overriding the read-only view of the prev map here, via
  // the cast.
  ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2791 2792 2793
}

void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2794 2795 2796
  _nextMarkBitMap->clearRange(mr);
}

2797 2798 2799 2800 2801
void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  clearRangePrevBitmap(mr);
  clearRangeNextBitmap(mr);
}

2802
HeapRegion*
2803
ConcurrentMark::claim_region(uint worker_id) {
2804 2805 2806 2807 2808 2809
  // "checkpoint" the finger
  HeapWord* finger = _finger;

  // _heap_end will not change underneath our feet; it only changes at
  // yield points.
  while (finger < _heap_end) {
2810
    assert(_g1h->is_in_g1_reserved(finger), "invariant");
2811

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
    // Note on how this code handles humongous regions. In the
    // normal case the finger will reach the start of a "starts
    // humongous" (SH) region. Its end will either be the end of the
    // last "continues humongous" (CH) region in the sequence, or the
    // standard end of the SH region (if the SH is the only region in
    // the sequence). That way claim_region() will skip over the CH
    // regions. However, there is a subtle race between a CM thread
    // executing this method and a mutator thread doing a humongous
    // object allocation. The two are not mutually exclusive as the CM
    // thread does not need to hold the Heap_lock when it gets
    // here. So there is a chance that claim_region() will come across
    // a free region that's in the progress of becoming a SH or a CH
    // region. In the former case, it will either
    //   a) Miss the update to the region's end, in which case it will
    //      visit every subsequent CH region, will find their bitmaps
    //      empty, and do nothing, or
    //   b) Will observe the update of the region's end (in which case
    //      it will skip the subsequent CH regions).
    // If it comes across a region that suddenly becomes CH, the
    // scenario will be similar to b). So, the race between
    // claim_region() and a humongous object allocation might force us
    // to do a bit of unnecessary work (due to some unnecessary bitmap
    // iterations) but it should not introduce and correctness issues.
    HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2836 2837 2838 2839
    HeapWord*   bottom        = curr_region->bottom();
    HeapWord*   end           = curr_region->end();
    HeapWord*   limit         = curr_region->next_top_at_mark_start();

2840
    if (verbose_low()) {
2841
      gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2842 2843
                             "["PTR_FORMAT", "PTR_FORMAT"), "
                             "limit = "PTR_FORMAT,
2844
                             worker_id, curr_region, bottom, end, limit);
2845
    }
2846

2847 2848
    // Is the gap between reading the finger and doing the CAS too long?
    HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2849 2850 2851 2852 2853
    if (res == finger) {
      // we succeeded

      // notice that _finger == end cannot be guaranteed here since,
      // someone else might have moved the finger even further
2854
      assert(_finger >= end, "the finger should have moved forward");
2855

2856
      if (verbose_low()) {
2857 2858
        gclog_or_tty->print_cr("[%u] we were successful with region = "
                               PTR_FORMAT, worker_id, curr_region);
2859
      }
2860 2861

      if (limit > bottom) {
2862
        if (verbose_low()) {
2863 2864
          gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
                                 "returning it ", worker_id, curr_region);
2865
        }
2866 2867
        return curr_region;
      } else {
2868 2869
        assert(limit == bottom,
               "the region limit should be at bottom");
2870
        if (verbose_low()) {
2871 2872
          gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
                                 "returning NULL", worker_id, curr_region);
2873
        }
2874 2875 2876 2877 2878
        // we return NULL and the caller should try calling
        // claim_region() again.
        return NULL;
      }
    } else {
2879
      assert(_finger > finger, "the finger should have moved forward");
2880
      if (verbose_low()) {
2881
        gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
2882 2883
                               "global finger = "PTR_FORMAT", "
                               "our finger = "PTR_FORMAT,
2884
                               worker_id, _finger, finger);
2885
      }
2886 2887 2888 2889 2890 2891 2892 2893 2894

      // read it again
      finger = _finger;
    }
  }

  return NULL;
}

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
#ifndef PRODUCT
enum VerifyNoCSetOopsPhase {
  VerifyNoCSetOopsStack,
  VerifyNoCSetOopsQueues,
  VerifyNoCSetOopsSATBCompleted,
  VerifyNoCSetOopsSATBThread
};

class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
private:
  G1CollectedHeap* _g1h;
  VerifyNoCSetOopsPhase _phase;
  int _info;

  const char* phase_str() {
    switch (_phase) {
    case VerifyNoCSetOopsStack:         return "Stack";
    case VerifyNoCSetOopsQueues:        return "Queue";
    case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
    case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
    default:                            ShouldNotReachHere();
    }
    return NULL;
  }

  void do_object_work(oop obj) {
    guarantee(!_g1h->obj_in_cs(obj),
              err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
                      (void*) obj, phase_str(), _info));
  }

public:
  VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }

  void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
    _phase = phase;
    _info = info;
  }

  virtual void do_oop(oop* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    do_object_work(obj);
  }

  virtual void do_oop(narrowOop* p) {
    // We should not come across narrow oops while scanning marking
    // stacks and SATB buffers.
    ShouldNotReachHere();
  }
2944

2945 2946
  virtual void do_object(oop obj) {
    do_object_work(obj);
2947
  }
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
};

void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
                                         bool verify_enqueued_buffers,
                                         bool verify_thread_buffers,
                                         bool verify_fingers) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  if (!G1CollectedHeap::heap()->mark_in_progress()) {
    return;
  }

  VerifyNoCSetOopsClosure cl;
2960

2961 2962 2963 2964 2965 2966
  if (verify_stacks) {
    // Verify entries on the global mark stack
    cl.set_phase(VerifyNoCSetOopsStack);
    _markStack.oops_do(&cl);

    // Verify entries on the task queues
2967
    for (uint i = 0; i < _max_worker_id; i += 1) {
2968
      cl.set_phase(VerifyNoCSetOopsQueues, i);
2969
      CMTaskQueue* queue = _task_queues->queue(i);
2970 2971
      queue->oops_do(&cl);
    }
2972 2973
  }

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();

  // Verify entries on the enqueued SATB buffers
  if (verify_enqueued_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBCompleted);
    satb_qs.iterate_completed_buffers_read_only(&cl);
  }

  // Verify entries on the per-thread SATB buffers
  if (verify_thread_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBThread);
    satb_qs.iterate_thread_buffers_read_only(&cl);
  }

  if (verify_fingers) {
    // Verify the global finger
    HeapWord* global_finger = finger();
    if (global_finger != NULL && global_finger < _heap_end) {
      // The global finger always points to a heap region boundary. We
      // use heap_region_containing_raw() to get the containing region
      // given that the global finger could be pointing to a free region
      // which subsequently becomes continues humongous. If that
      // happens, heap_region_containing() will return the bottom of the
      // corresponding starts humongous region and the check below will
      // not hold any more.
      HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
      guarantee(global_finger == global_hr->bottom(),
                err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
                        global_finger, HR_FORMAT_PARAMS(global_hr)));
    }

    // Verify the task fingers
3006
    assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
    for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
      CMTask* task = _tasks[i];
      HeapWord* task_finger = task->finger();
      if (task_finger != NULL && task_finger < _heap_end) {
        // See above note on the global finger verification.
        HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
        guarantee(task_finger == task_hr->bottom() ||
                  !task_hr->in_collection_set(),
                  err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
                          task_finger, HR_FORMAT_PARAMS(task_hr)));
      }
    }
  }
3020
}
3021
#endif // PRODUCT
3022

