g1CollectedHeap.cpp 233.5 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30
#include "precompiled.hpp"
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
31
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
32 33
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
34
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
35
#include "gc_implementation/g1/g1EvacFailure.hpp"
36
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
37
#include "gc_implementation/g1/g1Log.hpp"
38 39 40
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
41
#include "gc_implementation/g1/heapRegion.inline.hpp"
42 43 44 45 46 47 48
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "gc_implementation/g1/vm_operations_g1.hpp"
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/genOopClosures.inline.hpp"
#include "memory/generationSpec.hpp"
49
#include "memory/referenceProcessor.hpp"
50 51 52 53
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/aprofiler.hpp"
#include "runtime/vmThread.hpp"
54

55 56
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

57 58 59
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
60
#define YOUNG_LIST_VERBOSE 0
61 62 63 64 65 66
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
67 68 69 70 71
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
72

73 74 75 76 77 78 79 80 81 82 83 84
// Notes on implementation of parallelism in different tasks.
//
// G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
// The number of GC workers is passed to heap_region_par_iterate_chunked().
// It does use run_task() which sets _n_workers in the task.
// G1ParTask executes g1_process_strong_roots() ->
// SharedHeap::process_strong_roots() which calls eventuall to
// CardTableModRefBS::par_non_clean_card_iterate_work() which uses
// SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
// directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
//

85 86 87 88 89 90 91 92 93 94 95 96 97 98
// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  SuspendibleThreadSet* _sts;
  G1RemSet* _g1rs;
  ConcurrentG1Refine* _cg1r;
  bool _concurrent;
public:
  RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
                              G1RemSet* g1rs,
                              ConcurrentG1Refine* cg1r) :
    _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  {}
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
J
johnc 已提交
99 100 101 102 103 104
    bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    if (_concurrent && _sts->should_yield()) {
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
  int _histo[256];
public:
  ClearLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      unsigned char* ujb = (unsigned char*)card_ptr;
      int ind = (int)(*ujb);
      _histo[ind]++;
      *card_ptr = -1;
    }
    return true;
  }
  int calls() { return _calls; }
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
public:
  RedirtyLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      *card_ptr = 0;
    }
    return true;
  }
  int calls() { return _calls; }
};

171 172 173 174 175 176 177 178
class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
public:
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    *card_ptr = CardTableModRefBS::dirty_card_val();
    return true;
  }
};

179 180 181 182
YoungList::YoungList(G1CollectedHeap* g1h) :
    _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
  guarantee(check_list_empty(false), "just making sure...");
183 184 185 186 187 188 189 190 191
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

192
  _g1h->g1_policy()->set_region_eden(hr, (int) _length);
193 194 195 196
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
197
  assert(hr->is_survivor(), "should be flagged as survivor region");
198 199 200 201
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
202
    _survivor_tail = hr;
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  }
  _survivor_head = hr;
  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
    list->set_not_young();
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
227
  _survivor_tail = NULL;
228 229 230 231 232 233 234 235 236 237
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

238
  uint length = 0;
239 240 241
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
242
    if (!curr->is_young()) {
243
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
244
                             "incorrectly tagged (y: %d, surv: %d)",
245
                             curr->bottom(), curr->end(),
246
                             curr->is_young(), curr->is_survivor());
247 248 249 250 251 252 253 254 255 256
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
257
    gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
258 259 260
                           length, _length);
  }

261
  return ret;
262 263
}

264
bool YoungList::check_list_empty(bool check_sample) {
265 266 267
  bool ret = true;

  if (_length != 0) {
268
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

284
  return ret;
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
301 302 303 304 305 306 307 308 309 310 311 312
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

313 314 315 316 317 318 319 320 321 322 323 324 325 326
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
327
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
328

329
  int young_index_in_cset = 0;
330 331 332
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
333
    _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
334 335 336 337 338

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
339
    young_index_in_cset += 1;
340
  }
341
  assert((uint) young_index_in_cset == _survivor_length, "post-condition");
342 343
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

344 345
  _head   = _survivor_head;
  _length = _survivor_length;
346
  if (_survivor_head != NULL) {
347 348 349
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
350 351
  }

352 353 354 355
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
356

357
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
358 359 360 361 362

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
363 364
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
365 366 367 368 369 370 371

  for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
372 373
      gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
                             HR_FORMAT_PARAMS(curr),
374 375
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
376
                             curr->age_in_surv_rate_group_cond());
377 378 379 380 381 382 383
      curr = curr->get_next_young_region();
    }
  }

  gclog_or_tty->print_cr("");
}

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

437
void G1CollectedHeap::stop_conc_gc_threads() {
438
  _cg1r->stop();
439 440 441
  _cmThread->stop();
}

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
#ifdef ASSERT
// A region is added to the collection set as it is retired
// so an address p can point to a region which will be in the
// collection set but has not yet been retired.  This method
// therefore is only accurate during a GC pause after all
// regions have been retired.  It is used for debugging
// to check if an nmethod has references to objects that can
// be move during a partial collection.  Though it can be
// inaccurate, it is sufficient for G1 because the conservative
// implementation of is_scavengable() for G1 will indicate that
// all nmethods must be scanned during a partial collection.
bool G1CollectedHeap::is_in_partial_collection(const void* p) {
  HeapRegion* hr = heap_region_containing(p);
  return hr != NULL && hr->in_collection_set();
}
#endif

// Returns true if the reference points to an object that
// can move in an incremental collecction.
bool G1CollectedHeap::is_scavengable(const void* p) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
466 467
     // null
     assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
468 469 470 471 472 473
     return false;
  } else {
    return !hr->isHumongous();
  }
}

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
  dcqs.set_closure(&clear);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
  JavaThread::dirty_card_queue_set().set_closure(&redirty);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
                         clear.calls(), orig_count);
  guarantee(redirty.calls() == clear.calls(),
            "Or else mechanism is broken.");

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }

  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

525
HeapRegion*
T
tonyp 已提交
526
G1CollectedHeap::new_region_try_secondary_free_list() {
527 528 529 530 531
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
532
                               "secondary_free_list has %u entries",
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

      assert(!_free_list.is_empty(), "if the secondary_free_list was not "
             "empty we should have moved at least one entry to the free_list");
      HeapRegion* res = _free_list.remove_head();
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "allocated "HR_FORMAT" from secondary_free_list",
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

    // Wait here until we get notifed either when (a) there are no
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}
563

564
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
565
  assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
566 567
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");
568

569 570 571 572 573 574 575
  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
T
tonyp 已提交
576
      res = new_region_try_secondary_free_list();
577 578 579 580 581 582 583 584 585 586 587
      if (res != NULL) {
        return res;
      }
    }
  }
  res = _free_list.remove_head_or_null();
  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
T
tonyp 已提交
588
    res = new_region_try_secondary_free_list();
589
  }
590 591 592 593 594 595 596
  if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
    // Currently, only attempts to allocate GC alloc regions set
    // do_expand to true. So, we should only reach here during a
    // safepoint. If this assumption changes we might have to
    // reconsider the use of _expand_heap_after_alloc_failure.
    assert(SafepointSynchronize::is_at_safepoint(), "invariant");

597 598 599 600 601
    ergo_verbose1(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("region allocation request failed")
                  ergo_format_byte("allocation request"),
                  word_size * HeapWordSize);
602
    if (expand(word_size * HeapWordSize)) {
603 604 605 606 607 608 609
      // Given that expand() succeeded in expanding the heap, and we
      // always expand the heap by an amount aligned to the heap
      // region size, the free list should in theory not be empty. So
      // it would probably be OK to use remove_head(). But the extra
      // check for NULL is unlikely to be a performance issue here (we
      // just expanded the heap!) so let's just be conservative and
      // use remove_head_or_null().
610
      res = _free_list.remove_head_or_null();
611 612
    } else {
      _expand_heap_after_alloc_failure = false;
613
    }
614 615 616 617
  }
  return res;
}

618 619
uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
                                                        size_t word_size) {
T
tonyp 已提交
620 621 622
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

623
  uint first = G1_NULL_HRS_INDEX;
624 625 626 627
  if (num_regions == 1) {
    // Only one region to allocate, no need to go through the slower
    // path. The caller will attempt the expasion if this fails, so
    // let's not try to expand here too.
628
    HeapRegion* hr = new_region(word_size, false /* do_expand */);
629 630 631
    if (hr != NULL) {
      first = hr->hrs_index();
    } else {
632
      first = G1_NULL_HRS_INDEX;
633 634 635 636 637 638 639 640 641 642 643
    }
  } else {
    // We can't allocate humongous regions while cleanupComplete() is
    // running, since some of the regions we find to be empty might not
    // yet be added to the free list and it is not straightforward to
    // know which list they are on so that we can remove them. Note
    // that we only need to do this if we need to allocate more than
    // one region to satisfy the current humongous allocation
    // request. If we are only allocating one region we use the common
    // region allocation code (see above).
    wait_while_free_regions_coming();
T
tonyp 已提交
644
    append_secondary_free_list_if_not_empty_with_lock();
645 646

    if (free_regions() >= num_regions) {
647 648
      first = _hrs.find_contiguous(num_regions);
      if (first != G1_NULL_HRS_INDEX) {
649
        for (uint i = first; i < first + num_regions; ++i) {
650
          HeapRegion* hr = region_at(i);
651
          assert(hr->is_empty(), "sanity");
T
tonyp 已提交
652
          assert(is_on_master_free_list(hr), "sanity");
653 654 655 656 657 658 659 660 661
          hr->set_pending_removal(true);
        }
        _free_list.remove_all_pending(num_regions);
      }
    }
  }
  return first;
}

T
tonyp 已提交
662
HeapWord*
663 664
G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
                                                           uint num_regions,
T
tonyp 已提交
665
                                                           size_t word_size) {
666
  assert(first != G1_NULL_HRS_INDEX, "pre-condition");
T
tonyp 已提交
667 668 669 670
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

  // Index of last region in the series + 1.
671
  uint last = first + num_regions;
T
tonyp 已提交
672 673 674 675 676 677 678 679 680 681

  // We need to initialize the region(s) we just discovered. This is
  // a bit tricky given that it can happen concurrently with
  // refinement threads refining cards on these regions and
  // potentially wanting to refine the BOT as they are scanning
  // those cards (this can happen shortly after a cleanup; see CR
  // 6991377). So we have to set up the region(s) carefully and in
  // a specific order.

  // The word size sum of all the regions we will allocate.
682
  size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
T
tonyp 已提交
683 684 685
  assert(word_size <= word_size_sum, "sanity");

  // This will be the "starts humongous" region.
686
  HeapRegion* first_hr = region_at(first);
T
tonyp 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
  // The header of the new object will be placed at the bottom of
  // the first region.
  HeapWord* new_obj = first_hr->bottom();
  // This will be the new end of the first region in the series that
  // should also match the end of the last region in the seriers.
  HeapWord* new_end = new_obj + word_size_sum;
  // This will be the new top of the first region that will reflect
  // this allocation.
  HeapWord* new_top = new_obj + word_size;

  // First, we need to zero the header of the space that we will be
  // allocating. When we update top further down, some refinement
  // threads might try to scan the region. By zeroing the header we
  // ensure that any thread that will try to scan the region will
  // come across the zero klass word and bail out.
  //
  // NOTE: It would not have been correct to have used
  // CollectedHeap::fill_with_object() and make the space look like
  // an int array. The thread that is doing the allocation will
  // later update the object header to a potentially different array
  // type and, for a very short period of time, the klass and length
  // fields will be inconsistent. This could cause a refinement
  // thread to calculate the object size incorrectly.
  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

  // We will set up the first region as "starts humongous". This
  // will also update the BOT covering all the regions to reflect
  // that there is a single object that starts at the bottom of the
  // first region.
  first_hr->set_startsHumongous(new_top, new_end);

  // Then, if there are any, we will set up the "continues
  // humongous" regions.
  HeapRegion* hr = NULL;
721
  for (uint i = first + 1; i < last; ++i) {
722
    hr = region_at(i);
T
tonyp 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
    hr->set_continuesHumongous(first_hr);
  }
  // If we have "continues humongous" regions (hr != NULL), then the
  // end of the last one should match new_end.
  assert(hr == NULL || hr->end() == new_end, "sanity");

  // Up to this point no concurrent thread would have been able to
  // do any scanning on any region in this series. All the top
  // fields still point to bottom, so the intersection between
  // [bottom,top] and [card_start,card_end] will be empty. Before we
  // update the top fields, we'll do a storestore to make sure that
  // no thread sees the update to top before the zeroing of the
  // object header and the BOT initialization.
  OrderAccess::storestore();

  // Now that the BOT and the object header have been initialized,
  // we can update top of the "starts humongous" region.
  assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
         "new_top should be in this region");
  first_hr->set_top(new_top);
743 744 745 746 747 748 749 750 751 752 753
  if (_hr_printer.is_active()) {
    HeapWord* bottom = first_hr->bottom();
    HeapWord* end = first_hr->orig_end();
    if ((first + 1) == last) {
      // the series has a single humongous region
      _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
    } else {
      // the series has more than one humongous regions
      _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
    }
  }
T
tonyp 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766

  // Now, we will update the top fields of the "continues humongous"
  // regions. The reason we need to do this is that, otherwise,
  // these regions would look empty and this will confuse parts of
  // G1. For example, the code that looks for a consecutive number
  // of empty regions will consider them empty and try to
  // re-allocate them. We can extend is_empty() to also include
  // !continuesHumongous(), but it is easier to just update the top
  // fields here. The way we set top for all regions (i.e., top ==
  // end for all regions but the last one, top == new_top for the
  // last one) is actually used when we will free up the humongous
  // region in free_humongous_region().
  hr = NULL;
767
  for (uint i = first + 1; i < last; ++i) {
768
    hr = region_at(i);
T
tonyp 已提交
769 770 771 772 773
    if ((i + 1) == last) {
      // last continues humongous region
      assert(hr->bottom() < new_top && new_top <= hr->end(),
             "new_top should fall on this region");
      hr->set_top(new_top);
774
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
T
tonyp 已提交
775 776 777 778
    } else {
      // not last one
      assert(new_top > hr->end(), "new_top should be above this region");
      hr->set_top(hr->end());
779
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
T
tonyp 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
    }
  }
  // If we have continues humongous regions (hr != NULL), then the
  // end of the last one should match new_end and its top should
  // match new_top.
  assert(hr == NULL ||
         (hr->end() == new_end && hr->top() == new_top), "sanity");

  assert(first_hr->used() == word_size * HeapWordSize, "invariant");
  _summary_bytes_used += first_hr->used();
  _humongous_set.add(first_hr);

  return new_obj;
}

795 796 797
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
798
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
799
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
800

801
  verify_region_sets_optional();
802

803 804 805 806 807
  size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
  uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
  uint x_num = expansion_regions();
  uint fs = _hrs.free_suffix();
  uint first = humongous_obj_allocate_find_first(num_regions, word_size);
808
  if (first == G1_NULL_HRS_INDEX) {
809
    // The only thing we can do now is attempt expansion.
810
    if (fs + x_num >= num_regions) {
811 812 813 814 815 816 817 818 819 820
      // If the number of regions we're trying to allocate for this
      // object is at most the number of regions in the free suffix,
      // then the call to humongous_obj_allocate_find_first() above
      // should have succeeded and we wouldn't be here.
      //
      // We should only be trying to expand when the free suffix is
      // not sufficient for the object _and_ we have some expansion
      // room available.
      assert(num_regions > fs, "earlier allocation should have succeeded");

821 822 823 824 825
      ergo_verbose1(ErgoHeapSizing,
                    "attempt heap expansion",
                    ergo_format_reason("humongous allocation request failed")
                    ergo_format_byte("allocation request"),
                    word_size * HeapWordSize);
826
      if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
827 828 829
        // Even though the heap was expanded, it might not have
        // reached the desired size. So, we cannot assume that the
        // allocation will succeed.
830 831
        first = humongous_obj_allocate_find_first(num_regions, word_size);
      }
832 833
    }
  }
834

T
tonyp 已提交
835
  HeapWord* result = NULL;
836
  if (first != G1_NULL_HRS_INDEX) {
T
tonyp 已提交
837 838 839
    result =
      humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
    assert(result != NULL, "it should always return a valid result");
840 841 842 843 844

    // A successful humongous object allocation changes the used space
    // information of the old generation so we need to recalculate the
    // sizes and update the jstat counters here.
    g1mm()->update_sizes();
845
  }
846 847

  verify_region_sets_optional();
T
tonyp 已提交
848 849

  return result;
850 851
}

852 853 854
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow humongous TLABs");
855

856 857
  unsigned int dummy_gc_count_before;
  return attempt_allocation(word_size, &dummy_gc_count_before);
858 859 860
}

HeapWord*
861 862 863
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
864

865 866 867
  // Loop until the allocation is satisified, or unsatisfied after GC.
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    unsigned int gc_count_before;
868

869 870 871
    HeapWord* result = NULL;
    if (!isHumongous(word_size)) {
      result = attempt_allocation(word_size, &gc_count_before);
872
    } else {
873 874 875 876 877
      result = attempt_allocation_humongous(word_size, &gc_count_before);
    }
    if (result != NULL) {
      return result;
    }
878

879 880 881 882
    // Create the garbage collection operation...
    VM_G1CollectForAllocation op(gc_count_before, word_size);
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
883

884 885 886 887 888 889
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
890
        // Allocations that take place on VM operations do not do any
891 892
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
893 894 895
        dirty_young_block(result, word_size);
      }
      return result;
896 897 898
    } else {
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
899 900 901 902 903
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
904
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
905 906 907
    }
  }

908
  ShouldNotReachHere();
909 910 911
  return NULL;
}

912 913 914 915 916 917 918
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
                                           unsigned int *gc_count_before_ret) {
  // Make sure you read the note in attempt_allocation_humongous().

  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
         "be called for humongous allocation requests");
919

920 921 922 923 924 925 926
  // We should only get here after the first-level allocation attempt
  // (attempt_allocation()) failed to allocate.

  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
927
  HeapWord* result = NULL;
928 929 930
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    bool should_try_gc;
    unsigned int gc_count_before;
931

932 933 934 935 936 937 938
    {
      MutexLockerEx x(Heap_lock);

      result = _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
      if (result != NULL) {
        return result;
939
      }
940

941 942 943
      // If we reach here, attempt_allocation_locked() above failed to
      // allocate a new region. So the mutator alloc region should be NULL.
      assert(_mutator_alloc_region.get() == NULL, "only way to get here");
944

945 946
      if (GC_locker::is_active_and_needs_gc()) {
        if (g1_policy()->can_expand_young_list()) {
947 948
          // No need for an ergo verbose message here,
          // can_expand_young_list() does this when it returns true.
949 950 951 952 953 954 955 956
          result = _mutator_alloc_region.attempt_allocation_force(word_size,
                                                      false /* bot_updates */);
          if (result != NULL) {
            return result;
          }
        }
        should_try_gc = false;
      } else {
957 958 959 960 961 962 963 964 965 966 967 968
        // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
969 970
      }
    }
971

972 973
    if (should_try_gc) {
      bool succeeded;
974 975
      result = do_collection_pause(word_size, gc_count_before, &succeeded);
      if (result != NULL) {
976
        assert(succeeded, "only way to get back a non-NULL result");
977 978 979
        return result;
      }

980 981 982 983 984
      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
985
        *gc_count_before_ret = total_collections();
986 987 988
        return NULL;
      }
    } else {
989 990 991
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
992
      GC_locker::stall_until_clear();
993 994
    }

995 996 997 998 999 1000 1001 1002 1003 1004
    // We can reach here if we were unsuccessul in scheduling a
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space. We do the
    // first attempt (without holding the Heap_lock) here and the
    // follow-on attempt will be at the start of the next loop
    // iteration (after taking the Heap_lock).
    result = _mutator_alloc_region.attempt_allocation(word_size,
                                                      false /* bot_updates */);
1005
    if (result != NULL) {
1006
      return result;
1007 1008
    }

1009 1010 1011
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1012
      warning("G1CollectedHeap::attempt_allocation_slow() "
1013
              "retries %d times", try_count);
1014 1015 1016
    }
  }

1017 1018
  ShouldNotReachHere();
  return NULL;
1019 1020
}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
                                          unsigned int * gc_count_before_ret) {
  // The structure of this method has a lot of similarities to
  // attempt_allocation_slow(). The reason these two were not merged
  // into a single one is that such a method would require several "if
  // allocation is not humongous do this, otherwise do that"
  // conditional paths which would obscure its flow. In fact, an early
  // version of this code did use a unified method which was harder to
  // follow and, as a result, it had subtle bugs that were hard to
  // track down. So keeping these two methods separate allows each to
  // be more readable. It will be good to keep these two in sync as
  // much as possible.

