g1CollectedHeap.hpp 76.3 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

#include "gc_implementation/g1/concurrentMark.hpp"
29
#include "gc_implementation/g1/g1AllocRegion.hpp"
30
#include "gc_implementation/g1/g1HRPrinter.hpp"
31
#include "gc_implementation/g1/g1RemSet.hpp"
32
#include "gc_implementation/g1/g1MonitoringSupport.hpp"
33
#include "gc_implementation/g1/heapRegionSeq.hpp"
34
#include "gc_implementation/g1/heapRegionSets.hpp"
35
#include "gc_implementation/shared/hSpaceCounters.hpp"
36
#include "gc_implementation/shared/parGCAllocBuffer.hpp"
37 38 39 40
#include "memory/barrierSet.hpp"
#include "memory/memRegion.hpp"
#include "memory/sharedHeap.hpp"

41 42 43 44 45 46
// A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
// It uses the "Garbage First" heap organization and algorithm, which
// may combine concurrent marking with parallel, incremental compaction of
// heap subsets that will yield large amounts of garbage.

class HeapRegion;
T
tonyp 已提交
47
class HRRSCleanupTask;
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
class PermanentGenerationSpec;
class GenerationSpec;
class OopsInHeapRegionClosure;
class G1ScanHeapEvacClosure;
class ObjectClosure;
class SpaceClosure;
class CompactibleSpaceClosure;
class Space;
class G1CollectorPolicy;
class GenRemSet;
class G1RemSet;
class HeapRegionRemSetIterator;
class ConcurrentMark;
class ConcurrentMarkThread;
class ConcurrentG1Refine;
63
class GenerationCounters;
64

Z
zgu 已提交
65 66
typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
67

68 69 70
typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )

71 72 73 74 75 76
enum GCAllocPurpose {
  GCAllocForTenured,
  GCAllocForSurvived,
  GCAllocPurposeCount
};

Z
zgu 已提交
77
class YoungList : public CHeapObj<mtGC> {
78 79 80 81 82
private:
  G1CollectedHeap* _g1h;

  HeapRegion* _head;

83 84
  HeapRegion* _survivor_head;
  HeapRegion* _survivor_tail;
85 86 87

  HeapRegion* _curr;

88 89
  uint        _length;
  uint        _survivor_length;
90

91 92 93 94
  size_t      _last_sampled_rs_lengths;
  size_t      _sampled_rs_lengths;

  void         empty_list(HeapRegion* list);
95 96 97 98

public:
  YoungList(G1CollectedHeap* g1h);

99 100 101 102 103
  void         push_region(HeapRegion* hr);
  void         add_survivor_region(HeapRegion* hr);

  void         empty_list();
  bool         is_empty() { return _length == 0; }
104 105
  uint         length() { return _length; }
  uint         survivor_length() { return _survivor_length; }
106

107 108 109 110 111 112 113
  // Currently we do not keep track of the used byte sum for the
  // young list and the survivors and it'd be quite a lot of work to
  // do so. When we'll eventually replace the young list with
  // instances of HeapRegionLinkedList we'll get that for free. So,
  // we'll report the more accurate information then.
  size_t       eden_used_bytes() {
    assert(length() >= survivor_length(), "invariant");
114
    return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
115 116
  }
  size_t       survivor_used_bytes() {
117
    return (size_t) survivor_length() * HeapRegion::GrainBytes;
118 119
  }

120 121 122 123 124 125 126 127 128 129 130
  void rs_length_sampling_init();
  bool rs_length_sampling_more();
  void rs_length_sampling_next();

  void reset_sampled_info() {
    _last_sampled_rs_lengths =   0;
  }
  size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }

  // for development purposes
  void reset_auxilary_lists();
131 132 133 134 135 136 137 138
  void clear() { _head = NULL; _length = 0; }

  void clear_survivors() {
    _survivor_head    = NULL;
    _survivor_tail    = NULL;
    _survivor_length  = 0;
  }

139 140
  HeapRegion* first_region() { return _head; }
  HeapRegion* first_survivor_region() { return _survivor_head; }
141
  HeapRegion* last_survivor_region() { return _survivor_tail; }
142 143 144

  // debugging
  bool          check_list_well_formed();
145
  bool          check_list_empty(bool check_sample = true);
146 147 148
  void          print();
};

149 150 151 152 153 154 155 156 157
class MutatorAllocRegion : public G1AllocRegion {
protected:
  virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
  virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
public:
  MutatorAllocRegion()
    : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
};

158 159 160 161 162 163 164 165 166 167 168 169 170
// The G1 STW is alive closure.
// An instance is embedded into the G1CH and used as the
// (optional) _is_alive_non_header closure in the STW
// reference processor. It is also extensively used during
// refence processing during STW evacuation pauses.
class G1STWIsAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_object(oop p) { assert(false, "Do not call."); }
  bool do_object_b(oop p);
};

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
class SurvivorGCAllocRegion : public G1AllocRegion {
protected:
  virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
  virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
public:
  SurvivorGCAllocRegion()
  : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
};

class OldGCAllocRegion : public G1AllocRegion {
protected:
  virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
  virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
public:
  OldGCAllocRegion()
  : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
};

189
class RefineCardTableEntryClosure;
190

191 192 193 194 195 196
class G1CollectedHeap : public SharedHeap {
  friend class VM_G1CollectForAllocation;
  friend class VM_GenCollectForPermanentAllocation;
  friend class VM_G1CollectFull;
  friend class VM_G1IncCollectionPause;
  friend class VMStructs;
197
  friend class MutatorAllocRegion;
198 199
  friend class SurvivorGCAllocRegion;
  friend class OldGCAllocRegion;
200 201

  // Closures used in implementation.
B
brutisso 已提交
202 203
  template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  friend class G1ParCopyClosure;
204 205 206 207 208 209 210 211 212 213
  friend class G1IsAliveClosure;
  friend class G1EvacuateFollowersClosure;
  friend class G1ParScanThreadState;
  friend class G1ParScanClosureSuper;
  friend class G1ParEvacuateFollowersClosure;
  friend class G1ParTask;
  friend class G1FreeGarbageRegionClosure;
  friend class RefineCardTableEntryClosure;
  friend class G1PrepareCompactClosure;
  friend class RegionSorter;
214
  friend class RegionResetter;
215 216
  friend class CountRCClosure;
  friend class EvacPopObjClosure;
217
  friend class G1ParCleanupCTTask;
218 219 220 221 222 223 224 225

  // Other related classes.
  friend class G1MarkSweep;

private:
  // The one and only G1CollectedHeap, so static functions can find it.
  static G1CollectedHeap* _g1h;

226 227
  static size_t _humongous_object_threshold_in_words;

228 229 230 231 232 233 234
  // Storage for the G1 heap (excludes the permanent generation).
  VirtualSpace _g1_storage;
  MemRegion    _g1_reserved;

  // The part of _g1_storage that is currently committed.
  MemRegion _g1_committed;

235 236 237 238 239 240 241 242
  // The master free list. It will satisfy all new region allocations.
  MasterFreeRegionList      _free_list;

  // The secondary free list which contains regions that have been
  // freed up during the cleanup process. This will be appended to the
  // master free list when appropriate.
  SecondaryFreeRegionList   _secondary_free_list;

T
tonyp 已提交
243 244 245
  // It keeps track of the old regions.
  MasterOldRegionSet        _old_set;

246 247
  // It keeps track of the humongous regions.
  MasterHumongousRegionSet  _humongous_set;
248 249

  // The number of regions we could create by expansion.
250
  uint _expansion_regions;
251 252 253 254

  // The block offset table for the G1 heap.
  G1BlockOffsetSharedArray* _bot_shared;

T
tonyp 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
  // Tears down the region sets / lists so that they are empty and the
  // regions on the heap do not belong to a region set / list. The
  // only exception is the humongous set which we leave unaltered. If
  // free_list_only is true, it will only tear down the master free
  // list. It is called before a Full GC (free_list_only == false) or
  // before heap shrinking (free_list_only == true).
  void tear_down_region_sets(bool free_list_only);

  // Rebuilds the region sets / lists so that they are repopulated to
  // reflect the contents of the heap. The only exception is the
  // humongous set which was not torn down in the first place. If
  // free_list_only is true, it will only rebuild the master free
  // list. It is called after a Full GC (free_list_only == false) or
  // after heap shrinking (free_list_only == true).
  void rebuild_region_sets(bool free_list_only);
270 271

  // The sequence of all heap regions in the heap.
272
  HeapRegionSeq _hrs;
273

274 275 276
  // Alloc region used to satisfy mutator allocation requests.
  MutatorAllocRegion _mutator_alloc_region;

277 278 279 280
  // Alloc region used to satisfy allocation requests by the GC for
  // survivor objects.
  SurvivorGCAllocRegion _survivor_gc_alloc_region;

281 282 283
  // PLAB sizing policy for survivors.
  PLABStats _survivor_plab_stats;

284 285 286 287
  // Alloc region used to satisfy allocation requests by the GC for
  // old objects.
  OldGCAllocRegion _old_gc_alloc_region;