3023 3024 3025
// Aggregate the counting data that was constructed concurrently
// with marking.
class AggregateCountDataHRClosure: public HeapRegionClosure {
3026
  G1CollectedHeap* _g1h;
3027
  ConcurrentMark* _cm;
3028
  CardTableModRefBS* _ct_bs;
3029
  BitMap* _cm_card_bm;
3030
  uint _max_worker_id;
3031 3032

 public:
3033
  AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3034
                              BitMap* cm_card_bm,
3035
                              uint max_worker_id) :
3036 3037
    _g1h(g1h), _cm(g1h->concurrent_mark()),
    _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3038
    _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed.
      // Note that we cannot rely on their associated
      // "starts humongous" region to have their bit set to 1
      // since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* start = hr->bottom();
    HeapWord* limit = hr->next_top_at_mark_start();
    HeapWord* end = hr->end();

    assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
           err_msg("Preconditions not met - "
                   "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
                   "top: "PTR_FORMAT", end: "PTR_FORMAT,
                   start, limit, hr->top(), hr->end()));

    assert(hr->next_marked_bytes() == 0, "Precondition");

    if (start == limit) {
      // NTAMS of this region has not been set so nothing to do.
      return false;
    }

3069 3070 3071 3072
    // 'start' should be in the heap.
    assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
    // 'end' *may* be just beyone the end of the heap (if hr is the last region)
    assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3073 3074 3075 3076 3077

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
    BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);

3078 3079 3080 3081 3082 3083 3084 3085
    // If ntams is not card aligned then we bump card bitmap index
    // for limit so that we get the all the cards spanned by
    // the object ending at ntams.
    // Note: if this is the last region in the heap then ntams
    // could be actually just beyond the end of the the heap;
    // limit_idx will then  correspond to a (non-existent) card
    // that is also outside the heap.
    if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3086 3087 3088 3089 3090 3091
      limit_idx += 1;
    }

    assert(limit_idx <= end_idx, "or else use atomics");

    // Aggregate the "stripe" in the count data associated with hr.
3092
    uint hrs_index = hr->hrs_index();
3093 3094
    size_t marked_bytes = 0;

3095
    for (uint i = 0; i < _max_worker_id; i += 1) {
3096 3097 3098 3099 3100 3101 3102
      size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
      BitMap* task_card_bm = _cm->count_card_bitmap_for(i);

      // Fetch the marked_bytes in this region for task i and
      // add it to the running total for this region.
      marked_bytes += marked_bytes_array[hrs_index];

3103
      // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
      // into the global card bitmap.
      BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);

      while (scan_idx < limit_idx) {
        assert(task_card_bm->at(scan_idx) == true, "should be");
        _cm_card_bm->set_bit(scan_idx);
        assert(_cm_card_bm->at(scan_idx) == true, "should be");

        // BitMap::get_next_one_offset() can handle the case when
        // its left_offset parameter is greater than its right_offset
3114
        // parameter. It does, however, have an early exit if
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
        // left_offset == right_offset. So let's limit the value
        // passed in for left offset here.
        BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
        scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
      }
    }

    // Update the marked bytes for this region.
    hr->add_to_marked_bytes(marked_bytes);

    // Next heap region
    return false;
  }
};

class G1AggregateCountDataTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _cm_card_bm;
3135
  uint _max_worker_id;
3136 3137 3138 3139 3140 3141
  int _active_workers;

public:
  G1AggregateCountDataTask(G1CollectedHeap* g1h,
                           ConcurrentMark* cm,
                           BitMap* cm_card_bm,
3142
                           uint max_worker_id,
3143 3144 3145
                           int n_workers) :
    AbstractGangTask("Count Aggregation"),
    _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3146
    _max_worker_id(max_worker_id),
3147 3148 3149
    _active_workers(n_workers) { }

  void work(uint worker_id) {
3150
    AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
                                            _active_workers,
                                            HeapRegion::AggregateCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&cl);
    }
  }
};


void ConcurrentMark::aggregate_count_data() {
  int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                        _g1h->workers()->active_workers() :
                        1);

  G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3169
                                           _max_worker_id, n_workers);
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
    _g1h->set_par_threads(n_workers);
    _g1h->workers()->run_task(&g1_par_agg_task);
    _g1h->set_par_threads(0);

    assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
           "sanity check");
    _g1h->reset_heap_region_claim_values();
  } else {
    g1_par_agg_task.work(0);
  }
}

// Clear the per-worker arrays used to store the per-region counting data
void ConcurrentMark::clear_all_count_data() {
  // Clear the global card bitmap - it will be filled during
  // liveness count aggregation (during remark) and the
  // final counting task.
  _card_bm.clear();

  // Clear the global region bitmap - it will be filled as part
  // of the final counting task.
  _region_bm.clear();

3197
  uint max_regions = _g1h->max_regions();
3198
  assert(_max_worker_id > 0, "uninitialized");
3199

3200
  for (uint i = 0; i < _max_worker_id; i += 1) {
3201 3202 3203 3204 3205 3206
    BitMap* task_card_bm = count_card_bitmap_for(i);
    size_t* marked_bytes_array = count_marked_bytes_array_for(i);

    assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
    assert(marked_bytes_array != NULL, "uninitialized");

3207
    memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3208 3209 3210 3211
    task_card_bm->clear();
  }
}

3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
void ConcurrentMark::print_stats() {
  if (verbose_stats()) {
    gclog_or_tty->print_cr("---------------------------------------------------------------------");
    for (size_t i = 0; i < _active_tasks; ++i) {
      _tasks[i]->print_stats();
      gclog_or_tty->print_cr("---------------------------------------------------------------------");
    }
  }
}

// abandon current marking iteration due to a Full GC
void ConcurrentMark::abort() {
  // Clear all marks to force marking thread to do nothing
  _nextMarkBitMap->clearAll();
3226 3227
  // Clear the liveness counting data
  clear_all_count_data();
3228
  // Empty mark stack
3229
  reset_marking_state();
3230
  for (uint i = 0; i < _max_worker_id; ++i) {
3231
    _tasks[i]->clear_region_fields();
3232
  }
3233 3234 3235 3236
  _has_aborted = true;

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  satb_mq_set.abandon_partial_marking();
3237 3238 3239 3240 3241
  // This can be called either during or outside marking, we'll read
  // the expected_active value from the SATB queue set.
  satb_mq_set.set_active_all_threads(
                                 false, /* new active value */
                                 satb_mq_set.is_active() /* expected_active */);
S
sla 已提交
3242 3243 3244

  _g1h->trace_heap_after_concurrent_cycle();
  _g1h->register_concurrent_cycle_end();
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
}

static void print_ms_time_info(const char* prefix, const char* name,
                               NumberSeq& ns) {
  gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
                         prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  if (ns.num() > 0) {
    gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
                           prefix, ns.sd(), ns.maximum());
  }
}

void ConcurrentMark::print_summary_info() {
  gclog_or_tty->print_cr(" Concurrent marking:");
  print_ms_time_info("  ", "init marks", _init_times);
  print_ms_time_info("  ", "remarks", _remark_times);
  {
    print_ms_time_info("     ", "final marks", _remark_mark_times);
    print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);

  }
  print_ms_time_info("  ", "cleanups", _cleanup_times);
  gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
                         _total_counting_time,
                         (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
                          (double)_cleanup_times.num()
                         : 0.0));
  if (G1ScrubRemSets) {
    gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
                           _total_rs_scrub_time,
                           (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
                            (double)_cleanup_times.num()
                           : 0.0));
  }
  gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
                         (_init_times.sum() + _remark_times.sum() +
                          _cleanup_times.sum())/1000.0);
  gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3283
                "(%8.2f s marking).",
3284
                cmThread()->vtime_accum(),
3285
                cmThread()->vtime_mark_accum());
3286 3287
}

T
tonyp 已提交
3288
void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3289 3290 3291
  if (use_parallel_marking_threads()) {
    _parallel_workers->print_worker_threads_on(st);
  }
T
tonyp 已提交
3292 3293
}

3294 3295 3296 3297 3298 3299 3300
void ConcurrentMark::print_on_error(outputStream* st) const {
  st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
      _prevMarkBitMap, _nextMarkBitMap);
  _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
  _nextMarkBitMap->print_on_error(st, " Next Bits: ");
}