1034
  assert_heap_not_locked_and_not_at_safepoint();
1035 1036
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be called for humongous allocations");
1037

1038 1039 1040 1041 1042
  // Humongous objects can exhaust the heap quickly, so we should check if we
  // need to start a marking cycle at each humongous object allocation. We do
  // the check before we do the actual allocation. The reason for doing it
  // before the allocation is that we avoid having to keep track of the newly
  // allocated memory while we do a GC.
1043 1044
  if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
                                           word_size)) {
1045 1046 1047
    collect(GCCause::_g1_humongous_allocation);
  }

1048 1049 1050 1051 1052
  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
  HeapWord* result = NULL;
1053
  for (int try_count = 1; /* we'll return */; try_count += 1) {
1054
    bool should_try_gc;
1055
    unsigned int gc_count_before;
1056

1057
    {
1058
      MutexLockerEx x(Heap_lock);
1059

1060 1061 1062 1063
      // Given that humongous objects are not allocated in young
      // regions, we'll first try to do the allocation without doing a
      // collection hoping that there's enough space in the heap.
      result = humongous_obj_allocate(word_size);
1064 1065
      if (result != NULL) {
        return result;
1066
      }
1067

1068 1069 1070
      if (GC_locker::is_active_and_needs_gc()) {
        should_try_gc = false;
      } else {
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
         // The GCLocker may not be active but the GCLocker initiated
        // GC may not yet have been performed (GCLocker::needs_gc()
        // returns true). In this case we do not try this GC and
        // wait until the GCLocker initiated GC is performed, and
        // then retry the allocation.
        if (GC_locker::needs_gc()) {
          should_try_gc = false;
        } else {
          // Read the GC count while still holding the Heap_lock.
          gc_count_before = total_collections();
          should_try_gc = true;
        }
1083 1084 1085
      }
    }

1086 1087 1088 1089
    if (should_try_gc) {
      // If we failed to allocate the humongous object, we should try to
      // do a collection pause (if we're allowed) in case it reclaims
      // enough space for the allocation to succeed after the pause.
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
      bool succeeded;
      result = do_collection_pause(word_size, gc_count_before, &succeeded);
      if (result != NULL) {
        assert(succeeded, "only way to get back a non-NULL result");
        return result;
      }

      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
1103
        *gc_count_before_ret = total_collections();
1104
        return NULL;
1105 1106
      }
    } else {
1107 1108 1109
      // The GCLocker is either active or the GCLocker initiated
      // GC has not yet been performed. Stall until it is and
      // then retry the allocation.
1110
      GC_locker::stall_until_clear();
1111 1112
    }

1113 1114 1115 1116 1117 1118 1119
    // We can reach here if we were unsuccessul in scheduling a
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space.  Give a
    // warning if we seem to be looping forever.

1120 1121
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1122 1123
      warning("G1CollectedHeap::attempt_allocation_humongous() "
              "retries %d times", try_count);
1124 1125
    }
  }
1126 1127

  ShouldNotReachHere();
1128
  return NULL;
1129 1130
}

1131 1132
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
                                       bool expect_null_mutator_alloc_region) {
1133
  assert_at_safepoint(true /* should_be_vm_thread */);
1134 1135 1136
  assert(_mutator_alloc_region.get() == NULL ||
                                             !expect_null_mutator_alloc_region,
         "the current alloc region was unexpectedly found to be non-NULL");
1137

1138 1139 1140 1141
  if (!isHumongous(word_size)) {
    return _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
  } else {
1142 1143 1144 1145 1146
    HeapWord* result = humongous_obj_allocate(word_size);
    if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
      g1_policy()->set_initiate_conc_mark_if_possible();
    }
    return result;
1147
  }
1148 1149

  ShouldNotReachHere();
1150 1151 1152
}

class PostMCRemSetClearClosure: public HeapRegionClosure {
1153
  G1CollectedHeap* _g1h;
1154 1155
  ModRefBarrierSet* _mr_bs;
public:
1156 1157
  PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
    _g1h(g1h), _mr_bs(mr_bs) { }
1158
  bool doHeapRegion(HeapRegion* r) {
1159
    if (r->continuesHumongous()) {
1160
      return false;
1161 1162
    }
    _g1h->reset_gc_time_stamps(r);
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
    HeapRegionRemSet* hrrs = r->rem_set();
    if (hrrs != NULL) hrrs->clear();
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
    return false;
  }
};

1175 1176 1177 1178
void G1CollectedHeap::clear_rsets_post_compaction() {
  PostMCRemSetClearClosure rs_clear(this, mr_bs());
  heap_region_iterate(&rs_clear);
}
1179

1180 1181 1182 1183 1184 1185
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1186
    _cl(g1->g1_rem_set(), worker_i),
1187 1188 1189
    _worker_i(worker_i),
    _g1h(g1)
  { }
1190

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

1208 1209 1210
  void work(uint worker_id) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1211
                                          _g1->workers()->active_workers(),
1212 1213 1214 1215
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
class PostCompactionPrinterClosure: public HeapRegionClosure {
private:
  G1HRPrinter* _hr_printer;
public:
  bool doHeapRegion(HeapRegion* hr) {
    assert(!hr->is_young(), "not expecting to find young regions");
    // We only generate output for non-empty regions.
    if (!hr->is_empty()) {
      if (!hr->isHumongous()) {
        _hr_printer->post_compaction(hr, G1HRPrinter::Old);
      } else if (hr->startsHumongous()) {
1227
        if (hr->region_num() == 1) {
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
          // single humongous region
          _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
        } else {
          _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
        }
      } else {
        assert(hr->continuesHumongous(), "only way to get here");
        _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
      }
    }
    return false;
  }

  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
    : _hr_printer(hr_printer) { }
};

1245 1246 1247 1248 1249
void G1CollectedHeap::print_hrs_post_compaction() {
  PostCompactionPrinterClosure cl(hr_printer());
  heap_region_iterate(&cl);
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
double G1CollectedHeap::verify(bool guard, const char* msg) {
  double verify_time_ms = 0.0;

  if (guard && total_collections() >= VerifyGCStartAt) {
    double verify_start = os::elapsedTime();
    HandleMark hm;  // Discard invalid handles created during verification
    gclog_or_tty->print(msg);
    prepare_for_verify();
    Universe::verify(false /* silent */, VerifyOption_G1UsePrevMarking);
    verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  }

  return verify_time_ms;
}

void G1CollectedHeap::verify_before_gc() {
  double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
}

void G1CollectedHeap::verify_after_gc() {
  double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
}

1275
bool G1CollectedHeap::do_collection(bool explicit_gc,
1276
                                    bool clear_all_soft_refs,
1277
                                    size_t word_size) {
1278 1279
  assert_at_safepoint(true /* should_be_vm_thread */);

1280
  if (GC_locker::check_active_before_gc()) {
1281
    return false;
1282 1283
  }

1284
  SvcGCMarker sgcm(SvcGCMarker::FULL);
1285 1286
  ResourceMark rm;

1287
  print_heap_before_gc();
1288

1289 1290
  size_t metadata_prev_used = MetaspaceAux::used_in_bytes();

T
tonyp 已提交
1291
  HRSPhaseSetter x(HRSPhaseFullGC);
1292
  verify_region_sets_optional();
1293

1294 1295 1296 1297 1298
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1299 1300 1301 1302
  {
    IsGCActiveMark x;

    // Timing
B
brutisso 已提交
1303
    assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1304 1305
    gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
1306

1307
    TraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, gclog_or_tty);
1308
    TraceCollectorStats tcs(g1mm()->full_collection_counters());
1309
    TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1310

1311 1312 1313
    double start = os::elapsedTime();
    g1_policy()->record_full_collection_start();

1314 1315 1316 1317
    // Note: When we have a more flexible GC logging framework that
    // allows us to add optional attributes to a GC log record we
    // could consider timing and reporting how long we wait in the
    // following two methods.
1318
    wait_while_free_regions_coming();
1319 1320 1321 1322 1323 1324 1325
    // If we start the compaction before the CM threads finish
    // scanning the root regions we might trip them over as we'll
    // be moving objects / updating references. So let's wait until
    // they are done. By telling them to abort, they should complete
    // early.
    _cm->root_regions()->abort();
    _cm->root_regions()->wait_until_scan_finished();
T
tonyp 已提交
1326
    append_secondary_free_list_if_not_empty_with_lock();
1327

1328
    gc_prologue(true);
1329
    increment_total_collections(true /* full gc */);
1330
    increment_old_marking_cycles_started();
1331 1332 1333 1334

    size_t g1h_prev_used = used();
    assert(used() == recalculate_used(), "Should be equal");

1335
    verify_before_gc();
1336

1337
    pre_full_gc_dump();
1338 1339 1340

    COMPILER2_PRESENT(DerivedPointerTable::clear());

1341 1342 1343 1344 1345
    // Disable discovery and empty the discovered lists
    // for the CM ref processor.
    ref_processor_cm()->disable_discovery();
    ref_processor_cm()->abandon_partial_discovery();
    ref_processor_cm()->verify_no_references_recorded();
1346 1347

    // Abandon current iterations of concurrent marking and concurrent
1348 1349
    // refinement, if any are in progress. We have to do this before
    // wait_until_scan_finished() below.
1350 1351 1352
    concurrent_mark()->abort();

    // Make sure we'll choose a new allocation region afterwards.
1353
    release_mutator_alloc_region();
1354
    abandon_gc_alloc_regions();
1355
    g1_rem_set()->cleanupHRRS();
1356

1357 1358 1359 1360 1361
    // We should call this after we retire any currently active alloc
    // regions so that all the ALLOC / RETIRE events are generated
    // before the start GC event.
    _hr_printer.start_gc(true /* full */, (size_t) total_collections());

1362 1363 1364 1365 1366 1367 1368 1369
    // We may have added regions to the current incremental collection
    // set between the last GC or pause and now. We need to clear the
    // incremental collection set and then start rebuilding it afresh
    // after this full GC.
    abandon_collection_set(g1_policy()->inc_cset_head());
    g1_policy()->clear_incremental_cset();
    g1_policy()->stop_incremental_cset_building();

T
tonyp 已提交
1370
    tear_down_region_sets(false /* free_list_only */);
1371
    g1_policy()->set_gcs_are_young(true);
1372

1373 1374
    // See the comments in g1CollectedHeap.hpp and
    // G1CollectedHeap::ref_processing_init() about
1375 1376
    // how reference processing currently works in G1.

1377 1378
    // Temporarily make discovery by the STW ref processor single threaded (non-MT).
    ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1379

1380 1381
    // Temporarily clear the STW ref processor's _is_alive_non_header field.
    ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1382

1383 1384
    ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
    ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1385 1386 1387 1388

    // Do collection work
    {
      HandleMark hm;  // Discard invalid handles created during gc
1389
      G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1390
    }
1391

1392
    assert(free_regions() == 0, "we should not have added any free regions");
T
tonyp 已提交
1393
    rebuild_region_sets(false /* free_list_only */);
1394

1395 1396 1397
    // Enqueue any discovered reference objects that have
    // not been removed from the discovered lists.
    ref_processor_stw()->enqueue_discovered_references();
1398 1399 1400

    COMPILER2_PRESENT(DerivedPointerTable::update_pointers());

1401 1402
    MemoryService::track_memory_usage();

1403
    verify_after_gc();
1404 1405 1406 1407

    assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
    ref_processor_stw()->verify_no_references_recorded();

1408 1409 1410
    // Delete metaspaces for unloaded class loaders and clean up loader_data graph
    ClassLoaderDataGraph::purge();

1411 1412 1413 1414 1415 1416
    // Note: since we've just done a full GC, concurrent
    // marking is no longer active. Therefore we need not
    // re-enable reference discovery for the CM ref processor.
    // That will be done at the start of the next marking cycle.
    assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
    ref_processor_cm()->verify_no_references_recorded();
1417 1418 1419

    reset_gc_time_stamp();
    // Since everything potentially moved, we will clear all remembered
1420 1421
    // sets, and clear all cards.  Later we will rebuild remebered
    // sets. We will also reset the GC time stamps of the regions.
1422 1423
    clear_rsets_post_compaction();
    check_gc_time_stamps();
1424 1425

    // Resize the heap if necessary.
1426
    resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1427

1428 1429 1430 1431 1432
    if (_hr_printer.is_active()) {
      // We should do this after we potentially resize the heap so
      // that all the COMMIT / UNCOMMIT events are generated before
      // the end GC event.

1433
      print_hrs_post_compaction();
1434 1435 1436
      _hr_printer.end_gc(true /* full */, (size_t) total_collections());
    }

1437 1438 1439 1440 1441
    if (_cg1r->use_cache()) {
      _cg1r->clear_and_record_card_counts();
      _cg1r->clear_hot_cache();
    }

1442
    // Rebuild remembered sets of all regions.
1443
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1444
      uint n_workers =
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
        AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                       workers()->active_workers(),
                                       Threads::number_of_non_daemon_threads());
      assert(UseDynamicNumberOfGCThreads ||
             n_workers == workers()->total_workers(),
             "If not dynamic should be using all the  workers");
      workers()->set_active_workers(n_workers);
      // Set parallel threads in the heap (_n_par_threads) only
      // before a parallel phase and always reset it to 0 after
      // the phase so that the number of parallel threads does
      // no get carried forward to a serial phase where there
      // may be code that is "possibly_parallel".
      set_par_threads(n_workers);

1459 1460 1461
      ParRebuildRSTask rebuild_rs_task(this);
      assert(check_heap_region_claim_values(
             HeapRegion::InitialClaimValue), "sanity check");
1462 1463 1464 1465 1466 1467 1468
      assert(UseDynamicNumberOfGCThreads ||
             workers()->active_workers() == workers()->total_workers(),
        "Unless dynamic should use total workers");
      // Use the most recent number of  active workers
      assert(workers()->active_workers() > 0,
        "Active workers not properly set");
      set_par_threads(workers()->active_workers());
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
      workers()->run_task(&rebuild_rs_task);
      set_par_threads(0);
      assert(check_heap_region_claim_values(
             HeapRegion::RebuildRSClaimValue), "sanity check");
      reset_heap_region_claim_values();
    } else {
      RebuildRSOutOfRegionClosure rebuild_rs(this);
      heap_region_iterate(&rebuild_rs);
    }

1479
    if (G1Log::fine()) {
1480 1481 1482 1483
      print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
    }

    if (true) { // FIXME
1484
      MetaspaceGC::compute_new_size();
1485 1486
    }

1487 1488 1489 1490 1491 1492 1493 1494 1495
    // Start a new incremental collection set for the next pause
    assert(g1_policy()->collection_set() == NULL, "must be");
    g1_policy()->start_incremental_cset_building();

    // Clear the _cset_fast_test bitmap in anticipation of adding
    // regions to the incremental collection set for the next
    // evacuation pause.
    clear_cset_fast_test();

1496 1497
    init_mutator_alloc_region();

1498 1499 1500
    double end = os::elapsedTime();
    g1_policy()->record_full_collection_end();

1501 1502 1503 1504
#ifdef TRACESPINNING
    ParallelTaskTerminator::print_termination_counts();
#endif

1505 1506
    gc_epilogue(true);

1507 1508
    // Discard all rset updates
    JavaThread::dirty_card_queue_set().abandon_logs();
1509 1510
    assert(!G1DeferredRSUpdate
           || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1511

1512 1513 1514 1515 1516
    _young_list->reset_sampled_info();
    // At this point there should be no regions in the
    // entire heap tagged as young.
    assert( check_young_list_empty(true /* check_heap */),
      "young list should be empty at this point");
1517

1518 1519
    // Update the number of full collections that have been completed.
    increment_old_marking_cycles_completed(false /* concurrent */);
1520

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
    _hrs.verify_optional();
    verify_region_sets_optional();

    print_heap_after_gc();

    // We must call G1MonitoringSupport::update_sizes() in the same scoping level
    // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
    // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
    // before any GC notifications are raised.
    g1mm()->update_sizes();
  }
1532

1533
  post_full_gc_dump();
1534 1535

  return true;
1536 1537 1538
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1539 1540 1541 1542 1543 1544 1545 1546
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");

  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1561 1562 1563 1564
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1565
  // We don't have floating point command-line arguments
1566
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1567
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1568
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1569 1570
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
                 "maximum_desired_capacity = "SIZE_FORMAT,
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1607

1608
  if (capacity_after_gc < minimum_desired_capacity) {
1609 1610
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("capacity lower than "
                                     "min desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("min desired capacity"),
                  capacity_after_gc, used_after_gc,
                  minimum_desired_capacity, (double) MinHeapFreeRatio);
    expand(expand_bytes);
1621 1622

    // No expansion, now see if we want to shrink
1623
  } else if (capacity_after_gc > maximum_desired_capacity) {
1624 1625
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1626 1627 1628 1629 1630 1631 1632 1633 1634
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap shrinking",
                  ergo_format_reason("capacity higher than "
                                     "max desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("max desired capacity"),
                  capacity_after_gc, used_after_gc,
                  maximum_desired_capacity, (double) MaxHeapFreeRatio);
1635 1636 1637 1638 1639 1640
    shrink(shrink_bytes);
  }
}


HeapWord*
1641 1642
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
                                           bool* succeeded) {
1643
  assert_at_safepoint(true /* should_be_vm_thread */);
1644 1645 1646

  *succeeded = true;
  // Let's attempt the allocation first.
1647 1648 1649
  HeapWord* result =
    attempt_allocation_at_safepoint(word_size,
                                 false /* expect_null_mutator_alloc_region */);
1650 1651 1652 1653
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1654 1655 1656 1657 1658 1659 1660

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
  result = expand_and_allocate(word_size);
  if (result != NULL) {
1661
    assert(*succeeded, "sanity");
1662 1663 1664
    return result;
  }

1665 1666 1667 1668 1669 1670 1671 1672
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1673

1674 1675
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
1676
                                  true /* expect_null_mutator_alloc_region */);
1677
  if (result != NULL) {
1678
    assert(*succeeded, "sanity");
1679 1680 1681
    return result;
  }

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
1693
                                  true /* expect_null_mutator_alloc_region */);
1694
  if (result != NULL) {
1695
    assert(*succeeded, "sanity");
1696 1697 1698
    return result;
  }

1699
  assert(!collector_policy()->should_clear_all_soft_refs(),
1700
         "Flag should have been handled and cleared prior to this point");
1701

1702 1703 1704 1705
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1706
  assert(*succeeded, "sanity");
1707 1708 1709 1710 1711 1712 1713 1714 1715
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1716 1717 1718
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();
1719

1720
  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1721 1722 1723 1724 1725
  ergo_verbose1(ErgoHeapSizing,
                "attempt heap expansion",
                ergo_format_reason("allocation request failed")
                ergo_format_byte("allocation request"),
                word_size * HeapWordSize);
1726
  if (expand(expand_bytes)) {
1727
    _hrs.verify_optional();
1728 1729
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
1730
                                 false /* expect_null_mutator_alloc_region */);
1731
  }
1732
  return NULL;
1733 1734
}

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
void G1CollectedHeap::update_committed_space(HeapWord* old_end,
                                             HeapWord* new_end) {
  assert(old_end != new_end, "don't call this otherwise");
  assert((HeapWord*) _g1_storage.high() == new_end, "invariant");

  // Update the committed mem region.
  _g1_committed.set_end(new_end);
  // Tell the card table about the update.
  Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  // Tell the BOT about the update.
  _bot_shared->resize(_g1_committed.word_size());
}

1748
bool G1CollectedHeap::expand(size_t expand_bytes) {
1749
  size_t old_mem_size = _g1_storage.committed_size();
1750
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1751 1752
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
1753 1754 1755 1756 1757
  ergo_verbose2(ErgoHeapSizing,
                "expand the heap",
                ergo_format_byte("requested expansion amount")
                ergo_format_byte("attempted expansion amount"),
                expand_bytes, aligned_expand_bytes);
1758

1759 1760
  // First commit the memory.
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
1761 1762
  bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  if (successful) {
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
    // Then propagate this update to the necessary data structures.
    HeapWord* new_end = (HeapWord*) _g1_storage.high();
    update_committed_space(old_end, new_end);