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
  // PLAB sizing policy for tenured objects.
  PLABStats _old_plab_stats;

  PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
    PLABStats* stats = NULL;

    switch (purpose) {
    case GCAllocForSurvived:
      stats = &_survivor_plab_stats;
      break;
    case GCAllocForTenured:
      stats = &_old_plab_stats;
      break;
    default:
      assert(false, "unrecognized GCAllocPurpose");
    }

    return stats;
  }

308 309 310 311
  // The last old region we allocated to during the last GC.
  // Typically, it is not full so we should re-use it during the next GC.
  HeapRegion* _retained_old_gc_alloc_region;

312 313 314 315 316 317 318 319
  // It specifies whether we should attempt to expand the heap after a
  // region allocation failure. If heap expansion fails we set this to
  // false so that we don't re-attempt the heap expansion (it's likely
  // that subsequent expansion attempts will also fail if one fails).
  // Currently, it is only consulted during GC and it's reset at the
  // start of each GC.
  bool _expand_heap_after_alloc_failure;

320 321 322 323 324
  // It resets the mutator alloc region before new allocations can take place.
  void init_mutator_alloc_region();

  // It releases the mutator alloc region.
  void release_mutator_alloc_region();
325

326 327
  // It initializes the GC alloc regions at the start of a GC.
  void init_gc_alloc_regions();
328

329 330 331 332 333 334
  // It releases the GC alloc regions at the end of a GC.
  void release_gc_alloc_regions();

  // It does any cleanup that needs to be done on the GC alloc regions
  // before a Full GC.
  void abandon_gc_alloc_regions();
335

336 337 338
  // Helper for monitoring and management support.
  G1MonitoringSupport* _g1mm;

339
  // Determines PLAB size for a particular allocation purpose.
340
  size_t desired_plab_sz(GCAllocPurpose purpose);
341

342 343 344 345
  // Outside of GC pauses, the number of bytes used in all regions other
  // than the current allocation region.
  size_t _summary_bytes_used;

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
  // This is used for a quick test on whether a reference points into
  // the collection set or not. Basically, we have an array, with one
  // byte per region, and that byte denotes whether the corresponding
  // region is in the collection set or not. The entry corresponding
  // the bottom of the heap, i.e., region 0, is pointed to by
  // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
  // biased so that it actually points to address 0 of the address
  // space, to make the test as fast as possible (we can simply shift
  // the address to address into it, instead of having to subtract the
  // bottom of the heap from the address before shifting it; basically
  // it works in the same way the card table works).
  bool* _in_cset_fast_test;

  // The allocated array used for the fast test on whether a reference
  // points into the collection set or not. This field is also used to
  // free the array.
  bool* _in_cset_fast_test_base;

  // The length of the _in_cset_fast_test_base array.
365
  uint _in_cset_fast_test_length;
366

367
  volatile unsigned _gc_time_stamp;
368 369 370

  size_t* _surviving_young_words;

371 372
  G1HRPrinter _hr_printer;

373 374 375 376
  void setup_surviving_young_words();
  void update_surviving_young_words(size_t* surv_young_words);
  void cleanup_surviving_young_words();

377 378 379 380 381
  // It decides whether an explicit GC should start a concurrent cycle
  // instead of doing a STW GC. Currently, a concurrent cycle is
  // explicitly started if:
  // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
  // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
382
  // (c) cause == _g1_humongous_allocation
383 384
  bool should_do_concurrent_full_gc(GCCause::Cause cause);

385 386 387 388 389 390 391
  // Keeps track of how many "old marking cycles" (i.e., Full GCs or
  // concurrent cycles) we have started.
  volatile unsigned int _old_marking_cycles_started;

  // Keeps track of how many "old marking cycles" (i.e., Full GCs or
  // concurrent cycles) we have completed.
  volatile unsigned int _old_marking_cycles_completed;
392

393 394 395 396 397 398 399 400
  // This is a non-product method that is helpful for testing. It is
  // called at the end of a GC and artificially expands the heap by
  // allocating a number of dead regions. This way we can induce very
  // frequent marking cycles and stress the cleanup / concurrent
  // cleanup code more (as all the regions that will be allocated by
  // this method will be found dead by the marking cycle).
  void allocate_dummy_regions() PRODUCT_RETURN;

401 402 403 404 405 406 407
  // Clear RSets after a compaction. It also resets the GC time stamps.
  void clear_rsets_post_compaction();

  // If the HR printer is active, dump the state of the regions in the
  // heap after a compaction.
  void print_hrs_post_compaction();

408 409 410 411
  double verify(bool guard, const char* msg);
  void verify_before_gc();
  void verify_after_gc();

412 413 414
  // These are macros so that, if the assert fires, we get the correct
  // line number, file, etc.

T
tonyp 已提交
415
#define heap_locking_asserts_err_msg(_extra_message_)                         \
416
  err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
T
tonyp 已提交
417
          (_extra_message_),                                                  \
418 419 420
          BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
          BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
          BOOL_TO_STR(Thread::current()->is_VM_thread()))
421 422 423 424 425 426 427

#define assert_heap_locked()                                                  \
  do {                                                                        \
    assert(Heap_lock->owned_by_self(),                                        \
           heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
  } while (0)

T
tonyp 已提交
428
#define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
429 430
  do {                                                                        \
    assert(Heap_lock->owned_by_self() ||                                      \
431
           (SafepointSynchronize::is_at_safepoint() &&                        \
T
tonyp 已提交
432
             ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
           heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
                                        "should be at a safepoint"));         \
  } while (0)

#define assert_heap_locked_and_not_at_safepoint()                             \
  do {                                                                        \
    assert(Heap_lock->owned_by_self() &&                                      \
                                    !SafepointSynchronize::is_at_safepoint(), \
          heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
                                       "should not be at a safepoint"));      \
  } while (0)

#define assert_heap_not_locked()                                              \
  do {                                                                        \
    assert(!Heap_lock->owned_by_self(),                                       \
        heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
  } while (0)

#define assert_heap_not_locked_and_not_at_safepoint()                         \
  do {                                                                        \
    assert(!Heap_lock->owned_by_self() &&                                     \
                                    !SafepointSynchronize::is_at_safepoint(), \
      heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
                                   "should not be at a safepoint"));          \
  } while (0)

T
tonyp 已提交
459
#define assert_at_safepoint(_should_be_vm_thread_)                            \
460
  do {                                                                        \
461
    assert(SafepointSynchronize::is_at_safepoint() &&                         \
T
tonyp 已提交
462
              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
463 464 465 466 467 468 469 470 471
           heap_locking_asserts_err_msg("should be at a safepoint"));         \
  } while (0)

#define assert_not_at_safepoint()                                             \
  do {                                                                        \
    assert(!SafepointSynchronize::is_at_safepoint(),                          \
           heap_locking_asserts_err_msg("should not be at a safepoint"));     \
  } while (0)

472 473
protected:

474
  // The young region list.
475 476 477 478 479
  YoungList*  _young_list;

  // The current policy object for the collector.
  G1CollectorPolicy* _g1_policy;

480
  // This is the second level of trying to allocate a new region. If
481 482 483 484
  // new_region() didn't find a region on the free_list, this call will
  // check whether there's anything available on the
  // secondary_free_list and/or wait for more regions to appear on
  // that list, if _free_regions_coming is set.
T
tonyp 已提交
485 486 487 488 489 490
  HeapRegion* new_region_try_secondary_free_list();

  // Try to allocate a single non-humongous HeapRegion sufficient for
  // an allocation of the given word_size. If do_expand is true,
  // attempt to expand the heap if necessary to satisfy the allocation
  // request.
491
  HeapRegion* new_region(size_t word_size, bool do_expand);
492

T
tonyp 已提交
493 494 495
  // Attempt to satisfy a humongous allocation request of the given
  // size by finding a contiguous set of free regions of num_regions
  // length and remove them from the master free list. Return the
496 497
  // index of the first region or G1_NULL_HRS_INDEX if the search
  // was unsuccessful.
498 499
  uint humongous_obj_allocate_find_first(uint num_regions,
                                         size_t word_size);
500

T
tonyp 已提交
501 502 503
  // Initialize a contiguous set of free regions of length num_regions
  // and starting at index first so that they appear as a single
  // humongous region.
504 505
  HeapWord* humongous_obj_allocate_initialize_regions(uint first,
                                                      uint num_regions,
T
tonyp 已提交
506 507 508 509
                                                      size_t word_size);

  // Attempt to allocate a humongous object of the given size. Return
  // NULL if unsuccessful.
510
  HeapWord* humongous_obj_allocate(size_t word_size);
511 512 513 514 515 516 517 518 519 520 521 522 523

  // The following two methods, allocate_new_tlab() and
  // mem_allocate(), are the two main entry points from the runtime
  // into the G1's allocation routines. They have the following
  // assumptions:
  //
  // * They should both be called outside safepoints.
  //
  // * They should both be called without holding the Heap_lock.
  //
  // * All allocation requests for new TLABs should go to
  //   allocate_new_tlab().
  //
524
  // * All non-TLAB allocation requests should go to mem_allocate().
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
  //
  // * If either call cannot satisfy the allocation request using the
  //   current allocating region, they will try to get a new one. If
  //   this fails, they will attempt to do an evacuation pause and
  //   retry the allocation.
  //
  // * If all allocation attempts fail, even after trying to schedule
  //   an evacuation pause, allocate_new_tlab() will return NULL,
  //   whereas mem_allocate() will attempt a heap expansion and/or
  //   schedule a Full GC.
  //
  // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
  //   should never be called with word_size being humongous. All
  //   humongous allocation requests should go to mem_allocate() which
  //   will satisfy them with a special path.

  virtual HeapWord* allocate_new_tlab(size_t word_size);

  virtual HeapWord* mem_allocate(size_t word_size,
                                 bool*  gc_overhead_limit_was_exceeded);

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
  // The following three methods take a gc_count_before_ret
  // parameter which is used to return the GC count if the method
  // returns NULL. Given that we are required to read the GC count
  // while holding the Heap_lock, and these paths will take the
  // Heap_lock at some point, it's easier to get them to read the GC
  // count while holding the Heap_lock before they return NULL instead
  // of the caller (namely: mem_allocate()) having to also take the
  // Heap_lock just to read the GC count.