3301
// We take a break if someone is trying to stop the world.
3302
bool ConcurrentMark::do_yield_check(uint worker_id) {
3303
  if (should_yield()) {
3304
    if (worker_id == 0) {
3305
      _g1h->g1_policy()->record_concurrent_pause();
3306
    }
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
    cmThread()->yield();
    return true;
  } else {
    return false;
  }
}

bool ConcurrentMark::should_yield() {
  return cmThread()->should_yield();
}

bool ConcurrentMark::containing_card_is_marked(void* p) {
  size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  return _card_bm.at(offset >> CardTableModRefBS::card_shift);
}

bool ConcurrentMark::containing_cards_are_marked(void* start,
                                                 void* last) {
3325 3326
  return containing_card_is_marked(start) &&
         containing_card_is_marked(last);
3327 3328 3329 3330 3331 3332 3333
}

#ifndef PRODUCT
// for debugging purposes
void ConcurrentMark::print_finger() {
  gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
                         _heap_start, _heap_end, _finger);
3334 3335
  for (uint i = 0; i < _max_worker_id; ++i) {
    gclog_or_tty->print("   %u: "PTR_FORMAT, i, _tasks[i]->finger());
3336 3337 3338 3339 3340
  }
  gclog_or_tty->print_cr("");
}
#endif

3341 3342 3343 3344
void CMTask::scan_object(oop obj) {
  assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");

  if (_cm->verbose_high()) {
3345 3346
    gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
                           _worker_id, (void*) obj);
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
  }

  size_t obj_size = obj->size();
  _words_scanned += obj_size;

  obj->oop_iterate(_cm_oop_closure);
  statsOnly( ++_objs_scanned );
  check_limits();
}

3357 3358 3359 3360 3361 3362 3363 3364 3365
// Closure for iteration over bitmaps
class CMBitMapClosure : public BitMapClosure {
private:
  // the bitmap that is being iterated over
  CMBitMap*                   _nextMarkBitMap;
  ConcurrentMark*             _cm;
  CMTask*                     _task;

public:
3366 3367
  CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
    _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3368 3369 3370

  bool do_bit(size_t offset) {
    HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3371 3372
    assert(_nextMarkBitMap->isMarked(addr), "invariant");
    assert( addr < _cm->finger(), "invariant");
3373

3374 3375 3376 3377 3378
    statsOnly( _task->increase_objs_found_on_bitmap() );
    assert(addr >= _task->finger(), "invariant");

    // We move that task's local finger along.
    _task->move_finger_to(addr);
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404

    _task->scan_object(oop(addr));
    // we only partially drain the local queue and global stack
    _task->drain_local_queue(true);
    _task->drain_global_stack(true);

    // if the has_aborted flag has been raised, we need to bail out of
    // the iteration
    return !_task->has_aborted();
  }
};

// Closure for iterating over objects, currently only used for
// processing SATB buffers.
class CMObjectClosure : public ObjectClosure {
private:
  CMTask* _task;

public:
  void do_object(oop obj) {
    _task->deal_with_reference(obj);
  }

  CMObjectClosure(CMTask* task) : _task(task) { }
};

3405 3406 3407 3408 3409
G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
                               ConcurrentMark* cm,
                               CMTask* task)
  : _g1h(g1h), _cm(cm), _task(task) {
  assert(_ref_processor == NULL, "should be initialized to NULL");
3410

3411
  if (G1UseConcMarkReferenceProcessing) {
3412
    _ref_processor = g1h->ref_processor_cm();
3413
    assert(_ref_processor != NULL, "should not be NULL");
3414
  }
3415
}
3416 3417

void CMTask::setup_for_region(HeapRegion* hr) {
3418 3419 3420 3421 3422
  // Separated the asserts so that we know which one fires.
  assert(hr != NULL,
        "claim_region() should have filtered out continues humongous regions");
  assert(!hr->continuesHumongous(),
        "claim_region() should have filtered out continues humongous regions");
3423

3424
  if (_cm->verbose_low()) {
3425 3426
    gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
                           _worker_id, hr);
3427
  }
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439

  _curr_region  = hr;
  _finger       = hr->bottom();
  update_region_limit();
}

void CMTask::update_region_limit() {
  HeapRegion* hr            = _curr_region;
  HeapWord* bottom          = hr->bottom();
  HeapWord* limit           = hr->next_top_at_mark_start();

  if (limit == bottom) {
3440
    if (_cm->verbose_low()) {
3441
      gclog_or_tty->print_cr("[%u] found an empty region "
3442
                             "["PTR_FORMAT", "PTR_FORMAT")",
3443
                             _worker_id, bottom, limit);
3444
    }
3445 3446 3447 3448 3449 3450 3451
    // The region was collected underneath our feet.
    // We set the finger to bottom to ensure that the bitmap
    // iteration that will follow this will not do anything.
    // (this is not a condition that holds when we set the region up,
    // as the region is not supposed to be empty in the first place)
    _finger = bottom;
  } else if (limit >= _region_limit) {
3452
    assert(limit >= _finger, "peace of mind");
3453
  } else {
3454
    assert(limit < _region_limit, "only way to get here");
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
    // This can happen under some pretty unusual circumstances.  An
    // evacuation pause empties the region underneath our feet (NTAMS
    // at bottom). We then do some allocation in the region (NTAMS
    // stays at bottom), followed by the region being used as a GC
    // alloc region (NTAMS will move to top() and the objects
    // originally below it will be grayed). All objects now marked in
    // the region are explicitly grayed, if below the global finger,
    // and we do not need in fact to scan anything else. So, we simply
    // set _finger to be limit to ensure that the bitmap iteration
    // doesn't do anything.
    _finger = limit;
  }

  _region_limit = limit;
}

void CMTask::giveup_current_region() {
3472
  assert(_curr_region != NULL, "invariant");
3473
  if (_cm->verbose_low()) {
3474 3475
    gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
                           _worker_id, _curr_region);
3476
  }
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
  clear_region_fields();
}

void CMTask::clear_region_fields() {
  // Values for these three fields that indicate that we're not
  // holding on to a region.
  _curr_region   = NULL;
  _finger        = NULL;
  _region_limit  = NULL;
}

3488 3489 3490 3491 3492 3493 3494 3495 3496
void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  if (cm_oop_closure == NULL) {
    assert(_cm_oop_closure != NULL, "invariant");
  } else {
    assert(_cm_oop_closure == NULL, "invariant");
  }
  _cm_oop_closure = cm_oop_closure;
}

3497
void CMTask::reset(CMBitMap* nextMarkBitMap) {
3498
  guarantee(nextMarkBitMap != NULL, "invariant");
3499

3500
  if (_cm->verbose_low()) {
3501
    gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3502
  }
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545

  _nextMarkBitMap                = nextMarkBitMap;
  clear_region_fields();

  _calls                         = 0;
  _elapsed_time_ms               = 0.0;
  _termination_time_ms           = 0.0;
  _termination_start_time_ms     = 0.0;

#if _MARKING_STATS_
  _local_pushes                  = 0;
  _local_pops                    = 0;
  _local_max_size                = 0;
  _objs_scanned                  = 0;
  _global_pushes                 = 0;
  _global_pops                   = 0;
  _global_max_size               = 0;
  _global_transfers_to           = 0;
  _global_transfers_from         = 0;
  _regions_claimed               = 0;
  _objs_found_on_bitmap          = 0;
  _satb_buffers_processed        = 0;
  _steal_attempts                = 0;
  _steals                        = 0;
  _aborted                       = 0;
  _aborted_overflow              = 0;
  _aborted_cm_aborted            = 0;
  _aborted_yield                 = 0;
  _aborted_timed_out             = 0;
  _aborted_satb                  = 0;
  _aborted_termination           = 0;
#endif // _MARKING_STATS_
}

bool CMTask::should_exit_termination() {
  regular_clock_call();
  // This is called when we are in the termination protocol. We should
  // quit if, for some reason, this task wants to abort or the global
  // stack is not empty (this means that we can get work from it).
  return !_cm->mark_stack_empty() || has_aborted();
}

void CMTask::reached_limit() {
3546 3547 3548
  assert(_words_scanned >= _words_scanned_limit ||
         _refs_reached >= _refs_reached_limit ,
         "shouldn't have been called otherwise");
3549 3550 3551 3552
  regular_clock_call();
}

void CMTask::regular_clock_call() {
3553
  if (has_aborted()) return;
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569