    FreeRegionList expansion_list("Local Expansion List");
    MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
    assert(mr.start() == old_end, "post-condition");
    // mr might be a smaller region than what was requested if
    // expand_by() was unable to allocate the HeapRegion instances
    assert(mr.end() <= new_end, "post-condition");

    size_t actual_expand_bytes = mr.byte_size();
    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
    assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
           "post-condition");
    if (actual_expand_bytes < aligned_expand_bytes) {
      // We could not expand _hrs to the desired size. In this case we
      // need to shrink the committed space accordingly.
      assert(mr.end() < new_end, "invariant");

      size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
      // First uncommit the memory.
      _g1_storage.shrink_by(diff_bytes);
      // Then propagate this update to the necessary data structures.
      update_committed_space(new_end, mr.end());
1788
    }
1789
    _free_list.add_as_tail(&expansion_list);
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799

    if (_hr_printer.is_active()) {
      HeapWord* curr = mr.start();
      while (curr < mr.end()) {
        HeapWord* curr_end = curr + HeapRegion::GrainWords;
        _hr_printer.commit(curr, curr_end);
        curr = curr_end;
      }
      assert(curr == mr.end(), "post-condition");
    }
1800
    g1_policy()->record_new_heap_size(n_regions());
1801
  } else {
1802 1803 1804
    ergo_verbose0(ErgoHeapSizing,
                  "did not expand the heap",
                  ergo_format_reason("heap expansion operation failed"));
1805 1806 1807 1808 1809 1810
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
        _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
      // We had head room...
      vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1811 1812
    }
  }
1813
  return successful;
1814 1815
}

1816
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1817 1818 1819 1820 1821
  size_t old_mem_size = _g1_storage.committed_size();
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
1822
  uint num_regions_deleted = 0;
1823 1824 1825
  MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
  assert(mr.end() == old_end, "post-condition");
1826 1827 1828 1829 1830 1831 1832

  ergo_verbose3(ErgoHeapSizing,
                "shrink the heap",
                ergo_format_byte("requested shrinking amount")
                ergo_format_byte("aligned shrinking amount")
                ergo_format_byte("attempted shrinking amount"),
                shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1833
  if (mr.byte_size() > 0) {
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
    if (_hr_printer.is_active()) {
      HeapWord* curr = mr.end();
      while (curr > mr.start()) {
        HeapWord* curr_end = curr;
        curr -= HeapRegion::GrainWords;
        _hr_printer.uncommit(curr, curr_end);
      }
      assert(curr == mr.start(), "post-condition");
    }

1844
    _g1_storage.shrink_by(mr.byte_size());
1845 1846 1847 1848 1849 1850
    HeapWord* new_end = (HeapWord*) _g1_storage.high();
    assert(mr.start() == new_end, "post-condition");

    _expansion_regions += num_regions_deleted;
    update_committed_space(old_end, new_end);
    HeapRegionRemSet::shrink_heap(n_regions());
1851
    g1_policy()->record_new_heap_size(n_regions());
1852 1853 1854 1855
  } else {
    ergo_verbose0(ErgoHeapSizing,
                  "did not shrink the heap",
                  ergo_format_reason("heap shrinking operation failed"));
1856 1857 1858 1859
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1860 1861
  verify_region_sets_optional();

1862 1863 1864 1865 1866
  // We should only reach here at the end of a Full GC which means we
  // should not not be holding to any GC alloc regions. The method
  // below will make sure of that and do any remaining clean up.
  abandon_gc_alloc_regions();

1867 1868 1869
  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
T
tonyp 已提交
1870
  tear_down_region_sets(true /* free_list_only */);
1871
  shrink_helper(shrink_bytes);
T
tonyp 已提交
1872
  rebuild_region_sets(true /* free_list_only */);
1873

1874
  _hrs.verify_optional();
1875
  verify_region_sets_optional();
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1888
  _dirty_card_queue_set(false),
J
johnc 已提交
1889
  _into_cset_dirty_card_queue_set(false),
1890 1891 1892 1893
  _is_alive_closure_cm(this),
  _is_alive_closure_stw(this),
  _ref_processor_cm(NULL),
  _ref_processor_stw(NULL),
1894 1895 1896 1897 1898
  _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  _bot_shared(NULL),
  _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  _evac_failure_scan_stack(NULL) ,
  _mark_in_progress(false),
1899
  _cg1r(NULL), _summary_bytes_used(0),
1900
  _g1mm(NULL),
1901 1902
  _refine_cte_cl(NULL),
  _full_collection(false),
1903 1904
  _free_list("Master Free List"),
  _secondary_free_list("Secondary Free List"),
T
tonyp 已提交
1905
  _old_set("Old Set"),
1906 1907
  _humongous_set("Master Humongous Set"),
  _free_regions_coming(false),
1908 1909
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1910
  _retained_old_gc_alloc_region(NULL),
1911 1912
  _survivor_plab_stats(YoungPLABSize, PLABWeight),
  _old_plab_stats(OldPLABSize, PLABWeight),
1913
  _expand_heap_after_alloc_failure(true),
1914
  _surviving_young_words(NULL),
1915 1916
  _old_marking_cycles_started(0),
  _old_marking_cycles_completed(0),
1917
  _in_cset_fast_test(NULL),
1918
  _in_cset_fast_test_base(NULL),
1919 1920 1921
  _dirty_cards_region_list(NULL),
  _worker_cset_start_region(NULL),
  _worker_cset_start_region_time_stamp(NULL) {
1922 1923 1924 1925
  _g1h = this; // To catch bugs.
  if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
1926 1927 1928

  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1929 1930 1931 1932 1933 1934 1935
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

  int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  assert(n_rem_sets > 0, "Invariant.");

  HeapRegionRemSetIterator** iter_arr =
Z
zgu 已提交
1936
    NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues, mtGC);
1937 1938 1939 1940 1941
  for (int i = 0; i < n_queues; i++) {
    iter_arr[i] = new HeapRegionRemSetIterator();
  }
  _rem_set_iterator = iter_arr;

Z
zgu 已提交
1942 1943
  _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1944

1945 1946 1947 1948 1949 1950
  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
  }

1951 1952
  clear_cset_start_regions();

1953 1954 1955
  // Initialize the G1EvacuationFailureALot counters and flags.
  NOT_PRODUCT(reset_evacuation_should_fail();)

1956
  guarantee(_task_queues != NULL, "task_queues allocation failure.");
1957 1958 1959 1960 1961 1962 1963 1964
#ifdef SPARC
  // Issue a stern warning, but allow use for experimentation and debugging.
  if (VM_Version::is_sun4v() && UseMemSetInBOT) {
    assert(!FLAG_IS_DEFAULT(UseMemSetInBOT), "Error");
    warning("Experimental flag -XX:+UseMemSetInBOT is known to cause instability"
            " on sun4v; please understand that you are using at your own risk!");
  }
#endif
1965 1966 1967
}

jint G1CollectedHeap::initialize() {
1968
  CollectedHeap::pre_initialize();
1969 1970
  os::enable_vtime();

1971 1972
  G1Log::init();

1973 1974 1975 1976
  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

1977 1978 1979 1980
  // We have to initialize the printer before committing the heap, as
  // it will be used then.
  _hr_printer.set_active(G1PrintHeapRegions);

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");

  _cg1r = new ConcurrentG1Refine();

  // Reserve the maximum.
1998

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
  // When compressed oops are enabled, the preferred heap base
  // is calculated by subtracting the requested size from the
  // 32Gb boundary and using the result as the base address for
  // heap reservation. If the requested size is not aligned to
  // HeapRegion::GrainBytes (i.e. the alignment that is passed
  // into the ReservedHeapSpace constructor) then the actual
  // base of the reserved heap may end up differing from the
  // address that was requested (i.e. the preferred heap base).
  // If this happens then we could end up using a non-optimal
  // compressed oops mode.

  // Since max_byte_size is aligned to the size of a heap region (checked
2011 2012
  // above).
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2013

2014 2015
  ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
                                                 HeapRegion::GrainBytes);
2016 2017 2018 2019 2020 2021 2022 2023

  // It is important to do this in a way such that concurrent readers can't
  // temporarily think somethings in the heap.  (I've actually seen this
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

2024
  _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
  if (barrier_set()->is_a(BarrierSet::ModRef)) {
    _mr_bs = (ModRefBarrierSet*)_barrier_set;
  } else {
    vm_exit_during_initialization("G1 requires a mod ref bs.");
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
2037 2038
  if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
    _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2039
  } else {
2040 2041
    vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
    return JNI_ENOMEM;
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
  }

  // Carve out the G1 part of the heap.

  ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
                           g1_rs.size()/HeapWordSize);

  _g1_storage.initialize(g1_rs, 0);
  _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2052 2053 2054
  _hrs.initialize((HeapWord*) _g1_reserved.start(),
                  (HeapWord*) _g1_reserved.end(),
                  _expansion_regions);
2055

2056 2057
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
2058
  const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2059 2060 2061
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2062
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2063
  guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2064
            "too many cards per region");
2065

2066 2067
  HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);

2068 2069 2070 2071 2072
  _bot_shared = new G1BlockOffsetSharedArray(_reserved,
                                             heap_word_size(init_byte_size));

  _g1h = this;

2073
   _in_cset_fast_test_length = max_regions();
2074
   _in_cset_fast_test_base =
Z
zgu 已提交
2075
                   NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2076 2077 2078 2079 2080

   // We're biasing _in_cset_fast_test to avoid subtracting the
   // beginning of the heap every time we want to index; basically
   // it's the same with what we do with the card table.
   _in_cset_fast_test = _in_cset_fast_test_base -
2081
               ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2082 2083 2084 2085 2086 2087

   // Clear the _cset_fast_test bitmap in anticipation of adding
   // regions to the incremental collection set for the first
   // evacuation pause.
   clear_cset_fast_test();

2088 2089
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
2090
  _cm       = new ConcurrentMark(heap_rs, max_regions());
2091 2092 2093 2094 2095
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

2096
  // Now expand into the initial heap size.
2097 2098 2099 2100
  if (!expand(init_byte_size)) {
    vm_exit_during_initialization("Failed to allocate initial heap.");
    return JNI_ENOMEM;
  }
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  _refine_cte_cl =
    new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
                                    g1_rem_set(),
                                    concurrent_g1_refine());
  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
2113
                                               G1SATBProcessCompletedThreshold,
2114
                                               Shared_SATB_Q_lock);
2115 2116 2117

  JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                                DirtyCardQ_FL_lock,
2118 2119
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
2120 2121
                                                Shared_DirtyCardQ_lock);

2122 2123 2124
  if (G1DeferredRSUpdate) {
    dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                      DirtyCardQ_FL_lock,
2125 2126
                                      -1, // never trigger processing
                                      -1, // no limit on length
2127 2128 2129
                                      Shared_DirtyCardQ_lock,
                                      &JavaThread::dirty_card_queue_set());
  }
J
johnc 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
  _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

2140 2141 2142 2143 2144 2145 2146
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

  // Do later initialization work for concurrent refinement.
  _cg1r->init();

2147 2148 2149
  // Here we allocate the dummy full region that is required by the
  // G1AllocRegion class. If we don't pass an address in the reserved
  // space here, lots of asserts fire.
2150 2151 2152

  HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
                                             _g1_reserved.start());
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
  // We'll re-use the same region whether the alloc region will
  // require BOT updates or not and, if it doesn't, then a non-young
  // region will complain that it cannot support allocations without
  // BOT updates. So we'll tag the dummy region as young to avoid that.
  dummy_region->set_young();
  // Make sure it's full.
  dummy_region->set_top(dummy_region->end());
  G1AllocRegion::setup(this, dummy_region);

  init_mutator_alloc_region();

2164 2165
  // Do create of the monitoring and management support so that
  // values in the heap have been properly initialized.
2166
  _g1mm = new G1MonitoringSupport(this);
2167

2168 2169 2170 2171
  return JNI_OK;
}

void G1CollectedHeap::ref_processing_init() {
2172 2173
  // Reference processing in G1 currently works as follows:
  //
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
  // * There are two reference processor instances. One is
  //   used to record and process discovered references
  //   during concurrent marking; the other is used to
  //   record and process references during STW pauses
  //   (both full and incremental).
  // * Both ref processors need to 'span' the entire heap as
  //   the regions in the collection set may be dotted around.
  //
  // * For the concurrent marking ref processor:
  //   * Reference discovery is enabled at initial marking.
  //   * Reference discovery is disabled and the discovered
  //     references processed etc during remarking.
  //   * Reference discovery is MT (see below).
  //   * Reference discovery requires a barrier (see below).
  //   * Reference processing may or may not be MT
  //     (depending on the value of ParallelRefProcEnabled
  //     and ParallelGCThreads).
  //   * A full GC disables reference discovery by the CM
  //     ref processor and abandons any entries on it's
  //     discovered lists.
  //
  // * For the STW processor:
  //   * Non MT discovery is enabled at the start of a full GC.
  //   * Processing and enqueueing during a full GC is non-MT.
  //   * During a full GC, references are processed after marking.
  //
  //   * Discovery (may or may not be MT) is enabled at the start
  //     of an incremental evacuation pause.
  //   * References are processed near the end of a STW evacuation pause.
  //   * For both types of GC:
  //     * Discovery is atomic - i.e. not concurrent.
  //     * Reference discovery will not need a barrier.
2206

2207 2208
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231

  // Concurrent Mark ref processor
  _ref_processor_cm =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           (int) ParallelGCThreads,
                                // degree of mt processing
                           (ParallelGCThreads > 1) || (ConcGCThreads > 1),
                                // mt discovery
                           (int) MAX2(ParallelGCThreads, ConcGCThreads),
                                // degree of mt discovery
                           false,
                                // Reference discovery is not atomic
                           &_is_alive_closure_cm,
                                // is alive closure
                                // (for efficiency/performance)
                           true);
                                // Setting next fields of discovered
                                // lists requires a barrier.

  // STW ref processor
  _ref_processor_stw =
2232
    new ReferenceProcessor(mr,    // span
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt processing
                           (ParallelGCThreads > 1),
                                // mt discovery
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt discovery
                           true,
                                // Reference discovery is atomic
                           &_is_alive_closure_stw,
                                // is alive closure
                                // (for efficiency/performance)
                           false);
                                // Setting next fields of discovered
                                // lists requires a barrier.
2249 2250 2251 2252 2253 2254
}

size_t G1CollectedHeap::capacity() const {
  return _g1_committed.byte_size();
}

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  assert(!hr->continuesHumongous(), "pre-condition");
  hr->reset_gc_time_stamp();
  if (hr->startsHumongous()) {
    uint first_index = hr->hrs_index() + 1;
    uint last_index = hr->last_hc_index();
    for (uint i = first_index; i < last_index; i += 1) {
      HeapRegion* chr = region_at(i);
      assert(chr->continuesHumongous(), "sanity");
      chr->reset_gc_time_stamp();
    }
  }
}

#ifndef PRODUCT
class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
private:
  unsigned _gc_time_stamp;
  bool _failures;

public:
  CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
    _gc_time_stamp(gc_time_stamp), _failures(false) { }

  virtual bool doHeapRegion(HeapRegion* hr) {
    unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
    if (_gc_time_stamp != region_gc_time_stamp) {
      gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
                             "expected %d", HR_FORMAT_PARAMS(hr),
                             region_gc_time_stamp, _gc_time_stamp);
      _failures = true;
    }
    return false;
  }

  bool failures() { return _failures; }
};

void G1CollectedHeap::check_gc_time_stamps() {
  CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  heap_region_iterate(&cl);
  guarantee(!cl.failures(), "all GC time stamps should have been reset");
}
#endif // PRODUCT

J
johnc 已提交
2300 2301 2302
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2303
                                                 int worker_i) {
2304
  // Clean cards in the hot card cache
J
johnc 已提交
2305
  concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2306

2307 2308
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  int n_completed_buffers = 0;
J
johnc 已提交
2309
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2310 2311
    n_completed_buffers++;
  }
2312
  g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2313 2314 2315 2316 2317 2318 2319 2320
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.

size_t G1CollectedHeap::used() const {
2321 2322
  assert(Heap_lock->owner() != NULL,
         "Should be owned on this thread's behalf.");
2323
  size_t result = _summary_bytes_used;
2324
  // Read only once in case it is set to NULL concurrently
2325
  HeapRegion* hr = _mutator_alloc_region.get();
2326 2327
  if (hr != NULL)
    result += hr->used();
2328 2329 2330
  return result;
}

2331 2332 2333 2334 2335
size_t G1CollectedHeap::used_unlocked() const {
  size_t result = _summary_bytes_used;
  return result;
}

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
  SumUsedClosure blk;
2351
  heap_region_iterate(&blk);
2352 2353 2354 2355
  return blk.result();
}

size_t G1CollectedHeap::unsafe_max_alloc() {
2356
  if (free_regions() > 0) return HeapRegion::GrainBytes;
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
  // otherwise, is there space in the current allocation region?

  // We need to store the current allocation region in a local variable
  // here. The problem is that this method doesn't take any locks and
  // there may be other threads which overwrite the current allocation
  // region field. attempt_allocation(), for example, sets it to NULL
  // and this can happen *after* the NULL check here but before the call
  // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  // to be a problem in the optimized build, since the two loads of the
  // current allocation region field are optimized away.
2367 2368
  HeapRegion* hr = _mutator_alloc_region.get();
  if (hr == NULL) {
2369 2370
    return 0;
  }
2371
  return hr->free();
2372 2373
}

2374
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2375 2376 2377 2378 2379 2380
  switch (cause) {
    case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
    case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
    case GCCause::_g1_humongous_allocation: return true;
    default:                                return false;
  }
2381 2382
}

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
  // Let's fill up most of the region
  size_t word_size = HeapRegion::GrainWords - 1024;
  // And as a result the region we'll allocate will be humongous.
  guarantee(isHumongous(word_size), "sanity");

  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
    // Let's use the existing mechanism for the allocation
    HeapWord* dummy_obj = humongous_obj_allocate(word_size);
    if (dummy_obj != NULL) {
      MemRegion mr(dummy_obj, word_size);
      CollectedHeap::fill_with_object(mr);
    } else {
      // If we can't allocate once, we probably cannot allocate
      // again. Let's get out of the loop.
      break;
    }
  }
}
#endif // !PRODUCT

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
void G1CollectedHeap::increment_old_marking_cycles_started() {
  assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
    _old_marking_cycles_started == _old_marking_cycles_completed + 1,
    err_msg("Wrong marking cycle count (started: %d, completed: %d)",
    _old_marking_cycles_started, _old_marking_cycles_completed));

  _old_marking_cycles_started++;
}

void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2415 2416
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2417 2418 2419 2420 2421
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2422 2423 2424 2425 2426 2427 2428 2429
  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2430
  assert(concurrent ||
2431 2432 2433 2434 2435
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
         (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
         err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2436 2437

  // This is the case for the outer caller, i.e. the concurrent cycle.
2438
  assert(!concurrent ||
2439
         (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2440
         err_msg("for outer caller (concurrent cycle): "
2441 2442 2443
                 "_old_marking_cycles_started = %u "
                 "is inconsistent with _old_marking_cycles_completed = %u",
                 _old_marking_cycles_started, _old_marking_cycles_completed));
2444

2445
  _old_marking_cycles_completed += 1;
2446

2447 2448 2449 2450
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
  // incorrectly see that a marking cyle is still in progress.
2451
  if (concurrent) {
2452 2453 2454
    _cmThread->clear_in_progress();
  }

2455 2456 2457 2458 2459 2460 2461
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2462
void G1CollectedHeap::collect(GCCause::Cause cause) {
2463
  assert_heap_not_locked();
2464

2465
  unsigned int gc_count_before;
2466
  unsigned int old_marking_count_before;
2467 2468 2469 2470 2471 2472 2473
  bool retry_gc;

  do {
    retry_gc = false;

    {
      MutexLocker ml(Heap_lock);
2474

2475 2476
      // Read the GC count while holding the Heap_lock
      gc_count_before = total_collections();
2477
      old_marking_count_before = _old_marking_cycles_started;
2478 2479 2480 2481 2482 2483
    }

    if (should_do_concurrent_full_gc(cause)) {
      // Schedule an initial-mark evacuation pause that will start a
      // concurrent cycle. We're setting word_size to 0 which means that
      // we are not requesting a post-GC allocation.
2484
      VM_G1IncCollectionPause op(gc_count_before,
2485
                                 0,     /* word_size */
2486
                                 true,  /* should_initiate_conc_mark */
2487 2488
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2489

2490
      VMThread::execute(&op);
2491
      if (!op.pause_succeeded()) {
2492
        if (old_marking_count_before == _old_marking_cycles_started) {
2493
          retry_gc = op.should_retry_gc();
2494 2495 2496 2497 2498
        } else {
          // A Full GC happened while we were trying to schedule the
          // initial-mark GC. No point in starting a new cycle given
          // that the whole heap was collected anyway.
        }
2499 2500 2501 2502 2503 2504

        if (retry_gc) {
          if (GC_locker::is_active_and_needs_gc()) {
            GC_locker::stall_until_clear();
          }
        }
2505
      }
2506
    } else {
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
      if (cause == GCCause::_gc_locker
          DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

        // Schedule a standard evacuation pause. We're setting word_size
        // to 0 which means that we are not requesting a post-GC allocation.
        VM_G1IncCollectionPause op(gc_count_before,
                                   0,     /* word_size */
                                   false, /* should_initiate_conc_mark */
                                   g1_policy()->max_pause_time_ms(),
                                   cause);
        VMThread::execute(&op);
      } else {
        // Schedule a Full GC.
2520
        VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2521 2522
        VMThread::execute(&op);
      }
2523
    }
2524
  } while (retry_gc);
2525 2526 2527
}

bool G1CollectedHeap::is_in(const void* p) const {
S
stefank 已提交
2528 2529 2530 2531 2532
  if (_g1_committed.contains(p)) {
    // Given that we know that p is in the committed space,
    // heap_region_containing_raw() should successfully
    // return the containing region.
    HeapRegion* hr = heap_region_containing_raw(p);
2533 2534
    return hr->is_in(p);
  } else {
2535
    return false;
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
  }
}

// Iteration functions.