  // First-level mutator allocation attempt: try to allocate out of
  // the mutator alloc region without taking the Heap_lock. This
  // should only be used for non-humongous allocations.
  inline HeapWord* attempt_allocation(size_t word_size,
                                      unsigned int* gc_count_before_ret);

  // Second-level mutator allocation attempt: take the Heap_lock and
  // retry the allocation attempt, potentially scheduling a GC
  // pause. This should only be used for non-humongous allocations.
  HeapWord* attempt_allocation_slow(size_t word_size,
                                    unsigned int* gc_count_before_ret);

  // Takes the Heap_lock and attempts a humongous allocation. It can
  // potentially schedule a GC pause.
569
  HeapWord* attempt_allocation_humongous(size_t word_size,
570
                                         unsigned int* gc_count_before_ret);
571

572 573 574 575
  // Allocation attempt that should be called during safepoints (e.g.,
  // at the end of a successful GC). expect_null_mutator_alloc_region
  // specifies whether the mutator alloc region is expected to be NULL
  // or not.
576
  HeapWord* attempt_allocation_at_safepoint(size_t word_size,
577
                                       bool expect_null_mutator_alloc_region);
578 579 580 581 582 583

  // It dirties the cards that cover the block so that so that the post
  // write barrier never queues anything when updating objects on this
  // block. It is assumed (and in fact we assert) that the block
  // belongs to a young region.
  inline void dirty_young_block(HeapWord* start, size_t word_size);
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599

  // Allocate blocks during garbage collection. Will ensure an
  // allocation region, either by picking one or expanding the
  // heap, and then allocate a block of the given size. The block
  // may not be a humongous - it must fit into a single heap region.
  HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);

  HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
                                    HeapRegion*    alloc_region,
                                    bool           par,
                                    size_t         word_size);

  // Ensure that no further allocations can happen in "r", bearing in mind
  // that parallel threads might be attempting allocations.
  void par_allocate_remaining_space(HeapRegion* r);

600 601
  // Allocation attempt during GC for a survivor object / PLAB.
  inline HeapWord* survivor_attempt_allocation(size_t word_size);
602

603 604
  // Allocation attempt during GC for an old object / PLAB.
  inline HeapWord* old_attempt_allocation(size_t word_size);
605

606 607 608
  // These methods are the "callbacks" from the G1AllocRegion class.

  // For mutator alloc regions.
609 610 611 612
  HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
  void retire_mutator_alloc_region(HeapRegion* alloc_region,
                                   size_t allocated_bytes);

613
  // For GC alloc regions.
614
  HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
615 616 617 618
                                  GCAllocPurpose ap);
  void retire_gc_alloc_region(HeapRegion* alloc_region,
                              size_t allocated_bytes, GCAllocPurpose ap);

619
  // - if explicit_gc is true, the GC is for a System.gc() or a heap
620 621 622
  //   inspection request and should collect the entire heap
  // - if clear_all_soft_refs is true, all soft references should be
  //   cleared during the GC
623
  // - if explicit_gc is false, word_size describes the allocation that
624 625 626 627
  //   the GC should attempt (at least) to satisfy
  // - it returns false if it is unable to do the collection due to the
  //   GC locker being active, true otherwise
  bool do_collection(bool explicit_gc,
628
                     bool clear_all_soft_refs,
629 630 631 632 633 634 635 636 637 638 639 640 641 642
                     size_t word_size);

  // Callback from VM_G1CollectFull operation.
  // Perform a full collection.
  void do_full_collection(bool clear_all_soft_refs);

  // Resize the heap if necessary after a full collection.  If this is
  // after a collect-for allocation, "word_size" is the allocation size,
  // and will be considered part of the used portion of the heap.
  void resize_if_necessary_after_full_collection(size_t word_size);

  // Callback from VM_G1CollectForAllocation operation.
  // This function does everything necessary/possible to satisfy a
  // failed allocation request (including collection, expansion, etc.)
643
  HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
644 645 646 647 648

  // Attempting to expand the heap sufficiently
  // to support an allocation of the given "word_size".  If
  // successful, perform the allocation and return the address of the
  // allocated block, or else "NULL".
649
  HeapWord* expand_and_allocate(size_t word_size);
650

651 652 653 654 655 656 657 658
  // Process any reference objects discovered during
  // an incremental evacuation pause.
  void process_discovered_references();

  // Enqueue any remaining discovered references
  // after processing.
  void enqueue_discovered_references();

659
public:
660

661 662 663 664
  G1MonitoringSupport* g1mm() {
    assert(_g1mm != NULL, "should have been initialized");
    return _g1mm;
  }
665

666
  // Expand the garbage-first heap by at least the given size (in bytes!).
667 668
  // Returns true if the heap was expanded by the requested amount;
  // false otherwise.
669
  // (Rounds up to a HeapRegion boundary.)
670
  bool expand(size_t expand_bytes);
671 672 673 674 675

  // Do anything common to GC's.
  virtual void gc_prologue(bool full);
  virtual void gc_epilogue(bool full);

676 677 678 679 680
  // We register a region with the fast "in collection set" test. We
  // simply set to true the array slot corresponding to this region.
  void register_region_with_in_cset_fast_test(HeapRegion* r) {
    assert(_in_cset_fast_test_base != NULL, "sanity");
    assert(r->in_collection_set(), "invariant");
681
    uint index = r->hrs_index();
682
    assert(index < _in_cset_fast_test_length, "invariant");
683 684 685 686 687 688 689 690 691 692 693 694
    assert(!_in_cset_fast_test_base[index], "invariant");
    _in_cset_fast_test_base[index] = true;
  }

  // This is a fast test on whether a reference points into the
  // collection set or not. It does not assume that the reference
  // points into the heap; if it doesn't, it will return false.
  bool in_cset_fast_test(oop obj) {
    assert(_in_cset_fast_test != NULL, "sanity");
    if (_g1_committed.contains((HeapWord*) obj)) {
      // no need to subtract the bottom of the heap from obj,
      // _in_cset_fast_test is biased
695
      uintx index = (uintx) obj >> HeapRegion::LogOfHRGrainBytes;
696 697 698 699 700 701 702 703 704 705 706
      bool ret = _in_cset_fast_test[index];
      // let's make sure the result is consistent with what the slower
      // test returns
      assert( ret || !obj_in_cs(obj), "sanity");
      assert(!ret ||  obj_in_cs(obj), "sanity");
      return ret;
    } else {
      return false;
    }
  }

707 708 709
  void clear_cset_fast_test() {
    assert(_in_cset_fast_test_base != NULL, "sanity");
    memset(_in_cset_fast_test_base, false,
710
           (size_t) _in_cset_fast_test_length * sizeof(bool));
711 712
  }

713 714 715 716
  // This is called at the start of either a concurrent cycle or a Full
  // GC to update the number of old marking cycles started.
  void increment_old_marking_cycles_started();

717
  // This is called at the end of either a concurrent cycle or a Full
718
  // GC to update the number of old marking cycles completed. Those two
719 720 721
  // can happen in a nested fashion, i.e., we start a concurrent
  // cycle, a Full GC happens half-way through it which ends first,
  // and then the cycle notices that a Full GC happened and ends
722 723 724 725 726
  // too. The concurrent parameter is a boolean to help us do a bit
  // tighter consistency checking in the method. If concurrent is
  // false, the caller is the inner caller in the nesting (i.e., the
  // Full GC). If concurrent is true, the caller is the outer caller
  // in this nesting (i.e., the concurrent cycle). Further nesting is
727
  // not currently supported. The end of this call also notifies
728 729
  // the FullGCCount_lock in case a Java thread is waiting for a full
  // GC to happen (e.g., it called System.gc() with
730
  // +ExplicitGCInvokesConcurrent).
731
  void increment_old_marking_cycles_completed(bool concurrent);
732

733 734
  unsigned int old_marking_cycles_completed() {
    return _old_marking_cycles_completed;
735 736
  }

737 738
  G1HRPrinter* hr_printer() { return &_hr_printer; }

739 740 741 742 743 744 745
protected:

  // Shrink the garbage-first heap by at most the given size (in bytes!).
  // (Rounds down to a HeapRegion boundary.)
  virtual void shrink(size_t expand_bytes);
  void shrink_helper(size_t expand_bytes);

746 747 748 749 750 751
  #if TASKQUEUE_STATS
  static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
  void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
  void reset_taskqueue_stats();
  #endif // TASKQUEUE_STATS

752 753 754 755 756 757 758 759 760 761 762 763 764
  // Schedule the VM operation that will do an evacuation pause to
  // satisfy an allocation request of word_size. *succeeded will
  // return whether the VM operation was successful (it did do an
  // evacuation pause) or not (another thread beat us to it or the GC
  // locker was active). Given that we should not be holding the
  // Heap_lock when we enter this method, we will pass the
  // gc_count_before (i.e., total_collections()) as a parameter since
  // it has to be read while holding the Heap_lock. Currently, both
  // methods that call do_collection_pause() release the Heap_lock
  // before the call, so it's easy to read gc_count_before just before.
  HeapWord* do_collection_pause(size_t       word_size,
                                unsigned int gc_count_before,
                                bool*        succeeded);
765 766

  // The guts of the incremental collection pause, executed by the vm
767 768 769
  // thread. It returns false if it is unable to do the collection due
  // to the GC locker being active, true otherwise
  bool do_collection_pause_at_safepoint(double target_pause_time_ms);
770 771

  // Actually do the work of evacuating the collection set.
772
  void evacuate_collection_set();
773 774 775 776 777 778

  // The g1 remembered set of the heap.
  G1RemSet* _g1_rem_set;
  // And it's mod ref barrier set, used to track updates for the above.
  ModRefBarrierSet* _mr_bs;

779 780 781 782
  // A set of cards that cover the objects for which the Rsets should be updated
  // concurrently after the collection.
  DirtyCardQueueSet _dirty_card_queue_set;

783 784 785 786 787 788 789 790 791
  // The Heap Region Rem Set Iterator.
  HeapRegionRemSetIterator** _rem_set_iterator;

  // The closure used to refine a single card.
  RefineCardTableEntryClosure* _refine_cte_cl;

  // A function to check the consistency of dirty card logs.
  void check_ct_logs_at_safepoint();

J
johnc 已提交
792 793 794 795 796 797
  // A DirtyCardQueueSet that is used to hold cards that contain
  // references into the current collection set. This is used to
  // update the remembered sets of the regions in the collection
  // set in the event of an evacuation failure.
  DirtyCardQueueSet _into_cset_dirty_card_queue_set;

798 799 800 801
  // After a collection pause, make the regions in the CS into free
  // regions.
  void free_collection_set(HeapRegion* cs_head);

802 803 804 805
  // Abandon the current collection set without recording policy
  // statistics or updating free lists.
  void abandon_collection_set(HeapRegion* cs_head);

806 807 808 809 810 811 812 813 814
  // Applies "scan_non_heap_roots" to roots outside the heap,
  // "scan_rs" to roots inside the heap (having done "set_region" to
  // indicate the region in which the root resides), and does "scan_perm"
  // (setting the generation to the perm generation.)  If "scan_rs" is
  // NULL, then this step is skipped.  The "worker_i"
  // param is for use with parallel roots processing, and should be
  // the "i" of the calling parallel worker thread's work(i) function.
  // In the sequential case this param will be ignored.
  void g1_process_strong_roots(bool collecting_perm_gen,
815
                               ScanningOption so,
816 817 818 819 820 821 822 823 824 825 826
                               OopClosure* scan_non_heap_roots,
                               OopsInHeapRegionClosure* scan_rs,
                               OopsInGenClosure* scan_perm,
                               int worker_i);

  // Apply "blk" to all the weak roots of the system.  These include
  // JNI weak roots, the code cache, system dictionary, symbol table,
  // string table, and referents of reachable weak refs.
  void g1_process_weak_roots(OopClosure* root_closure,
                             OopClosure* non_root_closure);

T
tonyp 已提交
827
  // Frees a non-humongous region by initializing its contents and
828 829 830 831 832 833 834 835 836 837
  // adding it to the free list that's passed as a parameter (this is
  // usually a local list which will be appended to the master free
  // list later). The used bytes of freed regions are accumulated in
  // pre_used. If par is true, the region's RSet will not be freed
  // up. The assumption is that this will be done later.
  void free_region(HeapRegion* hr,
                   size_t* pre_used,
                   FreeRegionList* free_list,
                   bool par);

T
tonyp 已提交
838 839 840 841 842 843 844
  // Frees a humongous region by collapsing it into individual regions
  // and calling free_region() for each of them. The freed regions
  // will be added to the free list that's passed as a parameter (this
  // is usually a local list which will be appended to the master free
  // list later). The used bytes of freed regions are accumulated in
  // pre_used. If par is true, the region's RSet will not be freed
  // up. The assumption is that this will be done later.
845 846 847 848 849
  void free_humongous_region(HeapRegion* hr,
                             size_t* pre_used,
                             FreeRegionList* free_list,
                             HumongousRegionSet* humongous_proxy_set,
                             bool par);
850

851 852 853 854 855
  // Notifies all the necessary spaces that the committed space has
  // been updated (either expanded or shrunk). It should be called
  // after _g1_storage is updated.
  void update_committed_space(HeapWord* old_end, HeapWord* new_end);

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
  // The concurrent marker (and the thread it runs in.)
  ConcurrentMark* _cm;
  ConcurrentMarkThread* _cmThread;
  bool _mark_in_progress;

  // The concurrent refiner.
  ConcurrentG1Refine* _cg1r;

  // The parallel task queues
  RefToScanQueueSet *_task_queues;

  // True iff a evacuation has failed in the current collection.
  bool _evacuation_failed;

  // Set the attribute indicating whether evacuation has failed in the
  // current collection.
  void set_evacuation_failed(bool b) { _evacuation_failed = b; }

  // Failed evacuations cause some logical from-space objects to have
  // forwarding pointers to themselves.  Reset them.
  void remove_self_forwarding_pointers();

  // When one is non-null, so is the other.  Together, they each pair is
  // an object with a preserved mark, and its mark value.
  GrowableArray<oop>*     _objs_with_preserved_marks;
  GrowableArray<markOop>* _preserved_marks_of_objs;

  // Preserve the mark of "obj", if necessary, in preparation for its mark
  // word being overwritten with a self-forwarding-pointer.
  void preserve_mark_if_necessary(oop obj, markOop m);

  // The stack of evac-failure objects left to be scanned.
  GrowableArray<oop>*    _evac_failure_scan_stack;
  // The closure to apply to evac-failure objects.

  OopsInHeapRegionClosure* _evac_failure_closure;
  // Set the field above.
  void
  set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
    _evac_failure_closure = evac_failure_closure;
  }

  // Push "obj" on the scan stack.
  void push_on_evac_failure_scan_stack(oop obj);
  // Process scan stack entries until the stack is empty.
  void drain_evac_failure_scan_stack();
  // True iff an invocation of "drain_scan_stack" is in progress; to
  // prevent unnecessary recursion.
  bool _drain_in_progress;

  // Do any necessary initialization for evacuation-failure handling.
  // "cl" is the closure that will be used to process evac-failure
  // objects.
  void init_for_evac_failure(OopsInHeapRegionClosure* cl);
  // Do any necessary cleanup for evacuation-failure handling data
  // structures.
  void finalize_for_evac_failure();

  // An attempt to evacuate "obj" has failed; take necessary steps.
915
  oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
916 917
  void handle_evacuation_failure_common(oop obj, markOop m);

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
#ifndef PRODUCT
  // Support for forcing evacuation failures. Analogous to
  // PromotionFailureALot for the other collectors.