  // First, we need to recalculate the words scanned and refs reached
  // limits for the next clock call.
  recalculate_limits();

  // During the regular clock call we do the following

  // (1) If an overflow has been flagged, then we abort.
  if (_cm->has_overflown()) {
    set_has_aborted();
    return;
  }

  // If we are not concurrent (i.e. we're doing remark) we don't need
  // to check anything else. The other steps are only needed during
  // the concurrent marking phase.
3570
  if (!concurrent()) return;
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582

  // (2) If marking has been aborted for Full GC, then we also abort.
  if (_cm->has_aborted()) {
    set_has_aborted();
    statsOnly( ++_aborted_cm_aborted );
    return;
  }

  double curr_time_ms = os::elapsedVTime() * 1000.0;

  // (3) If marking stats are enabled, then we update the step history.
#if _MARKING_STATS_
3583
  if (_words_scanned >= _words_scanned_limit) {
3584
    ++_clock_due_to_scanning;
3585 3586
  }
  if (_refs_reached >= _refs_reached_limit) {
3587
    ++_clock_due_to_marking;
3588
  }
3589 3590 3591 3592 3593 3594

  double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  _interval_start_time_ms = curr_time_ms;
  _all_clock_intervals_ms.add(last_interval_ms);

  if (_cm->verbose_medium()) {
3595
      gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3596
                        "scanned = %d%s, refs reached = %d%s",
3597
                        _worker_id, last_interval_ms,
3598 3599 3600 3601
                        _words_scanned,
                        (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
                        _refs_reached,
                        (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
  }
#endif // _MARKING_STATS_

  // (4) We check whether we should yield. If we have to, then we abort.
  if (_cm->should_yield()) {
    // We should yield. To do this we abort the task. The caller is
    // responsible for yielding.
    set_has_aborted();
    statsOnly( ++_aborted_yield );
    return;
  }

  // (5) We check whether we've reached our time quota. If we have,
  // then we abort.
  double elapsed_time_ms = curr_time_ms - _start_time_ms;
  if (elapsed_time_ms > _time_target_ms) {
    set_has_aborted();
3619
    _has_timed_out = true;
3620 3621 3622 3623 3624 3625 3626 3627
    statsOnly( ++_aborted_timed_out );
    return;
  }

  // (6) Finally, we check whether there are enough completed STAB
  // buffers available for processing. If there are, we abort.
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3628
    if (_cm->verbose_low()) {
3629 3630
      gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
                             _worker_id);
3631
    }
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
    // we do need to process SATB buffers, we'll abort and restart
    // the marking task to do so
    set_has_aborted();
    statsOnly( ++_aborted_satb );
    return;
  }
}

void CMTask::recalculate_limits() {
  _real_words_scanned_limit = _words_scanned + words_scanned_period;
  _words_scanned_limit      = _real_words_scanned_limit;

  _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  _refs_reached_limit       = _real_refs_reached_limit;
}

void CMTask::decrease_limits() {
  // This is called when we believe that we're going to do an infrequent
  // operation which will increase the per byte scanned cost (i.e. move
  // entries to/from the global stack). It basically tries to decrease the
  // scanning limit so that the clock is called earlier.

3654
  if (_cm->verbose_medium()) {
3655
    gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3656
  }
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681

  _words_scanned_limit = _real_words_scanned_limit -
    3 * words_scanned_period / 4;
  _refs_reached_limit  = _real_refs_reached_limit -
    3 * refs_reached_period / 4;
}

void CMTask::move_entries_to_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the local queue
  oop buffer[global_stack_transfer_size];

  int n = 0;
  oop obj;
  while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
    buffer[n] = obj;
    ++n;
  }

  if (n > 0) {
    // we popped at least one entry from the local queue

    statsOnly( ++_global_transfers_to; _local_pops += n );

    if (!_cm->mark_stack_push(buffer, n)) {
3682
      if (_cm->verbose_low()) {
3683 3684
        gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
                               _worker_id);
3685
      }
3686 3687 3688 3689
      set_has_aborted();
    } else {
      // the transfer was successful

3690
      if (_cm->verbose_medium()) {
3691 3692
        gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
                               _worker_id, n);
3693
      }
3694
      statsOnly( int tmp_size = _cm->mark_stack_size();
3695
                 if (tmp_size > _global_max_size) {
3696
                   _global_max_size = tmp_size;
3697
                 }
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
                 _global_pushes += n );
    }
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::get_entries_from_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the global stack.
  oop buffer[global_stack_transfer_size];
  int n;
  _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3712 3713
  assert(n <= global_stack_transfer_size,
         "we should not pop more than the given limit");
3714 3715 3716 3717
  if (n > 0) {
    // yes, we did actually pop at least one entry

    statsOnly( ++_global_transfers_from; _global_pops += n );
3718
    if (_cm->verbose_medium()) {
3719 3720
      gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
                             _worker_id, n);
3721
    }
3722 3723 3724 3725
    for (int i = 0; i < n; ++i) {
      bool success = _task_queue->push(buffer[i]);
      // We only call this when the local queue is empty or under a
      // given target limit. So, we do not expect this push to fail.
3726
      assert(success, "invariant");
3727 3728 3729
    }

    statsOnly( int tmp_size = _task_queue->size();
3730
               if (tmp_size > _local_max_size) {
3731
                 _local_max_size = tmp_size;
3732
               }
3733 3734 3735 3736 3737 3738 3739 3740
               _local_pushes += n );
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::drain_local_queue(bool partially) {
3741
  if (has_aborted()) return;
3742 3743 3744 3745 3746

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).
  size_t target_size;
3747
  if (partially) {
3748
    target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3749
  } else {
3750
    target_size = 0;
3751
  }
3752 3753

  if (_task_queue->size() > target_size) {
3754
    if (_cm->verbose_high()) {
3755 3756
      gclog_or_tty->print_cr("[%u] draining local queue, target size = %d",
                             _worker_id, target_size);
3757
    }
3758 3759 3760 3761 3762 3763

    oop obj;
    bool ret = _task_queue->pop_local(obj);
    while (ret) {
      statsOnly( ++_local_pops );

3764
      if (_cm->verbose_high()) {
3765
        gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3766
                               (void*) obj);
3767
      }
3768

3769
      assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
T
tonyp 已提交
3770
      assert(!_g1h->is_on_master_free_list(
3771
                  _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3772 3773 3774

      scan_object(obj);

3775
      if (_task_queue->size() <= target_size || has_aborted()) {
3776
        ret = false;
3777
      } else {
3778
        ret = _task_queue->pop_local(obj);
3779
      }
3780 3781
    }

3782
    if (_cm->verbose_high()) {
3783 3784
      gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
                             _worker_id, _task_queue->size());
3785
    }
3786 3787 3788 3789
  }
}

void CMTask::drain_global_stack(bool partially) {
3790
  if (has_aborted()) return;
3791 3792 3793

  // We have a policy to drain the local queue before we attempt to
  // drain the global stack.
3794
  assert(partially || _task_queue->size() == 0, "invariant");
3795 3796 3797 3798 3799 3800 3801 3802

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).  Notice that,
  // because we move entries from the global stack in chunks or
  // because another task might be doing the same, we might in fact
  // drop below the target. But, this is not a problem.
  size_t target_size;
3803
  if (partially) {
3804
    target_size = _cm->partial_mark_stack_size_target();
3805
  } else {
3806
    target_size = 0;
3807
  }
3808 3809

  if (_cm->mark_stack_size() > target_size) {
3810
    if (_cm->verbose_low()) {
3811 3812
      gclog_or_tty->print_cr("[%u] draining global_stack, target size %d",
                             _worker_id, target_size);
3813
    }
3814 3815 3816 3817 3818 3819

    while (!has_aborted() && _cm->mark_stack_size() > target_size) {
      get_entries_from_global_stack();
      drain_local_queue(partially);
    }