// Iterates an OopClosure over all ref-containing fields of objects
// within a HeapRegion.

class IterateOopClosureRegionClosure: public HeapRegionClosure {
  MemRegion _mr;
2546
  ExtendedOopClosure* _cl;
2547
public:
2548
  IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2549 2550
    : _mr(mr), _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
2551
    if (!r->continuesHumongous()) {
2552 2553 2554 2555 2556 2557
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2558
void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2559
  IterateOopClosureRegionClosure blk(_g1_committed, cl);
2560
  heap_region_iterate(&blk);
2561 2562
}

2563
void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2564
  IterateOopClosureRegionClosure blk(mr, cl);
2565
  heap_region_iterate(&blk);
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2582
void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2583
  IterateObjectClosureRegionClosure blk(cl);
2584
  heap_region_iterate(&blk);
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
}

void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  // FIXME: is this right?
  guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
2606
  heap_region_iterate(&blk);
2607 2608
}

2609 2610
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  _hrs.iterate(cl);
2611 2612 2613 2614
}

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2615
                                                 uint worker_id,
2616
                                                 uint no_of_par_workers,
2617
                                                 jint claim_value) {
2618
  const uint regions = n_regions();
2619
  const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2620 2621 2622 2623 2624
                             no_of_par_workers :
                             1);
  assert(UseDynamicNumberOfGCThreads ||
         no_of_par_workers == workers()->total_workers(),
         "Non dynamic should use fixed number of workers");
2625
  // try to spread out the starting points of the workers
2626 2627 2628
  const HeapRegion* start_hr =
                        start_region_for_worker(worker_id, no_of_par_workers);
  const uint start_index = start_hr->hrs_index();
2629 2630

  // each worker will actually look at all regions
2631 2632
  for (uint count = 0; count < regions; ++count) {
    const uint index = (start_index + count) % regions;
2633 2634 2635 2636 2637 2638 2639 2640 2641
    assert(0 <= index && index < regions, "sanity");
    HeapRegion* r = region_at(index);
    // we'll ignore "continues humongous" regions (we'll process them
    // when we come across their corresponding "start humongous"
    // region) and regions already claimed
    if (r->claim_value() == claim_value || r->continuesHumongous()) {
      continue;
    }
    // OK, try to claim it
2642
    if (r->claimHeapRegion(claim_value)) {
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
      // success!
      assert(!r->continuesHumongous(), "sanity");
      if (r->startsHumongous()) {
        // If the region is "starts humongous" we'll iterate over its
        // "continues humongous" first; in fact we'll do them
        // first. The order is important. In on case, calling the
        // closure on the "starts humongous" region might de-allocate
        // and clear all its "continues humongous" regions and, as a
        // result, we might end up processing them twice. So, we'll do
        // them first (notice: most closures will ignore them anyway) and
        // then we'll do the "starts humongous" region.
2654
        for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
          HeapRegion* chr = region_at(ch_index);

          // if the region has already been claimed or it's not
          // "continues humongous" we're done
          if (chr->claim_value() == claim_value ||
              !chr->continuesHumongous()) {
            break;
          }

          // Noone should have claimed it directly. We can given
          // that we claimed its "starts humongous" region.
          assert(chr->claim_value() != claim_value, "sanity");
          assert(chr->humongous_start_region() == r, "sanity");

          if (chr->claimHeapRegion(claim_value)) {
            // we should always be able to claim it; noone else should
            // be trying to claim this region

            bool res2 = cl->doHeapRegion(chr);
            assert(!res2, "Should not abort");

            // Right now, this holds (i.e., no closure that actually
            // does something with "continues humongous" regions
            // clears them). We might have to weaken it in the future,
            // but let's leave these two asserts here for extra safety.
            assert(chr->continuesHumongous(), "should still be the case");
            assert(chr->humongous_start_region() == r, "sanity");
          } else {
            guarantee(false, "we should not reach here");
          }
        }
2686
      }
2687 2688 2689 2690

      assert(!r->continuesHumongous(), "sanity");
      bool res = cl->doHeapRegion(r);
      assert(!res, "Should not abort");
2691 2692 2693 2694
    }
  }
}

2695 2696 2697 2698 2699 2700 2701 2702
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

2703
void G1CollectedHeap::reset_heap_region_claim_values() {
2704 2705 2706 2707
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2708 2709 2710 2711 2712
void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  collection_set_iterate(&blk);
}

2713 2714 2715 2716 2717 2718 2719 2720 2721
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
2722
  uint _failures;
2723
  HeapRegion* _sh_region;
2724

2725 2726 2727 2728 2729
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
2730
      gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2731
                             "claim value = %d, should be %d",
2732 2733
                             HR_FORMAT_PARAMS(r),
                             r->claim_value(), _claim_value);
2734 2735 2736 2737 2738 2739 2740 2741
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
2742
        gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2743
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2744
                               HR_FORMAT_PARAMS(r),
2745 2746 2747 2748 2749 2750 2751
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
2752
  uint failures() { return _failures; }
2753 2754 2755 2756 2757 2758 2759
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
2760 2761

class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2762 2763 2764
private:
  jint _claim_value;
  uint _failures;
2765 2766 2767

public:
  CheckClaimValuesInCSetHRClosure(jint claim_value) :
2768
    _claim_value(claim_value), _failures(0) { }
2769

2770
  uint failures() { return _failures; }
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790

  bool doHeapRegion(HeapRegion* hr) {
    assert(hr->in_collection_set(), "how?");
    assert(!hr->isHumongous(), "H-region in CSet");
    if (hr->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
                             "claim value = %d, should be %d",
                             HR_FORMAT_PARAMS(hr),
                             hr->claim_value(), _claim_value);
      _failures += 1;
    }
    return false;
  }
};

bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesInCSetHRClosure cl(claim_value);
  collection_set_iterate(&cl);
  return cl.failures() == 0;
}
2791 2792
#endif // ASSERT

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
// Clear the cached CSet starting regions and (more importantly)
// the time stamps. Called when we reset the GC time stamp.
void G1CollectedHeap::clear_cset_start_regions() {
  assert(_worker_cset_start_region != NULL, "sanity");
  assert(_worker_cset_start_region_time_stamp != NULL, "sanity");

  int n_queues = MAX2((int)ParallelGCThreads, 1);
  for (int i = 0; i < n_queues; i++) {
    _worker_cset_start_region[i] = NULL;
    _worker_cset_start_region_time_stamp[i] = 0;
  }
}
2805

2806 2807
// Given the id of a worker, obtain or calculate a suitable
// starting region for iterating over the current collection set.
2808
HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
  assert(get_gc_time_stamp() > 0, "should have been updated by now");

  HeapRegion* result = NULL;
  unsigned gc_time_stamp = get_gc_time_stamp();

  if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
    // Cached starting region for current worker was set
    // during the current pause - so it's valid.
    // Note: the cached starting heap region may be NULL
    // (when the collection set is empty).
    result = _worker_cset_start_region[worker_i];
    assert(result == NULL || result->in_collection_set(), "sanity");
    return result;
  }

  // The cached entry was not valid so let's calculate
  // a suitable starting heap region for this worker.

  // We want the parallel threads to start their collection
  // set iteration at different collection set regions to
  // avoid contention.
  // If we have:
  //          n collection set regions
  //          p threads
  // Then thread t will start at region floor ((t * n) / p)

  result = g1_policy()->collection_set();
2836
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2837
    uint cs_size = g1_policy()->cset_region_length();
2838
    uint active_workers = workers()->active_workers();
2839 2840 2841 2842
    assert(UseDynamicNumberOfGCThreads ||
             active_workers == workers()->total_workers(),
             "Unless dynamic should use total workers");

2843 2844
    uint end_ind   = (cs_size * worker_i) / active_workers;
    uint start_ind = 0;
2845 2846 2847 2848 2849 2850 2851 2852 2853

    if (worker_i > 0 &&
        _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
      // Previous workers starting region is valid
      // so let's iterate from there
      start_ind = (cs_size * (worker_i - 1)) / active_workers;
      result = _worker_cset_start_region[worker_i - 1];
    }

2854
    for (uint i = start_ind; i < end_ind; i++) {
2855 2856 2857
      result = result->next_in_collection_set();
    }
  }
2858 2859 2860 2861 2862 2863 2864 2865 2866

  // Note: the calculated starting heap region may be NULL
  // (when the collection set is empty).
  assert(result == NULL || result->in_collection_set(), "sanity");
  assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
         "should be updated only once per pause");
  _worker_cset_start_region[worker_i] = result;
  OrderAccess::storestore();
  _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2867 2868 2869
  return result;
}

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
                                                     uint no_of_par_workers) {
  uint worker_num =
           G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
  assert(UseDynamicNumberOfGCThreads ||
         no_of_par_workers == workers()->total_workers(),
         "Non dynamic should use fixed number of workers");
  const uint start_index = n_regions() * worker_i / worker_num;
  return region_at(start_index);
}

2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2895 2896 2897 2898 2899
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2923
  return n_regions() > 0 ? region_at(0) : NULL;
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
}


Space* G1CollectedHeap::space_containing(const void* addr) const {
  Space* res = heap_region_containing(addr);
  return res;
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
  if (sp != NULL) {
    return sp->block_start(addr);
  }
  return NULL;
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  assert(sp != NULL, "block_size of address outside of heap");
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  return HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

2963 2964 2965 2966
  // Also, this value can be at most the humongous object threshold,
  // since we can't allow tlabs to grow big enough to accomodate
  // humongous objects.

2967
  HeapRegion* hr = _mutator_alloc_region.get();
2968
  size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2969
  if (hr == NULL) {
2970
    return max_tlab_size;
2971
  } else {
2972
    return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2973 2974 2975 2976
  }
}

size_t G1CollectedHeap::max_capacity() const {
2977
  return _g1_reserved.byte_size();
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
                                              VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking:
    return hr->obj_allocated_since_prev_marking(obj);
  case VerifyOption_G1UseNextMarking:
    return hr->obj_allocated_since_next_marking(obj);
  case VerifyOption_G1UseMarkWord:
    return false;
  default:
    ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  case VerifyOption_G1UseMarkWord:    return NULL;
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  default:                            ShouldNotReachHere();
  }
  return false; // keep some compilers happy
}

const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  switch (vo) {
  case VerifyOption_G1UsePrevMarking: return "PTAMS";
  case VerifyOption_G1UseNextMarking: return "NTAMS";
  case VerifyOption_G1UseMarkWord:    return "NONE";
  default:                            ShouldNotReachHere();
  }
  return NULL; // keep some compilers happy
}

3037
class VerifyLivenessOopClosure: public OopClosure {
3038 3039
  G1CollectedHeap* _g1h;
  VerifyOption _vo;
3040
public:
3041 3042 3043
  VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
    _g1h(g1h), _vo(vo)
  { }
3044 3045 3046 3047 3048
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
3049
    guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3050
              "Dead object referenced by a not dead object");
3051 3052 3053 3054
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
3055
private:
3056 3057 3058
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
3059
  VerifyOption _vo;
3060
public:
3061 3062 3063 3064 3065
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
    : _live_bytes(0), _hr(hr), _vo(vo) {
3066 3067 3068
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
3069
    VerifyLivenessOopClosure isLive(_g1h, _vo);
3070
    assert(o != NULL, "Huh?");
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
    if (!_g1h->is_obj_dead_cond(o, _vo)) {
      // If the object is alive according to the mark word,
      // then verify that the marking information agrees.
      // Note we can't verify the contra-positive of the
      // above: if the object is dead (according to the mark
      // word), it may not be marked, or may have been marked
      // but has since became dead, or may have been allocated
      // since the last marking.
      if (_vo == VerifyOption_G1UseMarkWord) {
        guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
      }

3083
      o->oop_iterate_no_header(&isLive);
3084 3085 3086 3087
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
3123
private:
3124 3125 3126
  bool             _par;
  VerifyOption     _vo;
  bool             _failures;
3127
public:
3128 3129 3130
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3131 3132
  VerifyRegionClosure(bool par, VerifyOption vo)
    : _par(par),
3133
      _vo(vo),
3134 3135 3136 3137 3138
      _failures(false) {}

  bool failures() {
    return _failures;
  }
3139

3140
  bool doHeapRegion(HeapRegion* r) {
3141
    if (!r->continuesHumongous()) {
3142
      bool failures = false;
3143
      r->verify(_vo, &failures);
3144 3145 3146
      if (failures) {
        _failures = true;
      } else {
3147
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3148
        r->object_iterate(&not_dead_yet_cl);
3149 3150 3151 3152 3153 3154 3155
        if (_vo != VerifyOption_G1UseNextMarking) {
          if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
            gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                   "max_live_bytes "SIZE_FORMAT" "
                                   "< calculated "SIZE_FORMAT,
                                   r->bottom(), r->end(),
                                   r->max_live_bytes(),
3156
                                 not_dead_yet_cl.live_bytes());
3157 3158 3159 3160 3161 3162
            _failures = true;
          }
        } else {
          // When vo == UseNextMarking we cannot currently do a sanity
          // check on the live bytes as the calculation has not been
          // finalized yet.
3163 3164
        }
      }
3165
    }
3166
    return false; // stop the region iteration if we hit a failure
3167 3168 3169
  }
};

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
class YoungRefCounterClosure : public OopClosure {
  G1CollectedHeap* _g1h;
  int              _count;
 public:
  YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  void do_oop(narrowOop* p) { ShouldNotReachHere(); }

  int count() { return _count; }
  void reset_count() { _count = 0; };
};

class VerifyKlassClosure: public KlassClosure {
  YoungRefCounterClosure _young_ref_counter_closure;
  OopClosure *_oop_closure;
 public:
  VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  void do_klass(Klass* k) {
    k->oops_do(_oop_closure);

    _young_ref_counter_closure.reset_count();
    k->oops_do(&_young_ref_counter_closure);
    if (_young_ref_counter_closure.count() > 0) {
      guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
    }
  }
};

// TODO: VerifyRootsClosure extends OopsInGenClosure so that we can
//       pass it as the perm_blk to SharedHeap::process_strong_roots.
//       When process_strong_roots stop calling perm_blk->younger_refs_iterate
//       we can change this closure to extend the simpler OopClosure.
3202 3203 3204
class VerifyRootsClosure: public OopsInGenClosure {
private:
  G1CollectedHeap* _g1h;
3205
  VerifyOption     _vo;
3206
  bool             _failures;
3207
public:
3208 3209 3210 3211
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRootsClosure(VerifyOption vo) :
3212
    _g1h(G1CollectedHeap::heap()),
3213
    _vo(vo),
3214
    _failures(false) { }
3215 3216 3217

  bool failures() { return _failures; }

3218 3219 3220 3221
  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3222
      if (_g1h->is_obj_dead_cond(obj, _vo)) {
3223
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3224
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
3225 3226 3227
        if (_vo == VerifyOption_G1UseMarkWord) {
          gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
        }
3228 3229 3230 3231 3232
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }
3233 3234 3235

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
3236 3237
};

3238 3239 3240 3241 3242
// This is the task used for parallel heap verification.

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
3243 3244
  VerifyOption     _vo;
  bool             _failures;
3245 3246

public:
3247 3248 3249
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
3250
  G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3251
    AbstractGangTask("Parallel verify task"),
3252
    _g1h(g1h),
3253
    _vo(vo),
3254 3255 3256 3257 3258
    _failures(false) { }

  bool failures() {
    return _failures;
  }
3259

3260
  void work(uint worker_id) {
3261
    HandleMark hm;
3262
    VerifyRegionClosure blk(true, _vo);
3263
    _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3264
                                          _g1h->workers()->active_workers(),
3265
                                          HeapRegion::ParVerifyClaimValue);
3266 3267 3268
    if (blk.failures()) {
      _failures = true;
    }
3269 3270 3271
  }
};

3272 3273
void G1CollectedHeap::verify(bool silent) {
  verify(silent, VerifyOption_G1UsePrevMarking);
3274 3275
}

3276
void G1CollectedHeap::verify(bool silent,
3277
                             VerifyOption vo) {
3278
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3279
    if (!silent) { gclog_or_tty->print("Roots "); }
3280
    VerifyRootsClosure rootsCl(vo);
3281 3282 3283 3284

    assert(Thread::current()->is_VM_thread(),
      "Expected to be executed serially by the VM thread at this point");

3285
    CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3286
    VerifyKlassClosure klassCl(this, &rootsCl);
3287

3288 3289
    // We apply the relevant closures to all the oops in the
    // system dictionary, the string table and the code cache.
3290
    const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3291

3292 3293 3294
    // Need cleared claim bits for the strong roots processing
    ClassLoaderDataGraph::clear_claimed_marks();

3295
    process_strong_roots(true,      // activate StrongRootsScope
3296 3297
                         false,     // we set "is scavenging" to false,
                                    // so we don't reset the dirty cards.
3298
                         ScanningOption(so),  // roots scanning options
3299
                         &rootsCl,
3300
                         &blobsCl,
3301 3302
                         &klassCl
                         );
3303

3304
    bool failures = rootsCl.failures();
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314

    if (vo != VerifyOption_G1UseMarkWord) {
      // If we're verifying during a full GC then the region sets
      // will have been torn down at the start of the GC. Therefore
      // verifying the region sets will fail. So we only verify
      // the region sets when not in a full GC.
      if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
      verify_region_sets();
    }

3315
    if (!silent) { gclog_or_tty->print("HeapRegions "); }
3316 3317 3318 3319
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

3320
      G1ParVerifyTask task(this, vo);
3321 3322 3323 3324
      assert(UseDynamicNumberOfGCThreads ||
        workers()->active_workers() == workers()->total_workers(),
        "If not dynamic should be using all the workers");
      int n_workers = workers()->active_workers();
3325 3326 3327
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
3328 3329 3330
      if (task.failures()) {
        failures = true;
      }
3331

3332 3333
      // Checks that the expected amount of parallel work was done.
      // The implication is that n_workers is > 0.
3334 3335 3336 3337 3338 3339 3340 3341
      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
3342
      VerifyRegionClosure blk(false, vo);
3343
      heap_region_iterate(&blk);
3344 3345 3346
      if (blk.failures()) {
        failures = true;
      }
3347
    }
3348
    if (!silent) gclog_or_tty->print("RemSet ");
3349
    rem_set()->verify();
3350 3351 3352

    if (failures) {
      gclog_or_tty->print_cr("Heap:");
3353 3354 3355 3356
      // It helps to have the per-region information in the output to
      // help us track down what went wrong. This is why we call
      // print_extended_on() instead of print_on().
      print_extended_on(gclog_or_tty);
3357
      gclog_or_tty->print_cr("");
3358
#ifndef PRODUCT
3359
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3360
        concurrent_mark()->print_reachable("at-verification-failure",
3361
                                           vo, false /* all */);
3362
      }
3363
#endif
3364 3365 3366
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
  } else {
    if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  }
}

class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

void G1CollectedHeap::print_on(outputStream* st) const {
3383 3384
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3385
            capacity()/K, used_unlocked()/K);
3386 3387 3388 3389 3390
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
            _g1_storage.low_boundary(),
            _g1_storage.high(),
            _g1_storage.high_boundary());
  st->cr();
3391
  st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3392 3393 3394 3395 3396 3397
  uint young_regions = _young_list->length();
  st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
            (size_t) young_regions * HeapRegion::GrainBytes / K);
  uint survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
            (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3398 3399 3400
  st->cr();
}

3401 3402 3403 3404 3405
void G1CollectedHeap::print_extended_on(outputStream* st) const {
  print_on(st);