  // Records whether G1EvacuationFailureALot should be in effect
  // for the current GC
  bool _evacuation_failure_alot_for_current_gc;

  // Used to record the GC number for interval checking when
  // determining whether G1EvaucationFailureALot is in effect
  // for the current GC.
  size_t _evacuation_failure_alot_gc_number;

  // Count of the number of evacuations between failures.
  volatile size_t _evacuation_failure_alot_count;

  // Set whether G1EvacuationFailureALot should be in effect
  // for the current GC (based upon the type of GC and which
  // command line flags are set);
  inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
                                                  bool during_initial_mark,
                                                  bool during_marking);

  inline void set_evacuation_failure_alot_for_current_gc();

  // Return true if it's time to cause an evacuation failure.
  inline bool evacuation_should_fail();

  // Reset the G1EvacuationFailureALot counters.  Should be called at
  // the end of an evacuation pause in which an evacuation failure ocurred.
  inline void reset_evacuation_should_fail();
#endif // !PRODUCT

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
  // ("Weak") Reference processing support.
  //
  // G1 has 2 instances of the referece processor class. One
  // (_ref_processor_cm) handles reference object discovery
  // and subsequent processing during concurrent marking cycles.
  //
  // The other (_ref_processor_stw) handles reference object
  // discovery and processing during full GCs and incremental
  // evacuation pauses.
  //
  // During an incremental pause, reference discovery will be
  // temporarily disabled for _ref_processor_cm and will be
  // enabled for _ref_processor_stw. At the end of the evacuation
  // pause references discovered by _ref_processor_stw will be
  // processed and discovery will be disabled. The previous
  // setting for reference object discovery for _ref_processor_cm
  // will be re-instated.
  //
  // At the start of marking:
  //  * Discovery by the CM ref processor is verified to be inactive
  //    and it's discovered lists are empty.
  //  * Discovery by the CM ref processor is then enabled.
  //
  // At the end of marking:
  //  * Any references on the CM ref processor's discovered
  //    lists are processed (possibly MT).
  //
  // At the start of full GC we:
  //  * Disable discovery by the CM ref processor and
  //    empty CM ref processor's discovered lists
  //    (without processing any entries).
  //  * Verify that the STW ref processor is inactive and it's
  //    discovered lists are empty.
  //  * Temporarily set STW ref processor discovery as single threaded.
  //  * Temporarily clear the STW ref processor's _is_alive_non_header
  //    field.
  //  * Finally enable discovery by the STW ref processor.
  //
  // The STW ref processor is used to record any discovered
  // references during the full GC.
  //
  // At the end of a full GC we:
  //  * Enqueue any reference objects discovered by the STW ref processor
  //    that have non-live referents. This has the side-effect of
  //    making the STW ref processor inactive by disabling discovery.
  //  * Verify that the CM ref processor is still inactive
  //    and no references have been placed on it's discovered
  //    lists (also checked as a precondition during initial marking).

  // The (stw) reference processor...
  ReferenceProcessor* _ref_processor_stw;

  // During reference object discovery, the _is_alive_non_header
  // closure (if non-null) is applied to the referent object to
  // determine whether the referent is live. If so then the
  // reference object does not need to be 'discovered' and can
  // be treated as a regular oop. This has the benefit of reducing
  // the number of 'discovered' reference objects that need to
  // be processed.
  //
  // Instance of the is_alive closure for embedding into the
  // STW reference processor as the _is_alive_non_header field.
  // Supplying a value for the _is_alive_non_header field is
  // optional but doing so prevents unnecessary additions to
  // the discovered lists during reference discovery.
  G1STWIsAliveClosure _is_alive_closure_stw;

  // The (concurrent marking) reference processor...
  ReferenceProcessor* _ref_processor_cm;
1020

1021 1022 1023 1024 1025 1026 1027
  // Instance of the concurrent mark is_alive closure for embedding
  // into the Concurrent Marking reference processor as the
  // _is_alive_non_header field. Supplying a value for the
  // _is_alive_non_header field is optional but doing so prevents
  // unnecessary additions to the discovered lists during reference
  // discovery.
  G1CMIsAliveClosure _is_alive_closure_cm;
1028

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
  // Cache used by G1CollectedHeap::start_cset_region_for_worker().
  HeapRegion** _worker_cset_start_region;

  // Time stamp to validate the regions recorded in the cache
  // used by G1CollectedHeap::start_cset_region_for_worker().
  // The heap region entry for a given worker is valid iff
  // the associated time stamp value matches the current value
  // of G1CollectedHeap::_gc_time_stamp.
  unsigned int* _worker_cset_start_region_time_stamp;

1039
  enum G1H_process_strong_roots_tasks {
1040
    G1H_PS_filter_satb_buffers,
1041 1042 1043 1044 1045 1046 1047
    G1H_PS_refProcessor_oops_do,
    // Leave this one last.
    G1H_PS_NumElements
  };

  SubTasksDone* _process_strong_tasks;

1048
  volatile bool _free_regions_coming;
1049 1050

public:
1051 1052 1053

  SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }

1054 1055
  void set_refine_cte_cl_concurrency(bool concurrent);

1056
  RefToScanQueue *task_queue(int i) const;
1057

1058 1059 1060
  // A set of cards where updates happened during the GC
  DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }

J
johnc 已提交
1061 1062 1063 1064 1065 1066 1067
  // A DirtyCardQueueSet that is used to hold cards that contain
  // references into the current collection set. This is used to
  // update the remembered sets of the regions in the collection
  // set in the event of an evacuation failure.
  DirtyCardQueueSet& into_cset_dirty_card_queue_set()
        { return _into_cset_dirty_card_queue_set; }

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
  // Create a G1CollectedHeap with the specified policy.
  // Must call the initialize method afterwards.
  // May not return if something goes wrong.
  G1CollectedHeap(G1CollectorPolicy* policy);

  // Initialize the G1CollectedHeap to have the initial and
  // maximum sizes, permanent generation, and remembered and barrier sets
  // specified by the policy object.
  jint initialize();

1078
  // Initialize weak reference processing.
1079
  virtual void ref_processing_init();
1080

1081
  void set_par_threads(uint t) {
1082
    SharedHeap::set_par_threads(t);
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
    // Done in SharedHeap but oddly there are
    // two _process_strong_tasks's in a G1CollectedHeap
    // so do it here too.
    _process_strong_tasks->set_n_threads(t);
  }

  // Set _n_par_threads according to a policy TBD.
  void set_par_threads();

  void set_n_termination(int t) {
1093
    _process_strong_tasks->set_n_threads(t);
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
  }

  virtual CollectedHeap::Name kind() const {
    return CollectedHeap::G1CollectedHeap;
  }

  // The current policy object for the collector.
  G1CollectorPolicy* g1_policy() const { return _g1_policy; }

  // Adaptive size policy.  No such thing for g1.
  virtual AdaptiveSizePolicy* size_policy() { return NULL; }

  // The rem set and barrier set.
  G1RemSet* g1_rem_set() const { return _g1_rem_set; }
  ModRefBarrierSet* mr_bs() const { return _mr_bs; }

  // The rem set iterator.
  HeapRegionRemSetIterator* rem_set_iterator(int i) {
    return _rem_set_iterator[i];
  }

  HeapRegionRemSetIterator* rem_set_iterator() {
    return _rem_set_iterator[0];
  }

  unsigned get_gc_time_stamp() {
    return _gc_time_stamp;
  }

  void reset_gc_time_stamp() {
    _gc_time_stamp = 0;
1125
    OrderAccess::fence();
1126 1127 1128
    // Clear the cached CSet starting regions and time stamps.
    // Their validity is dependent on the GC timestamp.
    clear_cset_start_regions();
1129 1130
  }

1131 1132
  void check_gc_time_stamps() PRODUCT_RETURN;

1133 1134 1135
  void increment_gc_time_stamp() {
    ++_gc_time_stamp;
    OrderAccess::fence();
1136 1137
  }

1138 1139 1140 1141 1142
  // Reset the given region's GC timestamp. If it's starts humongous,
  // also reset the GC timestamp of its corresponding
  // continues humongous regions too.
  void reset_gc_time_stamps(HeapRegion* hr);

J
johnc 已提交
1143 1144 1145
  void iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                  DirtyCardQueue* into_cset_dcq,
                                  bool concurrent, int worker_i);
1146 1147 1148 1149

  // The shared block offset table array.
  G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }

1150 1151 1152 1153 1154 1155 1156
  // Reference Processing accessors

  // The STW reference processor....
  ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }

  // The Concurent Marking reference processor...
  ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1157 1158 1159

  virtual size_t capacity() const;
  virtual size_t used() const;
1160 1161 1162
  // This should be called when we're not holding the heap lock. The
  // result might be a bit inaccurate.
  size_t used_unlocked() const;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
  size_t recalculate_used() const;

  // These virtual functions do the actual allocation.
  // Some heaps may offer a contiguous region for shared non-blocking
  // allocation, via inlined code (by exporting the address of the top and
  // end fields defining the extent of the contiguous allocation region.)
  // But G1CollectedHeap doesn't yet support this.

  // Return an estimate of the maximum allocation that could be performed
  // without triggering any collection or expansion activity.  In a
  // generational collector, for example, this is probably the largest
  // allocation that could be supported (without expansion) in the youngest
  // generation.  It is "unsafe" because no locks are taken; the result
  // should be treated as an approximation, not a guarantee, for use in
  // heuristic resizing decisions.
  virtual size_t unsafe_max_alloc();

  virtual bool is_maximal_no_gc() const {
    return _g1_storage.uncommitted_size() == 0;
  }

  // The total number of regions in the heap.
1185
  uint n_regions() { return _hrs.length(); }
1186

1187
  // The max number of regions in the heap.
1188
  uint max_regions() { return _hrs.max_length(); }
1189 1190

  // The number of regions that are completely free.
1191
  uint free_regions() { return _free_list.length(); }
1192 1193

  // The number of regions that are not completely free.
1194
  uint used_regions() { return n_regions() - free_regions(); }
1195 1196

  // The number of regions available for "regular" expansion.
1197
  uint expansion_regions() { return _expansion_regions; }
1198

1199 1200
  // Factory method for HeapRegion instances. It will return NULL if
  // the allocation fails.
1201
  HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
1202

1203 1204
  void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1205 1206 1207
  void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
  void verify_dirty_young_regions() PRODUCT_RETURN;