3820
    if (_cm->verbose_low()) {
3821 3822
      gclog_or_tty->print_cr("[%u] drained global stack, size = %d",
                             _worker_id, _cm->mark_stack_size());
3823
    }
3824 3825 3826 3827 3828 3829 3830 3831
  }
}

// SATB Queue has several assumptions on whether to call the par or
// non-par versions of the methods. this is why some of the code is
// replicated. We should really get rid of the single-threaded version
// of the code to simplify things.
void CMTask::drain_satb_buffers() {
3832
  if (has_aborted()) return;
3833 3834 3835 3836 3837 3838 3839 3840 3841

  // We set this so that the regular clock knows that we're in the
  // middle of draining buffers and doesn't set the abort flag when it
  // notices that SATB buffers are available for draining. It'd be
  // very counter productive if it did that. :-)
  _draining_satb_buffers = true;

  CMObjectClosure oc(this);
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3842
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3843
    satb_mq_set.set_par_closure(_worker_id, &oc);
3844
  } else {
3845
    satb_mq_set.set_closure(&oc);
3846
  }
3847 3848 3849

  // This keeps claiming and applying the closure to completed buffers
  // until we run out of buffers or we need to abort.
3850
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3851
    while (!has_aborted() &&
3852
           satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
3853
      if (_cm->verbose_medium()) {
3854
        gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3855
      }
3856 3857 3858 3859 3860 3861
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  } else {
    while (!has_aborted() &&
           satb_mq_set.apply_closure_to_completed_buffer()) {
3862
      if (_cm->verbose_medium()) {
3863
        gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3864
      }
3865 3866 3867 3868 3869 3870 3871
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  }

  if (!concurrent() && !has_aborted()) {
    // We should only do this during remark.
3872
    if (G1CollectedHeap::use_parallel_gc_threads()) {
3873
      satb_mq_set.par_iterate_closure_all_threads(_worker_id);
3874
    } else {
3875
      satb_mq_set.iterate_closure_all_threads();
3876
    }
3877 3878 3879 3880
  }

  _draining_satb_buffers = false;

3881 3882 3883
  assert(has_aborted() ||
         concurrent() ||
         satb_mq_set.completed_buffers_num() == 0, "invariant");
3884

3885
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3886
    satb_mq_set.set_par_closure(_worker_id, NULL);
3887
  } else {
3888
    satb_mq_set.set_closure(NULL);
3889
  }
3890 3891 3892 3893 3894 3895 3896

  // again, this was a potentially expensive operation, decrease the
  // limits to get the regular clock call early
  decrease_limits();
}

void CMTask::print_stats() {
3897 3898
  gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
                         _worker_id, _calls);
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
  gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
                         _elapsed_time_ms, _termination_time_ms);
  gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _step_times_ms.num(), _step_times_ms.avg(),
                         _step_times_ms.sd());
  gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
                         _step_times_ms.maximum(), _step_times_ms.sum());

#if _MARKING_STATS_
  gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
                         _all_clock_intervals_ms.sd());
  gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
                         _all_clock_intervals_ms.maximum(),
                         _all_clock_intervals_ms.sum());
  gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
                         _clock_due_to_scanning, _clock_due_to_marking);
  gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
                         _objs_scanned, _objs_found_on_bitmap);
  gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
                         _local_pushes, _local_pops, _local_max_size);
  gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
                         _global_pushes, _global_pops, _global_max_size);
  gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
                         _global_transfers_to,_global_transfers_from);
3924
  gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
  gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
                         _steal_attempts, _steals);
  gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
                         _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
                         _aborted_timed_out, _aborted_satb, _aborted_termination);
#endif // _MARKING_STATS_
}

/*****************************************************************************

3938 3939
    The do_marking_step(time_target_ms, ...) method is the building
    block of the parallel marking framework. It can be called in parallel
3940 3941 3942 3943 3944 3945 3946 3947 3948
    with other invocations of do_marking_step() on different tasks
    (but only one per task, obviously) and concurrently with the
    mutator threads, or during remark, hence it eliminates the need
    for two versions of the code. When called during remark, it will
    pick up from where the task left off during the concurrent marking
    phase. Interestingly, tasks are also claimable during evacuation
    pauses too, since do_marking_step() ensures that it aborts before
    it needs to yield.

3949
    The data structures that it uses to do marking work are the
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
    following:

      (1) Marking Bitmap. If there are gray objects that appear only
      on the bitmap (this happens either when dealing with an overflow
      or when the initial marking phase has simply marked the roots
      and didn't push them on the stack), then tasks claim heap
      regions whose bitmap they then scan to find gray objects. A
      global finger indicates where the end of the last claimed region
      is. A local finger indicates how far into the region a task has
      scanned. The two fingers are used to determine how to gray an
      object (i.e. whether simply marking it is OK, as it will be
      visited by a task in the future, or whether it needs to be also
      pushed on a stack).

      (2) Local Queue. The local queue of the task which is accessed
      reasonably efficiently by the task. Other tasks can steal from
      it when they run out of work. Throughout the marking phase, a
      task attempts to keep its local queue short but not totally
      empty, so that entries are available for stealing by other
      tasks. Only when there is no more work, a task will totally
      drain its local queue.

      (3) Global Mark Stack. This handles local queue overflow. During
      marking only sets of entries are moved between it and the local
      queues, as access to it requires a mutex and more fine-grain
      interaction with it which might cause contention. If it
      overflows, then the marking phase should restart and iterate
      over the bitmap to identify gray objects. Throughout the marking
      phase, tasks attempt to keep the global mark stack at a small
      length but not totally empty, so that entries are available for
      popping by other tasks. Only when there is no more work, tasks
      will totally drain the global mark stack.

3983
      (4) SATB Buffer Queue. This is where completed SATB buffers are
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
      made available. Buffers are regularly removed from this queue
      and scanned for roots, so that the queue doesn't get too
      long. During remark, all completed buffers are processed, as
      well as the filled in parts of any uncompleted buffers.

    The do_marking_step() method tries to abort when the time target
    has been reached. There are a few other cases when the
    do_marking_step() method also aborts:

      (1) When the marking phase has been aborted (after a Full GC).

3995 3996 3997
      (2) When a global overflow (on the global stack) has been
      triggered. Before the task aborts, it will actually sync up with
      the other tasks to ensure that all the marking data structures
3998
      (local queues, stacks, fingers etc.)  are re-initialized so that
3999 4000
      when do_marking_step() completes, the marking phase can
      immediately restart.
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034

      (3) When enough completed SATB buffers are available. The
      do_marking_step() method only tries to drain SATB buffers right
      at the beginning. So, if enough buffers are available, the
      marking step aborts and the SATB buffers are processed at
      the beginning of the next invocation.

      (4) To yield. when we have to yield then we abort and yield
      right at the end of do_marking_step(). This saves us from a lot
      of hassle as, by yielding we might allow a Full GC. If this
      happens then objects will be compacted underneath our feet, the
      heap might shrink, etc. We save checking for this by just
      aborting and doing the yield right at the end.

    From the above it follows that the do_marking_step() method should
    be called in a loop (or, otherwise, regularly) until it completes.

    If a marking step completes without its has_aborted() flag being
    true, it means it has completed the current marking phase (and
    also all other marking tasks have done so and have all synced up).

    A method called regular_clock_call() is invoked "regularly" (in
    sub ms intervals) throughout marking. It is this clock method that
    checks all the abort conditions which were mentioned above and
    decides when the task should abort. A work-based scheme is used to
    trigger this clock method: when the number of object words the
    marking phase has scanned or the number of references the marking
    phase has visited reach a given limit. Additional invocations to
    the method clock have been planted in a few other strategic places
    too. The initial reason for the clock method was to avoid calling
    vtime too regularly, as it is quite expensive. So, once it was in
    place, it was natural to piggy-back all the other conditions on it
    too and not constantly check them throughout the code.