  // Print the per-region information.
  st->cr();
3406 3407 3408 3409 3410
  st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
               "HS=humongous(starts), HC=humongous(continues), "
               "CS=collection set, F=free, TS=gc time stamp, "
               "PTAMS=previous top-at-mark-start, "
               "NTAMS=next top-at-mark-start)");
3411
  PrintRegionClosure blk(st);
3412
  heap_region_iterate(&blk);
3413 3414 3415
}

void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3416
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
3417
    workers()->print_worker_threads_on(st);
3418
  }
T
tonyp 已提交
3419
  _cmThread->print_on(st);
3420
  st->cr();
T
tonyp 已提交
3421 3422
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
3423 3424 3425 3426
  st->cr();
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3427
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3428 3429 3430
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
3431
  _cg1r->threads_do(tc);
3432 3433 3434 3435 3436 3437 3438 3439 3440
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
3441
  if (G1SummarizeRSetStats) {
3442 3443
    g1_rem_set()->print_summary_info();
  }
3444
  if (G1SummarizeConcMark) {
3445 3446 3447 3448 3449 3450
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
  SpecializationStats::print();
}

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
#ifndef PRODUCT
// Helpful for debugging RSet issues.

class PrintRSetsClosure : public HeapRegionClosure {
private:
  const char* _msg;
  size_t _occupied_sum;

public:
  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    size_t occupied = hrrs->occupied();
    _occupied_sum += occupied;

    gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
                           HR_FORMAT_PARAMS(r));
    if (occupied == 0) {
      gclog_or_tty->print_cr("  RSet is empty");
    } else {
      hrrs->print();
    }
    gclog_or_tty->print_cr("----------");
    return false;
  }

  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->print_cr(msg);
    gclog_or_tty->cr();
  }

  ~PrintRSetsClosure() {
    gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->cr();
  }
};

void G1CollectedHeap::print_cset_rsets() {
  PrintRSetsClosure cl("Printing CSet RSets");
  collection_set_iterate(&cl);
}

void G1CollectedHeap::print_all_rsets() {
  PrintRSetsClosure cl("Printing All RSets");;
  heap_region_iterate(&cl);
}
#endif // PRODUCT

3501 3502 3503 3504 3505 3506 3507
G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3508
  // always_do_update_barrier = false;
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Call allocation profiler
  AllocationProfiler::iterate_since_last_gc();
  // Fill TLAB's and such
  ensure_parsability(true);
}

void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3522
  // always_do_update_barrier = true;
3523 3524 3525 3526

  // We have just completed a GC. Update the soft reference
  // policy with the new heap occupancy
  Universe::update_heap_info_at_gc();
3527 3528
}

3529 3530 3531 3532
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
                                               unsigned int gc_count_before,
                                               bool* succeeded) {
  assert_heap_not_locked_and_not_at_safepoint();
3533
  g1_policy()->record_stop_world_start();
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
                             GCCause::_g1_inc_collection_pause);
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3549 3550 3551 3552
}

void
G1CollectedHeap::doConcurrentMark() {
3553 3554 3555 3556
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
  }
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();

3572 3573 3574 3575
  // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  // in bytes - not the number of 'entries'. We need to convert
  // into a number of cards.
  return (buffer_size * buffer_num + extra_cards) / oopSize;
3576 3577 3578
}

size_t G1CollectedHeap::cards_scanned() {
3579
  return g1_rem_set()->cardsScanned();
3580 3581 3582 3583
}

void
G1CollectedHeap::setup_surviving_young_words() {
3584 3585
  assert(_surviving_young_words == NULL, "pre-condition");
  uint array_length = g1_policy()->young_cset_region_length();
Z
zgu 已提交
3586
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3587 3588 3589 3590
  if (_surviving_young_words == NULL) {
    vm_exit_out_of_memory(sizeof(size_t) * array_length,
                          "Not enough space for young surv words summary.");
  }
3591
  memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3592
#ifdef ASSERT
3593
  for (uint i = 0;  i < array_length; ++i) {
3594
    assert( _surviving_young_words[i] == 0, "memset above" );
3595
  }
3596
#endif // !ASSERT
3597 3598 3599 3600 3601
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3602 3603
  uint array_length = g1_policy()->young_cset_region_length();
  for (uint i = 0; i < array_length; ++i) {
3604
    _surviving_young_words[i] += surv_young_words[i];
3605
  }
3606 3607 3608 3609 3610
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
Z
zgu 已提交
3611
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3612 3613 3614
  _surviving_young_words = NULL;
}

3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
#ifdef ASSERT
class VerifyCSetClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* hr) {
    // Here we check that the CSet region's RSet is ready for parallel
    // iteration. The fields that we'll verify are only manipulated
    // when the region is part of a CSet and is collected. Afterwards,
    // we reset these fields when we clear the region's RSet (when the
    // region is freed) so they are ready when the region is
    // re-allocated. The only exception to this is if there's an
    // evacuation failure and instead of freeing the region we leave
    // it in the heap. In that case, we reset these fields during
    // evacuation failure handling.
    guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");

    // Here's a good place to add any other checks we'd like to
    // perform on CSet regions.
3632 3633 3634
    return false;
  }
};
3635
#endif // ASSERT
3636

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3648
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3659
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3660 3661 3662 3663 3664 3665
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
void G1CollectedHeap::log_gc_header() {
  if (!G1Log::fine()) {
    return;
  }

  gclog_or_tty->date_stamp(PrintGCDateStamps);
  gclog_or_tty->stamp(PrintGCTimeStamps);

  GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
    .append(g1_policy()->gcs_are_young() ? " (young)" : " (mixed)")
    .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");

  gclog_or_tty->print("[%s", (const char*)gc_cause_str);
}

void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  if (!G1Log::fine()) {
    return;
  }

  if (G1Log::finer()) {
    if (evacuation_failed()) {
      gclog_or_tty->print(" (to-space exhausted)");
    }
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
    g1_policy()->phase_times()->note_gc_end();
    g1_policy()->phase_times()->print(pause_time_sec);
    g1_policy()->print_detailed_heap_transition();
  } else {
    if (evacuation_failed()) {
      gclog_or_tty->print("--");
    }
    g1_policy()->print_heap_transition();
    gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  }
}

3703
bool
3704
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3705 3706 3707
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

3708
  if (GC_locker::check_active_before_gc()) {
3709
    return false;
3710 3711
  }

3712
  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3713 3714
  ResourceMark rm;

3715
  print_heap_before_gc();
3716

T
tonyp 已提交
3717
  HRSPhaseSetter x(HRSPhaseEvacuation);
3718
  verify_region_sets_optional();
3719
  verify_dirty_young_regions();
3720

3721 3722 3723 3724 3725 3726 3727 3728
  // This call will decide whether this pause is an initial-mark
  // pause. If it is, during_initial_mark_pause() will return true
  // for the duration of this pause.
  g1_policy()->decide_on_conc_mark_initiation();

  // We do not allow initial-mark to be piggy-backed on a mixed GC.
  assert(!g1_policy()->during_initial_mark_pause() ||
          g1_policy()->gcs_are_young(), "sanity");
3729

3730 3731
  // We also do not allow mixed GCs during marking.
  assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3732

3733 3734 3735 3736
  // Record whether this pause is an initial mark. When the current
  // thread has completed its logging output and it's safe to signal
  // the CM thread, the flag's value in the policy has been reset.
  bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3737

3738 3739
  // Inner scope for scope based logging, timers, and stats collection
  {
3740 3741 3742
    if (g1_policy()->during_initial_mark_pause()) {
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
3743
      increment_old_marking_cycles_started();
3744
    }
3745
    TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
B
brutisso 已提交
3746

3747 3748
    int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                                workers()->active_workers() : 1);
3749 3750
    double pause_start_sec = os::elapsedTime();
    g1_policy()->phase_times()->note_gc_start(active_workers);
3751
    log_gc_header();
3752

3753
    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3754
    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3755

T
tonyp 已提交
3756 3757 3758 3759 3760 3761
    // If the secondary_free_list is not empty, append it to the
    // free_list. No need to wait for the cleanup operation to finish;
    // the region allocation code will check the secondary_free_list
    // and wait if necessary. If the G1StressConcRegionFreeing flag is
    // set, skip this step so that the region allocation code has to
    // get entries from the secondary_free_list.
3762
    if (!G1StressConcRegionFreeing) {
T
tonyp 已提交
3763
      append_secondary_free_list_if_not_empty_with_lock();
3764
    }
3765

3766 3767
    assert(check_young_list_well_formed(),
      "young list should be well formed");
3768

3769 3770 3771 3772
    // Don't dynamically change the number of GC threads this early.  A value of
    // 0 is used to indicate serial work.  When parallel work is done,
    // it will be set.

3773 3774 3775 3776 3777
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
3778
      increment_gc_time_stamp();
3779

3780
      verify_before_gc();
3781

3782
      COMPILER2_PRESENT(DerivedPointerTable::clear());
3783

3784 3785 3786
      // Please see comment in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() to see how
      // reference processing currently works in G1.
3787

3788 3789 3790
      // Enable discovery in the STW reference processor
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
                                            true /*verify_no_refs*/);
3791

3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
      {
        // We want to temporarily turn off discovery by the
        // CM ref processor, if necessary, and turn it back on
        // on again later if we do. Using a scoped
        // NoRefDiscovery object will do this.
        NoRefDiscovery no_cm_discovery(ref_processor_cm());

        // Forget the current alloc region (we might even choose it to be part
        // of the collection set!).
        release_mutator_alloc_region();

        // We should call this after we retire the mutator alloc
        // region(s) so that all the ALLOC / RETIRE events are generated
        // before the start GC event.
        _hr_printer.start_gc(false /* full */, (size_t) total_collections());

3808 3809 3810 3811 3812 3813
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        //
        // Preserving the old comment here if that helps the investigation:
        //
3814 3815
        // The elapsed time induced by the start time below deliberately elides
        // the possible verification above.
3816
        double sample_start_time_sec = os::elapsedTime();
3817
        size_t start_used_bytes = used();
3818

3819
#if YOUNG_LIST_VERBOSE
3820 3821 3822
        gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3823 3824
#endif // YOUNG_LIST_VERBOSE

3825
        g1_policy()->record_collection_pause_start(sample_start_time_sec,
3826
                                                   start_used_bytes);
3827

3828 3829 3830 3831 3832 3833
        double scan_wait_start = os::elapsedTime();
        // We have to wait until the CM threads finish scanning the
        // root regions as it's the only way to ensure that all the
        // objects on them have been correctly scanned before we start
        // moving them during the GC.
        bool waited = _cm->root_regions()->wait_until_scan_finished();
3834
        double wait_time_ms = 0.0;
3835 3836
        if (waited) {
          double scan_wait_end = os::elapsedTime();
3837
          wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3838
        }
3839
        g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3840

3841
#if YOUNG_LIST_VERBOSE
3842 3843
        gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
        _young_list->print();
3844
#endif // YOUNG_LIST_VERBOSE
3845

3846 3847 3848
        if (g1_policy()->during_initial_mark_pause()) {
          concurrent_mark()->checkpointRootsInitialPre();
        }
3849

3850
#if YOUNG_LIST_VERBOSE
3851 3852 3853
        gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3854
#endif // YOUNG_LIST_VERBOSE
3855

3856
        g1_policy()->finalize_cset(target_pause_time_ms);
3857

3858 3859 3860
        _cm->note_start_of_gc();
        // We should not verify the per-thread SATB buffers given that
        // we have not filtered them yet (we'll do so during the
3861
        // GC). We also call this after finalize_cset() to
3862 3863 3864 3865 3866 3867
        // ensure that the CSet has been finalized.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 false /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
        if (_hr_printer.is_active()) {
          HeapRegion* hr = g1_policy()->collection_set();
          while (hr != NULL) {
            G1HRPrinter::RegionType type;
            if (!hr->is_young()) {
              type = G1HRPrinter::Old;
            } else if (hr->is_survivor()) {
              type = G1HRPrinter::Survivor;
            } else {
              type = G1HRPrinter::Eden;
            }
            _hr_printer.cset(hr);
            hr = hr->next_in_collection_set();
3881 3882 3883
          }
        }

3884
#ifdef ASSERT
3885 3886
        VerifyCSetClosure cl;
        collection_set_iterate(&cl);
3887
#endif // ASSERT
3888

3889
        setup_surviving_young_words();
3890

3891 3892
        // Initialize the GC alloc regions.
        init_gc_alloc_regions();
3893

3894 3895
        // Actually do the work...
        evacuate_collection_set();
3896

3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
        // We do this to mainly verify the per-thread SATB buffers
        // (which have been filtered by now) since we didn't verify
        // them earlier. No point in re-checking the stacks / enqueued
        // buffers given that the CSet has not changed since last time
        // we checked.
        _cm->verify_no_cset_oops(false /* verify_stacks */,
                                 false /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);

3907 3908
        free_collection_set(g1_policy()->collection_set());
        g1_policy()->clear_collection_set();
3909

3910
        cleanup_surviving_young_words();
3911

3912 3913
        // Start a new incremental collection set for the next pause.
        g1_policy()->start_incremental_cset_building();
3914

3915 3916 3917 3918
        // Clear the _cset_fast_test bitmap in anticipation of adding
        // regions to the incremental collection set for the next
        // evacuation pause.
        clear_cset_fast_test();
3919

3920
        _young_list->reset_sampled_info();
3921

3922 3923 3924 3925 3926 3927
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
          "young list should be empty");
3928 3929

#if YOUNG_LIST_VERBOSE
3930 3931
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
3932
#endif // YOUNG_LIST_VERBOSE
3933

3934 3935 3936
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
                                            _young_list->first_survivor_region(),
                                            _young_list->last_survivor_region());
3937

3938
        _young_list->reset_auxilary_lists();
3939

3940 3941 3942 3943 3944 3945 3946
        if (evacuation_failed()) {
          _summary_bytes_used = recalculate_used();
        } else {
          // The "used" of the the collection set have already been subtracted
          // when they were freed.  Add in the bytes evacuated.
          _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
        }
3947

3948
        if (g1_policy()->during_initial_mark_pause()) {
3949 3950 3951
          // We have to do this before we notify the CM threads that
          // they can start working to make sure that all the
          // appropriate initialization is done on the CM object.
3952 3953
          concurrent_mark()->checkpointRootsInitialPost();
          set_marking_started();
3954 3955 3956
          // Note that we don't actually trigger the CM thread at
          // this point. We do that later when we're sure that
          // the current thread has completed its logging output.
3957
        }
3958

3959
        allocate_dummy_regions();
3960

3961
#if YOUNG_LIST_VERBOSE
3962 3963 3964
        gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3965
#endif // YOUNG_LIST_VERBOSE
3966

3967 3968 3969 3970 3971 3972
        init_mutator_alloc_region();

        {
          size_t expand_bytes = g1_policy()->expansion_amount();
          if (expand_bytes > 0) {
            size_t bytes_before = capacity();
3973 3974
            // No need for an ergo verbose message here,
            // expansion_amount() does this when it returns a value > 0.
3975 3976 3977 3978 3979 3980
            if (!expand(expand_bytes)) {
              // We failed to expand the heap so let's verify that
              // committed/uncommitted amount match the backing store
              assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
              assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
            }
3981 3982 3983
          }
        }

3984 3985 3986 3987 3988 3989 3990 3991
        // We redo the verificaiton but now wrt to the new CSet which
        // has just got initialized after the previous CSet was freed.
        _cm->verify_no_cset_oops(true  /* verify_stacks */,
                                 true  /* verify_enqueued_buffers */,
                                 true  /* verify_thread_buffers */,
                                 true  /* verify_fingers */);
        _cm->note_end_of_gc();

3992 3993 3994 3995 3996 3997
        // This timing is only used by the ergonomics to handle our pause target.
        // It is unclear why this should not include the full pause. We will
        // investigate this in CR 7178365.
        double sample_end_time_sec = os::elapsedTime();
        double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
        g1_policy()->record_collection_pause_end(pause_time_ms);
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023

        MemoryService::track_memory_usage();

        // In prepare_for_verify() below we'll need to scan the deferred
        // update buffers to bring the RSets up-to-date if
        // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
        // the update buffers we'll probably need to scan cards on the
        // regions we just allocated to (i.e., the GC alloc
        // regions). However, during the last GC we called
        // set_saved_mark() on all the GC alloc regions, so card
        // scanning might skip the [saved_mark_word()...top()] area of
        // those regions (i.e., the area we allocated objects into
        // during the last GC). But it shouldn't. Given that
        // saved_mark_word() is conditional on whether the GC time stamp
        // on the region is current or not, by incrementing the GC time
        // stamp here we invalidate all the GC time stamps on all the
        // regions and saved_mark_word() will simply return top() for
        // all the regions. This is a nicer way of ensuring this rather
        // than iterating over the regions and fixing them. In fact, the
        // GC time stamp increment here also ensures that
        // saved_mark_word() will return top() between pauses, i.e.,
        // during concurrent refinement. So we don't need the
        // is_gc_active() check to decided which top to use when
        // scanning cards (see CR 7039627).
        increment_gc_time_stamp();

4024
        verify_after_gc();
4025

4026 4027
        assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
        ref_processor_stw()->verify_no_references_recorded();
4028

4029 4030
        // CM reference discovery will be re-enabled if necessary.
      }
4031

4032 4033 4034 4035 4036 4037
      // We should do this after we potentially expand the heap so
      // that all the COMMIT events are generated before the end GC
      // event, and after we retire the GC alloc regions so that all
      // RETIRE events are generated before the end GC event.
      _hr_printer.end_gc(false /* full */, (size_t) total_collections());

4038 4039 4040
      if (mark_in_progress()) {
        concurrent_mark()->update_g1_committed();
      }
4041 4042

#ifdef TRACESPINNING
4043
      ParallelTaskTerminator::print_termination_counts();
4044
#endif
4045

4046
      gc_epilogue(false);
4047

4048
      log_gc_footer(os::elapsedTime() - pause_start_sec);
4049
    }
4050

4051
    // It is not yet to safe to tell the concurrent mark to
4052 4053 4054
    // start as we have some optional output below. We don't want the
    // output from the concurrent mark thread interfering with this
    // logging output either.
4055

4056 4057 4058 4059 4060
    _hrs.verify_optional();
    verify_region_sets_optional();

    TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
    TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4061

4062
    print_heap_after_gc();
4063

4064 4065 4066 4067 4068 4069
    // We must call G1MonitoringSupport::update_sizes() in the same scoping level
    // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
    // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
    // before any GC notifications are raised.
    g1mm()->update_sizes();
  }
4070

4071 4072 4073 4074 4075
  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_summary_info();
  }
4076

4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
  // It should now be safe to tell the concurrent mark thread to start
  // without its logging output interfering with the logging output
  // that came from the pause.

  if (should_start_conc_mark) {
    // CAUTION: after the doConcurrentMark() call below,
    // the concurrent marking thread(s) could be running
    // concurrently with us. Make sure that anything after
    // this point does not assume that we are the only GC thread
    // running. Note: of course, the actual marking work will
    // not start until the safepoint itself is released in
    // ConcurrentGCThread::safepoint_desynchronize().
    doConcurrentMark();
  }

4092
  return true;
4093 4094
}

4095 4096 4097 4098 4099
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
  size_t gclab_word_size;
  switch (purpose) {
    case GCAllocForSurvived:
4100
      gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4101 4102
      break;
    case GCAllocForTenured:
4103
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4104 4105 4106
      break;
    default:
      assert(false, "unknown GCAllocPurpose");
4107
      gclab_word_size = _old_plab_stats.desired_plab_sz();
4108 4109
      break;
  }
4110 4111 4112 4113 4114 4115

  // Prevent humongous PLAB sizes for two reasons:
  // * PLABs are allocated using a similar paths as oops, but should
  //   never be in a humongous region
  // * Allowing humongous PLABs needlessly churns the region free lists
  return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4116 4117
}

4118 4119 4120 4121 4122 4123 4124 4125 4126
void G1CollectedHeap::init_mutator_alloc_region() {
  assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  _mutator_alloc_region.init();
}

void G1CollectedHeap::release_mutator_alloc_region() {
  _mutator_alloc_region.release();
  assert(_mutator_alloc_region.get() == NULL, "post-condition");
}
4127

4128
void G1CollectedHeap::init_gc_alloc_regions() {
4129
  assert_at_safepoint(true /* should_be_vm_thread */);
4130

4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
  _survivor_gc_alloc_region.init();
  _old_gc_alloc_region.init();
  HeapRegion* retained_region = _retained_old_gc_alloc_region;
  _retained_old_gc_alloc_region = NULL;