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
  // verify_region_sets() performs verification over the region
  // lists. It will be compiled in the product code to be used when
  // necessary (i.e., during heap verification).
  void verify_region_sets();

  // verify_region_sets_optional() is planted in the code for
  // list verification in non-product builds (and it can be enabled in
  // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
#if HEAP_REGION_SET_FORCE_VERIFY
  void verify_region_sets_optional() {
    verify_region_sets();
  }
#else // HEAP_REGION_SET_FORCE_VERIFY
  void verify_region_sets_optional() { }
#endif // HEAP_REGION_SET_FORCE_VERIFY

#ifdef ASSERT
T
tonyp 已提交
1225
  bool is_on_master_free_list(HeapRegion* hr) {
1226 1227 1228
    return hr->containing_set() == &_free_list;
  }

T
tonyp 已提交
1229
  bool is_in_humongous_set(HeapRegion* hr) {
1230
    return hr->containing_set() == &_humongous_set;
T
tonyp 已提交
1231
  }
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
#endif // ASSERT

  // Wrapper for the region list operations that can be called from
  // methods outside this class.

  void secondary_free_list_add_as_tail(FreeRegionList* list) {
    _secondary_free_list.add_as_tail(list);
  }

  void append_secondary_free_list() {
1242
    _free_list.add_as_head(&_secondary_free_list);
1243 1244
  }

T
tonyp 已提交
1245 1246 1247
  void append_secondary_free_list_if_not_empty_with_lock() {
    // If the secondary free list looks empty there's no reason to
    // take the lock and then try to append it.
1248 1249 1250 1251 1252 1253
    if (!_secondary_free_list.is_empty()) {
      MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
      append_secondary_free_list();
    }
  }

T
tonyp 已提交
1254 1255 1256 1257
  void old_set_remove(HeapRegion* hr) {
    _old_set.remove(hr);
  }

1258 1259 1260 1261
  size_t non_young_capacity_bytes() {
    return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
  }

1262 1263 1264 1265
  void set_free_regions_coming();
  void reset_free_regions_coming();
  bool free_regions_coming() { return _free_regions_coming; }
  void wait_while_free_regions_coming();
1266

1267 1268 1269 1270 1271 1272
  // Determine whether the given region is one that we are using as an
  // old GC alloc region.
  bool is_old_gc_alloc_region(HeapRegion* hr) {
    return hr == _retained_old_gc_alloc_region;
  }

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
  // Perform a collection of the heap; intended for use in implementing
  // "System.gc".  This probably implies as full a collection as the
  // "CollectedHeap" supports.
  virtual void collect(GCCause::Cause cause);

  // The same as above but assume that the caller holds the Heap_lock.
  void collect_locked(GCCause::Cause cause);

  // This interface assumes that it's being called by the
  // vm thread. It collects the heap assuming that the
  // heap lock is already held and that we are executing in
  // the context of the vm thread.
  virtual void collect_as_vm_thread(GCCause::Cause cause);

  // True iff a evacuation has failed in the most-recent collection.
  bool evacuation_failed() { return _evacuation_failed; }

1290 1291 1292 1293
  // It will free a region if it has allocated objects in it that are
  // all dead. It calls either free_region() or
  // free_humongous_region() depending on the type of the region that
  // is passed to it.
T
tonyp 已提交
1294 1295 1296
  void free_region_if_empty(HeapRegion* hr,
                            size_t* pre_used,
                            FreeRegionList* free_list,
T
tonyp 已提交
1297
                            OldRegionSet* old_proxy_set,
T
tonyp 已提交
1298 1299 1300
                            HumongousRegionSet* humongous_proxy_set,
                            HRRSCleanupTask* hrrs_cleanup_task,
                            bool par);
1301 1302 1303 1304 1305 1306 1307

  // It appends the free list to the master free list and updates the
  // master humongous list according to the contents of the proxy
  // list. It also adjusts the total used bytes according to pre_used
  // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  void update_sets_after_freeing_regions(size_t pre_used,
                                       FreeRegionList* free_list,
T
tonyp 已提交
1308
                                       OldRegionSet* old_proxy_set,
1309 1310
                                       HumongousRegionSet* humongous_proxy_set,
                                       bool par);
1311

S
stefank 已提交
1312
  // Returns "TRUE" iff "p" points into the committed areas of the heap.
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
  virtual bool is_in(const void* p) const;

  // Return "TRUE" iff the given object address is within the collection
  // set.
  inline bool obj_in_cs(oop obj);

  // Return "TRUE" iff the given object address is in the reserved
  // region of g1 (excluding the permanent generation).
  bool is_in_g1_reserved(const void* p) const {
    return _g1_reserved.contains(p);
  }

1325 1326 1327 1328 1329 1330 1331
  // Returns a MemRegion that corresponds to the space that has been
  // reserved for the heap
  MemRegion g1_reserved() {
    return _g1_reserved;
  }

  // Returns a MemRegion that corresponds to the space that has been
1332 1333 1334 1335 1336
  // committed in the heap
  MemRegion g1_committed() {
    return _g1_committed;
  }

J
johnc 已提交
1337
  virtual bool is_in_closed_subset(const void* p) const;
1338 1339 1340 1341 1342 1343 1344 1345 1346

  // This resets the card table to all zeros.  It is used after
  // a collection pause which used the card table to claim cards.
  void cleanUpCardTable();

  // Iteration functions.

  // Iterate over all the ref-containing fields of all objects, calling
  // "cl.do_oop" on each.
1347 1348 1349 1350
  virtual void oop_iterate(OopClosure* cl) {
    oop_iterate(cl, true);
  }
  void oop_iterate(OopClosure* cl, bool do_perm);
1351 1352

  // Same as above, restricted to a memory region.
1353 1354 1355 1356
  virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
    oop_iterate(mr, cl, true);
  }
  void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
1357 1358

  // Iterate over all objects, calling "cl.do_object" on each.
1359 1360 1361 1362 1363 1364 1365
  virtual void object_iterate(ObjectClosure* cl) {
    object_iterate(cl, true);
  }
  virtual void safe_object_iterate(ObjectClosure* cl) {
    object_iterate(cl, true);
  }
  void object_iterate(ObjectClosure* cl, bool do_perm);
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

  // Iterate over all objects allocated since the last collection, calling
  // "cl.do_object" on each.  The heap must have been initialized properly
  // to support this function, or else this call will fail.
  virtual void object_iterate_since_last_GC(ObjectClosure* cl);

  // Iterate over all spaces in use in the heap, in ascending address order.
  virtual void space_iterate(SpaceClosure* cl);

  // Iterate over heap regions, in address order, terminating the
  // iteration early if the "doHeapRegion" method returns "true".
1377
  void heap_region_iterate(HeapRegionClosure* blk) const;
1378

1379
  // Return the region with the given index. It assumes the index is valid.
1380
  HeapRegion* region_at(uint index) const { return _hrs.at(index); }
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395

  // Divide the heap region sequence into "chunks" of some size (the number
  // of regions divided by the number of parallel threads times some
  // overpartition factor, currently 4).  Assumes that this will be called
  // in parallel by ParallelGCThreads worker threads with discinct worker
  // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  // calls will use the same "claim_value", and that that claim value is
  // different from the claim_value of any heap region before the start of
  // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  // attempting to claim the first region in each chunk, and, if
  // successful, applying the closure to each region in the chunk (and
  // setting the claim value of the second and subsequent regions of the
  // chunk.)  For now requires that "doHeapRegion" always returns "false",
  // i.e., that a closure never attempt to abort a traversal.
  void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
1396 1397
                                       uint worker,
                                       uint no_of_par_workers,
1398 1399
                                       jint claim_value);

1400 1401 1402
  // It resets all the region claim values to the default.
  void reset_heap_region_claim_values();

1403 1404 1405 1406
  // Resets the claim values of regions in the current
  // collection set to the default.
  void reset_cset_heap_region_claim_values();

1407 1408
#ifdef ASSERT
  bool check_heap_region_claim_values(jint claim_value);
1409 1410 1411 1412

  // Same as the routine above but only checks regions in the
  // current collection set.
  bool check_cset_heap_region_claim_values(jint claim_value);
1413 1414
#endif // ASSERT

1415 1416 1417 1418 1419 1420
  // Clear the cached cset start regions and (more importantly)
  // the time stamps. Called when we reset the GC time stamp.
  void clear_cset_start_regions();

  // Given the id of a worker, obtain or calculate a suitable
  // starting region for iterating over the current collection set.
1421 1422
  HeapRegion* start_cset_region_for_worker(int worker_i);

1423 1424 1425 1426 1427
  // This is a convenience method that is used by the
  // HeapRegionIterator classes to calculate the starting region for
  // each worker so that they do not all start from the same region.
  HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
  // Iterate over the regions (if any) in the current collection set.
  void collection_set_iterate(HeapRegionClosure* blk);

  // As above but starting from region r
  void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);

  // Returns the first (lowest address) compactible space in the heap.
  virtual CompactibleSpace* first_compactible_space();

  // A CollectedHeap will contain some number of spaces.  This finds the
  // space containing a given address, or else returns NULL.
  virtual Space* space_containing(const void* addr) const;

  // A G1CollectedHeap will contain some number of heap regions.  This
  // finds the region containing a given address, or else returns NULL.
1443 1444
  template <class T>
  inline HeapRegion* heap_region_containing(const T addr) const;
1445 1446 1447 1448

  // Like the above, but requires "addr" to be in the heap (to avoid a
  // null-check), and unlike the above, may return an continuing humongous
  // region.
1449 1450
  template <class T>
  inline HeapRegion* heap_region_containing_raw(const T addr) const;
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487

  // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  // each address in the (reserved) heap is a member of exactly
  // one block.  The defining characteristic of a block is that it is
  // possible to find its size, and thus to progress forward to the next
  // block.  (Blocks may be of different sizes.)  Thus, blocks may
  // represent Java objects, or they might be free blocks in a
  // free-list-based heap (or subheap), as long as the two kinds are
  // distinguishable and the size of each is determinable.