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
    If do_termination is true then do_marking_step will enter its
    termination protocol.

    The value of is_serial must be true when do_marking_step is being
    called serially (i.e. by the VMThread) and do_marking_step should
    skip any synchronization in the termination and overflow code.
    Examples include the serial remark code and the serial reference
    processing closures.

    The value of is_serial must be false when do_marking_step is
    being called by any of the worker threads in a work gang.
    Examples include the concurrent marking code (CMMarkingTask),
    the MT remark code, and the MT reference processing closures.

4049 4050
 *****************************************************************************/

4051
void CMTask::do_marking_step(double time_target_ms,
4052 4053
                             bool do_termination,
                             bool is_serial) {
4054 4055
  assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  assert(concurrent() == _cm->concurrent(), "they should be the same");
4056 4057

  G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4058 4059
  assert(_task_queues != NULL, "invariant");
  assert(_task_queue != NULL, "invariant");
4060
  assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4061

4062 4063
  assert(!_claimed,
         "only one thread should claim this task at any one time");
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073

  // OK, this doesn't safeguard again all possible scenarios, as it is
  // possible for two threads to set the _claimed flag at the same
  // time. But it is only for debugging purposes anyway and it will
  // catch most problems.
  _claimed = true;

  _start_time_ms = os::elapsedVTime() * 1000.0;
  statsOnly( _interval_start_time_ms = _start_time_ms );

4074 4075 4076 4077 4078 4079
  // If do_stealing is true then do_marking_step will attempt to
  // steal work from the other CMTasks. It only makes sense to
  // enable stealing when the termination protocol is enabled
  // and do_marking_step() is not being called serially.
  bool do_stealing = do_termination && !is_serial;

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
  double diff_prediction_ms =
    g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  _time_target_ms = time_target_ms - diff_prediction_ms;

  // set up the variables that are used in the work-based scheme to
  // call the regular clock method
  _words_scanned = 0;
  _refs_reached  = 0;
  recalculate_limits();

  // clear all flags
  clear_has_aborted();
4092
  _has_timed_out = false;
4093 4094 4095 4096
  _draining_satb_buffers = false;

  ++_calls;

4097
  if (_cm->verbose_low()) {
4098
    gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4099
                           "target = %1.2lfms >>>>>>>>>>",
4100
                           _worker_id, _calls, _time_target_ms);
4101
  }
4102 4103 4104 4105 4106

  // Set up the bitmap and oop closures. Anything that uses them is
  // eventually called from this method, so it is OK to allocate these
  // statically.
  CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4107 4108
  G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  set_cm_oop_closure(&cm_oop_closure);
4109 4110

  if (_cm->has_overflown()) {
4111 4112 4113 4114
    // This can happen if the mark stack overflows during a GC pause
    // and this task, after a yield point, restarts. We have to abort
    // as we need to get into the overflow protocol which happens
    // right at the end of this task.
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
    set_has_aborted();
  }

  // First drain any available SATB buffers. After this, we will not
  // look at SATB buffers before the next invocation of this method.
  // If enough completed SATB buffers are queued up, the regular clock
  // will abort this task so that it restarts.
  drain_satb_buffers();
  // ...then partially drain the local queue and the global stack
  drain_local_queue(true);
  drain_global_stack(true);

  do {
    if (!has_aborted() && _curr_region != NULL) {
      // This means that we're already holding on to a region.
4130 4131
      assert(_finger != NULL, "if region is not NULL, then the finger "
             "should not be NULL either");
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146

      // We might have restarted this task after an evacuation pause
      // which might have evacuated the region we're holding on to
      // underneath our feet. Let's read its limit again to make sure
      // that we do not iterate over a region of the heap that
      // contains garbage (update_region_limit() will also move
      // _finger to the start of the region if it is found empty).
      update_region_limit();
      // We will start from _finger not from the start of the region,
      // as we might be restarting this task after aborting half-way
      // through scanning this region. In this case, _finger points to
      // the address where we last found a marked object. If this is a
      // fresh region, _finger points to start().
      MemRegion mr = MemRegion(_finger, _region_limit);

4147
      if (_cm->verbose_low()) {
4148
        gclog_or_tty->print_cr("[%u] we're scanning part "
4149
                               "["PTR_FORMAT", "PTR_FORMAT") "
4150 4151 4152
                               "of region "HR_FORMAT,
                               _worker_id, _finger, _region_limit,
                               HR_FORMAT_PARAMS(_curr_region));
4153
      }
4154

4155 4156
      assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
             "humongous regions should go around loop once only");
4157

4158 4159 4160 4161 4162 4163 4164
      // Some special cases:
      // If the memory region is empty, we can just give up the region.
      // If the current region is humongous then we only need to check
      // the bitmap for the bit associated with the start of the object,
      // scan the object if it's live, and give up the region.
      // Otherwise, let's iterate over the bitmap of the part of the region
      // that is left.
4165
      // If the iteration is successful, give up the region.
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
      if (mr.is_empty()) {
        giveup_current_region();
        regular_clock_call();
      } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
        if (_nextMarkBitMap->isMarked(mr.start())) {
          // The object is marked - apply the closure
          BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
          bitmap_closure.do_bit(offset);
        }
        // Even if this task aborted while scanning the humongous object
        // we can (and should) give up the current region.
        giveup_current_region();
        regular_clock_call();
      } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4180 4181 4182
        giveup_current_region();
        regular_clock_call();
      } else {
4183
        assert(has_aborted(), "currently the only way to do so");
4184 4185 4186 4187 4188
        // The only way to abort the bitmap iteration is to return
        // false from the do_bit() method. However, inside the
        // do_bit() method we move the _finger to point to the
        // object currently being looked at. So, if we bail out, we
        // have definitely set _finger to something non-null.
4189
        assert(_finger != NULL, "invariant");
4190 4191 4192 4193 4194 4195 4196 4197

        // Region iteration was actually aborted. So now _finger
        // points to the address of the object we last scanned. If we
        // leave it there, when we restart this task, we will rescan
        // the object. It is easy to avoid this. We move the finger by
        // enough to point to the next possible object header (the
        // bitmap knows by how much we need to move it as it knows its
        // granularity).
4198
        assert(_finger < _region_limit, "invariant");
4199
        HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4200 4201
        // Check if bitmap iteration was aborted while scanning the last object
        if (new_finger >= _region_limit) {
4202
          giveup_current_region();
4203
        } else {
4204
          move_finger_to(new_finger);
4205
        }
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
      }
    }
    // At this point we have either completed iterating over the
    // region we were holding on to, or we have aborted.

    // We then partially drain the local queue and the global stack.
    // (Do we really need this?)
    drain_local_queue(true);
    drain_global_stack(true);

    // Read the note on the claim_region() method on why it might
    // return NULL with potentially more regions available for
    // claiming and why we have to check out_of_regions() to determine
    // whether we're done or not.
    while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
      // We are going to try to claim a new region. We should have
      // given up on the previous one.
4223 4224 4225 4226
      // Separated the asserts so that we know which one fires.
      assert(_curr_region  == NULL, "invariant");
      assert(_finger       == NULL, "invariant");
      assert(_region_limit == NULL, "invariant");
4227
      if (_cm->verbose_low()) {
4228
        gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4229
      }
4230
      HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4231 4232 4233 4234
      if (claimed_region != NULL) {
        // Yes, we managed to claim one
        statsOnly( ++_regions_claimed );

4235
        if (_cm->verbose_low()) {
4236
          gclog_or_tty->print_cr("[%u] we successfully claimed "
4237
                                 "region "PTR_FORMAT,
4238
                                 _worker_id, claimed_region);
4239
        }
4240 4241

        setup_for_region(claimed_region);
4242
        assert(_curr_region == claimed_region, "invariant");
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
      }
      // It is important to call the regular clock here. It might take
      // a while to claim a region if, for example, we hit a large
      // block of empty regions. So we need to call the regular clock
      // method once round the loop to make sure it's called
      // frequently enough.
      regular_clock_call();
    }

    if (!has_aborted() && _curr_region == NULL) {
4253 4254
      assert(_cm->out_of_regions(),
             "at this point we should be out of regions");
4255 4256 4257 4258 4259
    }
  } while ( _curr_region != NULL && !has_aborted());

  if (!has_aborted()) {
    // We cannot check whether the global stack is empty, since other
4260
    // tasks might be pushing objects to it concurrently.
4261 4262
    assert(_cm->out_of_regions(),
           "at this point we should be out of regions");
4263

4264
    if (_cm->verbose_low()) {
4265
      gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4266
    }
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278

    // Try to reduce the number of available SATB buffers so that
    // remark has less work to do.
    drain_satb_buffers();
  }

  // Since we've done everything else, we can now totally drain the
  // local queue and global stack.
  drain_local_queue(false);
  drain_global_stack(false);

  // Attempt at work stealing from other task's queues.
4279
  if (do_stealing && !has_aborted()) {
4280 4281 4282 4283
    // We have not aborted. This means that we have finished all that
    // we could. Let's try to do some stealing...

    // We cannot check whether the global stack is empty, since other
4284
    // tasks might be pushing objects to it concurrently.
4285 4286
    assert(_cm->out_of_regions() && _task_queue->size() == 0,
           "only way to reach here");
4287

4288
    if (_cm->verbose_low()) {
4289
      gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4290
    }
4291 4292 4293 4294 4295

    while (!has_aborted()) {
      oop obj;
      statsOnly( ++_steal_attempts );

4296
      if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4297
        if (_cm->verbose_medium()) {
4298 4299
          gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
                                 _worker_id, (void*) obj);
4300
        }
4301 4302 4303

        statsOnly( ++_steals );

4304 4305
        assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
               "any stolen object should be marked");
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
        scan_object(obj);

        // And since we're towards the end, let's totally drain the
        // local queue and global stack.
        drain_local_queue(false);
        drain_global_stack(false);
      } else {
        break;
      }
    }
  }

4318 4319 4320 4321 4322 4323 4324 4325 4326
  // If we are about to wrap up and go into termination, check if we
  // should raise the overflow flag.
  if (do_termination && !has_aborted()) {
    if (_cm->force_overflow()->should_force()) {
      _cm->set_has_overflown();
      regular_clock_call();
    }
  }

4327 4328
  // We still haven't aborted. Now, let's try to get into the
  // termination protocol.
4329
  if (do_termination && !has_aborted()) {
4330
    // We cannot check whether the global stack is empty, since other
4331
    // tasks might be concurrently pushing objects on it.
4332 4333 4334
    // Separated the asserts so that we know which one fires.
    assert(_cm->out_of_regions(), "only way to reach here");
    assert(_task_queue->size() == 0, "only way to reach here");
4335

4336
    if (_cm->verbose_low()) {
4337
      gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4338
    }
4339 4340

    _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4341

4342 4343 4344
    // The CMTask class also extends the TerminatorTerminator class,
    // hence its should_exit_termination() method will also decide
    // whether to exit the termination protocol or not.
4345 4346
    bool finished = (is_serial ||
                     _cm->terminator()->offer_termination(this));
4347 4348 4349 4350 4351 4352 4353
    double termination_end_time_ms = os::elapsedVTime() * 1000.0;
    _termination_time_ms +=
      termination_end_time_ms - _termination_start_time_ms;

    if (finished) {
      // We're all done.

4354
      if (_worker_id == 0) {
4355 4356
        // let's allow task 0 to do this
        if (concurrent()) {
4357
          assert(_cm->concurrent_marking_in_progress(), "invariant");
4358 4359 4360 4361 4362 4363 4364 4365
          // we need to set this to false before the next
          // safepoint. This way we ensure that the marking phase
          // doesn't observe any more heap expansions.
          _cm->clear_concurrent_marking_in_progress();
        }
      }

      // We can now guarantee that the global stack is empty, since
4366 4367 4368 4369 4370 4371 4372 4373
      // all other tasks have finished. We separated the guarantees so
      // that, if a condition is false, we can immediately find out
      // which one.
      guarantee(_cm->out_of_regions(), "only way to reach here");
      guarantee(_cm->mark_stack_empty(), "only way to reach here");
      guarantee(_task_queue->size() == 0, "only way to reach here");
      guarantee(!_cm->has_overflown(), "only way to reach here");
      guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4374

4375
      if (_cm->verbose_low()) {
4376
        gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4377
      }
4378 4379 4380 4381
    } else {
      // Apparently there's more work to do. Let's abort this task. It
      // will restart it and we can hopefully find more things to do.

4382
      if (_cm->verbose_low()) {
4383 4384
        gclog_or_tty->print_cr("[%u] apparently there is more work to do",
                               _worker_id);
4385
      }
4386 4387 4388 4389 4390 4391 4392 4393 4394

      set_has_aborted();
      statsOnly( ++_aborted_termination );
    }
  }

  // Mainly for debugging purposes to make sure that a pointer to the
  // closure which was statically allocated in this frame doesn't
  // escape it by accident.
4395
  set_cm_oop_closure(NULL);
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
  double end_time_ms = os::elapsedVTime() * 1000.0;
  double elapsed_time_ms = end_time_ms - _start_time_ms;
  // Update the step history.
  _step_times_ms.add(elapsed_time_ms);

  if (has_aborted()) {
    // The task was aborted for some reason.

    statsOnly( ++_aborted );

4406
    if (_has_timed_out) {
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
      double diff_ms = elapsed_time_ms - _time_target_ms;
      // Keep statistics of how well we did with respect to hitting
      // our target only if we actually timed out (if we aborted for
      // other reasons, then the results might get skewed).
      _marking_step_diffs_ms.add(diff_ms);
    }

    if (_cm->has_overflown()) {
      // This is the interesting one. We aborted because a global
      // overflow was raised. This means we have to restart the
      // marking phase and start iterating over regions. However, in
      // order to do this we have to make sure that all tasks stop
      // what they are doing and re-initialise in a safe manner. We
      // will achieve this with the use of two barrier sync points.

4422
      if (_cm->verbose_low()) {
4423
        gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4424
      }
4425

4426 4427 4428 4429 4430 4431 4432 4433 4434 4435
      if (!is_serial) {
        // We only need to enter the sync barrier if being called
        // from a parallel context
        _cm->enter_first_sync_barrier(_worker_id);

        // When we exit this sync barrier we know that all tasks have
        // stopped doing marking work. So, it's now safe to
        // re-initialise our data structures. At the end of this method,
        // task 0 will clear the global data structures.
      }
4436 4437 4438 4439 4440 4441

      statsOnly( ++_aborted_overflow );

      // We clear the local state of this task...
      clear_region_fields();

4442 4443 4444 4445
      if (!is_serial) {
        // ...and enter the second barrier.
        _cm->enter_second_sync_barrier(_worker_id);
      }
4446 4447
      // At this point, if we're during the concurrent phase of
      // marking, everything has been re-initialized and we're
4448 4449 4450 4451
      // ready to restart.
    }

    if (_cm->verbose_low()) {
4452
      gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4453
                             "elapsed = %1.2lfms <<<<<<<<<<",
4454
                             _worker_id, _time_target_ms, elapsed_time_ms);
4455
      if (_cm->has_aborted()) {
4456 4457
        gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
                               _worker_id);
4458
      }
4459 4460
    }
  } else {
4461
    if (_cm->verbose_low()) {
4462
      gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4463
                             "elapsed = %1.2lfms <<<<<<<<<<",
4464
                             _worker_id, _time_target_ms, elapsed_time_ms);
4465
    }
4466 4467 4468 4469 4470
  }

  _claimed = false;
}

4471
CMTask::CMTask(uint worker_id,
4472
               ConcurrentMark* cm,
4473 4474
               size_t* marked_bytes,
               BitMap* card_bm,
4475 4476 4477
               CMTaskQueue* task_queue,
               CMTaskQueueSet* task_queues)
  : _g1h(G1CollectedHeap::heap()),
4478
    _worker_id(worker_id), _cm(cm),
4479 4480 4481 4482
    _claimed(false),
    _nextMarkBitMap(NULL), _hash_seed(17),
    _task_queue(task_queue),
    _task_queues(task_queues),
4483
    _cm_oop_closure(NULL),
4484 4485
    _marked_bytes_array(marked_bytes),
    _card_bm(card_bm) {
4486 4487
  guarantee(task_queue != NULL, "invariant");
  guarantee(task_queues != NULL, "invariant");
4488 4489 4490 4491 4492 4493

  statsOnly( _clock_due_to_scanning = 0;
             _clock_due_to_marking  = 0 );

  _marking_step_diffs_ms.add(0.5);
}
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532

// These are formatting macros that are used below to ensure
// consistent formatting. The *_H_* versions are used to format the
// header for a particular value and they should be kept consistent
// with the corresponding macro. Also note that most of the macros add
// the necessary white space (as a prefix) which makes them a bit
// easier to compose.

// All the output lines are prefixed with this string to be able to
// identify them easily in a large log file.
#define G1PPRL_LINE_PREFIX            "###"

#define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
#ifdef _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
#else // _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
#endif // _LP64

// For per-region info
#define G1PPRL_TYPE_FORMAT            "   %-4s"
#define G1PPRL_TYPE_H_FORMAT          "   %4s"
#define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
#define G1PPRL_BYTE_H_FORMAT          "  %9s"
#define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
#define G1PPRL_DOUBLE_H_FORMAT        "  %14s"

// For summary info
#define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
#define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
#define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
#define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"

G1PrintRegionLivenessInfoClosure::
G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  : _out(out),
    _total_used_bytes(0), _total_capacity_bytes(0),
    _total_prev_live_bytes(0), _total_next_live_bytes(0),
    _hum_used_bytes(0), _hum_capacity_bytes(0),
4533
    _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
J
johnc 已提交
4534
    _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  MemRegion g1_committed = g1h->g1_committed();
  MemRegion g1_reserved = g1h->g1_reserved();
  double now = os::elapsedTime();

  // Print the header of the output.
  _out->cr();
  _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
                 G1PPRL_SUM_ADDR_FORMAT("committed")
                 G1PPRL_SUM_ADDR_FORMAT("reserved")
                 G1PPRL_SUM_BYTE_FORMAT("region-size"),
                 g1_committed.start(), g1_committed.end(),
                 g1_reserved.start(), g1_reserved.end(),
4549
                 HeapRegion::GrainBytes);
4550 4551
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
4552 4553 4554 4555 4556 4557
                G1PPRL_TYPE_H_FORMAT
                G1PPRL_ADDR_BASE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_DOUBLE_H_FORMAT
J
johnc 已提交
4558
                G1PPRL_BYTE_H_FORMAT
4559 4560
                G1PPRL_BYTE_H_FORMAT,
                "type", "address-range",
J
johnc 已提交
4561 4562
                "used", "prev-live", "next-live", "gc-eff",
                "remset", "code-roots");
4563
  _out->print_cr(G1PPRL_LINE_PREFIX
4564 4565 4566 4567 4568 4569
                G1PPRL_TYPE_H_FORMAT
                G1PPRL_ADDR_BASE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_BYTE_H_FORMAT
                G1PPRL_DOUBLE_H_FORMAT
J
johnc 已提交
4570
                G1PPRL_BYTE_H_FORMAT
4571 4572
                G1PPRL_BYTE_H_FORMAT,
                "", "",
J
johnc 已提交
4573 4574
                "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
                "(bytes)", "(bytes)");
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
}

// It takes as a parameter a reference to one of the _hum_* fields, it
// deduces the corresponding value for a region in a humongous region
// series (either the region size, or what's left if the _hum_* field
// is < the region size), and updates the _hum_* field accordingly.
size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  size_t bytes = 0;
  // The > 0 check is to deal with the prev and next live bytes which
  // could be 0.
  if (*hum_bytes > 0) {
4586
    bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
    *hum_bytes -= bytes;
  }
  return bytes;
}

// It deduces the values for a region in a humongous region series
// from the _hum_* fields and updates those accordingly. It assumes
// that that _hum_* fields have already been set up from the "starts
// humongous" region and we visit the regions in address order.
void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
                                                     size_t* capacity_bytes,
                                                     size_t* prev_live_bytes,
                                                     size_t* next_live_bytes) {
  assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
}

bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  const char* type = "";
  HeapWord* bottom       = r->bottom();
  HeapWord* end          = r->end();
  size_t capacity_bytes  = r->capacity();
  size_t used_bytes      = r->used();
  size_t prev_live_bytes = r->live_bytes();
  size_t next_live_bytes = r->next_live_bytes();
  double gc_eff          = r->gc_efficiency();
4616
  size_t remset_bytes    = r->rem_set()->mem_size();
J
johnc 已提交
4617 4618
  size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();

4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
  if (r->used() == 0) {
    type = "FREE";
  } else if (r->is_survivor()) {
    type = "SURV";
  } else if (r->is_young()) {
    type = "EDEN";
  } else if (r->startsHumongous()) {
    type = "HUMS";

    assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
           _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
           "they should have been zeroed after the last time we used them");
    // Set up the _hum_* fields.
    _hum_capacity_bytes  = capacity_bytes;
    _hum_used_bytes      = used_bytes;
    _hum_prev_live_bytes = prev_live_bytes;
    _hum_next_live_bytes = next_live_bytes;
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    end = bottom + HeapRegion::GrainWords;
  } else if (r->continuesHumongous()) {
    type = "HUMC";
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    assert(end == bottom + HeapRegion::GrainWords, "invariant");
  } else {
    type = "OLD";
  }

  _total_used_bytes      += used_bytes;
  _total_capacity_bytes  += capacity_bytes;
  _total_prev_live_bytes += prev_live_bytes;
  _total_next_live_bytes += next_live_bytes;
4652
  _total_remset_bytes    += remset_bytes;
J
johnc 已提交
4653
  _total_strong_code_roots_bytes += strong_code_roots_bytes;
4654 4655 4656 4657 4658 4659 4660 4661

  // Print a line for this particular region.
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_FORMAT
                 G1PPRL_ADDR_BASE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
4662
                 G1PPRL_DOUBLE_FORMAT
J
johnc 已提交
4663
                 G1PPRL_BYTE_FORMAT
4664
                 G1PPRL_BYTE_FORMAT,
4665
                 type, bottom, end,
J
johnc 已提交
4666 4667
                 used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
                 remset_bytes, strong_code_roots_bytes);
4668 4669 4670 4671 4672

  return false;
}

G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4673 4674
  // add static memory usages to remembered set sizes
  _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4675 4676 4677 4678 4679 4680 4681
  // Print the footer of the output.
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 " SUMMARY"
                 G1PPRL_SUM_MB_FORMAT("capacity")
                 G1PPRL_SUM_MB_PERC_FORMAT("used")
                 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4682
                 G1PPRL_SUM_MB_PERC_FORMAT("next-live")
J
johnc 已提交
4683 4684
                 G1PPRL_SUM_MB_FORMAT("remset")
                 G1PPRL_SUM_MB_FORMAT("code-roots"),
4685 4686 4687 4688 4689 4690
                 bytes_to_mb(_total_capacity_bytes),
                 bytes_to_mb(_total_used_bytes),
                 perc(_total_used_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_prev_live_bytes),
                 perc(_total_prev_live_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_next_live_bytes),
4691
                 perc(_total_next_live_bytes, _total_capacity_bytes),
J
johnc 已提交
4692 4693
                 bytes_to_mb(_total_remset_bytes),
                 bytes_to_mb(_total_strong_code_roots_bytes));
4694 4695
  _out->cr();
}