  // We will discard the current GC alloc region if:
  // a) it's in the collection set (it can happen!),
  // b) it's already full (no point in using it),
  // c) it's empty (this means that it was emptied during
  // a cleanup and it should be on the free list now), or
  // d) it's humongous (this means that it was emptied
  // during a cleanup and was added to the free list, but
  // has been subseqently used to allocate a humongous
  // object that may be less than the region size).
  if (retained_region != NULL &&
      !retained_region->in_collection_set() &&
      !(retained_region->top() == retained_region->end()) &&
      !retained_region->is_empty() &&
      !retained_region->isHumongous()) {
    retained_region->set_saved_mark();
T
tonyp 已提交
4151 4152 4153 4154 4155
    // The retained region was added to the old region set when it was
    // retired. We have to remove it now, since we don't allow regions
    // we allocate to in the region sets. We'll re-add it later, when
    // it's retired again.
    _old_set.remove(retained_region);
4156 4157
    bool during_im = g1_policy()->during_initial_mark_pause();
    retained_region->note_start_of_copying(during_im);
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
    _old_gc_alloc_region.set(retained_region);
    _hr_printer.reuse(retained_region);
  }
}

void G1CollectedHeap::release_gc_alloc_regions() {
  _survivor_gc_alloc_region.release();
  // If we have an old GC alloc region to release, we'll save it in
  // _retained_old_gc_alloc_region. If we don't
  // _retained_old_gc_alloc_region will become NULL. This is what we
  // want either way so no reason to check explicitly for either
  // condition.
  _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4171 4172 4173 4174 4175

  if (ResizePLAB) {
    _survivor_plab_stats.adjust_desired_plab_sz();
    _old_plab_stats.adjust_desired_plab_sz();
  }
4176 4177
}

4178 4179 4180 4181
void G1CollectedHeap::abandon_gc_alloc_regions() {
  assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  _retained_old_gc_alloc_region = NULL;
4182 4183
}

4184 4185 4186
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
Z
zgu 已提交
4187
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4188 4189 4190 4191 4192 4193 4194
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
4195
  delete _evac_failure_scan_stack;
4196 4197 4198
  _evac_failure_scan_stack = NULL;
}

4199 4200
void G1CollectedHeap::remove_self_forwarding_pointers() {
  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4201

4202
  G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4203

4204 4205 4206 4207
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    set_par_threads();
    workers()->run_task(&rsfp_task);
    set_par_threads(0);
4208
  } else {
4209
    rsfp_task.work(0);
4210
  }
4211 4212 4213 4214 4215 4216 4217

  assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");

  // Reset the claim values in the regions in the collection set.
  reset_cset_heap_region_claim_values();

  assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228

  // Now restore saved marks, if any.
  if (_objs_with_preserved_marks != NULL) {
    assert(_preserved_marks_of_objs != NULL, "Both or none.");
    guarantee(_objs_with_preserved_marks->length() ==
              _preserved_marks_of_objs->length(), "Both or none.");
    for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
      oop obj   = _objs_with_preserved_marks->at(i);
      markOop m = _preserved_marks_of_objs->at(i);
      obj->set_mark(m);
    }
4229

4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
    // Delete the preserved marks growable arrays (allocated on the C heap).
    delete _objs_with_preserved_marks;
    delete _preserved_marks_of_objs;
    _objs_with_preserved_marks = NULL;
    _preserved_marks_of_objs = NULL;
  }
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

oop
G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4254
                                               oop old) {
4255 4256 4257
  assert(obj_in_cs(old),
         err_msg("obj: "PTR_FORMAT" should still be in the CSet",
                 (HeapWord*) old));
4258 4259 4260 4261
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
4262

4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
4281 4282 4283 4284 4285 4286 4287
    // Forward-to-self failed. Either someone else managed to allocate
    // space for this object (old != forward_ptr) or they beat us in
    // self-forwarding it (old == forward_ptr).
    assert(old == forward_ptr || !obj_in_cs(forward_ptr),
           err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
                   "should not be in the CSet",
                   (HeapWord*) old, (HeapWord*) forward_ptr));
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  set_evacuation_failed(true);

  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4300
    _hr_printer.evac_failure(r);
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4314 4315 4316 4317
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4318 4319 4320
    if (_objs_with_preserved_marks == NULL) {
      assert(_preserved_marks_of_objs == NULL, "Both or none.");
      _objs_with_preserved_marks =
Z
zgu 已提交
4321
        new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4322
      _preserved_marks_of_objs =
Z
zgu 已提交
4323
        new (ResourceObj::C_HEAP, mtGC) GrowableArray<markOop>(40, true);
4324 4325 4326 4327 4328 4329 4330 4331
    }
    _objs_with_preserved_marks->push(obj);
    _preserved_marks_of_objs->push(m);
  }
}

HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
                                                  size_t word_size) {
4332 4333 4334 4335
  if (purpose == GCAllocForSurvived) {
    HeapWord* result = survivor_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4336
    } else {
4337 4338 4339
      // Let's try to allocate in the old gen in case we can fit the
      // object there.
      return old_attempt_allocation(word_size);
4340
    }
4341 4342 4343 4344 4345
  } else {
    assert(purpose ==  GCAllocForTenured, "sanity");
    HeapWord* result = old_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4346
    } else {
4347 4348 4349
      // Let's try to allocate in the survivors in case we can fit the
      // object there.
      return survivor_attempt_allocation(word_size);
4350 4351 4352
    }
  }

4353 4354 4355
  ShouldNotReachHere();
  // Trying to keep some compilers happy.
  return NULL;
4356 4357
}

4358
G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4359
  ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4360

4361
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4362 4363 4364 4365 4366 4367 4368
  : _g1h(g1h),
    _refs(g1h->task_queue(queue_num)),
    _dcq(&g1h->dirty_card_queue_set()),
    _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
    _g1_rem(g1h->g1_rem_set()),
    _hash_seed(17), _queue_num(queue_num),
    _term_attempts(0),
4369 4370
    _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
    _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4371 4372
    _age_table(false),
    _strong_roots_time(0), _term_time(0),
4373
    _alloc_buffer_waste(0), _undo_waste(0) {
4374 4375 4376 4377 4378
  // we allocate G1YoungSurvRateNumRegions plus one entries, since
  // we "sacrifice" entry 0 to keep track of surviving bytes for
  // non-young regions (where the age is -1)
  // We also add a few elements at the beginning and at the end in
  // an attempt to eliminate cache contention
4379 4380 4381 4382
  uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  uint array_length = PADDING_ELEM_NUM +
                      real_length +
                      PADDING_ELEM_NUM;
Z
zgu 已提交
4383
  _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4384 4385 4386 4387
  if (_surviving_young_words_base == NULL)
    vm_exit_out_of_memory(array_length * sizeof(size_t),
                          "Not enough space for young surv histo.");
  _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4388
  memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4389

4390 4391 4392
  _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;

4393 4394
  _start = os::elapsedTime();
}
4395

4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
void
G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
{
  st->print_raw_cr("GC Termination Stats");
  st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
                   " ------waste (KiB)------");
  st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
                   "  total   alloc    undo");
  st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
                   " ------- ------- -------");
}

void
G1ParScanThreadState::print_termination_stats(int i,
                                              outputStream* const st) const
{
  const double elapsed_ms = elapsed_time() * 1000.0;
  const double s_roots_ms = strong_roots_time() * 1000.0;
  const double term_ms    = term_time() * 1000.0;
  st->print_cr("%3d %9.2f %9.2f %6.2f "
               "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
               SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
               i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
               term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
               (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
               alloc_buffer_waste() * HeapWordSize / K,
               undo_waste() * HeapWordSize / K);
}

4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
#ifdef ASSERT
bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  assert(ref != NULL, "invariant");
  assert(UseCompressedOops, "sanity");
  assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  oop p = oopDesc::load_decode_heap_oop(ref);
  assert(_g1h->is_in_g1_reserved(p),
         err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  return true;
}

bool G1ParScanThreadState::verify_ref(oop* ref) const {
  assert(ref != NULL, "invariant");
  if (has_partial_array_mask(ref)) {
    // Must be in the collection set--it's already been copied.
    oop p = clear_partial_array_mask(ref);
    assert(_g1h->obj_in_cs(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  } else {
    oop p = oopDesc::load_decode_heap_oop(ref);
    assert(_g1h->is_in_g1_reserved(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  }
  return true;
}

bool G1ParScanThreadState::verify_task(StarTask ref) const {
  if (ref.is_narrow()) {
    return verify_ref((narrowOop*) ref);
  } else {
    return verify_ref((oop*) ref);
  }
}
#endif // ASSERT

void G1ParScanThreadState::trim_queue() {
4461 4462 4463 4464
  assert(_evac_cl != NULL, "not set");
  assert(_evac_failure_cl != NULL, "not set");
  assert(_partial_scan_cl != NULL, "not set");

4465 4466 4467 4468 4469 4470
  StarTask ref;
  do {
    // Drain the overflow stack first, so other threads can steal.
    while (refs()->pop_overflow(ref)) {
      deal_with_reference(ref);
    }
4471

4472 4473 4474 4475 4476 4477
    while (refs()->pop_local(ref)) {
      deal_with_reference(ref);
    }
  } while (!refs()->is_empty());
}

4478 4479
G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
                                     G1ParScanThreadState* par_scan_state) :
4480
  _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4481
  _par_scan_state(par_scan_state),
4482
  _worker_id(par_scan_state->queue_num()),
4483 4484
  _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  _mark_in_progress(_g1->mark_in_progress()) { }
4485

B
brutisso 已提交
4486 4487
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4488 4489 4490 4491 4492 4493 4494
#ifdef ASSERT
  HeapRegion* hr = _g1->heap_region_containing(obj);
  assert(hr != NULL, "sanity");
  assert(!hr->in_collection_set(), "should not mark objects in the CSet");
#endif // ASSERT

  // We know that the object is not moving so it's safe to read its size.
4495
  _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4496 4497
}

B
brutisso 已提交
4498 4499 4500
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  ::mark_forwarded_object(oop from_obj, oop to_obj) {
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
#ifdef ASSERT
  assert(from_obj->is_forwarded(), "from obj should be forwarded");
  assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  assert(from_obj != to_obj, "should not be self-forwarded");

  HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  assert(from_hr != NULL, "sanity");
  assert(from_hr->in_collection_set(), "from obj should be in the CSet");

  HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  assert(to_hr != NULL, "sanity");
  assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
#endif // ASSERT

  // The object might be in the process of being copied by another
  // worker so we cannot trust that its to-space image is
  // well-formed. So we have to read its size from its from-space
  // image which we know should not be changing.
4519
  _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4520 4521
}

B
brutisso 已提交
4522 4523 4524
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  ::copy_to_survivor_space(oop old) {
4525
  size_t word_sz = old->size();
4526 4527 4528
  HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  // +1 to make the -1 indexes valid...
  int       young_index = from_region->young_index_in_cset()+1;
4529 4530
  assert( (from_region->is_young() && young_index >  0) ||
         (!from_region->is_young() && young_index == 0), "invariant" );
4531 4532
  G1CollectorPolicy* g1p = _g1->g1_policy();
  markOop m = old->mark();
4533 4534 4535
  int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
                                           : m->age();
  GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4536 4537
                                                             word_sz);
  HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4538 4539 4540 4541 4542 4543 4544 4545 4546
#ifndef PRODUCT
  // Should this evacuation fail?
  if (_g1->evacuation_should_fail()) {
    if (obj_ptr != NULL) {
      _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
      obj_ptr = NULL;
    }
  }
#endif // !PRODUCT
4547 4548 4549 4550 4551

  if (obj_ptr == NULL) {
    // This will either forward-to-self, or detect that someone else has
    // installed a forwarding pointer.
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4552
    return _g1->handle_evacuation_failure_par(cl, old);
4553 4554
  }

4555 4556
  oop obj = oop(obj_ptr);

4557 4558 4559
  // We're going to allocate linearly, so might as well prefetch ahead.
  Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);

4560 4561 4562 4563
  oop forward_ptr = old->forward_to_atomic(obj);
  if (forward_ptr == NULL) {
    Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
    if (g1p->track_object_age(alloc_purpose)) {
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
      // We could simply do obj->incr_age(). However, this causes a
      // performance issue. obj->incr_age() will first check whether
      // the object has a displaced mark by checking its mark word;
      // getting the mark word from the new location of the object
      // stalls. So, given that we already have the mark word and we
      // are about to install it anyway, it's better to increase the
      // age on the mark word, when the object does not have a
      // displaced mark word. We're not expecting many objects to have
      // a displaced marked word, so that case is not optimized
      // further (it could be...) and we simply call obj->incr_age().

      if (m->has_displaced_mark_helper()) {
        // in this case, we have to install the mark word first,
        // otherwise obj looks to be forwarded (the old mark word,
        // which contains the forward pointer, was copied)
        obj->set_mark(m);
        obj->incr_age();
      } else {
        m = m->incr_age();
4583
        obj->set_mark(m);
4584
      }
4585 4586 4587
      _par_scan_state->age_table()->add(obj, word_sz);
    } else {
      obj->set_mark(m);
4588
    }
4589

4590 4591 4592 4593
    size_t* surv_young_words = _par_scan_state->surviving_young_words();
    surv_young_words[young_index] += word_sz;

    if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4594 4595 4596 4597
      // We keep track of the next start index in the length field of
      // the to-space object. The actual length can be found in the
      // length field of the from-space object.
      arrayOop(obj)->set_length(0);
4598 4599
      oop* old_p = set_partial_array_mask(old);
      _par_scan_state->push_on_queue(old_p);
4600
    } else {
4601 4602
      // No point in using the slower heap_region_containing() method,
      // given that we know obj is in the heap.
B
brutisso 已提交
4603 4604
      _scanner.set_region(_g1->heap_region_containing_raw(obj));
      obj->oop_iterate_backwards(&_scanner);
4605 4606 4607 4608 4609 4610 4611 4612
    }
  } else {
    _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
    obj = forward_ptr;
  }
  return obj;
}

4613 4614 4615 4616 4617 4618 4619
template <class T>
void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
    _scanned_klass->record_modified_oops();
  }
}

4620
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4621
template <class T>
4622
void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4623 4624
::do_oop_work(T* p) {
  oop obj = oopDesc::load_decode_heap_oop(p);
4625
  assert(barrier != G1BarrierRS || obj != NULL,
4626
         "Precondition: G1BarrierRS implies obj is non-NULL");
4627

4628 4629
  assert(_worker_id == _par_scan_state->queue_num(), "sanity");

4630
  // here the null check is implicit in the cset_fast_test() test
4631
  if (_g1->in_cset_fast_test(obj)) {
4632
    oop forwardee;
4633
    if (obj->is_forwarded()) {
4634
      forwardee = obj->forwardee();
4635
    } else {
4636 4637 4638 4639 4640 4641 4642 4643
      forwardee = copy_to_survivor_space(obj);
    }
    assert(forwardee != NULL, "forwardee should not be NULL");
    oopDesc::encode_store_heap_oop(p, forwardee);
    if (do_mark_object && forwardee != obj) {
      // If the object is self-forwarded we don't need to explicitly
      // mark it, the evacuation failure protocol will do so.
      mark_forwarded_object(obj, forwardee);
4644
    }
4645

4646 4647
    // When scanning the RS, we only care about objs in CS.
    if (barrier == G1BarrierRS) {
4648
      _par_scan_state->update_rs(_from, p, _worker_id);
4649 4650
    } else if (barrier == G1BarrierKlass) {
      do_klass_barrier(p, forwardee);
4651
    }
4652 4653 4654 4655
  } else {
    // The object is not in collection set. If we're a root scanning
    // closure during an initial mark pause (i.e. do_mark_object will
    // be true) then attempt to mark the object.
4656 4657
    if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
      mark_object(obj);
4658
    }
4659
  }
4660

4661
  if (barrier == G1BarrierEvac && obj != NULL) {
4662
    _par_scan_state->update_rs(_from, p, _worker_id);
4663 4664 4665 4666
  }

  if (do_gen_barrier && obj != NULL) {
    par_do_barrier(p);
4667 4668 4669
  }
}

4670 4671
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4672

4673
template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4674
  assert(has_partial_array_mask(p), "invariant");
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
  oop from_obj = clear_partial_array_mask(p);

  assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
  assert(from_obj->is_objArray(), "must be obj array");
  objArrayOop from_obj_array = objArrayOop(from_obj);
  // The from-space object contains the real length.
  int length                 = from_obj_array->length();

  assert(from_obj->is_forwarded(), "must be forwarded");
  oop to_obj                 = from_obj->forwardee();
  assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
  objArrayOop to_obj_array   = objArrayOop(to_obj);
  // We keep track of the next start index in the length field of the
  // to-space object.
  int next_index             = to_obj_array->length();
  assert(0 <= next_index && next_index < length,
         err_msg("invariant, next index: %d, length: %d", next_index, length));

  int start                  = next_index;
  int end                    = length;
  int remainder              = end - start;
  // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4697 4698
  if (remainder > 2 * ParGCArrayScanChunk) {
    end = start + ParGCArrayScanChunk;
4699 4700 4701 4702 4703
    to_obj_array->set_length(end);
    // Push the remainder before we process the range in case another
    // worker has run out of things to do and can steal it.
    oop* from_obj_p = set_partial_array_mask(from_obj);
    _par_scan_state->push_on_queue(from_obj_p);
4704
  } else {
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
    assert(length == end, "sanity");
    // We'll process the final range for this object. Restore the length
    // so that the heap remains parsable in case of evacuation failure.
    to_obj_array->set_length(end);
  }
  _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
  // Process indexes [start,end). It will also process the header
  // along with the first chunk (i.e., the chunk with start == 0).
  // Note that at this point the length field of to_obj_array is not
  // correct given that we are using it to keep track of the next
  // start index. oop_iterate_range() (thankfully!) ignores the length
  // field and only relies on the start / end parameters.  It does
  // however return the size of the object which will be incorrect. So
  // we have to ignore it even if we wanted to use it.
  to_obj_array->oop_iterate_range(&_scanner, start, end);
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
}

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4741
  void do_void();
4742

4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  StarTask stolen_task;
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();

  do {
    while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
      assert(pss->verify_task(stolen_task), "sanity");
      if (stolen_task.is_narrow()) {
4764
        pss->deal_with_reference((narrowOop*) stolen_task);
4765
      } else {
4766
        pss->deal_with_reference((oop*) stolen_task);
4767
      }
4768 4769 4770 4771

      // We've just processed a reference and we might have made
      // available new entries on the queues. So we have to make sure
      // we drain the queues as necessary.
4772
      pss->trim_queue();
4773
    }
4774 4775 4776 4777
  } while (!offer_termination());

  pss->retire_alloc_buffers();
}
4778

4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
class G1KlassScanClosure : public KlassClosure {
 G1ParCopyHelper* _closure;
 bool             _process_only_dirty;
 int              _count;
 public:
  G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
      : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  void do_klass(Klass* klass) {
    // If the klass has not been dirtied we know that there's
    // no references into  the young gen and we can skip it.
   if (!_process_only_dirty || klass->has_modified_oops()) {
      // Clean the klass since we're going to scavenge all the metadata.
      klass->clear_modified_oops();

      // Tell the closure that this klass is the Klass to scavenge
      // and is the one to dirty if oops are left pointing into the young gen.
      _closure->set_scanned_klass(klass);

      klass->oops_do(_closure);

      _closure->set_scanned_klass(NULL);
    }
    _count++;
  }
};

4805 4806 4807 4808 4809
class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
4810
  uint _n_workers;
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

  size_t getNCards() {
    return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
      / G1BlockOffsetSharedArray::N_bytes;
  }

public:
4821 4822
  G1ParTask(G1CollectedHeap* g1h,
            RefToScanQueueSet *task_queues)
4823 4824 4825
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
4826 4827
      _terminator(0, _queues),
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4828 4829 4830 4831 4832 4833 4834 4835
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
  ParallelTaskTerminator* terminator() { return &_terminator; }

  virtual void set_for_termination(int active_workers) {
    // This task calls set_n_termination() in par_non_clean_card_iterate_work()
    // in the young space (_par_seq_tasks) in the G1 heap
    // for SequentialSubTasksDone.
    // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
    // both of which need setting by set_n_termination().
    _g1h->SharedHeap::set_n_termination(active_workers);
    _g1h->set_n_termination(active_workers);
    terminator()->reset_for_reuse(active_workers);
    _n_workers = active_workers;
  }

4850 4851
  void work(uint worker_id) {
    if (worker_id >= _n_workers) return;  // no work needed this round
4852 4853

    double start_time_ms = os::elapsedTime() * 1000.0;
4854
    _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4855

4856 4857 4858
    {
      ResourceMark rm;
      HandleMark   hm;
4859

4860
      ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4861

4862 4863 4864 4865
      G1ParScanThreadState            pss(_g1h, worker_id);
      G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
      G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
      G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4866

4867 4868 4869
      pss.set_evac_closure(&scan_evac_cl);
      pss.set_evac_failure_closure(&evac_failure_cl);
      pss.set_partial_scan_closure(&partial_scan_cl);
4870

4871
      G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4872
      G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
4873

4874
      G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4875 4876 4877 4878 4879
      G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);

      bool only_young                 = _g1h->g1_policy()->gcs_are_young();
      G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
      G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
4880

4881
      OopClosure*                    scan_root_cl = &only_scan_root_cl;
4882
      G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
4883

4884 4885 4886
      if (_g1h->g1_policy()->during_initial_mark_pause()) {
        // We also need to mark copied objects.
        scan_root_cl = &scan_mark_root_cl;
4887
        scan_klasses_cl = &scan_mark_klasses_cl_s;
4888
      }
4889

4890
      G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4891

4892 4893
      int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;

4894
      pss.start_strong_roots();
4895 4896
      _g1h->g1_process_strong_roots(/* is scavenging */ true,
                                    SharedHeap::ScanningOption(so),
4897 4898
                                    scan_root_cl,
                                    &push_heap_rs_cl,
4899
                                    scan_klasses_cl,
4900 4901
                                    worker_id);
      pss.end_strong_roots();
4902

4903 4904 4905 4906 4907 4908
      {
        double start = os::elapsedTime();
        G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
        evac.do_void();
        double elapsed_ms = (os::elapsedTime()-start)*1000.0;
        double term_ms = pss.term_time()*1000.0;
4909
        _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4910
        _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4911 4912 4913 4914 4915 4916 4917 4918
      }
      _g1h->g1_policy()->record_thread_age_table(pss.age_table());
      _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

      if (ParallelGCVerbose) {
        MutexLocker x(stats_lock());
        pss.print_termination_stats(worker_id);
      }
4919

4920
      assert(pss.refs()->is_empty(), "should be empty");
4921

4922 4923 4924
      // Close the inner scope so that the ResourceMark and HandleMark
      // destructors are executed here and are included as part of the
      // "GC Worker Time".
4925 4926
    }

4927
    double end_time_ms = os::elapsedTime() * 1000.0;
4928
    _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4929 4930 4931 4932 4933
  }
};

// *** Common G1 Evacuation Stuff

4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
// Closures that support the filtering of CodeBlobs scanned during
// external root scanning.

// Closure applied to reference fields in code blobs (specifically nmethods)
// to determine whether an nmethod contains references that point into
// the collection set. Used as a predicate when walking code roots so
// that only nmethods that point into the collection set are added to the
// 'marked' list.

class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {

  class G1PointsIntoCSOopClosure : public OopClosure {
    G1CollectedHeap* _g1;
    bool _points_into_cs;
  public:
    G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
      _g1(g1), _points_into_cs(false) { }

    bool points_into_cs() const { return _points_into_cs; }

    template <class T>
    void do_oop_nv(T* p) {
      if (!_points_into_cs) {
        T heap_oop = oopDesc::load_heap_oop(p);
        if (!oopDesc::is_null(heap_oop) &&
            _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
          _points_into_cs = true;
        }
      }
    }

    virtual void do_oop(oop* p)        { do_oop_nv(p); }
    virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
  };

  G1CollectedHeap* _g1;

public:
  G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
    CodeBlobToOopClosure(cl, true), _g1(g1) { }

  virtual void do_code_blob(CodeBlob* cb) {
    nmethod* nm = cb->as_nmethod_or_null();
    if (nm != NULL && !(nm->test_oops_do_mark())) {
      G1PointsIntoCSOopClosure predicate_cl(_g1);
      nm->oops_do(&predicate_cl);

      if (predicate_cl.points_into_cs()) {
        // At least one of the reference fields or the oop relocations
        // in the nmethod points into the collection set. We have to
        // 'mark' this nmethod.
        // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
        // or MarkingCodeBlobClosure::do_code_blob() change.
        if (!nm->test_set_oops_do_mark()) {
          do_newly_marked_nmethod(nm);
        }
      }
    }
  }
};

4995 4996
// This method is run in a GC worker.

4997 4998
void
G1CollectedHeap::
4999
g1_process_strong_roots(bool is_scavenging,
5000
                        ScanningOption so,
5001 5002
                        OopClosure* scan_non_heap_roots,
                        OopsInHeapRegionClosure* scan_rs,
5003
                        G1KlassScanClosure* scan_klasses,
5004
                        int worker_i) {
5005

5006
  // First scan the strong roots
5007 5008 5009 5010 5011
  double ext_roots_start = os::elapsedTime();
  double closure_app_time_sec = 0.0;

  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);

5012 5013
  // Walk the code cache w/o buffering, because StarTask cannot handle
  // unaligned oop locations.
5014
  G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
5015 5016

  process_strong_roots(false, // no scoping; this is parallel code
5017
                       is_scavenging, so,
5018
                       &buf_scan_non_heap_roots,
5019
                       &eager_scan_code_roots,
5020 5021
                       scan_klasses
                       );
5022

5023
  // Now the CM ref_processor roots.
5024
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5025 5026 5027 5028 5029
    // We need to treat the discovered reference lists of the
    // concurrent mark ref processor as roots and keep entries
    // (which are added by the marking threads) on them live
    // until they can be processed at the end of marking.
    ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5030 5031 5032
  }

  // Finish up any enqueued closure apps (attributed as object copy time).
5033
  buf_scan_non_heap_roots.done();
5034

5035 5036
  double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();

5037
  g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5038

5039
  double ext_root_time_ms =
5040
    ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5041

5042
  g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5043

5044 5045 5046
  // During conc marking we have to filter the per-thread SATB buffers
  // to make sure we remove any oops into the CSet (which will show up
  // as implicitly live).
5047
  double satb_filtering_ms = 0.0;
5048 5049
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
    if (mark_in_progress()) {
5050 5051
      double satb_filter_start = os::elapsedTime();

5052
      JavaThread::satb_mark_queue_set().filter_thread_buffers();
5053 5054

      satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5055
    }
5056
  }
5057
  g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068

  // Now scan the complement of the collection set.
  if (scan_rs != NULL) {
    g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  }
  _process_strong_tasks->all_tasks_completed();
}

void
G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
                                       OopClosure* non_root_closure) {
5069 5070
  CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
5071 5072
}

5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
// Weak Reference Processing support

// An always "is_alive" closure that is used to preserve referents.
// If the object is non-null then it's alive.  Used in the preservation
// of referent objects that are pointed to by reference objects
// discovered by the CM ref processor.
class G1AlwaysAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_object(oop p) { assert(false, "Do not call."); }
  bool do_object_b(oop p) {
    if (p != NULL) {
      return true;
    }
    return false;
  }
};

bool G1STWIsAliveClosure::do_object_b(oop p) {
  // An object is reachable if it is outside the collection set,
  // or is inside and copied.
  return !_g1->obj_in_cs(p) || p->is_forwarded();
}

// Non Copying Keep Alive closure
class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  void do_oop(      oop* p) {
    oop obj = *p;

    if (_g1->obj_in_cs(obj)) {
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
    }
  }
};

// Copying Keep Alive closure - can be called from both
// serial and parallel code as long as different worker
// threads utilize different G1ParScanThreadState instances
// and different queues.

class G1CopyingKeepAliveClosure: public OopClosure {
  G1CollectedHeap*         _g1h;
  OopClosure*              _copy_non_heap_obj_cl;
5122
  OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5123 5124 5125 5126 5127
  G1ParScanThreadState*    _par_scan_state;

public:
  G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
                            OopClosure* non_heap_obj_cl,
5128
                            OopsInHeapRegionClosure* metadata_obj_cl,
5129 5130 5131
                            G1ParScanThreadState* pss):
    _g1h(g1h),
    _copy_non_heap_obj_cl(non_heap_obj_cl),
5132
    _copy_metadata_obj_cl(metadata_obj_cl),
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
    _par_scan_state(pss)
  {}

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);

    if (_g1h->obj_in_cs(obj)) {
      // If the referent object has been forwarded (either copied
      // to a new location or to itself in the event of an
      // evacuation failure) then we need to update the reference
      // field and, if both reference and referent are in the G1
      // heap, update the RSet for the referent.
      //
      // If the referent has not been forwarded then we have to keep
      // it alive by policy. Therefore we have copy the referent.
      //
      // If the reference field is in the G1 heap then we can push
      // on the PSS queue. When the queue is drained (after each
      // phase of reference processing) the object and it's followers
      // will be copied, the reference field set to point to the
      // new location, and the RSet updated. Otherwise we need to
5157
      // use the the non-heap or metadata closures directly to copy
5158 5159 5160 5161 5162 5163
      // the refernt object and update the pointer, while avoiding
      // updating the RSet.

      if (_g1h->is_in_g1_reserved(p)) {
        _par_scan_state->push_on_queue(p);
      } else {
5164 5165 5166
        assert(!ClassLoaderDataGraph::contains((address)p),
               err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
                              PTR_FORMAT, p));
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
          _copy_non_heap_obj_cl->do_oop(p);
        }
      }
    }
};

// Serial drain queue closure. Called as the 'complete_gc'
// closure for each discovered list in some of the
// reference processing phases.

class G1STWDrainQueueClosure: public VoidClosure {
protected:
  G1CollectedHeap* _g1h;
  G1ParScanThreadState* _par_scan_state;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }

public:
  G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
    _g1h(g1h),
    _par_scan_state(pss)
  { }

  void do_void() {
    G1ParScanThreadState* const pss = par_scan_state();
    pss->trim_queue();
  }
};

// Parallel Reference Processing closures

// Implementation of AbstractRefProcTaskExecutor for parallel reference
// processing during G1 evacuation pauses.

class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
private:
  G1CollectedHeap*   _g1h;
  RefToScanQueueSet* _queues;
5205
  FlexibleWorkGang*  _workers;
5206 5207 5208 5209
  int                _active_workers;

public:
  G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5210
                        FlexibleWorkGang* workers,
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
                        RefToScanQueueSet *task_queues,
                        int n_workers) :
    _g1h(g1h),
    _queues(task_queues),
    _workers(workers),
    _active_workers(n_workers)
  {
    assert(n_workers > 0, "shouldn't call this otherwise");
  }

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

// Gang task for possibly parallel reference processing

class G1STWRefProcTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  RefToScanQueueSet *_task_queues;
  ParallelTaskTerminator* _terminator;

public:
  G1STWRefProcTaskProxy(ProcessTask& proc_task,
                     G1CollectedHeap* g1h,
                     RefToScanQueueSet *task_queues,
                     ParallelTaskTerminator* terminator) :
    AbstractGangTask("Process reference objects in parallel"),
    _proc_task(proc_task),
    _g1h(g1h),
    _task_queues(task_queues),
    _terminator(terminator)
  {}

5247
  virtual void work(uint worker_id) {
5248 5249 5250 5251 5252 5253
    // The reference processing task executed by a single worker.
    ResourceMark rm;
    HandleMark   hm;

    G1STWIsAliveClosure is_alive(_g1h);

5254
    G1ParScanThreadState pss(_g1h, worker_id);
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264

    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5265
    G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5266 5267

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5268
    G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5269 5270

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5271
    OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5272 5273 5274 5275

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
5276
      copy_metadata_cl = &copy_mark_metadata_cl;
5277 5278 5279
    }

    // Keep alive closure.
5280
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5281 5282 5283 5284 5285

    // Complete GC closure
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);

    // Call the reference processing task's work routine.
5286
    _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320

    // Note we cannot assert that the refs array is empty here as not all
    // of the processing tasks (specifically phase2 - pp2_work) execute
    // the complete_gc closure (which ordinarily would drain the queue) so
    // the queue may not be empty.
  }
};

// Driver routine for parallel reference processing.
// Creates an instance of the ref processing gang
// task and has the worker threads execute it.
void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  ParallelTaskTerminator terminator(_active_workers, _queues);
  G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

// Gang task for parallel reference enqueueing.

class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
  G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
    AbstractGangTask("Enqueue reference objects in parallel"),
    _enq_task(enq_task)
  { }

5321 5322
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
  }
};

// Driver routine for parallel reference enqueing.
// Creates an instance of the ref enqueueing gang
// task and has the worker threads execute it.

void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

// End of weak reference support closures

// Abstract task used to preserve (i.e. copy) any referent objects
// that are in the collection set and are pointed to by reference
// objects discovered by the CM ref processor.

class G1ParPreserveCMReferentsTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
5351
  uint _n_workers;
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361

public:
  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
    AbstractGangTask("ParPreserveCMReferents"),
    _g1h(g1h),
    _queues(task_queues),
    _terminator(workers, _queues),
    _n_workers(workers)
  { }

5362
  void work(uint worker_id) {
5363 5364 5365
    ResourceMark rm;
    HandleMark   hm;

5366
    G1ParScanThreadState            pss(_g1h, worker_id);
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    assert(pss.refs()->is_empty(), "both queue and overflow should be empty");


    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5379
    G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5380 5381

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5382
    G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5383 5384

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5385
    OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5386 5387 5388 5389

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
5390
      copy_metadata_cl = &copy_mark_metadata_cl;
5391 5392 5393 5394 5395 5396 5397
    }

    // Is alive closure
    G1AlwaysAliveClosure always_alive(_g1h);

    // Copying keep alive closure. Applied to referent objects that need
    // to be copied.
5398
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5399 5400 5401

    ReferenceProcessor* rp = _g1h->ref_processor_cm();

5402 5403
    uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
    uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5404 5405 5406 5407

    // limit is set using max_num_q() - which was set using ParallelGCThreads.
    // So this must be true - but assert just in case someone decides to
    // change the worker ids.
5408
    assert(0 <= worker_id && worker_id < limit, "sanity");
5409 5410 5411
    assert(!rp->discovery_is_atomic(), "check this code");

    // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5412
    for (uint idx = worker_id; idx < limit; idx += stride) {
5413
      DiscoveredList& ref_list = rp->discovered_refs()[idx];
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465

      DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
      while (iter.has_next()) {
        // Since discovery is not atomic for the CM ref processor, we
        // can see some null referent objects.
        iter.load_ptrs(DEBUG_ONLY(true));
        oop ref = iter.obj();

        // This will filter nulls.
        if (iter.is_referent_alive()) {
          iter.make_referent_alive();
        }
        iter.move_to_next();
      }
    }

    // Drain the queue - which may cause stealing
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
    drain_queue.do_void();
    // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
    assert(pss.refs()->is_empty(), "should be");
  }
};

// Weak Reference processing during an evacuation pause (part 1).
void G1CollectedHeap::process_discovered_references() {
  double ref_proc_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(rp->discovery_enabled(), "should have been enabled");

  // Any reference objects, in the collection set, that were 'discovered'
  // by the CM ref processor should have already been copied (either by
  // applying the external root copy closure to the discovered lists, or
  // by following an RSet entry).
  //
  // But some of the referents, that are in the collection set, that these
  // reference objects point to may not have been copied: the STW ref
  // processor would have seen that the reference object had already
  // been 'discovered' and would have skipped discovering the reference,
  // but would not have treated the reference object as a regular oop.
  // As a reult the copy closure would not have been applied to the
  // referent object.
  //
  // We need to explicitly copy these referent objects - the references
  // will be processed at the end of remarking.
  //
  // We also need to do this copying before we process the reference
  // objects discovered by the STW ref processor in case one of these
  // referents points to another object which is also referenced by an
  // object discovered by the STW ref processor.

5466
  uint active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5467
                        workers()->active_workers() : 1);
5468

5469 5470 5471 5472
  assert(!G1CollectedHeap::use_parallel_gc_threads() ||
           active_workers == workers()->active_workers(),
           "Need to reset active_workers");

5473 5474
  set_par_threads(active_workers);
  G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    workers()->run_task(&keep_cm_referents);
  } else {
    keep_cm_referents.work(0);
  }

  set_par_threads(0);

  // Closure to test whether a referent is alive.
  G1STWIsAliveClosure is_alive(this);

  // Even when parallel reference processing is enabled, the processing
  // of JNI refs is serial and performed serially by the current thread
  // rather than by a worker. The following PSS will be used for processing
  // JNI refs.

  // Use only a single queue for this PSS.
  G1ParScanThreadState pss(this, 0);

  // We do not embed a reference processor in the copying/scanning
  // closures while we're actually processing the discovered
  // reference objects.
  G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);

  pss.set_evac_closure(&scan_evac_cl);
  pss.set_evac_failure_closure(&evac_failure_cl);
  pss.set_partial_scan_closure(&partial_scan_cl);

  assert(pss.refs()->is_empty(), "pre-condition");

  G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5509
  G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5510 5511

  G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5512
  G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5513 5514

  OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5515
  OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5516 5517 5518 5519

  if (_g1h->g1_policy()->during_initial_mark_pause()) {
    // We also need to mark copied objects.
    copy_non_heap_cl = &copy_mark_non_heap_cl;
5520
    copy_metadata_cl = &copy_mark_metadata_cl;
5521 5522 5523
  }

  // Keep alive closure.
5524
  G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553

  // Serial Complete GC closure
  G1STWDrainQueueClosure drain_queue(this, &pss);

  // Setup the soft refs policy...
  rp->setup_policy(false);

  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->process_discovered_references(&is_alive,
                                      &keep_alive,
                                      &drain_queue,
                                      NULL);
  } else {
    // Parallel reference processing
    assert(rp->num_q() == active_workers, "sanity");
    assert(active_workers <= rp->max_num_q(), "sanity");

    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
    rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
  }

  // We have completed copying any necessary live referent objects
  // (that were not copied during the actual pause) so we can
  // retire any active alloc buffers
  pss.retire_alloc_buffers();
  assert(pss.refs()->is_empty(), "both queue and overflow should be empty");

  double ref_proc_time = os::elapsedTime() - ref_proc_start;
5554
  g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
}

// Weak Reference processing during an evacuation pause (part 2).
void G1CollectedHeap::enqueue_discovered_references() {
  double ref_enq_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(!rp->discovery_enabled(), "should have been disabled as part of processing");

  // Now enqueue any remaining on the discovered lists on to
  // the pending list.
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->enqueue_discovered_references();
  } else {
    // Parallel reference enqueuing

5572
    uint active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
5573 5574
    assert(active_workers == workers()->active_workers(),
           "Need to reset active_workers");
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
    assert(rp->num_q() == active_workers, "sanity");
    assert(active_workers <= rp->max_num_q(), "sanity");

    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
    rp->enqueue_discovered_references(&par_task_executor);
  }

  rp->verify_no_references_recorded();
  assert(!rp->discovery_enabled(), "should have been disabled");

  // FIXME
  // CM's reference processing also cleans up the string and symbol tables.
  // Should we do that here also? We could, but it is a serial operation
  // and could signicantly increase the pause time.

  double ref_enq_time = os::elapsedTime() - ref_enq_start;
5591
  g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5592 5593
}

5594
void G1CollectedHeap::evacuate_collection_set() {
5595
  _expand_heap_after_alloc_failure = true;
5596 5597
  set_evacuation_failed(false);

5598 5599 5600
  // Should G1EvacuationFailureALot be in effect for this GC?
  NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)

5601 5602
  g1_rem_set()->prepare_for_oops_into_collection_set_do();
  concurrent_g1_refine()->set_use_cache(false);
5603 5604
  concurrent_g1_refine()->clear_hot_cache_claimed_index();

5605
  uint n_workers;
5606 5607 5608 5609 5610 5611 5612 5613
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    n_workers =
      AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                     workers()->active_workers(),
                                     Threads::number_of_non_daemon_threads());
    assert(UseDynamicNumberOfGCThreads ||
           n_workers == workers()->total_workers(),
           "If not dynamic should be using all the  workers");
5614
    workers()->set_active_workers(n_workers);
5615 5616 5617 5618 5619 5620 5621 5622
    set_par_threads(n_workers);
  } else {
    assert(n_par_threads() == 0,
           "Should be the original non-parallel value");
    n_workers = 1;
  }

  G1ParTask g1_par_task(this, _task_queues);
5623 5624 5625 5626 5627

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

5628
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5629 5630
  double start_par_time_sec = os::elapsedTime();
  double end_par_time_sec;
5631

5632
  {
5633
    StrongRootsScope srs(this);
5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      // The individual threads will set their evac-failure closures.
      if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
      // These tasks use ShareHeap::_process_strong_tasks
      assert(UseDynamicNumberOfGCThreads ||
             workers()->active_workers() == workers()->total_workers(),
             "If not dynamic should be using all the  workers");
      workers()->run_task(&g1_par_task);
    } else {
      g1_par_task.set_for_termination(n_workers);
      g1_par_task.work(0);
    }
    end_par_time_sec = os::elapsedTime();

    // Closing the inner scope will execute the destructor
    // for the StrongRootsScope object. We record the current
    // elapsed time before closing the scope so that time
    // taken for the SRS destructor is NOT included in the
    // reported parallel time.
5654 5655
  }