  // Returns the address of the start of the "block" that contains the
  // address "addr".  We say "blocks" instead of "object" since some heaps
  // may not pack objects densely; a chunk may either be an object or a
  // non-object.
  virtual HeapWord* block_start(const void* addr) const;

  // Requires "addr" to be the start of a chunk, and returns its size.
  // "addr + size" is required to be the start of a new chunk, or the end
  // of the active area of the heap.
  virtual size_t block_size(const HeapWord* addr) const;

  // Requires "addr" to be the start of a block, and returns "TRUE" iff
  // the block is an object.
  virtual bool block_is_obj(const HeapWord* addr) const;

  // Does this heap support heap inspection? (+PrintClassHistogram)
  virtual bool supports_heap_inspection() const { return true; }

  // Section on thread-local allocation buffers (TLABs)
  // See CollectedHeap for semantics.

  virtual bool supports_tlab_allocation() const;
  virtual size_t tlab_capacity(Thread* thr) const;
  virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;

  // Can a compiler initialize a new object without store barriers?
  // This permission only extends from the creation of a new object
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
  // via a TLAB up to the first subsequent safepoint. If such permission
  // is granted for this heap type, the compiler promises to call
  // defer_store_barrier() below on any slow path allocation of
  // a new object for which such initializing store barriers will
  // have been elided. G1, like CMS, allows this, but should be
  // ready to provide a compensating write barrier as necessary
  // if that storage came out of a non-young region. The efficiency
  // of this implementation depends crucially on being able to
  // answer very efficiently in constant time whether a piece of
  // storage in the heap comes from a young region or not.
  // See ReduceInitialCardMarks.
1499
  virtual bool can_elide_tlab_store_barriers() const {
1500
    return true;
1501 1502
  }

1503 1504 1505 1506
  virtual bool card_mark_must_follow_store() const {
    return true;
  }

1507
  bool is_in_young(const oop obj) {
1508 1509 1510 1511
    HeapRegion* hr = heap_region_containing(obj);
    return hr != NULL && hr->is_young();
  }

1512 1513 1514 1515 1516 1517
#ifdef ASSERT
  virtual bool is_in_partial_collection(const void* p);
#endif

  virtual bool is_scavengable(const void* addr);

1518 1519 1520 1521
  // We don't need barriers for initializing stores to objects
  // in the young gen: for the SATB pre-barrier, there is no
  // pre-value that needs to be remembered; for the remembered-set
  // update logging post-barrier, we don't maintain remembered set
1522
  // information for young gen objects.
1523 1524
  virtual bool can_elide_initializing_store_barrier(oop new_obj) {
    return is_in_young(new_obj);
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
  }

  // Can a compiler elide a store barrier when it writes
  // a permanent oop into the heap?  Applies when the compiler
  // is storing x to the heap, where x->is_perm() is true.
  virtual bool can_elide_permanent_oop_store_barriers() const {
    // At least until perm gen collection is also G1-ified, at
    // which point this should return false.
    return true;
  }

  // Returns "true" iff the given word_size is "very large".
  static bool isHumongous(size_t word_size) {
1538 1539 1540 1541 1542 1543
    // Note this has to be strictly greater-than as the TLABs
    // are capped at the humongous thresold and we want to
    // ensure that we don't try to allocate a TLAB as
    // humongous and that we don't allocate a humongous
    // object in a TLAB.
    return word_size > _humongous_object_threshold_in_words;
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
  }

  // Update mod union table with the set of dirty cards.
  void updateModUnion();

  // Set the mod union bits corresponding to the given memRegion.  Note
  // that this is always a safe operation, since it doesn't clear any
  // bits.
  void markModUnionRange(MemRegion mr);

  // Records the fact that a marking phase is no longer in progress.
  void set_marking_complete() {
    _mark_in_progress = false;
  }
  void set_marking_started() {
    _mark_in_progress = true;
  }
  bool mark_in_progress() {
    return _mark_in_progress;
  }

  // Print the maximum heap capacity.
  virtual size_t max_capacity() const;

  virtual jlong millis_since_last_gc();

  // Perform any cleanup actions necessary before allowing a verification.
  virtual void prepare_for_verify();

  // Perform verification.
1574

1575 1576 1577 1578
  // vo == UsePrevMarking  -> use "prev" marking information,
  // vo == UseNextMarking -> use "next" marking information
  // vo == UseMarkWord    -> use the mark word in the object header
  //
1579 1580
  // NOTE: Only the "prev" marking information is guaranteed to be
  // consistent most of the time, so most calls to this should use
1581 1582 1583 1584 1585 1586 1587
  // vo == UsePrevMarking.
  // Currently, there is only one case where this is called with
  // vo == UseNextMarking, which is to verify the "next" marking
  // information at the end of remark.
  // Currently there is only one place where this is called with
  // vo == UseMarkWord, which is to verify the marking during a
  // full GC.
1588
  void verify(bool silent, VerifyOption vo);
1589 1590

  // Override; it uses the "prev" marking information
1591
  virtual void verify(bool silent);
1592
  virtual void print_on(outputStream* st) const;
1593
  virtual void print_extended_on(outputStream* st) const;
1594 1595 1596 1597 1598 1599 1600

  virtual void print_gc_threads_on(outputStream* st) const;
  virtual void gc_threads_do(ThreadClosure* tc) const;

  // Override
  void print_tracing_info() const;

1601 1602 1603 1604
  // The following two methods are helpful for debugging RSet issues.
  void print_cset_rsets() PRODUCT_RETURN;
  void print_all_rsets() PRODUCT_RETURN;

1605 1606 1607 1608 1609 1610 1611
  // Convenience function to be used in situations where the heap type can be
  // asserted to be this type.
  static G1CollectedHeap* heap();

  void set_region_short_lived_locked(HeapRegion* hr);
  // add appropriate methods for any other surv rate groups

1612
  YoungList* young_list() { return _young_list; }
1613 1614 1615 1616 1617

  // debugging
  bool check_young_list_well_formed() {
    return _young_list->check_list_well_formed();
  }
1618 1619

  bool check_young_list_empty(bool check_heap,
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
                              bool check_sample = true);

  // *** Stuff related to concurrent marking.  It's not clear to me that so
  // many of these need to be public.

  // The functions below are helper functions that a subclass of
  // "CollectedHeap" can use in the implementation of its virtual
  // functions.
  // This performs a concurrent marking of the live objects in a
  // bitmap off to the side.
  void doConcurrentMark();

  bool isMarkedPrev(oop obj) const;
  bool isMarkedNext(oop obj) const;

  // Determine if an object is dead, given the object and also
  // the region to which the object belongs. An object is dead
  // iff a) it was not allocated since the last mark and b) it
  // is not marked.

  bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
    return
      !hr->obj_allocated_since_prev_marking(obj) &&
      !isMarkedPrev(obj);
  }

  // This function returns true when an object has been
  // around since the previous marking and hasn't yet
  // been marked during this marking.

  bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
    return
      !hr->obj_allocated_since_next_marking(obj) &&
      !isMarkedNext(obj);
  }

  // Determine if an object is dead, given only the object itself.
  // This will find the region to which the object belongs and
  // then call the region version of the same function.

  // Added if it is in permanent gen it isn't dead.
  // Added if it is NULL it isn't dead.