5656
  double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5657
  g1_policy()->phase_times()->record_par_time(par_time_ms);
5658 5659 5660

  double code_root_fixup_time_ms =
        (os::elapsedTime() - end_par_time_sec) * 1000.0;
5661
  g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5662

5663
  set_par_threads(0);
5664

5665 5666 5667 5668 5669 5670 5671
  // Process any discovered reference objects - we have
  // to do this _before_ we retire the GC alloc regions
  // as we may have to copy some 'reachable' referent
  // objects (and their reachable sub-graphs) that were
  // not copied during the pause.
  process_discovered_references();

5672 5673 5674 5675
  // Weak root processing.
  // Note: when JSR 292 is enabled and code blobs can contain
  // non-perm oops then we will need to process the code blobs
  // here too.
5676
  {
5677
    G1STWIsAliveClosure is_alive(this);
5678 5679 5680
    G1KeepAliveClosure keep_alive(this);
    JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  }
5681

5682
  release_gc_alloc_regions();
5683
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5684

5685
  concurrent_g1_refine()->clear_hot_cache();
5686 5687 5688 5689 5690 5691
  concurrent_g1_refine()->set_use_cache(true);

  finalize_for_evac_failure();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
5692 5693 5694 5695 5696

    // Reset the G1EvacuationFailureALot counters and flags
    // Note: the values are reset only when an actual
    // evacuation failure occurs.
    NOT_PRODUCT(reset_evacuation_should_fail();)
5697 5698
  }

5699 5700 5701 5702 5703 5704 5705 5706 5707
  // Enqueue any remaining references remaining on the STW
  // reference processor's discovered lists. We need to do
  // this after the card table is cleaned (and verified) as
  // the act of enqueuing entries on to the pending list
  // will log these updates (and dirty their associated
  // cards). We need these updates logged to update any
  // RSets.
  enqueue_discovered_references();

5708 5709 5710 5711
  if (G1DeferredRSUpdate) {
    RedirtyLoggedCardTableEntryFastClosure redirty;
    dirty_card_queue_set().set_closure(&redirty);
    dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5712 5713 5714

    DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
    dcq.merge_bufferlists(&dirty_card_queue_set());
5715 5716
    assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  }
5717 5718 5719
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

T
tonyp 已提交
5720
void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5721 5722
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
T
tonyp 已提交
5723
                                     OldRegionSet* old_proxy_set,
5724
                                     HumongousRegionSet* humongous_proxy_set,
T
tonyp 已提交
5725
                                     HRRSCleanupTask* hrrs_cleanup_task,
5726 5727 5728 5729 5730 5731
                                     bool par) {
  if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
    if (hr->isHumongous()) {
      assert(hr->startsHumongous(), "we should only see starts humongous");
      free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
    } else {
T
tonyp 已提交
5732
      _old_set.remove_with_proxy(hr, old_proxy_set);
5733 5734
      free_region(hr, pre_used, free_list, par);
    }
T
tonyp 已提交
5735 5736
  } else {
    hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5737 5738 5739
  }
}

5740 5741 5742
void G1CollectedHeap::free_region(HeapRegion* hr,
                                  size_t* pre_used,
                                  FreeRegionList* free_list,
5743
                                  bool par) {
5744 5745 5746 5747 5748 5749
  assert(!hr->isHumongous(), "this is only for non-humongous regions");
  assert(!hr->is_empty(), "the region should not be empty");
  assert(free_list != NULL, "pre-condition");

  *pre_used += hr->used();
  hr->hr_clear(par, true /* clear_space */);
5750
  free_list->add_as_head(hr);
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
                                     HumongousRegionSet* humongous_proxy_set,
                                     bool par) {
  assert(hr->startsHumongous(), "this is only for starts humongous regions");
  assert(free_list != NULL, "pre-condition");
  assert(humongous_proxy_set != NULL, "pre-condition");

  size_t hr_used = hr->used();
  size_t hr_capacity = hr->capacity();
  size_t hr_pre_used = 0;
  _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5766 5767 5768
  // We need to read this before we make the region non-humongous,
  // otherwise the information will be gone.
  uint last_index = hr->last_hc_index();
5769 5770 5771
  hr->set_notHumongous();
  free_region(hr, &hr_pre_used, free_list, par);

5772
  uint i = hr->hrs_index() + 1;
5773
  while (i < last_index) {
5774
    HeapRegion* curr_hr = region_at(i);
5775
    assert(curr_hr->continuesHumongous(), "invariant");
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787
    curr_hr->set_notHumongous();
    free_region(curr_hr, &hr_pre_used, free_list, par);
    i += 1;
  }
  assert(hr_pre_used == hr_used,
         err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
                 "should be the same", hr_pre_used, hr_used));
  *pre_used += hr_pre_used;
}

void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
                                       FreeRegionList* free_list,
T
tonyp 已提交
5788
                                       OldRegionSet* old_proxy_set,
5789 5790 5791 5792
                                       HumongousRegionSet* humongous_proxy_set,
                                       bool par) {
  if (pre_used > 0) {
    Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5793
    MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5794 5795 5796 5797
    assert(_summary_bytes_used >= pre_used,
           err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
                   "should be >= pre_used: "SIZE_FORMAT,
                   _summary_bytes_used, pre_used));
5798
    _summary_bytes_used -= pre_used;
5799 5800 5801
  }
  if (free_list != NULL && !free_list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5802
    _free_list.add_as_head(free_list);
5803
  }
T
tonyp 已提交
5804 5805 5806 5807
  if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
    _old_set.update_from_proxy(old_proxy_set);
  }
5808 5809 5810
  if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
    _humongous_set.update_from_proxy(humongous_proxy_set);
5811 5812 5813
  }
}

5814 5815 5816
class G1ParCleanupCTTask : public AbstractGangTask {
  CardTableModRefBS* _ct_bs;
  G1CollectedHeap* _g1h;
5817
  HeapRegion* volatile _su_head;
5818 5819
public:
  G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5820
                     G1CollectedHeap* g1h) :
5821
    AbstractGangTask("G1 Par Cleanup CT Task"),
5822
    _ct_bs(ct_bs), _g1h(g1h) { }
5823

5824
  void work(uint worker_id) {
5825 5826 5827 5828 5829
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
  }
5830

5831
  void clear_cards(HeapRegion* r) {
5832
    // Cards of the survivors should have already been dirtied.
5833
    if (!r->is_survivor()) {
5834 5835 5836 5837 5838
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
};

5839 5840
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
5841
  G1CollectedHeap* _g1h;
5842 5843
  CardTableModRefBS* _ct_bs;
public:
5844 5845
  G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
    : _g1h(g1h), _ct_bs(ct_bs) { }
5846
  virtual bool doHeapRegion(HeapRegion* r) {
5847
    if (r->is_survivor()) {
5848
      _g1h->verify_dirty_region(r);
5849
    } else {
5850
      _g1h->verify_not_dirty_region(r);
5851 5852 5853 5854
    }
    return false;
  }
};
5855

5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875
void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  // All of the region should be clean.
  CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  MemRegion mr(hr->bottom(), hr->end());
  ct_bs->verify_not_dirty_region(mr);
}

void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  // dirty allocated blocks as they allocate them. The thread that
  // retires each region and replaces it with a new one will do a
  // maximal allocation to fill in [pre_dummy_top(),end()] but will
  // not dirty that area (one less thing to have to do while holding
  // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  // is dirty.
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  ct_bs->verify_dirty_region(mr);
}

5876
void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5877
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5878
  for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5879
    verify_dirty_region(hr);
5880 5881 5882 5883 5884 5885
  }
}

void G1CollectedHeap::verify_dirty_young_regions() {
  verify_dirty_young_list(_young_list->first_region());
}
5886 5887
#endif

5888 5889 5890 5891
void G1CollectedHeap::cleanUpCardTable() {
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  double start = os::elapsedTime();

J
johnc 已提交
5892 5893 5894
  {
    // Iterate over the dirty cards region list.
    G1ParCleanupCTTask cleanup_task(ct_bs, this);
5895

5896 5897
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      set_par_threads();
J
johnc 已提交
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
      workers()->run_task(&cleanup_task);
      set_par_threads(0);
    } else {
      while (_dirty_cards_region_list) {
        HeapRegion* r = _dirty_cards_region_list;
        cleanup_task.clear_cards(r);
        _dirty_cards_region_list = r->get_next_dirty_cards_region();
        if (_dirty_cards_region_list == r) {
          // The last region.
          _dirty_cards_region_list = NULL;
        }
        r->set_next_dirty_cards_region(NULL);
5910 5911
      }
    }
J
johnc 已提交
5912 5913 5914 5915 5916 5917
#ifndef PRODUCT
    if (G1VerifyCTCleanup || VerifyAfterGC) {
      G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
      heap_region_iterate(&cleanup_verifier);
    }
#endif
5918
  }
5919

5920
  double elapsed = os::elapsedTime() - start;
5921
  g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5922 5923 5924
}

void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5925 5926 5927
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

5928 5929 5930
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

5931 5932 5933 5934 5935
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

5936 5937 5938 5939 5940 5941 5942 5943 5944 5945
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
T
tonyp 已提交
5946
    assert(!is_on_master_free_list(cur), "sanity");
5947 5948 5949 5950 5951 5952 5953 5954 5955 5956
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
5957 5958 5959 5960
      if (!cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        young_time_ms += elapsed_ms;
5961

5962 5963 5964
        start_sec = os::elapsedTime();
        non_young = true;
      }
5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
    }

    rs_lengths += cur->rem_set()->occupied();

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
5976
      assert(index != -1, "invariant");
5977
      assert((uint) index < policy->young_cset_region_length(), "invariant");
5978 5979
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
5980 5981 5982 5983 5984 5985

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
5986 5987
    } else {
      int index = cur->young_index_in_cset();
5988
      assert(index == -1, "invariant");
5989 5990 5991 5992 5993 5994 5995
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
5996 5997
      MemRegion used_mr = cur->used_region();

5998
      // And the region is empty.
5999
      assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6000
      free_region(cur, &pre_used, &local_free_list, false /* par */);
6001 6002
    } else {
      cur->uninstall_surv_rate_group();
6003
      if (cur->is_young()) {
6004
        cur->set_young_index_in_cset(-1);
6005
      }
6006 6007
      cur->set_not_young();
      cur->set_evacuation_failed(false);
T
tonyp 已提交
6008 6009
      // The region is now considered to be old.
      _old_set.add(cur);
6010 6011 6012 6013 6014 6015 6016 6017 6018
    }
    cur = next;
  }

  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
6019 6020

  if (non_young) {
6021
    non_young_time_ms += elapsed_ms;
6022
  } else {
6023
    young_time_ms += elapsed_ms;
6024
  }
6025

6026
  update_sets_after_freeing_regions(pre_used, &local_free_list,
T
tonyp 已提交
6027
                                    NULL /* old_proxy_set */,
6028 6029
                                    NULL /* humongous_proxy_set */,
                                    false /* par */);
6030 6031
  policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6032 6033
}

6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

6055 6056 6057 6058
void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
6059 6060
  }

6061 6062
  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
6063 6064
}

6065
void G1CollectedHeap::reset_free_regions_coming() {
6066 6067
  assert(free_regions_coming(), "pre-condition");

6068 6069 6070 6071
  {
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
6072 6073
  }

6074 6075 6076
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
6077 6078 6079
  }
}

6080 6081 6082 6083 6084
void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
6085 6086
  }

6087 6088 6089
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
6090 6091 6092
  }

  {
6093 6094 6095
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6096 6097 6098
    }
  }

6099 6100 6101
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126
  }
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

6127 6128
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
6129

6130
  if (check_heap) {
6131 6132 6133 6134 6135 6136 6137 6138
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

T
tonyp 已提交
6139 6140 6141
class TearDownRegionSetsClosure : public HeapRegionClosure {
private:
  OldRegionSet *_old_set;
6142

T
tonyp 已提交
6143 6144
public:
  TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6145

T
tonyp 已提交
6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_empty()) {
      // We ignore empty regions, we'll empty the free list afterwards
    } else if (r->is_young()) {
      // We ignore young regions, we'll empty the young list afterwards
    } else if (r->isHumongous()) {
      // We ignore humongous regions, we're not tearing down the
      // humongous region set
    } else {
      // The rest should be old
      _old_set->remove(r);
    }
    return false;
  }

  ~TearDownRegionSetsClosure() {
    assert(_old_set->is_empty(), "post-condition");
  }
};

void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  if (!free_list_only) {
    TearDownRegionSetsClosure cl(&_old_set);
    heap_region_iterate(&cl);

    // Need to do this after the heap iteration to be able to
    // recognize the young regions and ignore them during the iteration.
    _young_list->empty_list();
  }
6177
  _free_list.remove_all();
6178 6179
}

T
tonyp 已提交
6180 6181 6182 6183 6184 6185
class RebuildRegionSetsClosure : public HeapRegionClosure {
private:
  bool            _free_list_only;
  OldRegionSet*   _old_set;
  FreeRegionList* _free_list;
  size_t          _total_used;
6186

6187
public:
T
tonyp 已提交
6188 6189 6190 6191 6192 6193 6194 6195 6196
  RebuildRegionSetsClosure(bool free_list_only,
                           OldRegionSet* old_set, FreeRegionList* free_list) :
    _free_list_only(free_list_only),
    _old_set(old_set), _free_list(free_list), _total_used(0) {
    assert(_free_list->is_empty(), "pre-condition");
    if (!free_list_only) {
      assert(_old_set->is_empty(), "pre-condition");
    }
  }
6197

6198
  bool doHeapRegion(HeapRegion* r) {
T
tonyp 已提交
6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
    if (r->continuesHumongous()) {
      return false;
    }

    if (r->is_empty()) {
      // Add free regions to the free list
      _free_list->add_as_tail(r);
    } else if (!_free_list_only) {
      assert(!r->is_young(), "we should not come across young regions");

      if (r->isHumongous()) {
        // We ignore humongous regions, we left the humongous set unchanged
      } else {
        // The rest should be old, add them to the old set
        _old_set->add(r);
6214
      }
T
tonyp 已提交
6215
      _total_used += r->used();
6216
    }
T
tonyp 已提交
6217

6218 6219 6220
    return false;
  }

T
tonyp 已提交
6221 6222
  size_t total_used() {
    return _total_used;
6223
  }
6224 6225
};

T
tonyp 已提交
6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  heap_region_iterate(&cl);

  if (!free_list_only) {
    _summary_bytes_used = cl.total_used();
  }
  assert(_summary_bytes_used == recalculate_used(),
         err_msg("inconsistent _summary_bytes_used, "
                 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
                 _summary_bytes_used, recalculate_used()));
6239 6240 6241 6242 6243 6244
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

6245 6246 6247
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
6248
    return false;
6249 6250
  } else {
    return hr->is_in(p);
6251
  }
6252 6253
}

6254 6255
// Methods for the mutator alloc region

6256 6257 6258 6259 6260
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
                                                      bool force) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(!force || g1_policy()->can_expand_young_list(),
         "if force is true we should be able to expand the young list");
6261 6262
  bool young_list_full = g1_policy()->is_young_list_full();
  if (force || !young_list_full) {
6263 6264 6265 6266
    HeapRegion* new_alloc_region = new_region(word_size,
                                              false /* do_expand */);
    if (new_alloc_region != NULL) {
      set_region_short_lived_locked(new_alloc_region);
6267
      _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
                                                  size_t allocated_bytes) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(alloc_region->is_young(), "all mutator alloc regions should be young");

  g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  _summary_bytes_used += allocated_bytes;
6281
  _hr_printer.retire(alloc_region);
6282 6283 6284 6285
  // We update the eden sizes here, when the region is retired,
  // instead of when it's allocated, since this is the point that its
  // used space has been recored in _summary_bytes_used.
  g1mm()->update_eden_size();
6286 6287 6288 6289 6290 6291 6292
}

HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
                                                    bool force) {
  return _g1h->new_mutator_alloc_region(word_size, force);
}

6293 6294 6295
void G1CollectedHeap::set_par_threads() {
  // Don't change the number of workers.  Use the value previously set
  // in the workgroup.
6296
  assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6297
  uint n_workers = workers()->active_workers();
6298
  assert(UseDynamicNumberOfGCThreads ||
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
           n_workers == workers()->total_workers(),
      "Otherwise should be using the total number of workers");
  if (n_workers == 0) {
    assert(false, "Should have been set in prior evacuation pause.");
    n_workers = ParallelGCThreads;
    workers()->set_active_workers(n_workers);
  }
  set_par_threads(n_workers);
}

6309 6310 6311 6312 6313
void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
                                       size_t allocated_bytes) {
  _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
}

6314 6315 6316
// Methods for the GC alloc regions

HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6317
                                                 uint count,
6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334
                                                 GCAllocPurpose ap) {
  assert(FreeList_lock->owned_by_self(), "pre-condition");

  if (count < g1_policy()->max_regions(ap)) {
    HeapRegion* new_alloc_region = new_region(word_size,
                                              true /* do_expand */);
    if (new_alloc_region != NULL) {
      // We really only need to do this for old regions given that we
      // should never scan survivors. But it doesn't hurt to do it
      // for survivors too.
      new_alloc_region->set_saved_mark();
      if (ap == GCAllocForSurvived) {
        new_alloc_region->set_survivor();
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
      } else {
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
      }
6335 6336
      bool during_im = g1_policy()->during_initial_mark_pause();
      new_alloc_region->note_start_of_copying(during_im);
6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347
      return new_alloc_region;
    } else {
      g1_policy()->note_alloc_region_limit_reached(ap);
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
                                             size_t allocated_bytes,
                                             GCAllocPurpose ap) {
6348 6349
  bool during_im = g1_policy()->during_initial_mark_pause();
  alloc_region->note_end_of_copying(during_im);
6350 6351 6352
  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  if (ap == GCAllocForSurvived) {
    young_list()->add_survivor_region(alloc_region);
T
tonyp 已提交
6353 6354
  } else {
    _old_set.add(alloc_region);
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381
  }
  _hr_printer.retire(alloc_region);
}

HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
                                                       bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
}

void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                          size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForSurvived);
}

HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
                                                  bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
}

void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                     size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForTenured);
}
6382 6383
// Heap region set verification

6384 6385 6386
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
  FreeRegionList*     _free_list;
T
tonyp 已提交
6387 6388
  OldRegionSet*       _old_set;
  HumongousRegionSet* _humongous_set;
6389
  uint                _region_count;
6390 6391

public:
T
tonyp 已提交
6392 6393
  VerifyRegionListsClosure(OldRegionSet* old_set,
                           HumongousRegionSet* humongous_set,
6394
                           FreeRegionList* free_list) :
T
tonyp 已提交
6395 6396
    _old_set(old_set), _humongous_set(humongous_set),
    _free_list(free_list), _region_count(0) { }
6397

6398
  uint region_count() { return _region_count; }
6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412

  bool doHeapRegion(HeapRegion* hr) {
    _region_count += 1;

    if (hr->continuesHumongous()) {
      return false;
    }

    if (hr->is_young()) {
      // TODO
    } else if (hr->startsHumongous()) {
      _humongous_set->verify_next_region(hr);
    } else if (hr->is_empty()) {
      _free_list->verify_next_region(hr);
T
tonyp 已提交
6413 6414
    } else {
      _old_set->verify_next_region(hr);
6415
    }
6416 6417 6418 6419
    return false;
  }
};

6420
HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6421 6422 6423 6424 6425 6426 6427 6428
                                             HeapWord* bottom) {
  HeapWord* end = bottom + HeapRegion::GrainWords;
  MemRegion mr(bottom, end);
  assert(_g1_reserved.contains(mr), "invariant");
  // This might return NULL if the allocation fails
  return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
}

6429 6430
void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6431

6432 6433 6434 6435 6436 6437 6438 6439 6440
  // First, check the explicit lists.
  _free_list.verify();
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _secondary_free_list.verify();
  }
T
tonyp 已提交
6441
  _old_set.verify();
6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456
  _humongous_set.verify();

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }
6457

T
tonyp 已提交
6458 6459 6460 6461
  // Make sure we append the secondary_free_list on the free_list so
  // that all free regions we will come across can be safely
  // attributed to the free_list.
  append_secondary_free_list_if_not_empty_with_lock();
6462

6463 6464
  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.
T
tonyp 已提交
6465
  _old_set.verify_start();
6466 6467
  _humongous_set.verify_start();
  _free_list.verify_start();
6468

T
tonyp 已提交
6469
  VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6470
  heap_region_iterate(&cl);
6471

T
tonyp 已提交
6472
  _old_set.verify_end();
6473 6474
  _humongous_set.verify_end();
  _free_list.verify_end();
6475
}