1663
  bool is_obj_dead(const oop obj) const {
1664
    const HeapRegion* hr = heap_region_containing(obj);
1665 1666 1667 1668 1669 1670 1671 1672 1673
    if (hr == NULL) {
      if (Universe::heap()->is_in_permanent(obj))
        return false;
      else if (obj == NULL) return false;
      else return true;
    }
    else return is_obj_dead(obj, hr);
  }

1674
  bool is_obj_ill(const oop obj) const {
1675
    const HeapRegion* hr = heap_region_containing(obj);
1676 1677 1678 1679 1680 1681 1682 1683 1684
    if (hr == NULL) {
      if (Universe::heap()->is_in_permanent(obj))
        return false;
      else if (obj == NULL) return false;
      else return true;
    }
    else return is_obj_ill(obj, hr);
  }

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
  // The methods below are here for convenience and dispatch the
  // appropriate method depending on value of the given VerifyOption
  // parameter. The options for that parameter are:
  //
  // vo == UsePrevMarking -> use "prev" marking information,
  // vo == UseNextMarking -> use "next" marking information,
  // vo == UseMarkWord    -> use mark word from object header

  bool is_obj_dead_cond(const oop obj,
                        const HeapRegion* hr,
                        const VerifyOption vo) const {
    switch (vo) {
    case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
    case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
    case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
    default:                            ShouldNotReachHere();
    }
    return false; // keep some compilers happy
  }

  bool is_obj_dead_cond(const oop obj,
                        const VerifyOption vo) const {
    switch (vo) {
    case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
    case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
    case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
    default:                            ShouldNotReachHere();
    }
    return false; // keep some compilers happy
  }

  bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
  HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
  bool is_marked(oop obj, VerifyOption vo);
  const char* top_at_mark_start_str(VerifyOption vo);

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
  // The following is just to alert the verification code
  // that a full collection has occurred and that the
  // remembered sets are no longer up to date.
  bool _full_collection;
  void set_full_collection() { _full_collection = true;}
  void clear_full_collection() {_full_collection = false;}
  bool full_collection() {return _full_collection;}

  ConcurrentMark* concurrent_mark() const { return _cm; }
  ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
  // The dirty cards region list is used to record a subset of regions
  // whose cards need clearing. The list if populated during the
  // remembered set scanning and drained during the card table
  // cleanup. Although the methods are reentrant, population/draining
  // phases must not overlap. For synchronization purposes the last
  // element on the list points to itself.
  HeapRegion* _dirty_cards_region_list;
  void push_dirty_cards_region(HeapRegion* hr);
  HeapRegion* pop_dirty_cards_region();

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
public:
  void stop_conc_gc_threads();

  size_t pending_card_num();
  size_t cards_scanned();

protected:
  size_t _max_heap_capacity;
};

1752 1753 1754 1755 1756
class G1ParGCAllocBuffer: public ParGCAllocBuffer {
private:
  bool        _retired;

public:
1757
  G1ParGCAllocBuffer(size_t gclab_word_size);
1758

1759
  void set_buf(HeapWord* buf) {
1760 1761 1762 1763
    ParGCAllocBuffer::set_buf(buf);
    _retired = false;
  }

1764
  void retire(bool end_of_gc, bool retain) {
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
    if (_retired)
      return;
    ParGCAllocBuffer::retire(end_of_gc, retain);
    _retired = true;
  }
};

class G1ParScanThreadState : public StackObj {
protected:
  G1CollectedHeap* _g1h;
  RefToScanQueue*  _refs;
  DirtyCardQueue   _dcq;
  CardTableModRefBS* _ct_bs;
  G1RemSet* _g1_rem;

1780 1781 1782 1783
  G1ParGCAllocBuffer  _surviving_alloc_buffer;
  G1ParGCAllocBuffer  _tenured_alloc_buffer;
  G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  ageTable            _age_table;
1784 1785 1786 1787 1788 1789 1790 1791 1792

  size_t           _alloc_buffer_waste;
  size_t           _undo_waste;

  OopsInHeapRegionClosure*      _evac_failure_cl;
  G1ParScanHeapEvacClosure*     _evac_cl;
  G1ParScanPartialArrayClosure* _partial_scan_cl;

  int _hash_seed;
1793
  uint _queue_num;
1794

1795
  size_t _term_attempts;
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

  double _start;
  double _start_strong_roots;
  double _strong_roots_time;
  double _start_term;
  double _term_time;

  // Map from young-age-index (0 == not young, 1 is youngest) to
  // surviving words. base is what we get back from the malloc call
  size_t* _surviving_young_words_base;
  // this points into the array, as we use the first few entries for padding
  size_t* _surviving_young_words;

1809
#define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836

  void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }

  void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }

  DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  CardTableModRefBS* ctbs()                      { return _ct_bs; }

  template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
    if (!from->is_survivor()) {
      _g1_rem->par_write_ref(from, p, tid);
    }
  }

  template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
    // If the new value of the field points to the same region or
    // is the to-space, we don't need to include it in the Rset updates.
    if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
      size_t card_index = ctbs()->index_for(p);
      // If the card hasn't been added to the buffer, do it.
      if (ctbs()->mark_card_deferred(card_index)) {
        dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
      }
    }
  }

public:
1837
  G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num);
1838 1839

  ~G1ParScanThreadState() {
Z
zgu 已提交
1840
    FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
1841 1842 1843 1844 1845 1846
  }

  RefToScanQueue*   refs()            { return _refs;             }
  ageTable*         age_table()       { return &_age_table;       }

  G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
1847
    return _alloc_buffers[purpose];
1848 1849
  }

1850 1851
  size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  size_t undo_waste() const                      { return _undo_waste; }
1852 1853

#ifdef ASSERT
1854 1855 1856 1857
  bool verify_ref(narrowOop* ref) const;
  bool verify_ref(oop* ref) const;
  bool verify_task(StarTask ref) const;
#endif // ASSERT
1858

1859 1860 1861
  template <class T> void push_on_queue(T* ref) {
    assert(verify_ref(ref), "sanity");
    refs()->push(ref);
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
  }

  template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
    if (G1DeferredRSUpdate) {
      deferred_rs_update(from, p, tid);
    } else {
      immediate_rs_update(from, p, tid);
    }
  }

  HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
    HeapWord* obj = NULL;
1874 1875
    size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
    if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
1876 1877
      G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
      add_to_alloc_buffer_waste(alloc_buf->words_remaining());
1878 1879 1880
      alloc_buf->flush_stats_and_retire(_g1h->stats_for_purpose(purpose),
                                        false /* end_of_gc */,
                                        false /* retain */);
1881

1882
      HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
1883 1884
      if (buf == NULL) return NULL; // Let caller handle allocation failure.
      // Otherwise.
1885
      alloc_buf->set_word_size(gclab_word_size);
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
      alloc_buf->set_buf(buf);

      obj = alloc_buf->allocate(word_sz);
      assert(obj != NULL, "buffer was definitely big enough...");
    } else {
      obj = _g1h->par_allocate_during_gc(purpose, word_sz);
    }
    return obj;
  }

  HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
    HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
    if (obj != NULL) return obj;
    return allocate_slow(purpose, word_sz);
  }

  void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
    if (alloc_buffer(purpose)->contains(obj)) {
      assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
             "should contain whole object");
      alloc_buffer(purpose)->undo_allocation(obj, word_sz);
    } else {
      CollectedHeap::fill_with_object(obj, word_sz);
      add_to_undo_waste(word_sz);
    }
  }

  void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
    _evac_failure_cl = evac_failure_cl;
  }
  OopsInHeapRegionClosure* evac_failure_closure() {
    return _evac_failure_cl;
  }

  void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
    _evac_cl = evac_cl;
  }

  void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
    _partial_scan_cl = partial_scan_cl;
  }

  int* hash_seed() { return &_hash_seed; }
1929
  uint queue_num() { return _queue_num; }
1930

1931
  size_t term_attempts() const  { return _term_attempts; }
1932
  void note_term_attempt() { _term_attempts++; }
1933 1934 1935 1936 1937 1938 1939

  void start_strong_roots() {
    _start_strong_roots = os::elapsedTime();
  }
  void end_strong_roots() {
    _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  }
1940
  double strong_roots_time() const { return _strong_roots_time; }
1941 1942 1943 1944 1945 1946 1947 1948

  void start_term_time() {
    note_term_attempt();
    _start_term = os::elapsedTime();
  }
  void end_term_time() {
    _term_time += (os::elapsedTime() - _start_term);
  }
1949
  double term_time() const { return _term_time; }
1950

1951
  double elapsed_time() const {
1952 1953 1954
    return os::elapsedTime() - _start;
  }

1955 1956 1957 1958 1959
  static void
    print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  void
    print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;

1960 1961 1962 1963 1964 1965 1966 1967
  size_t* surviving_young_words() {
    // We add on to hide entry 0 which accumulates surviving words for
    // age -1 regions (i.e. non-young ones)
    return _surviving_young_words;
  }

  void retire_alloc_buffers() {
    for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
1968
      size_t waste = _alloc_buffers[ap]->words_remaining();
1969
      add_to_alloc_buffer_waste(waste);
1970 1971 1972
      _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
                                                 true /* end_of_gc */,
                                                 false /* retain */);
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
    }
  }

  template <class T> void deal_with_reference(T* ref_to_scan) {
    if (has_partial_array_mask(ref_to_scan)) {
      _partial_scan_cl->do_oop_nv(ref_to_scan);
    } else {
      // Note: we can use "raw" versions of "region_containing" because
      // "obj_to_scan" is definitely in the heap, and is not in a
      // humongous region.
      HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
      _evac_cl->set_region(r);
      _evac_cl->do_oop_nv(ref_to_scan);
    }
  }

1989 1990 1991 1992 1993 1994
  void deal_with_reference(StarTask ref) {
    assert(verify_task(ref), "sanity");
    if (ref.is_narrow()) {
      deal_with_reference((narrowOop*)ref);
    } else {
      deal_with_reference((oop*)ref);
1995 1996
    }
  }
1997 1998 1999

public:
  void trim_queue();
2000
};
2001 2002

#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP