g1CollectedHeap.cpp 227.7 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30
#include "precompiled.hpp"
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
31
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
32 33
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
34
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
35 36 37 38 39 40 41 42 43 44
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "gc_implementation/g1/vm_operations_g1.hpp"
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/genOopClosures.inline.hpp"
#include "memory/generationSpec.hpp"
45
#include "memory/referenceProcessor.hpp"
46 47 48 49
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/aprofiler.hpp"
#include "runtime/vmThread.hpp"
50

51 52
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

53 54 55
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
56
#define YOUNG_LIST_VERBOSE 0
57 58 59 60 61 62
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
63 64 65 66 67
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
68

69 70 71 72 73 74 75 76 77 78 79 80
// Notes on implementation of parallelism in different tasks.
//
// G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
// The number of GC workers is passed to heap_region_par_iterate_chunked().
// It does use run_task() which sets _n_workers in the task.
// G1ParTask executes g1_process_strong_roots() ->
// SharedHeap::process_strong_roots() which calls eventuall to
// CardTableModRefBS::par_non_clean_card_iterate_work() which uses
// SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
// directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
//

81 82 83 84 85 86 87 88 89 90 91 92 93 94
// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  SuspendibleThreadSet* _sts;
  G1RemSet* _g1rs;
  ConcurrentG1Refine* _cg1r;
  bool _concurrent;
public:
  RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
                              G1RemSet* g1rs,
                              ConcurrentG1Refine* cg1r) :
    _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  {}
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
J
johnc 已提交
95 96 97 98 99 100
    bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    if (_concurrent && _sts->should_yield()) {
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
  int _histo[256];
public:
  ClearLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      unsigned char* ujb = (unsigned char*)card_ptr;
      int ind = (int)(*ujb);
      _histo[ind]++;
      *card_ptr = -1;
    }
    return true;
  }
  int calls() { return _calls; }
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
public:
  RedirtyLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      *card_ptr = 0;
    }
    return true;
  }
  int calls() { return _calls; }
};

167 168 169 170 171 172 173 174
class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
public:
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    *card_ptr = CardTableModRefBS::dirty_card_val();
    return true;
  }
};

175 176
YoungList::YoungList(G1CollectedHeap* g1h)
  : _g1h(g1h), _head(NULL),
177
    _length(0),
178
    _last_sampled_rs_lengths(0),
179
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
180 181 182 183 184 185 186 187 188 189 190
{
  guarantee( check_list_empty(false), "just making sure..." );
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

191
  _g1h->g1_policy()->set_region_eden(hr, (int) _length);
192 193 194 195
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
196
  assert(hr->is_survivor(), "should be flagged as survivor region");
197 198 199 200
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
201
    _survivor_tail = hr;
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  }
  _survivor_head = hr;
  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
    list->set_not_young();
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
226
  _survivor_tail = NULL;
227 228 229 230 231 232 233 234 235 236 237 238 239 240
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

  size_t length = 0;
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
241
    if (!curr->is_young()) {
242
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
243
                             "incorrectly tagged (y: %d, surv: %d)",
244
                             curr->bottom(), curr->end(),
245
                             curr->is_young(), curr->is_survivor());
246 247 248 249 250 251 252 253 254 255 256 257 258 259
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
    gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
                           length, _length);
  }

260
  return ret;
261 262
}

263
bool YoungList::check_list_empty(bool check_sample) {
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
  bool ret = true;

  if (_length != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

283
  return ret;
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
300 301 302 303 304 305 306 307 308 309 310 311
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

312 313 314 315 316 317 318 319 320 321 322 323 324 325
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
326
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
327

328
  int young_index_in_cset = 0;
329 330 331
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
332
    _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
333 334 335 336 337

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
338
    young_index_in_cset += 1;
339
  }
340 341
  assert((size_t) young_index_in_cset == _survivor_length,
         "post-condition");
342 343
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

344 345
  _head   = _survivor_head;
  _length = _survivor_length;
346
  if (_survivor_head != NULL) {
347 348 349
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
350 351
  }

352 353 354 355
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
356

357
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
358 359 360 361 362

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
363 364
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
365 366 367 368 369 370 371 372

  for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
      gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
373
                             "age: %4d, y: %d, surv: %d",
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
                             curr->bottom(), curr->end(),
                             curr->top(),
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
                             curr->top_at_conc_mark_count(),
                             curr->age_in_surv_rate_group_cond(),
                             curr->is_young(),
                             curr->is_survivor());
      curr = curr->get_next_young_region();
    }
  }

  gclog_or_tty->print_cr("");
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

442
void G1CollectedHeap::stop_conc_gc_threads() {
443
  _cg1r->stop();
444 445 446
  _cmThread->stop();
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
#ifdef ASSERT
// A region is added to the collection set as it is retired
// so an address p can point to a region which will be in the
// collection set but has not yet been retired.  This method
// therefore is only accurate during a GC pause after all
// regions have been retired.  It is used for debugging
// to check if an nmethod has references to objects that can
// be move during a partial collection.  Though it can be
// inaccurate, it is sufficient for G1 because the conservative
// implementation of is_scavengable() for G1 will indicate that
// all nmethods must be scanned during a partial collection.
bool G1CollectedHeap::is_in_partial_collection(const void* p) {
  HeapRegion* hr = heap_region_containing(p);
  return hr != NULL && hr->in_collection_set();
}
#endif

// Returns true if the reference points to an object that
// can move in an incremental collecction.
bool G1CollectedHeap::is_scavengable(const void* p) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
     // perm gen (or null)
     return false;
  } else {
    return !hr->isHumongous();
  }
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
  dcqs.set_closure(&clear);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
  JavaThread::dirty_card_queue_set().set_closure(&redirty);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
                         clear.calls(), orig_count);
  guarantee(redirty.calls() == clear.calls(),
            "Or else mechanism is broken.");

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }

  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

529
HeapRegion*
T
tonyp 已提交
530
G1CollectedHeap::new_region_try_secondary_free_list() {
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "secondary_free_list has "SIZE_FORMAT" entries",
                               _secondary_free_list.length());
      }
      // It looks as if there are free regions available on the
      // secondary_free_list. Let's move them to the free_list and try
      // again to allocate from it.
      append_secondary_free_list();

      assert(!_free_list.is_empty(), "if the secondary_free_list was not "
             "empty we should have moved at least one entry to the free_list");
      HeapRegion* res = _free_list.remove_head();
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "allocated "HR_FORMAT" from secondary_free_list",
                               HR_FORMAT_PARAMS(res));
      }
      return res;
    }

    // Wait here until we get notifed either when (a) there are no
    // more free regions coming or (b) some regions have been moved on
    // the secondary_free_list.
    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  }

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                           "could not allocate from secondary_free_list");
  }
  return NULL;
}
567

568
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
569
  assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
570 571
         "the only time we use this to allocate a humongous region is "
         "when we are allocating a single humongous region");
572

573 574 575 576 577 578 579
  HeapRegion* res;
  if (G1StressConcRegionFreeing) {
    if (!_secondary_free_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                               "forced to look at the secondary_free_list");
      }
T
tonyp 已提交
580
      res = new_region_try_secondary_free_list();
581 582 583 584 585 586 587 588 589 590 591
      if (res != NULL) {
        return res;
      }
    }
  }
  res = _free_list.remove_head_or_null();
  if (res == NULL) {
    if (G1ConcRegionFreeingVerbose) {
      gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
                             "res == NULL, trying the secondary_free_list");
    }
T
tonyp 已提交
592
    res = new_region_try_secondary_free_list();
593
  }
594
  if (res == NULL && do_expand) {
595 596 597 598 599
    ergo_verbose1(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("region allocation request failed")
                  ergo_format_byte("allocation request"),
                  word_size * HeapWordSize);
600
    if (expand(word_size * HeapWordSize)) {
601 602 603 604
      // Even though the heap was expanded, it might not have reached
      // the desired size. So, we cannot assume that the allocation
      // will succeed.
      res = _free_list.remove_head_or_null();
605
    }
606 607 608 609
  }
  return res;
}

610 611
size_t G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
                                                          size_t word_size) {
T
tonyp 已提交
612 613 614
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

615
  size_t first = G1_NULL_HRS_INDEX;
616 617 618 619
  if (num_regions == 1) {
    // Only one region to allocate, no need to go through the slower
    // path. The caller will attempt the expasion if this fails, so
    // let's not try to expand here too.
620
    HeapRegion* hr = new_region(word_size, false /* do_expand */);
621 622 623
    if (hr != NULL) {
      first = hr->hrs_index();
    } else {
624
      first = G1_NULL_HRS_INDEX;
625 626 627 628 629 630 631 632 633 634 635
    }
  } else {
    // We can't allocate humongous regions while cleanupComplete() is
    // running, since some of the regions we find to be empty might not
    // yet be added to the free list and it is not straightforward to
    // know which list they are on so that we can remove them. Note
    // that we only need to do this if we need to allocate more than
    // one region to satisfy the current humongous allocation
    // request. If we are only allocating one region we use the common
    // region allocation code (see above).
    wait_while_free_regions_coming();
T
tonyp 已提交
636
    append_secondary_free_list_if_not_empty_with_lock();
637 638

    if (free_regions() >= num_regions) {
639 640 641 642
      first = _hrs.find_contiguous(num_regions);
      if (first != G1_NULL_HRS_INDEX) {
        for (size_t i = first; i < first + num_regions; ++i) {
          HeapRegion* hr = region_at(i);
643
          assert(hr->is_empty(), "sanity");
T
tonyp 已提交
644
          assert(is_on_master_free_list(hr), "sanity");
645 646 647 648 649 650 651 652 653
          hr->set_pending_removal(true);
        }
        _free_list.remove_all_pending(num_regions);
      }
    }
  }
  return first;
}

T
tonyp 已提交
654
HeapWord*
655
G1CollectedHeap::humongous_obj_allocate_initialize_regions(size_t first,
T
tonyp 已提交
656 657
                                                           size_t num_regions,
                                                           size_t word_size) {
658
  assert(first != G1_NULL_HRS_INDEX, "pre-condition");
T
tonyp 已提交
659 660 661 662
  assert(isHumongous(word_size), "word_size should be humongous");
  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");

  // Index of last region in the series + 1.
663
  size_t last = first + num_regions;
T
tonyp 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677

  // We need to initialize the region(s) we just discovered. This is
  // a bit tricky given that it can happen concurrently with
  // refinement threads refining cards on these regions and
  // potentially wanting to refine the BOT as they are scanning
  // those cards (this can happen shortly after a cleanup; see CR
  // 6991377). So we have to set up the region(s) carefully and in
  // a specific order.

  // The word size sum of all the regions we will allocate.
  size_t word_size_sum = num_regions * HeapRegion::GrainWords;
  assert(word_size <= word_size_sum, "sanity");

  // This will be the "starts humongous" region.
678
  HeapRegion* first_hr = region_at(first);
T
tonyp 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
  // The header of the new object will be placed at the bottom of
  // the first region.
  HeapWord* new_obj = first_hr->bottom();
  // This will be the new end of the first region in the series that
  // should also match the end of the last region in the seriers.
  HeapWord* new_end = new_obj + word_size_sum;
  // This will be the new top of the first region that will reflect
  // this allocation.
  HeapWord* new_top = new_obj + word_size;

  // First, we need to zero the header of the space that we will be
  // allocating. When we update top further down, some refinement
  // threads might try to scan the region. By zeroing the header we
  // ensure that any thread that will try to scan the region will
  // come across the zero klass word and bail out.
  //
  // NOTE: It would not have been correct to have used
  // CollectedHeap::fill_with_object() and make the space look like
  // an int array. The thread that is doing the allocation will
  // later update the object header to a potentially different array
  // type and, for a very short period of time, the klass and length
  // fields will be inconsistent. This could cause a refinement
  // thread to calculate the object size incorrectly.
  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);

  // We will set up the first region as "starts humongous". This
  // will also update the BOT covering all the regions to reflect
  // that there is a single object that starts at the bottom of the
  // first region.
  first_hr->set_startsHumongous(new_top, new_end);

  // Then, if there are any, we will set up the "continues
  // humongous" regions.
  HeapRegion* hr = NULL;
713 714
  for (size_t i = first + 1; i < last; ++i) {
    hr = region_at(i);
T
tonyp 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
    hr->set_continuesHumongous(first_hr);
  }
  // If we have "continues humongous" regions (hr != NULL), then the
  // end of the last one should match new_end.
  assert(hr == NULL || hr->end() == new_end, "sanity");

  // Up to this point no concurrent thread would have been able to
  // do any scanning on any region in this series. All the top
  // fields still point to bottom, so the intersection between
  // [bottom,top] and [card_start,card_end] will be empty. Before we
  // update the top fields, we'll do a storestore to make sure that
  // no thread sees the update to top before the zeroing of the
  // object header and the BOT initialization.
  OrderAccess::storestore();

  // Now that the BOT and the object header have been initialized,
  // we can update top of the "starts humongous" region.
  assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
         "new_top should be in this region");
  first_hr->set_top(new_top);
735 736 737 738 739 740 741 742 743 744 745
  if (_hr_printer.is_active()) {
    HeapWord* bottom = first_hr->bottom();
    HeapWord* end = first_hr->orig_end();
    if ((first + 1) == last) {
      // the series has a single humongous region
      _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
    } else {
      // the series has more than one humongous regions
      _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
    }
  }
T
tonyp 已提交
746 747 748 749 750 751 752 753 754 755 756 757 758

  // Now, we will update the top fields of the "continues humongous"
  // regions. The reason we need to do this is that, otherwise,
  // these regions would look empty and this will confuse parts of
  // G1. For example, the code that looks for a consecutive number
  // of empty regions will consider them empty and try to
  // re-allocate them. We can extend is_empty() to also include
  // !continuesHumongous(), but it is easier to just update the top
  // fields here. The way we set top for all regions (i.e., top ==
  // end for all regions but the last one, top == new_top for the
  // last one) is actually used when we will free up the humongous
  // region in free_humongous_region().
  hr = NULL;
759 760
  for (size_t i = first + 1; i < last; ++i) {
    hr = region_at(i);
T
tonyp 已提交
761 762 763 764 765
    if ((i + 1) == last) {
      // last continues humongous region
      assert(hr->bottom() < new_top && new_top <= hr->end(),
             "new_top should fall on this region");
      hr->set_top(new_top);
766
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
T
tonyp 已提交
767 768 769 770
    } else {
      // not last one
      assert(new_top > hr->end(), "new_top should be above this region");
      hr->set_top(hr->end());
771
      _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
T
tonyp 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
    }
  }
  // If we have continues humongous regions (hr != NULL), then the
  // end of the last one should match new_end and its top should
  // match new_top.
  assert(hr == NULL ||
         (hr->end() == new_end && hr->top() == new_top), "sanity");

  assert(first_hr->used() == word_size * HeapWordSize, "invariant");
  _summary_bytes_used += first_hr->used();
  _humongous_set.add(first_hr);

  return new_obj;
}

787 788 789
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
790
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
791
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
792

793
  verify_region_sets_optional();
794 795

  size_t num_regions =
796
         round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
797
  size_t x_size = expansion_regions();
798 799 800
  size_t fs = _hrs.free_suffix();
  size_t first = humongous_obj_allocate_find_first(num_regions, word_size);
  if (first == G1_NULL_HRS_INDEX) {
801
    // The only thing we can do now is attempt expansion.
802
    if (fs + x_size >= num_regions) {
803 804 805 806 807 808 809 810 811 812
      // If the number of regions we're trying to allocate for this
      // object is at most the number of regions in the free suffix,
      // then the call to humongous_obj_allocate_find_first() above
      // should have succeeded and we wouldn't be here.
      //
      // We should only be trying to expand when the free suffix is
      // not sufficient for the object _and_ we have some expansion
      // room available.
      assert(num_regions > fs, "earlier allocation should have succeeded");

813 814 815 816 817
      ergo_verbose1(ErgoHeapSizing,
                    "attempt heap expansion",
                    ergo_format_reason("humongous allocation request failed")
                    ergo_format_byte("allocation request"),
                    word_size * HeapWordSize);
818
      if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
819 820 821
        // Even though the heap was expanded, it might not have
        // reached the desired size. So, we cannot assume that the
        // allocation will succeed.
822 823
        first = humongous_obj_allocate_find_first(num_regions, word_size);
      }
824 825
    }
  }
826

T
tonyp 已提交
827
  HeapWord* result = NULL;
828
  if (first != G1_NULL_HRS_INDEX) {
T
tonyp 已提交
829 830 831
    result =
      humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
    assert(result != NULL, "it should always return a valid result");
832 833 834 835 836

    // A successful humongous object allocation changes the used space
    // information of the old generation so we need to recalculate the
    // sizes and update the jstat counters here.
    g1mm()->update_sizes();
837
  }
838 839

  verify_region_sets_optional();
T
tonyp 已提交
840 841

  return result;
842 843
}

844 845 846
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow humongous TLABs");
847

848 849
  unsigned int dummy_gc_count_before;
  return attempt_allocation(word_size, &dummy_gc_count_before);
850 851 852
}

HeapWord*
853 854 855
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
856

857 858 859
  // Loop until the allocation is satisified, or unsatisfied after GC.
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    unsigned int gc_count_before;
860

861 862 863
    HeapWord* result = NULL;
    if (!isHumongous(word_size)) {
      result = attempt_allocation(word_size, &gc_count_before);
864
    } else {
865 866 867 868 869
      result = attempt_allocation_humongous(word_size, &gc_count_before);
    }
    if (result != NULL) {
      return result;
    }
870

871 872 873 874
    // Create the garbage collection operation...
    VM_G1CollectForAllocation op(gc_count_before, word_size);
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
875

876 877 878 879 880 881
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
882
        // Allocations that take place on VM operations do not do any
883 884
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
885 886 887
        dirty_young_block(result, word_size);
      }
      return result;
888 889 890
    } else {
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
891 892 893 894 895
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
896
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
897 898 899
    }
  }

900
  ShouldNotReachHere();
901 902 903
  return NULL;
}

904 905 906 907 908 909 910
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
                                           unsigned int *gc_count_before_ret) {
  // Make sure you read the note in attempt_allocation_humongous().

  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
         "be called for humongous allocation requests");
911

912 913 914 915 916 917 918
  // We should only get here after the first-level allocation attempt
  // (attempt_allocation()) failed to allocate.

  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
919
  HeapWord* result = NULL;
920 921 922
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    bool should_try_gc;
    unsigned int gc_count_before;
923

924 925 926 927 928 929 930
    {
      MutexLockerEx x(Heap_lock);

      result = _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
      if (result != NULL) {
        return result;
931
      }
932

933 934 935
      // If we reach here, attempt_allocation_locked() above failed to
      // allocate a new region. So the mutator alloc region should be NULL.
      assert(_mutator_alloc_region.get() == NULL, "only way to get here");
936

937 938
      if (GC_locker::is_active_and_needs_gc()) {
        if (g1_policy()->can_expand_young_list()) {
939 940
          // No need for an ergo verbose message here,
          // can_expand_young_list() does this when it returns true.
941 942 943 944 945 946 947 948 949 950 951 952 953
          result = _mutator_alloc_region.attempt_allocation_force(word_size,
                                                      false /* bot_updates */);
          if (result != NULL) {
            return result;
          }
        }
        should_try_gc = false;
      } else {
        // Read the GC count while still holding the Heap_lock.
        gc_count_before = SharedHeap::heap()->total_collections();
        should_try_gc = true;
      }
    }
954

955 956
    if (should_try_gc) {
      bool succeeded;
957 958
      result = do_collection_pause(word_size, gc_count_before, &succeeded);
      if (result != NULL) {
959
        assert(succeeded, "only way to get back a non-NULL result");
960 961 962
        return result;
      }

963 964 965 966 967 968 969 970 971 972
      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = SharedHeap::heap()->total_collections();
        return NULL;
      }
    } else {
      GC_locker::stall_until_clear();
973 974
    }

975 976 977 978 979 980 981 982 983 984 985 986
    // We can reach here if we were unsuccessul in scheduling a
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space. We do the
    // first attempt (without holding the Heap_lock) here and the
    // follow-on attempt will be at the start of the next loop
    // iteration (after taking the Heap_lock).
    result = _mutator_alloc_region.attempt_allocation(word_size,
                                                      false /* bot_updates */);
    if (result != NULL ){
      return result;
987 988
    }

989 990 991
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
992
      warning("G1CollectedHeap::attempt_allocation_slow() "
993
              "retries %d times", try_count);
994 995 996
    }
  }

997 998
  ShouldNotReachHere();
  return NULL;
999 1000
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
                                          unsigned int * gc_count_before_ret) {
  // The structure of this method has a lot of similarities to
  // attempt_allocation_slow(). The reason these two were not merged
  // into a single one is that such a method would require several "if
  // allocation is not humongous do this, otherwise do that"
  // conditional paths which would obscure its flow. In fact, an early
  // version of this code did use a unified method which was harder to
  // follow and, as a result, it had subtle bugs that were hard to
  // track down. So keeping these two methods separate allows each to
  // be more readable. It will be good to keep these two in sync as
  // much as possible.

1014
  assert_heap_not_locked_and_not_at_safepoint();
1015 1016
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be called for humongous allocations");
1017

1018 1019 1020 1021 1022
  // We will loop until a) we manage to successfully perform the
  // allocation or b) we successfully schedule a collection which
  // fails to perform the allocation. b) is the only case when we'll
  // return NULL.
  HeapWord* result = NULL;
1023
  for (int try_count = 1; /* we'll return */; try_count += 1) {
1024
    bool should_try_gc;
1025
    unsigned int gc_count_before;
1026

1027
    {
1028
      MutexLockerEx x(Heap_lock);
1029

1030 1031 1032 1033 1034 1035 1036
      // Given that humongous objects are not allocated in young
      // regions, we'll first try to do the allocation without doing a
      // collection hoping that there's enough space in the heap.
      result = humongous_obj_allocate(word_size);
      if (result != NULL) {
        return result;
      }
1037

1038 1039
      if (GC_locker::is_active_and_needs_gc()) {
        should_try_gc = false;
1040
      } else {
1041 1042 1043
        // Read the GC count while still holding the Heap_lock.
        gc_count_before = SharedHeap::heap()->total_collections();
        should_try_gc = true;
1044 1045 1046
      }
    }

1047 1048 1049 1050
    if (should_try_gc) {
      // If we failed to allocate the humongous object, we should try to
      // do a collection pause (if we're allowed) in case it reclaims
      // enough space for the allocation to succeed after the pause.
1051

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
      bool succeeded;
      result = do_collection_pause(word_size, gc_count_before, &succeeded);
      if (result != NULL) {
        assert(succeeded, "only way to get back a non-NULL result");
        return result;
      }

      if (succeeded) {
        // If we get here we successfully scheduled a collection which
        // failed to allocate. No point in trying to allocate
        // further. We'll just return NULL.
        MutexLockerEx x(Heap_lock);
        *gc_count_before_ret = SharedHeap::heap()->total_collections();
        return NULL;
1066 1067
      }
    } else {
1068
      GC_locker::stall_until_clear();
1069 1070
    }

1071 1072 1073 1074 1075 1076 1077
    // We can reach here if we were unsuccessul in scheduling a
    // collection (because another thread beat us to it) or if we were
    // stalled due to the GC locker. In either can we should retry the
    // allocation attempt in case another thread successfully
    // performed a collection and reclaimed enough space.  Give a
    // warning if we seem to be looping forever.

1078 1079
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1080 1081
      warning("G1CollectedHeap::attempt_allocation_humongous() "
              "retries %d times", try_count);
1082 1083
    }
  }
1084 1085

  ShouldNotReachHere();
1086
  return NULL;
1087 1088
}

1089 1090
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
                                       bool expect_null_mutator_alloc_region) {
1091
  assert_at_safepoint(true /* should_be_vm_thread */);
1092 1093 1094
  assert(_mutator_alloc_region.get() == NULL ||
                                             !expect_null_mutator_alloc_region,
         "the current alloc region was unexpectedly found to be non-NULL");
1095

1096 1097 1098 1099 1100
  if (!isHumongous(word_size)) {
    return _mutator_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
  } else {
    return humongous_obj_allocate(word_size);
1101
  }
1102 1103

  ShouldNotReachHere();
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
}

class PostMCRemSetClearClosure: public HeapRegionClosure {
  ModRefBarrierSet* _mr_bs;
public:
  PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  bool doHeapRegion(HeapRegion* r) {
    r->reset_gc_time_stamp();
    if (r->continuesHumongous())
      return false;
    HeapRegionRemSet* hrrs = r->rem_set();
    if (hrrs != NULL) hrrs->clear();
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
    return false;
  }
};


class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  ModRefBarrierSet* _mr_bs;
public:
  PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    if (r->used_region().word_size() != 0) {
      _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
    }
    return false;
  }
};

1140 1141 1142 1143 1144 1145
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1146
    _cl(g1->g1_rem_set(), worker_i),
1147 1148 1149
    _worker_i(worker_i),
    _g1h(g1)
  { }
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

  void work(int i) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
1171
                                          _g1->workers()->active_workers(),
1172 1173 1174 1175
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
class PostCompactionPrinterClosure: public HeapRegionClosure {
private:
  G1HRPrinter* _hr_printer;
public:
  bool doHeapRegion(HeapRegion* hr) {
    assert(!hr->is_young(), "not expecting to find young regions");
    // We only generate output for non-empty regions.
    if (!hr->is_empty()) {
      if (!hr->isHumongous()) {
        _hr_printer->post_compaction(hr, G1HRPrinter::Old);
      } else if (hr->startsHumongous()) {
1187
        if (hr->capacity() == HeapRegion::GrainBytes) {
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
          // single humongous region
          _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
        } else {
          _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
        }
      } else {
        assert(hr->continuesHumongous(), "only way to get here");
        _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
      }
    }
    return false;
  }

  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
    : _hr_printer(hr_printer) { }
};

1205
bool G1CollectedHeap::do_collection(bool explicit_gc,
1206
                                    bool clear_all_soft_refs,
1207
                                    size_t word_size) {
1208 1209
  assert_at_safepoint(true /* should_be_vm_thread */);

1210
  if (GC_locker::check_active_before_gc()) {
1211
    return false;
1212 1213
  }

1214
  SvcGCMarker sgcm(SvcGCMarker::FULL);
1215 1216
  ResourceMark rm;

1217 1218 1219 1220
  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
  }

T
tonyp 已提交
1221
  HRSPhaseSetter x(HRSPhaseFullGC);
1222
  verify_region_sets_optional();
1223

1224 1225 1226 1227 1228
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1229 1230 1231 1232
  {
    IsGCActiveMark x;

    // Timing
1233 1234
    bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
    assert(!system_gc || explicit_gc, "invariant");
1235 1236
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
1237
    TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
1238
                PrintGC, true, gclog_or_tty);
1239

1240
    TraceCollectorStats tcs(g1mm()->full_collection_counters());
1241
    TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1242

1243 1244 1245
    double start = os::elapsedTime();
    g1_policy()->record_full_collection_start();

1246
    wait_while_free_regions_coming();
T
tonyp 已提交
1247
    append_secondary_free_list_if_not_empty_with_lock();
1248

1249
    gc_prologue(true);
1250
    increment_total_collections(true /* full gc */);
1251 1252 1253 1254 1255 1256 1257

    size_t g1h_prev_used = used();
    assert(used() == recalculate_used(), "Should be equal");

    if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
      HandleMark hm;  // Discard invalid handles created during verification
      gclog_or_tty->print(" VerifyBeforeGC:");
1258
      prepare_for_verify();
1259 1260 1261 1262
      Universe::verify(/* allow dirty */ true,
                       /* silent      */ false,
                       /* option      */ VerifyOption_G1UsePrevMarking);

1263
    }
1264
    pre_full_gc_dump();
1265 1266 1267

    COMPILER2_PRESENT(DerivedPointerTable::clear());

1268 1269 1270 1271 1272
    // Disable discovery and empty the discovered lists
    // for the CM ref processor.
    ref_processor_cm()->disable_discovery();
    ref_processor_cm()->abandon_partial_discovery();
    ref_processor_cm()->verify_no_references_recorded();
1273 1274 1275 1276 1277 1278

    // Abandon current iterations of concurrent marking and concurrent
    // refinement, if any are in progress.
    concurrent_mark()->abort();

    // Make sure we'll choose a new allocation region afterwards.
1279
    release_mutator_alloc_region();
1280
    abandon_gc_alloc_regions();
1281
    g1_rem_set()->cleanupHRRS();
1282

1283 1284 1285 1286 1287
    // We should call this after we retire any currently active alloc
    // regions so that all the ALLOC / RETIRE events are generated
    // before the start GC event.
    _hr_printer.start_gc(true /* full */, (size_t) total_collections());

1288 1289 1290 1291 1292 1293 1294 1295
    // We may have added regions to the current incremental collection
    // set between the last GC or pause and now. We need to clear the
    // incremental collection set and then start rebuilding it afresh
    // after this full GC.
    abandon_collection_set(g1_policy()->inc_cset_head());
    g1_policy()->clear_incremental_cset();
    g1_policy()->stop_incremental_cset_building();

T
tonyp 已提交
1296
    tear_down_region_sets(false /* free_list_only */);
1297
    g1_policy()->set_full_young_gcs(true);
1298

1299 1300
    // See the comments in g1CollectedHeap.hpp and
    // G1CollectedHeap::ref_processing_init() about
1301 1302
    // how reference processing currently works in G1.

1303 1304
    // Temporarily make discovery by the STW ref processor single threaded (non-MT).
    ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1305

1306 1307
    // Temporarily clear the STW ref processor's _is_alive_non_header field.
    ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1308

1309 1310
    ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
    ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1311 1312 1313 1314

    // Do collection work
    {
      HandleMark hm;  // Discard invalid handles created during gc
1315
      G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1316
    }
1317

1318
    assert(free_regions() == 0, "we should not have added any free regions");
T
tonyp 已提交
1319
    rebuild_region_sets(false /* free_list_only */);
1320

1321 1322 1323
    // Enqueue any discovered reference objects that have
    // not been removed from the discovered lists.
    ref_processor_stw()->enqueue_discovered_references();
1324 1325 1326

    COMPILER2_PRESENT(DerivedPointerTable::update_pointers());

1327 1328
    MemoryService::track_memory_usage();

1329 1330 1331
    if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
      HandleMark hm;  // Discard invalid handles created during verification
      gclog_or_tty->print(" VerifyAfterGC:");
1332
      prepare_for_verify();
1333 1334 1335 1336
      Universe::verify(/* allow dirty */ false,
                       /* silent      */ false,
                       /* option      */ VerifyOption_G1UsePrevMarking);

1337
    }
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

    assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
    ref_processor_stw()->verify_no_references_recorded();

    // Note: since we've just done a full GC, concurrent
    // marking is no longer active. Therefore we need not
    // re-enable reference discovery for the CM ref processor.
    // That will be done at the start of the next marking cycle.
    assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
    ref_processor_cm()->verify_no_references_recorded();
1348 1349 1350

    reset_gc_time_stamp();
    // Since everything potentially moved, we will clear all remembered
1351 1352
    // sets, and clear all cards.  Later we will rebuild remebered
    // sets. We will also reset the GC time stamps of the regions.
1353 1354 1355 1356
    PostMCRemSetClearClosure rs_clear(mr_bs());
    heap_region_iterate(&rs_clear);

    // Resize the heap if necessary.
1357
    resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1358

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
    if (_hr_printer.is_active()) {
      // We should do this after we potentially resize the heap so
      // that all the COMMIT / UNCOMMIT events are generated before
      // the end GC event.

      PostCompactionPrinterClosure cl(hr_printer());
      heap_region_iterate(&cl);

      _hr_printer.end_gc(true /* full */, (size_t) total_collections());
    }

1370 1371 1372 1373 1374
    if (_cg1r->use_cache()) {
      _cg1r->clear_and_record_card_counts();
      _cg1r->clear_hot_cache();
    }

1375
    // Rebuild remembered sets of all regions.
1376
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
      int n_workers =
        AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                       workers()->active_workers(),
                                       Threads::number_of_non_daemon_threads());
      assert(UseDynamicNumberOfGCThreads ||
             n_workers == workers()->total_workers(),
             "If not dynamic should be using all the  workers");
      workers()->set_active_workers(n_workers);
      // Set parallel threads in the heap (_n_par_threads) only
      // before a parallel phase and always reset it to 0 after
      // the phase so that the number of parallel threads does
      // no get carried forward to a serial phase where there
      // may be code that is "possibly_parallel".
      set_par_threads(n_workers);

1392 1393 1394
      ParRebuildRSTask rebuild_rs_task(this);
      assert(check_heap_region_claim_values(
             HeapRegion::InitialClaimValue), "sanity check");
1395 1396 1397 1398 1399 1400 1401
      assert(UseDynamicNumberOfGCThreads ||
             workers()->active_workers() == workers()->total_workers(),
        "Unless dynamic should use total workers");
      // Use the most recent number of  active workers
      assert(workers()->active_workers() > 0,
        "Active workers not properly set");
      set_par_threads(workers()->active_workers());
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
      workers()->run_task(&rebuild_rs_task);
      set_par_threads(0);
      assert(check_heap_region_claim_values(
             HeapRegion::RebuildRSClaimValue), "sanity check");
      reset_heap_region_claim_values();
    } else {
      RebuildRSOutOfRegionClosure rebuild_rs(this);
      heap_region_iterate(&rebuild_rs);
    }

1412 1413 1414 1415 1416 1417 1418 1419 1420
    if (PrintGC) {
      print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
    }

    if (true) { // FIXME
      // Ask the permanent generation to adjust size for full collections
      perm()->compute_new_size();
    }

1421 1422 1423 1424 1425 1426 1427 1428 1429
    // Start a new incremental collection set for the next pause
    assert(g1_policy()->collection_set() == NULL, "must be");
    g1_policy()->start_incremental_cset_building();

    // Clear the _cset_fast_test bitmap in anticipation of adding
    // regions to the incremental collection set for the next
    // evacuation pause.
    clear_cset_fast_test();

1430 1431
    init_mutator_alloc_region();

1432 1433 1434
    double end = os::elapsedTime();
    g1_policy()->record_full_collection_end();

1435 1436 1437 1438
#ifdef TRACESPINNING
    ParallelTaskTerminator::print_termination_counts();
#endif

1439 1440
    gc_epilogue(true);

1441 1442
    // Discard all rset updates
    JavaThread::dirty_card_queue_set().abandon_logs();
1443 1444
    assert(!G1DeferredRSUpdate
           || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1445 1446
  }

1447 1448 1449 1450 1451
  _young_list->reset_sampled_info();
  // At this point there should be no regions in the
  // entire heap tagged as young.
  assert( check_young_list_empty(true /* check_heap */),
    "young list should be empty at this point");
1452

1453
  // Update the number of full collections that have been completed.
1454
  increment_full_collections_completed(false /* concurrent */);
1455

1456
  _hrs.verify_optional();
1457 1458
  verify_region_sets_optional();

1459 1460 1461
  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
  }
1462
  g1mm()->update_sizes();
1463
  post_full_gc_dump();
1464 1465

  return true;
1466 1467 1468
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1469 1470 1471 1472 1473 1474 1475 1476
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");

  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1491 1492 1493 1494
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1495
  // We don't have floating point command-line arguments
1496
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1497
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1498
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1499 1500
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
                 "maximum_desired_capacity = "SIZE_FORMAT,
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1537

1538
  if (capacity_after_gc < minimum_desired_capacity) {
1539 1540
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("capacity lower than "
                                     "min desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("min desired capacity"),
                  capacity_after_gc, used_after_gc,
                  minimum_desired_capacity, (double) MinHeapFreeRatio);
    expand(expand_bytes);
1551 1552

    // No expansion, now see if we want to shrink
1553
  } else if (capacity_after_gc > maximum_desired_capacity) {
1554 1555
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1556 1557 1558 1559 1560 1561 1562 1563 1564
    ergo_verbose4(ErgoHeapSizing,
                  "attempt heap shrinking",
                  ergo_format_reason("capacity higher than "
                                     "max desired capacity after Full GC")
                  ergo_format_byte("capacity")
                  ergo_format_byte("occupancy")
                  ergo_format_byte_perc("max desired capacity"),
                  capacity_after_gc, used_after_gc,
                  maximum_desired_capacity, (double) MaxHeapFreeRatio);
1565 1566 1567 1568 1569 1570
    shrink(shrink_bytes);
  }
}


HeapWord*
1571 1572
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
                                           bool* succeeded) {
1573
  assert_at_safepoint(true /* should_be_vm_thread */);
1574 1575 1576

  *succeeded = true;
  // Let's attempt the allocation first.
1577 1578 1579
  HeapWord* result =
    attempt_allocation_at_safepoint(word_size,
                                 false /* expect_null_mutator_alloc_region */);
1580 1581 1582 1583
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1584 1585 1586 1587 1588 1589 1590

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
  result = expand_and_allocate(word_size);
  if (result != NULL) {
1591
    assert(*succeeded, "sanity");
1592 1593 1594
    return result;
  }

1595 1596 1597 1598 1599 1600 1601 1602
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1603

1604 1605
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
1606
                                  true /* expect_null_mutator_alloc_region */);
1607
  if (result != NULL) {
1608
    assert(*succeeded, "sanity");
1609 1610 1611
    return result;
  }

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
1623
                                  true /* expect_null_mutator_alloc_region */);
1624
  if (result != NULL) {
1625
    assert(*succeeded, "sanity");
1626 1627 1628
    return result;
  }

1629
  assert(!collector_policy()->should_clear_all_soft_refs(),
1630
         "Flag should have been handled and cleared prior to this point");
1631

1632 1633 1634 1635
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1636
  assert(*succeeded, "sanity");
1637 1638 1639 1640 1641 1642 1643 1644 1645
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1646 1647 1648
  assert_at_safepoint(true /* should_be_vm_thread */);

  verify_region_sets_optional();
1649

1650
  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1651 1652 1653 1654 1655
  ergo_verbose1(ErgoHeapSizing,
                "attempt heap expansion",
                ergo_format_reason("allocation request failed")
                ergo_format_byte("allocation request"),
                word_size * HeapWordSize);
1656
  if (expand(expand_bytes)) {
1657
    _hrs.verify_optional();
1658 1659
    verify_region_sets_optional();
    return attempt_allocation_at_safepoint(word_size,
1660
                                 false /* expect_null_mutator_alloc_region */);
1661
  }
1662
  return NULL;
1663 1664
}

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
void G1CollectedHeap::update_committed_space(HeapWord* old_end,
                                             HeapWord* new_end) {
  assert(old_end != new_end, "don't call this otherwise");
  assert((HeapWord*) _g1_storage.high() == new_end, "invariant");

  // Update the committed mem region.
  _g1_committed.set_end(new_end);
  // Tell the card table about the update.
  Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  // Tell the BOT about the update.
  _bot_shared->resize(_g1_committed.word_size());
}

1678
bool G1CollectedHeap::expand(size_t expand_bytes) {
1679
  size_t old_mem_size = _g1_storage.committed_size();
1680
  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1681 1682
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
1683 1684 1685 1686 1687
  ergo_verbose2(ErgoHeapSizing,
                "expand the heap",
                ergo_format_byte("requested expansion amount")
                ergo_format_byte("attempted expansion amount"),
                expand_bytes, aligned_expand_bytes);
1688

1689 1690
  // First commit the memory.
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
1691 1692
  bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  if (successful) {
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
    // Then propagate this update to the necessary data structures.
    HeapWord* new_end = (HeapWord*) _g1_storage.high();
    update_committed_space(old_end, new_end);

    FreeRegionList expansion_list("Local Expansion List");
    MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
    assert(mr.start() == old_end, "post-condition");
    // mr might be a smaller region than what was requested if
    // expand_by() was unable to allocate the HeapRegion instances
    assert(mr.end() <= new_end, "post-condition");

    size_t actual_expand_bytes = mr.byte_size();
    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
    assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
           "post-condition");
    if (actual_expand_bytes < aligned_expand_bytes) {
      // We could not expand _hrs to the desired size. In this case we
      // need to shrink the committed space accordingly.
      assert(mr.end() < new_end, "invariant");

      size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
      // First uncommit the memory.
      _g1_storage.shrink_by(diff_bytes);
      // Then propagate this update to the necessary data structures.
      update_committed_space(new_end, mr.end());
1718
    }
1719
    _free_list.add_as_tail(&expansion_list);
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729

    if (_hr_printer.is_active()) {
      HeapWord* curr = mr.start();
      while (curr < mr.end()) {
        HeapWord* curr_end = curr + HeapRegion::GrainWords;
        _hr_printer.commit(curr, curr_end);
        curr = curr_end;
      }
      assert(curr == mr.end(), "post-condition");
    }
1730
    g1_policy()->record_new_heap_size(n_regions());
1731
  } else {
1732 1733 1734
    ergo_verbose0(ErgoHeapSizing,
                  "did not expand the heap",
                  ergo_format_reason("heap expansion operation failed"));
1735 1736 1737 1738 1739 1740
    // The expansion of the virtual storage space was unsuccessful.
    // Let's see if it was because we ran out of swap.
    if (G1ExitOnExpansionFailure &&
        _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
      // We had head room...
      vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1741 1742
    }
  }
1743
  return successful;
1744 1745
}

1746
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1747 1748 1749 1750 1751 1752
  size_t old_mem_size = _g1_storage.committed_size();
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
  size_t num_regions_deleted = 0;
1753 1754 1755
  MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  HeapWord* old_end = (HeapWord*) _g1_storage.high();
  assert(mr.end() == old_end, "post-condition");
1756 1757 1758 1759 1760 1761 1762

  ergo_verbose3(ErgoHeapSizing,
                "shrink the heap",
                ergo_format_byte("requested shrinking amount")
                ergo_format_byte("aligned shrinking amount")
                ergo_format_byte("attempted shrinking amount"),
                shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1763
  if (mr.byte_size() > 0) {
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
    if (_hr_printer.is_active()) {
      HeapWord* curr = mr.end();
      while (curr > mr.start()) {
        HeapWord* curr_end = curr;
        curr -= HeapRegion::GrainWords;
        _hr_printer.uncommit(curr, curr_end);
      }
      assert(curr == mr.start(), "post-condition");
    }

1774
    _g1_storage.shrink_by(mr.byte_size());
1775 1776 1777 1778 1779 1780
    HeapWord* new_end = (HeapWord*) _g1_storage.high();
    assert(mr.start() == new_end, "post-condition");

    _expansion_regions += num_regions_deleted;
    update_committed_space(old_end, new_end);
    HeapRegionRemSet::shrink_heap(n_regions());
1781
    g1_policy()->record_new_heap_size(n_regions());
1782 1783 1784 1785
  } else {
    ergo_verbose0(ErgoHeapSizing,
                  "did not shrink the heap",
                  ergo_format_reason("heap shrinking operation failed"));
1786 1787 1788 1789
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1790 1791
  verify_region_sets_optional();

1792 1793 1794 1795 1796
  // We should only reach here at the end of a Full GC which means we
  // should not not be holding to any GC alloc regions. The method
  // below will make sure of that and do any remaining clean up.
  abandon_gc_alloc_regions();

1797 1798 1799
  // Instead of tearing down / rebuilding the free lists here, we
  // could instead use the remove_all_pending() method on free_list to
  // remove only the ones that we need to remove.
T
tonyp 已提交
1800
  tear_down_region_sets(true /* free_list_only */);
1801
  shrink_helper(shrink_bytes);
T
tonyp 已提交
1802
  rebuild_region_sets(true /* free_list_only */);
1803

1804
  _hrs.verify_optional();
1805
  verify_region_sets_optional();
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1818
  _dirty_card_queue_set(false),
J
johnc 已提交
1819
  _into_cset_dirty_card_queue_set(false),
1820 1821 1822 1823
  _is_alive_closure_cm(this),
  _is_alive_closure_stw(this),
  _ref_processor_cm(NULL),
  _ref_processor_stw(NULL),
1824 1825 1826 1827 1828
  _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  _bot_shared(NULL),
  _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  _evac_failure_scan_stack(NULL) ,
  _mark_in_progress(false),
1829
  _cg1r(NULL), _summary_bytes_used(0),
1830
  _g1mm(NULL),
1831 1832
  _refine_cte_cl(NULL),
  _full_collection(false),
1833 1834
  _free_list("Master Free List"),
  _secondary_free_list("Secondary Free List"),
T
tonyp 已提交
1835
  _old_set("Old Set"),
1836 1837
  _humongous_set("Master Humongous Set"),
  _free_regions_coming(false),
1838 1839
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1840
  _retained_old_gc_alloc_region(NULL),
1841
  _surviving_young_words(NULL),
1842
  _full_collections_completed(0),
1843
  _in_cset_fast_test(NULL),
1844
  _in_cset_fast_test_base(NULL),
1845 1846 1847
  _dirty_cards_region_list(NULL),
  _worker_cset_start_region(NULL),
  _worker_cset_start_region_time_stamp(NULL) {
1848 1849 1850 1851
  _g1h = this; // To catch bugs.
  if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
1852 1853 1854

  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

  int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  assert(n_rem_sets > 0, "Invariant.");

  HeapRegionRemSetIterator** iter_arr =
    NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  for (int i = 0; i < n_queues; i++) {
    iter_arr[i] = new HeapRegionRemSetIterator();
  }
  _rem_set_iterator = iter_arr;

1868 1869 1870
  _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues);
  _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues);

1871 1872 1873 1874 1875 1876
  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
  }

1877 1878
  clear_cset_start_regions();

1879 1880 1881 1882
  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

jint G1CollectedHeap::initialize() {
1883
  CollectedHeap::pre_initialize();
1884 1885 1886 1887 1888 1889
  os::enable_vtime();

  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

1890 1891 1892 1893
  // We have to initialize the printer before committing the heap, as
  // it will be used then.
  _hr_printer.set_active(G1PrintHeapRegions);

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");

  _cg1r = new ConcurrentG1Refine();

  // Reserve the maximum.
  PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  // Includes the perm-gen.
1913

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
  // When compressed oops are enabled, the preferred heap base
  // is calculated by subtracting the requested size from the
  // 32Gb boundary and using the result as the base address for
  // heap reservation. If the requested size is not aligned to
  // HeapRegion::GrainBytes (i.e. the alignment that is passed
  // into the ReservedHeapSpace constructor) then the actual
  // base of the reserved heap may end up differing from the
  // address that was requested (i.e. the preferred heap base).
  // If this happens then we could end up using a non-optimal
  // compressed oops mode.

  // Since max_byte_size is aligned to the size of a heap region (checked
  // above), we also need to align the perm gen size as it might not be.
  const size_t total_reserved = max_byte_size +
                                align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
  Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");

1931 1932
  char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);

1933 1934
  ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
                            UseLargePages, addr);
1935 1936 1937 1938 1939 1940 1941

  if (UseCompressedOops) {
    if (addr != NULL && !heap_rs.is_reserved()) {
      // Failed to reserve at specified address - the requested memory
      // region is taken already, for example, by 'java' launcher.
      // Try again to reserver heap higher.
      addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
1942 1943 1944 1945

      ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
                                 UseLargePages, addr);

1946 1947 1948 1949
      if (addr != NULL && !heap_rs0.is_reserved()) {
        // Failed to reserve at specified address again - give up.
        addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
        assert(addr == NULL, "");
1950 1951 1952

        ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
                                   UseLargePages, addr);
1953 1954 1955 1956 1957 1958
        heap_rs = heap_rs1;
      } else {
        heap_rs = heap_rs0;
      }
    }
  }
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

  if (!heap_rs.is_reserved()) {
    vm_exit_during_initialization("Could not reserve enough space for object heap");
    return JNI_ENOMEM;
  }

  // It is important to do this in a way such that concurrent readers can't
  // temporarily think somethings in the heap.  (I've actually seen this
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

  _expansion_regions = max_byte_size/HeapRegion::GrainBytes;

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
  if (barrier_set()->is_a(BarrierSet::ModRef)) {
    _mr_bs = (ModRefBarrierSet*)_barrier_set;
  } else {
    vm_exit_during_initialization("G1 requires a mod ref bs.");
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
1985 1986
  if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
    _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
1987
  } else {
1988 1989
    vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
    return JNI_ENOMEM;
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
  }

  // Carve out the G1 part of the heap.

  ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
                           g1_rs.size()/HeapWordSize);
  ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);

  _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());

  _g1_storage.initialize(g1_rs, 0);
  _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2003 2004 2005
  _hrs.initialize((HeapWord*) _g1_reserved.start(),
                  (HeapWord*) _g1_reserved.end(),
                  _expansion_regions);
2006

2007 2008 2009 2010 2011 2012
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
  const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2013
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2014
  guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2015
            "too many cards per region");
2016

2017 2018
  HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);

2019 2020 2021 2022 2023
  _bot_shared = new G1BlockOffsetSharedArray(_reserved,
                                             heap_word_size(init_byte_size));

  _g1h = this;

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
   _in_cset_fast_test_length = max_regions();
   _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);

   // We're biasing _in_cset_fast_test to avoid subtracting the
   // beginning of the heap every time we want to index; basically
   // it's the same with what we do with the card table.
   _in_cset_fast_test = _in_cset_fast_test_base -
                ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);

   // Clear the _cset_fast_test bitmap in anticipation of adding
   // regions to the incremental collection set for the first
   // evacuation pause.
   clear_cset_fast_test();

2038 2039 2040 2041 2042 2043 2044 2045
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
  _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  _cmThread = _cm->cmThread();

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

2046
  // Now expand into the initial heap size.
2047 2048 2049 2050
  if (!expand(init_byte_size)) {
    vm_exit_during_initialization("Failed to allocate initial heap.");
    return JNI_ENOMEM;
  }
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  _refine_cte_cl =
    new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
                                    g1_rem_set(),
                                    concurrent_g1_refine());
  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
2063
                                               G1SATBProcessCompletedThreshold,
2064
                                               Shared_SATB_Q_lock);
2065 2066 2067

  JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                                DirtyCardQ_FL_lock,
2068 2069
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
2070 2071
                                                Shared_DirtyCardQ_lock);

2072 2073 2074
  if (G1DeferredRSUpdate) {
    dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                      DirtyCardQ_FL_lock,
2075 2076
                                      -1, // never trigger processing
                                      -1, // no limit on length
2077 2078 2079
                                      Shared_DirtyCardQ_lock,
                                      &JavaThread::dirty_card_queue_set());
  }
J
johnc 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
  _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

2090 2091 2092 2093 2094 2095 2096
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

  // Do later initialization work for concurrent refinement.
  _cg1r->init();

2097 2098 2099
  // Here we allocate the dummy full region that is required by the
  // G1AllocRegion class. If we don't pass an address in the reserved
  // space here, lots of asserts fire.
2100 2101 2102

  HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
                                             _g1_reserved.start());
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
  // We'll re-use the same region whether the alloc region will
  // require BOT updates or not and, if it doesn't, then a non-young
  // region will complain that it cannot support allocations without
  // BOT updates. So we'll tag the dummy region as young to avoid that.
  dummy_region->set_young();
  // Make sure it's full.
  dummy_region->set_top(dummy_region->end());
  G1AllocRegion::setup(this, dummy_region);

  init_mutator_alloc_region();

2114 2115
  // Do create of the monitoring and management support so that
  // values in the heap have been properly initialized.
2116
  _g1mm = new G1MonitoringSupport(this);
2117

2118 2119 2120 2121
  return JNI_OK;
}

void G1CollectedHeap::ref_processing_init() {
2122 2123
  // Reference processing in G1 currently works as follows:
  //
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
  // * There are two reference processor instances. One is
  //   used to record and process discovered references
  //   during concurrent marking; the other is used to
  //   record and process references during STW pauses
  //   (both full and incremental).
  // * Both ref processors need to 'span' the entire heap as
  //   the regions in the collection set may be dotted around.
  //
  // * For the concurrent marking ref processor:
  //   * Reference discovery is enabled at initial marking.
  //   * Reference discovery is disabled and the discovered
  //     references processed etc during remarking.
  //   * Reference discovery is MT (see below).
  //   * Reference discovery requires a barrier (see below).
  //   * Reference processing may or may not be MT
  //     (depending on the value of ParallelRefProcEnabled
  //     and ParallelGCThreads).
  //   * A full GC disables reference discovery by the CM
  //     ref processor and abandons any entries on it's
  //     discovered lists.
  //
  // * For the STW processor:
  //   * Non MT discovery is enabled at the start of a full GC.
  //   * Processing and enqueueing during a full GC is non-MT.
  //   * During a full GC, references are processed after marking.
  //
  //   * Discovery (may or may not be MT) is enabled at the start
  //     of an incremental evacuation pause.
  //   * References are processed near the end of a STW evacuation pause.
  //   * For both types of GC:
  //     * Discovery is atomic - i.e. not concurrent.
  //     * Reference discovery will not need a barrier.
2156

2157 2158
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181

  // Concurrent Mark ref processor
  _ref_processor_cm =
    new ReferenceProcessor(mr,    // span
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           (int) ParallelGCThreads,
                                // degree of mt processing
                           (ParallelGCThreads > 1) || (ConcGCThreads > 1),
                                // mt discovery
                           (int) MAX2(ParallelGCThreads, ConcGCThreads),
                                // degree of mt discovery
                           false,
                                // Reference discovery is not atomic
                           &_is_alive_closure_cm,
                                // is alive closure
                                // (for efficiency/performance)
                           true);
                                // Setting next fields of discovered
                                // lists requires a barrier.

  // STW ref processor
  _ref_processor_stw =
2182
    new ReferenceProcessor(mr,    // span
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
                                // mt processing
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt processing
                           (ParallelGCThreads > 1),
                                // mt discovery
                           MAX2((int)ParallelGCThreads, 1),
                                // degree of mt discovery
                           true,
                                // Reference discovery is atomic
                           &_is_alive_closure_stw,
                                // is alive closure
                                // (for efficiency/performance)
                           false);
                                // Setting next fields of discovered
                                // lists requires a barrier.
2199 2200 2201 2202 2203 2204
}

size_t G1CollectedHeap::capacity() const {
  return _g1_committed.byte_size();
}

J
johnc 已提交
2205 2206 2207
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2208
                                                 int worker_i) {
2209
  // Clean cards in the hot card cache
J
johnc 已提交
2210
  concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2211

2212 2213
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  int n_completed_buffers = 0;
J
johnc 已提交
2214
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
    n_completed_buffers++;
  }
  g1_policy()->record_update_rs_processed_buffers(worker_i,
                                                  (double) n_completed_buffers);
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.

size_t G1CollectedHeap::used() const {
2227 2228
  assert(Heap_lock->owner() != NULL,
         "Should be owned on this thread's behalf.");
2229
  size_t result = _summary_bytes_used;
2230
  // Read only once in case it is set to NULL concurrently
2231
  HeapRegion* hr = _mutator_alloc_region.get();
2232 2233
  if (hr != NULL)
    result += hr->used();
2234 2235 2236
  return result;
}

2237 2238 2239 2240 2241
size_t G1CollectedHeap::used_unlocked() const {
  size_t result = _summary_bytes_used;
  return result;
}

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
  SumUsedClosure blk;
2257
  heap_region_iterate(&blk);
2258 2259 2260 2261
  return blk.result();
}

size_t G1CollectedHeap::unsafe_max_alloc() {
2262
  if (free_regions() > 0) return HeapRegion::GrainBytes;
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
  // otherwise, is there space in the current allocation region?

  // We need to store the current allocation region in a local variable
  // here. The problem is that this method doesn't take any locks and
  // there may be other threads which overwrite the current allocation
  // region field. attempt_allocation(), for example, sets it to NULL
  // and this can happen *after* the NULL check here but before the call
  // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  // to be a problem in the optimized build, since the two loads of the
  // current allocation region field are optimized away.
2273 2274
  HeapRegion* hr = _mutator_alloc_region.get();
  if (hr == NULL) {
2275 2276
    return 0;
  }
2277
  return hr->free();
2278 2279
}

2280 2281 2282 2283 2284 2285
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  return
    ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
     (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
}

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
  // Let's fill up most of the region
  size_t word_size = HeapRegion::GrainWords - 1024;
  // And as a result the region we'll allocate will be humongous.
  guarantee(isHumongous(word_size), "sanity");

  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
    // Let's use the existing mechanism for the allocation
    HeapWord* dummy_obj = humongous_obj_allocate(word_size);
    if (dummy_obj != NULL) {
      MemRegion mr(dummy_obj, word_size);
      CollectedHeap::fill_with_object(mr);
    } else {
      // If we can't allocate once, we probably cannot allocate
      // again. Let's get out of the loop.
      break;
    }
  }
}
#endif // !PRODUCT

2308
void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
2309 2310
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2311 2312 2313 2314 2315
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
  // We have already incremented _total_full_collections at the start
  // of the GC, so total_full_collections() represents how many full
  // collections have been started.
  unsigned int full_collections_started = total_full_collections();

  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2329
  assert(concurrent ||
2330 2331
         (full_collections_started == _full_collections_completed + 1) ||
         (full_collections_started == _full_collections_completed + 2),
2332
         err_msg("for inner caller (Full GC): full_collections_started = %u "
2333 2334 2335 2336
                 "is inconsistent with _full_collections_completed = %u",
                 full_collections_started, _full_collections_completed));

  // This is the case for the outer caller, i.e. the concurrent cycle.
2337
  assert(!concurrent ||
2338
         (full_collections_started == _full_collections_completed + 1),
2339 2340
         err_msg("for outer caller (concurrent cycle): "
                 "full_collections_started = %u "
2341 2342 2343 2344 2345
                 "is inconsistent with _full_collections_completed = %u",
                 full_collections_started, _full_collections_completed));

  _full_collections_completed += 1;

2346 2347 2348 2349
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
  // incorrectly see that a marking cyle is still in progress.
2350
  if (concurrent) {
2351 2352 2353
    _cmThread->clear_in_progress();
  }

2354 2355 2356 2357 2358 2359 2360
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2361
void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2362
  assert_at_safepoint(true /* should_be_vm_thread */);
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
  GCCauseSetter gcs(this, cause);
  switch (cause) {
    case GCCause::_heap_inspection:
    case GCCause::_heap_dump: {
      HandleMark hm;
      do_full_collection(false);         // don't clear all soft refs
      break;
    }
    default: // XXX FIX ME
      ShouldNotReachHere(); // Unexpected use of this function
  }
}

2376 2377 2378
void G1CollectedHeap::collect(GCCause::Cause cause) {
  // The caller doesn't have the Heap_lock
  assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
2379

2380 2381
  unsigned int gc_count_before;
  unsigned int full_gc_count_before;
2382
  {
2383 2384
    MutexLocker ml(Heap_lock);

2385 2386 2387
    // Read the GC count while holding the Heap_lock
    gc_count_before = SharedHeap::heap()->total_collections();
    full_gc_count_before = SharedHeap::heap()->total_full_collections();
2388 2389 2390 2391
  }

  if (should_do_concurrent_full_gc(cause)) {
    // Schedule an initial-mark evacuation pause that will start a
2392 2393
    // concurrent cycle. We're setting word_size to 0 which means that
    // we are not requesting a post-GC allocation.
2394
    VM_G1IncCollectionPause op(gc_count_before,
2395 2396
                               0,     /* word_size */
                               true,  /* should_initiate_conc_mark */
2397 2398 2399 2400 2401 2402 2403
                               g1_policy()->max_pause_time_ms(),
                               cause);
    VMThread::execute(&op);
  } else {
    if (cause == GCCause::_gc_locker
        DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

2404 2405
      // Schedule a standard evacuation pause. We're setting word_size
      // to 0 which means that we are not requesting a post-GC allocation.
2406
      VM_G1IncCollectionPause op(gc_count_before,
2407
                                 0,     /* word_size */
2408 2409 2410
                                 false, /* should_initiate_conc_mark */
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2411
      VMThread::execute(&op);
2412 2413 2414
    } else {
      // Schedule a Full GC.
      VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2415 2416
      VMThread::execute(&op);
    }
2417 2418 2419 2420
  }
}

bool G1CollectedHeap::is_in(const void* p) const {
S
stefank 已提交
2421 2422 2423 2424 2425
  if (_g1_committed.contains(p)) {
    // Given that we know that p is in the committed space,
    // heap_region_containing_raw() should successfully
    // return the containing region.
    HeapRegion* hr = heap_region_containing_raw(p);
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
    return hr->is_in(p);
  } else {
    return _perm_gen->as_gen()->is_in(p);
  }
}

// Iteration functions.

// Iterates an OopClosure over all ref-containing fields of objects
// within a HeapRegion.

class IterateOopClosureRegionClosure: public HeapRegionClosure {
  MemRegion _mr;
  OopClosure* _cl;
public:
  IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
    : _mr(mr), _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2451
void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2452
  IterateOopClosureRegionClosure blk(_g1_committed, cl);
2453
  heap_region_iterate(&blk);
2454 2455 2456
  if (do_perm) {
    perm_gen()->oop_iterate(cl);
  }
2457 2458
}

2459
void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2460
  IterateOopClosureRegionClosure blk(mr, cl);
2461
  heap_region_iterate(&blk);
2462 2463 2464
  if (do_perm) {
    perm_gen()->oop_iterate(cl);
  }
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2481
void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2482
  IterateObjectClosureRegionClosure blk(cl);
2483
  heap_region_iterate(&blk);
2484 2485 2486
  if (do_perm) {
    perm_gen()->object_iterate(cl);
  }
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
}

void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  // FIXME: is this right?
  guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
2508
  heap_region_iterate(&blk);
2509 2510
}

2511 2512
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  _hrs.iterate(cl);
2513 2514 2515
}

void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
2516 2517
                                               HeapRegionClosure* cl) const {
  _hrs.iterate_from(r, cl);
2518 2519 2520 2521 2522
}

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
                                                 int worker,
2523
                                                 int no_of_par_workers,
2524
                                                 jint claim_value) {
2525
  const size_t regions = n_regions();
2526 2527 2528 2529 2530 2531
  const size_t max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                             no_of_par_workers :
                             1);
  assert(UseDynamicNumberOfGCThreads ||
         no_of_par_workers == workers()->total_workers(),
         "Non dynamic should use fixed number of workers");
2532
  // try to spread out the starting points of the workers
2533
  const size_t start_index = regions / max_workers * (size_t) worker;
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546

  // each worker will actually look at all regions
  for (size_t count = 0; count < regions; ++count) {
    const size_t index = (start_index + count) % regions;
    assert(0 <= index && index < regions, "sanity");
    HeapRegion* r = region_at(index);
    // we'll ignore "continues humongous" regions (we'll process them
    // when we come across their corresponding "start humongous"
    // region) and regions already claimed
    if (r->claim_value() == claim_value || r->continuesHumongous()) {
      continue;
    }
    // OK, try to claim it
2547
    if (r->claimHeapRegion(claim_value)) {
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
      // success!
      assert(!r->continuesHumongous(), "sanity");
      if (r->startsHumongous()) {
        // If the region is "starts humongous" we'll iterate over its
        // "continues humongous" first; in fact we'll do them
        // first. The order is important. In on case, calling the
        // closure on the "starts humongous" region might de-allocate
        // and clear all its "continues humongous" regions and, as a
        // result, we might end up processing them twice. So, we'll do
        // them first (notice: most closures will ignore them anyway) and
        // then we'll do the "starts humongous" region.
        for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
          HeapRegion* chr = region_at(ch_index);

          // if the region has already been claimed or it's not
          // "continues humongous" we're done
          if (chr->claim_value() == claim_value ||
              !chr->continuesHumongous()) {
            break;
          }

          // Noone should have claimed it directly. We can given
          // that we claimed its "starts humongous" region.
          assert(chr->claim_value() != claim_value, "sanity");
          assert(chr->humongous_start_region() == r, "sanity");

          if (chr->claimHeapRegion(claim_value)) {
            // we should always be able to claim it; noone else should
            // be trying to claim this region

            bool res2 = cl->doHeapRegion(chr);
            assert(!res2, "Should not abort");

            // Right now, this holds (i.e., no closure that actually
            // does something with "continues humongous" regions
            // clears them). We might have to weaken it in the future,
            // but let's leave these two asserts here for extra safety.
            assert(chr->continuesHumongous(), "should still be the case");
            assert(chr->humongous_start_region() == r, "sanity");
          } else {
            guarantee(false, "we should not reach here");
          }
        }
2591
      }
2592 2593 2594 2595

      assert(!r->continuesHumongous(), "sanity");
      bool res = cl->doHeapRegion(r);
      assert(!res, "Should not abort");
2596 2597 2598 2599
    }
  }
}

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

void
G1CollectedHeap::reset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
  size_t _failures;
  HeapRegion* _sh_region;
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
2630
      gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2631
                             "claim value = %d, should be %d",
2632 2633
                             HR_FORMAT_PARAMS(r),
                             r->claim_value(), _claim_value);
2634 2635 2636 2637 2638 2639 2640 2641
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
2642
        gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2643
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2644
                               HR_FORMAT_PARAMS(r),
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
  size_t failures() {
    return _failures;
  }
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694

class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  jint   _claim_value;
  size_t _failures;

public:
  CheckClaimValuesInCSetHRClosure(jint claim_value) :
    _claim_value(claim_value),
    _failures(0) { }

  size_t failures() {
    return _failures;
  }

  bool doHeapRegion(HeapRegion* hr) {
    assert(hr->in_collection_set(), "how?");
    assert(!hr->isHumongous(), "H-region in CSet");
    if (hr->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
                             "claim value = %d, should be %d",
                             HR_FORMAT_PARAMS(hr),
                             hr->claim_value(), _claim_value);
      _failures += 1;
    }
    return false;
  }
};

bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesInCSetHRClosure cl(claim_value);
  collection_set_iterate(&cl);
  return cl.failures() == 0;
}
2695 2696
#endif // ASSERT

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
// Clear the cached CSet starting regions and (more importantly)
// the time stamps. Called when we reset the GC time stamp.
void G1CollectedHeap::clear_cset_start_regions() {
  assert(_worker_cset_start_region != NULL, "sanity");
  assert(_worker_cset_start_region_time_stamp != NULL, "sanity");

  int n_queues = MAX2((int)ParallelGCThreads, 1);
  for (int i = 0; i < n_queues; i++) {
    _worker_cset_start_region[i] = NULL;
    _worker_cset_start_region_time_stamp[i] = 0;
  }
}
2709

2710 2711
// Given the id of a worker, obtain or calculate a suitable
// starting region for iterating over the current collection set.
2712
HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
  assert(get_gc_time_stamp() > 0, "should have been updated by now");

  HeapRegion* result = NULL;
  unsigned gc_time_stamp = get_gc_time_stamp();

  if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
    // Cached starting region for current worker was set
    // during the current pause - so it's valid.
    // Note: the cached starting heap region may be NULL
    // (when the collection set is empty).
    result = _worker_cset_start_region[worker_i];
    assert(result == NULL || result->in_collection_set(), "sanity");
    return result;
  }

  // The cached entry was not valid so let's calculate
  // a suitable starting heap region for this worker.

  // We want the parallel threads to start their collection
  // set iteration at different collection set regions to
  // avoid contention.
  // If we have:
  //          n collection set regions
  //          p threads
  // Then thread t will start at region floor ((t * n) / p)

  result = g1_policy()->collection_set();
2740 2741
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    size_t cs_size = g1_policy()->cset_region_length();
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
    int active_workers = workers()->active_workers();
    assert(UseDynamicNumberOfGCThreads ||
             active_workers == workers()->total_workers(),
             "Unless dynamic should use total workers");

    size_t end_ind   = (cs_size * worker_i) / active_workers;
    size_t start_ind = 0;

    if (worker_i > 0 &&
        _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
      // Previous workers starting region is valid
      // so let's iterate from there
      start_ind = (cs_size * (worker_i - 1)) / active_workers;
      result = _worker_cset_start_region[worker_i - 1];
    }

    for (size_t i = start_ind; i < end_ind; i++) {
2759 2760 2761
      result = result->next_in_collection_set();
    }
  }
2762 2763 2764 2765 2766 2767 2768 2769 2770

  // Note: the calculated starting heap region may be NULL
  // (when the collection set is empty).
  assert(result == NULL || result->in_collection_set(), "sanity");
  assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
         "should be updated only once per pause");
  _worker_cset_start_region[worker_i] = result;
  OrderAccess::storestore();
  _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2771 2772 2773
  return result;
}

2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2788 2789 2790 2791 2792
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2816
  return n_regions() > 0 ? region_at(0) : NULL;
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
}


Space* G1CollectedHeap::space_containing(const void* addr) const {
  Space* res = heap_region_containing(addr);
  if (res == NULL)
    res = perm_gen()->space_containing(addr);
  return res;
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
  if (sp != NULL) {
    return sp->block_start(addr);
  }
  return NULL;
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  assert(sp != NULL, "block_size of address outside of heap");
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  return HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

2858 2859 2860 2861
  // Also, this value can be at most the humongous object threshold,
  // since we can't allow tlabs to grow big enough to accomodate
  // humongous objects.

2862
  HeapRegion* hr = _mutator_alloc_region.get();
2863
  size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2864
  if (hr == NULL) {
2865
    return max_tlab_size;
2866
  } else {
2867
    return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2868 2869 2870 2871
  }
}

size_t G1CollectedHeap::max_capacity() const {
2872
  return _g1_reserved.byte_size();
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}

void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

class VerifyLivenessOopClosure: public OopClosure {
2888 2889
  G1CollectedHeap* _g1h;
  VerifyOption _vo;
2890
public:
2891 2892 2893
  VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
    _g1h(g1h), _vo(vo)
  { }
2894 2895 2896 2897 2898
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
2899
    guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2900
              "Dead object referenced by a not dead object");
2901 2902 2903 2904
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
2905
private:
2906 2907 2908
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
2909
  VerifyOption _vo;
2910
public:
2911 2912 2913 2914 2915
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
    : _live_bytes(0), _hr(hr), _vo(vo) {
2916 2917 2918
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
2919
    VerifyLivenessOopClosure isLive(_g1h, _vo);
2920
    assert(o != NULL, "Huh?");
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
    if (!_g1h->is_obj_dead_cond(o, _vo)) {
      // If the object is alive according to the mark word,
      // then verify that the marking information agrees.
      // Note we can't verify the contra-positive of the
      // above: if the object is dead (according to the mark
      // word), it may not be marked, or may have been marked
      // but has since became dead, or may have been allocated
      // since the last marking.
      if (_vo == VerifyOption_G1UseMarkWord) {
        guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
      }

2933
      o->oop_iterate(&isLive);
2934 2935 2936 2937
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
2973
private:
2974 2975 2976 2977
  bool         _allow_dirty;
  bool         _par;
  VerifyOption _vo;
  bool         _failures;
2978
public:
2979 2980 2981 2982
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRegionClosure(bool allow_dirty, bool par, VerifyOption vo)
2983 2984
    : _allow_dirty(allow_dirty),
      _par(par),
2985
      _vo(vo),
2986 2987 2988 2989 2990
      _failures(false) {}

  bool failures() {
    return _failures;
  }
2991

2992
  bool doHeapRegion(HeapRegion* r) {
2993 2994
    guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
              "Should be unclaimed at verify points.");
2995
    if (!r->continuesHumongous()) {
2996
      bool failures = false;
2997
      r->verify(_allow_dirty, _vo, &failures);
2998 2999 3000
      if (failures) {
        _failures = true;
      } else {
3001
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
        r->object_iterate(&not_dead_yet_cl);
        if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
          gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                 "max_live_bytes "SIZE_FORMAT" "
                                 "< calculated "SIZE_FORMAT,
                                 r->bottom(), r->end(),
                                 r->max_live_bytes(),
                                 not_dead_yet_cl.live_bytes());
          _failures = true;
        }
      }
3013
    }
3014
    return false; // stop the region iteration if we hit a failure
3015 3016 3017 3018 3019 3020
  }
};

class VerifyRootsClosure: public OopsInGenClosure {
private:
  G1CollectedHeap* _g1h;
3021
  VerifyOption     _vo;
3022
  bool             _failures;
3023
public:
3024 3025 3026 3027
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyRootsClosure(VerifyOption vo) :
3028
    _g1h(G1CollectedHeap::heap()),
3029
    _vo(vo),
3030
    _failures(false) { }
3031 3032 3033

  bool failures() { return _failures; }

3034 3035 3036 3037
  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3038
      if (_g1h->is_obj_dead_cond(obj, _vo)) {
3039
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3040
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
3041 3042 3043
        if (_vo == VerifyOption_G1UseMarkWord) {
          gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
        }
3044 3045 3046 3047 3048
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }
3049 3050 3051

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
3052 3053
};

3054 3055 3056 3057 3058
// This is the task used for parallel heap verification.

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
3059 3060 3061
  bool             _allow_dirty;
  VerifyOption     _vo;
  bool             _failures;
3062 3063

public:
3064 3065 3066 3067
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty, VerifyOption vo) :
3068
    AbstractGangTask("Parallel verify task"),
3069 3070
    _g1h(g1h),
    _allow_dirty(allow_dirty),
3071
    _vo(vo),
3072 3073 3074 3075 3076
    _failures(false) { }

  bool failures() {
    return _failures;
  }
3077 3078

  void work(int worker_i) {
3079
    HandleMark hm;
3080
    VerifyRegionClosure blk(_allow_dirty, true, _vo);
3081
    _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
3082
                                          _g1h->workers()->active_workers(),
3083
                                          HeapRegion::ParVerifyClaimValue);
3084 3085 3086
    if (blk.failures()) {
      _failures = true;
    }
3087 3088 3089
  }
};

3090
void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
3091
  verify(allow_dirty, silent, VerifyOption_G1UsePrevMarking);
3092 3093 3094 3095
}

void G1CollectedHeap::verify(bool allow_dirty,
                             bool silent,
3096
                             VerifyOption vo) {
3097
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3098
    if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
3099
    VerifyRootsClosure rootsCl(vo);
3100 3101 3102 3103

    assert(Thread::current()->is_VM_thread(),
      "Expected to be executed serially by the VM thread at this point");

3104
    CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3105

3106 3107 3108
    // We apply the relevant closures to all the oops in the
    // system dictionary, the string table and the code cache.
    const int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
3109

3110 3111 3112 3113
    process_strong_roots(true,      // activate StrongRootsScope
                         true,      // we set "collecting perm gen" to true,
                                    // so we don't reset the dirty cards in the perm gen.
                         SharedHeap::ScanningOption(so),  // roots scanning options
3114
                         &rootsCl,
3115
                         &blobsCl,
3116
                         &rootsCl);
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130

    // If we're verifying after the marking phase of a Full GC then we can't
    // treat the perm gen as roots into the G1 heap. Some of the objects in
    // the perm gen may be dead and hence not marked. If one of these dead
    // objects is considered to be a root then we may end up with a false
    // "Root location <x> points to dead ob <y>" failure.
    if (vo != VerifyOption_G1UseMarkWord) {
      // Since we used "collecting_perm_gen" == true above, we will not have
      // checked the refs from perm into the G1-collected heap. We check those
      // references explicitly below. Whether the relevant cards are dirty
      // is checked further below in the rem set verification.
      if (!silent) { gclog_or_tty->print("Permgen roots "); }
      perm_gen()->oop_iterate(&rootsCl);
    }
3131
    bool failures = rootsCl.failures();
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141

    if (vo != VerifyOption_G1UseMarkWord) {
      // If we're verifying during a full GC then the region sets
      // will have been torn down at the start of the GC. Therefore
      // verifying the region sets will fail. So we only verify
      // the region sets when not in a full GC.
      if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
      verify_region_sets();
    }

3142
    if (!silent) { gclog_or_tty->print("HeapRegions "); }
3143 3144 3145 3146
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

3147
      G1ParVerifyTask task(this, allow_dirty, vo);
3148 3149 3150 3151
      assert(UseDynamicNumberOfGCThreads ||
        workers()->active_workers() == workers()->total_workers(),
        "If not dynamic should be using all the workers");
      int n_workers = workers()->active_workers();
3152 3153 3154
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
3155 3156 3157
      if (task.failures()) {
        failures = true;
      }
3158

3159 3160
      // Checks that the expected amount of parallel work was done.
      // The implication is that n_workers is > 0.
3161 3162 3163 3164 3165 3166 3167 3168
      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
3169
      VerifyRegionClosure blk(allow_dirty, false, vo);
3170
      heap_region_iterate(&blk);
3171 3172 3173
      if (blk.failures()) {
        failures = true;
      }
3174
    }
3175
    if (!silent) gclog_or_tty->print("RemSet ");
3176
    rem_set()->verify();
3177 3178 3179

    if (failures) {
      gclog_or_tty->print_cr("Heap:");
3180 3181 3182 3183
      // It helps to have the per-region information in the output to
      // help us track down what went wrong. This is why we call
      // print_extended_on() instead of print_on().
      print_extended_on(gclog_or_tty);
3184
      gclog_or_tty->print_cr("");
3185
#ifndef PRODUCT
3186
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3187
        concurrent_mark()->print_reachable("at-verification-failure",
3188
                                           vo, false /* all */);
3189
      }
3190
#endif
3191 3192 3193
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
  } else {
    if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  }
}

class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

void G1CollectedHeap::print_on(outputStream* st) const {
3210 3211
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3212
            capacity()/K, used_unlocked()/K);
3213 3214 3215 3216 3217
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
            _g1_storage.low_boundary(),
            _g1_storage.high(),
            _g1_storage.high_boundary());
  st->cr();
3218
  st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
  size_t young_regions = _young_list->length();
  st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
            young_regions, young_regions * HeapRegion::GrainBytes / K);
  size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
            survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  st->cr();
  perm()->as_gen()->print_on(st);
}

3229 3230 3231 3232 3233 3234
void G1CollectedHeap::print_extended_on(outputStream* st) const {
  print_on(st);

  // Print the per-region information.
  st->cr();
  st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), HS=humongous(starts), HC=humongous(continues), CS=collection set, F=free, TS=gc time stamp, PTAMS=previous top-at-mark-start, NTAMS=next top-at-mark-start)");
3235
  PrintRegionClosure blk(st);
3236
  heap_region_iterate(&blk);
3237 3238 3239
}

void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3240
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
3241
    workers()->print_worker_threads_on(st);
3242
  }
T
tonyp 已提交
3243
  _cmThread->print_on(st);
3244
  st->cr();
T
tonyp 已提交
3245 3246
  _cm->print_worker_threads_on(st);
  _cg1r->print_worker_threads_on(st);
3247 3248 3249 3250
  st->cr();
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3251
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3252 3253 3254
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
3255
  _cg1r->threads_do(tc);
3256 3257 3258 3259 3260 3261 3262 3263 3264
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
3265
  if (G1SummarizeRSetStats) {
3266 3267
    g1_rem_set()->print_summary_info();
  }
3268
  if (G1SummarizeConcMark) {
3269 3270 3271 3272 3273 3274
    concurrent_mark()->print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();
  SpecializationStats::print();
}

3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
#ifndef PRODUCT
// Helpful for debugging RSet issues.

class PrintRSetsClosure : public HeapRegionClosure {
private:
  const char* _msg;
  size_t _occupied_sum;

public:
  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    size_t occupied = hrrs->occupied();
    _occupied_sum += occupied;

    gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
                           HR_FORMAT_PARAMS(r));
    if (occupied == 0) {
      gclog_or_tty->print_cr("  RSet is empty");
    } else {
      hrrs->print();
    }
    gclog_or_tty->print_cr("----------");
    return false;
  }

  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
    gclog_or_tty->cr();
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->print_cr(msg);
    gclog_or_tty->cr();
  }

  ~PrintRSetsClosure() {
    gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
    gclog_or_tty->print_cr("========================================");
    gclog_or_tty->cr();
  }
};

void G1CollectedHeap::print_cset_rsets() {
  PrintRSetsClosure cl("Printing CSet RSets");
  collection_set_iterate(&cl);
}

void G1CollectedHeap::print_all_rsets() {
  PrintRSetsClosure cl("Printing All RSets");;
  heap_region_iterate(&cl);
}
#endif // PRODUCT

3325 3326 3327 3328 3329 3330 3331
G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3332
  // always_do_update_barrier = false;
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Call allocation profiler
  AllocationProfiler::iterate_since_last_gc();
  // Fill TLAB's and such
  ensure_parsability(true);
}

void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3346
  // always_do_update_barrier = true;
3347 3348 3349 3350

  // We have just completed a GC. Update the soft reference
  // policy with the new heap occupancy
  Universe::update_heap_info_at_gc();
3351 3352
}

3353 3354 3355 3356
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
                                               unsigned int gc_count_before,
                                               bool* succeeded) {
  assert_heap_not_locked_and_not_at_safepoint();
3357
  g1_policy()->record_stop_world_start();
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
                             GCCause::_g1_inc_collection_pause);
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3373 3374 3375 3376
}

void
G1CollectedHeap::doConcurrentMark() {
3377 3378 3379 3380
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
  }
}

double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
                                                       bool young) {
  return _g1_policy->predict_region_elapsed_time_ms(hr, young);
}

void G1CollectedHeap::check_if_region_is_too_expensive(double
                                                           predicted_time_ms) {
  _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();
  return buffer_size * buffer_num + extra_cards;
}

size_t G1CollectedHeap::max_pending_card_num() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num  = dcqs.completed_buffers_num();
  int thread_num  = Threads::number_of_threads();
  return (buffer_num + thread_num) * buffer_size;
}

size_t G1CollectedHeap::cards_scanned() {
3417
  return g1_rem_set()->cardsScanned();
3418 3419 3420 3421 3422
}

void
G1CollectedHeap::setup_surviving_young_words() {
  guarantee( _surviving_young_words == NULL, "pre-condition" );
3423
  size_t array_length = g1_policy()->young_cset_region_length();
3424 3425 3426 3427 3428 3429
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  if (_surviving_young_words == NULL) {
    vm_exit_out_of_memory(sizeof(size_t) * array_length,
                          "Not enough space for young surv words summary.");
  }
  memset(_surviving_young_words, 0, array_length * sizeof(size_t));
3430
#ifdef ASSERT
3431
  for (size_t i = 0;  i < array_length; ++i) {
3432
    assert( _surviving_young_words[i] == 0, "memset above" );
3433
  }
3434
#endif // !ASSERT
3435 3436 3437 3438 3439
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3440
  size_t array_length = g1_policy()->young_cset_region_length();
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
  for (size_t i = 0; i < array_length; ++i)
    _surviving_young_words[i] += surv_young_words[i];
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  _surviving_young_words = NULL;
}

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
#ifdef ASSERT
class VerifyCSetClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* hr) {
    // Here we check that the CSet region's RSet is ready for parallel
    // iteration. The fields that we'll verify are only manipulated
    // when the region is part of a CSet and is collected. Afterwards,
    // we reset these fields when we clear the region's RSet (when the
    // region is freed) so they are ready when the region is
    // re-allocated. The only exception to this is if there's an
    // evacuation failure and instead of freeing the region we leave
    // it in the heap. In that case, we reset these fields during
    // evacuation failure handling.
    guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");

    // Here's a good place to add any other checks we'd like to
    // perform on CSet regions.
3469 3470 3471
    return false;
  }
};
3472
#endif // ASSERT
3473

3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3485
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3496
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3497 3498 3499 3500 3501 3502
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3503
bool
3504
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3505 3506 3507
  assert_at_safepoint(true /* should_be_vm_thread */);
  guarantee(!is_gc_active(), "collection is not reentrant");

3508
  if (GC_locker::check_active_before_gc()) {
3509
    return false;
3510 3511
  }

3512
  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3513 3514
  ResourceMark rm;

3515 3516
  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
3517 3518
  }

T
tonyp 已提交
3519
  HRSPhaseSetter x(HRSPhaseEvacuation);
3520
  verify_region_sets_optional();
3521
  verify_dirty_young_regions();
3522

3523
  {
3524 3525 3526 3527 3528
    // This call will decide whether this pause is an initial-mark
    // pause. If it is, during_initial_mark_pause() will return true
    // for the duration of this pause.
    g1_policy()->decide_on_conc_mark_initiation();

3529 3530 3531 3532 3533 3534 3535 3536
    // We do not allow initial-mark to be piggy-backed on a
    // partially-young GC.
    assert(!g1_policy()->during_initial_mark_pause() ||
            g1_policy()->full_young_gcs(), "sanity");

    // We also do not allow partially-young GCs during marking.
    assert(!mark_in_progress() || g1_policy()->full_young_gcs(), "sanity");

3537 3538
    char verbose_str[128];
    sprintf(verbose_str, "GC pause ");
3539 3540 3541 3542
    if (g1_policy()->full_young_gcs()) {
      strcat(verbose_str, "(young)");
    } else {
      strcat(verbose_str, "(partial)");
3543
    }
3544
    if (g1_policy()->during_initial_mark_pause()) {
3545
      strcat(verbose_str, " (initial-mark)");
3546 3547 3548 3549
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
      increment_total_full_collections();
    }
3550

3551 3552 3553 3554 3555 3556
    // if PrintGCDetails is on, we'll print long statistics information
    // in the collector policy code, so let's not print this as the output
    // is messy if we do.
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
    TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
3557

3558
    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3559
    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3560

T
tonyp 已提交
3561 3562 3563 3564 3565 3566
    // If the secondary_free_list is not empty, append it to the
    // free_list. No need to wait for the cleanup operation to finish;
    // the region allocation code will check the secondary_free_list
    // and wait if necessary. If the G1StressConcRegionFreeing flag is
    // set, skip this step so that the region allocation code has to
    // get entries from the secondary_free_list.
3567
    if (!G1StressConcRegionFreeing) {
T
tonyp 已提交
3568
      append_secondary_free_list_if_not_empty_with_lock();
3569
    }
3570

3571 3572
    assert(check_young_list_well_formed(),
      "young list should be well formed");
3573

3574 3575 3576 3577
    // Don't dynamically change the number of GC threads this early.  A value of
    // 0 is used to indicate serial work.  When parallel work is done,
    // it will be set.

3578 3579 3580 3581 3582
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
3583
      increment_gc_time_stamp();
3584

3585 3586 3587
      if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
        HandleMark hm;  // Discard invalid handles created during verification
        gclog_or_tty->print(" VerifyBeforeGC:");
3588
        prepare_for_verify();
3589 3590 3591 3592
        Universe::verify(/* allow dirty */ false,
                         /* silent      */ false,
                         /* option      */ VerifyOption_G1UsePrevMarking);

3593
      }
3594

3595
      COMPILER2_PRESENT(DerivedPointerTable::clear());
3596

3597 3598 3599
      // Please see comment in g1CollectedHeap.hpp and
      // G1CollectedHeap::ref_processing_init() to see how
      // reference processing currently works in G1.
3600

3601 3602 3603
      // Enable discovery in the STW reference processor
      ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
                                            true /*verify_no_refs*/);
3604

3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
      {
        // We want to temporarily turn off discovery by the
        // CM ref processor, if necessary, and turn it back on
        // on again later if we do. Using a scoped
        // NoRefDiscovery object will do this.
        NoRefDiscovery no_cm_discovery(ref_processor_cm());

        // Forget the current alloc region (we might even choose it to be part
        // of the collection set!).
        release_mutator_alloc_region();

        // We should call this after we retire the mutator alloc
        // region(s) so that all the ALLOC / RETIRE events are generated
        // before the start GC event.
        _hr_printer.start_gc(false /* full */, (size_t) total_collections());

        // The elapsed time induced by the start time below deliberately elides
        // the possible verification above.
        double start_time_sec = os::elapsedTime();
        size_t start_used_bytes = used();
3625

3626
#if YOUNG_LIST_VERBOSE
3627 3628 3629
        gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3630 3631
#endif // YOUNG_LIST_VERBOSE

3632 3633
        g1_policy()->record_collection_pause_start(start_time_sec,
                                                   start_used_bytes);
3634

3635
#if YOUNG_LIST_VERBOSE
3636 3637
        gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
        _young_list->print();
3638
#endif // YOUNG_LIST_VERBOSE
3639

3640 3641 3642 3643
        if (g1_policy()->during_initial_mark_pause()) {
          concurrent_mark()->checkpointRootsInitialPre();
        }
        perm_gen()->save_marks();
3644

3645 3646 3647 3648
        // We must do this before any possible evacuation that should propagate
        // marks.
        if (mark_in_progress()) {
          double start_time_sec = os::elapsedTime();
3649

3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
          _cm->drainAllSATBBuffers();
          double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
          g1_policy()->record_satb_drain_time(finish_mark_ms);
        }
        // Record the number of elements currently on the mark stack, so we
        // only iterate over these.  (Since evacuation may add to the mark
        // stack, doing more exposes race conditions.)  If no mark is in
        // progress, this will be zero.
        _cm->set_oops_do_bound();

        if (mark_in_progress()) {
          concurrent_mark()->newCSet();
        }
3663

3664
#if YOUNG_LIST_VERBOSE
3665 3666 3667
        gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3668
#endif // YOUNG_LIST_VERBOSE
3669

3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
        g1_policy()->choose_collection_set(target_pause_time_ms);

        if (_hr_printer.is_active()) {
          HeapRegion* hr = g1_policy()->collection_set();
          while (hr != NULL) {
            G1HRPrinter::RegionType type;
            if (!hr->is_young()) {
              type = G1HRPrinter::Old;
            } else if (hr->is_survivor()) {
              type = G1HRPrinter::Survivor;
            } else {
              type = G1HRPrinter::Eden;
            }
            _hr_printer.cset(hr);
            hr = hr->next_in_collection_set();
3685 3686 3687
          }
        }

3688 3689 3690 3691 3692 3693 3694 3695 3696
        // We have chosen the complete collection set. If marking is
        // active then, we clear the region fields of any of the
        // concurrent marking tasks whose region fields point into
        // the collection set as these values will become stale. This
        // will cause the owning marking threads to claim a new region
        // when marking restarts.
        if (mark_in_progress()) {
          concurrent_mark()->reset_active_task_region_fields_in_cset();
        }
3697

3698
#ifdef ASSERT
3699 3700
        VerifyCSetClosure cl;
        collection_set_iterate(&cl);
3701
#endif // ASSERT
3702

3703
        setup_surviving_young_words();
3704

3705 3706
        // Initialize the GC alloc regions.
        init_gc_alloc_regions();
3707

3708 3709
        // Actually do the work...
        evacuate_collection_set();
3710

3711 3712
        free_collection_set(g1_policy()->collection_set());
        g1_policy()->clear_collection_set();
3713

3714
        cleanup_surviving_young_words();
3715

3716 3717
        // Start a new incremental collection set for the next pause.
        g1_policy()->start_incremental_cset_building();
3718

3719 3720 3721 3722
        // Clear the _cset_fast_test bitmap in anticipation of adding
        // regions to the incremental collection set for the next
        // evacuation pause.
        clear_cset_fast_test();
3723

3724
        _young_list->reset_sampled_info();
3725

3726 3727 3728 3729 3730 3731
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
          "young list should be empty");
3732 3733

#if YOUNG_LIST_VERBOSE
3734 3735
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
3736
#endif // YOUNG_LIST_VERBOSE
3737

3738 3739 3740
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
                                            _young_list->first_survivor_region(),
                                            _young_list->last_survivor_region());
3741

3742
        _young_list->reset_auxilary_lists();
3743

3744 3745 3746 3747 3748 3749 3750
        if (evacuation_failed()) {
          _summary_bytes_used = recalculate_used();
        } else {
          // The "used" of the the collection set have already been subtracted
          // when they were freed.  Add in the bytes evacuated.
          _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
        }
3751

3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
        if (g1_policy()->during_initial_mark_pause()) {
          concurrent_mark()->checkpointRootsInitialPost();
          set_marking_started();
          // CAUTION: after the doConcurrentMark() call below,
          // the concurrent marking thread(s) could be running
          // concurrently with us. Make sure that anything after
          // this point does not assume that we are the only GC thread
          // running. Note: of course, the actual marking work will
          // not start until the safepoint itself is released in
          // ConcurrentGCThread::safepoint_desynchronize().
          doConcurrentMark();
        }
3764

3765
        allocate_dummy_regions();
3766

3767
#if YOUNG_LIST_VERBOSE
3768 3769 3770
        gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
        _young_list->print();
        g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3771
#endif // YOUNG_LIST_VERBOSE
3772

3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
        init_mutator_alloc_region();

        {
          size_t expand_bytes = g1_policy()->expansion_amount();
          if (expand_bytes > 0) {
            size_t bytes_before = capacity();
            if (!expand(expand_bytes)) {
              // We failed to expand the heap so let's verify that
              // committed/uncommitted amount match the backing store
              assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
              assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
            }
3785 3786 3787
          }
        }

3788 3789 3790
        double end_time_sec = os::elapsedTime();
        double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
        g1_policy()->record_pause_time_ms(pause_time_ms);
3791 3792
        int active_gc_threads = workers()->active_workers();
        g1_policy()->record_collection_pause_end(active_gc_threads);
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826

        MemoryService::track_memory_usage();

        // In prepare_for_verify() below we'll need to scan the deferred
        // update buffers to bring the RSets up-to-date if
        // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
        // the update buffers we'll probably need to scan cards on the
        // regions we just allocated to (i.e., the GC alloc
        // regions). However, during the last GC we called
        // set_saved_mark() on all the GC alloc regions, so card
        // scanning might skip the [saved_mark_word()...top()] area of
        // those regions (i.e., the area we allocated objects into
        // during the last GC). But it shouldn't. Given that
        // saved_mark_word() is conditional on whether the GC time stamp
        // on the region is current or not, by incrementing the GC time
        // stamp here we invalidate all the GC time stamps on all the
        // regions and saved_mark_word() will simply return top() for
        // all the regions. This is a nicer way of ensuring this rather
        // than iterating over the regions and fixing them. In fact, the
        // GC time stamp increment here also ensures that
        // saved_mark_word() will return top() between pauses, i.e.,
        // during concurrent refinement. So we don't need the
        // is_gc_active() check to decided which top to use when
        // scanning cards (see CR 7039627).
        increment_gc_time_stamp();

        if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
          HandleMark hm;  // Discard invalid handles created during verification
          gclog_or_tty->print(" VerifyAfterGC:");
          prepare_for_verify();
          Universe::verify(/* allow dirty */ true,
                           /* silent      */ false,
                           /* option      */ VerifyOption_G1UsePrevMarking);
        }
3827

3828 3829
        assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
        ref_processor_stw()->verify_no_references_recorded();
3830

3831 3832
        // CM reference discovery will be re-enabled if necessary.
      }
3833

3834 3835 3836 3837
      {
        size_t expand_bytes = g1_policy()->expansion_amount();
        if (expand_bytes > 0) {
          size_t bytes_before = capacity();
3838 3839
          // No need for an ergo verbose message here,
          // expansion_amount() does this when it returns a value > 0.
3840 3841 3842 3843 3844 3845
          if (!expand(expand_bytes)) {
            // We failed to expand the heap so let's verify that
            // committed/uncommitted amount match the backing store
            assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
            assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
          }
3846
        }
3847
      }
3848 3849 3850 3851 3852 3853 3854

      // We should do this after we potentially expand the heap so
      // that all the COMMIT events are generated before the end GC
      // event, and after we retire the GC alloc regions so that all
      // RETIRE events are generated before the end GC event.
      _hr_printer.end_gc(false /* full */, (size_t) total_collections());

3855 3856
      // We have to do this after we decide whether to expand the heap or not.
      g1_policy()->print_heap_transition();
3857

3858 3859 3860
      if (mark_in_progress()) {
        concurrent_mark()->update_g1_committed();
      }
3861 3862

#ifdef TRACESPINNING
3863
      ParallelTaskTerminator::print_termination_counts();
3864
#endif
3865

3866 3867 3868 3869 3870 3871 3872 3873 3874
      gc_epilogue(false);
    }

    if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
      gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
      print_tracing_info();
      vm_exit(-1);
    }
  }
3875

3876
  _hrs.verify_optional();
3877 3878
  verify_region_sets_optional();

3879 3880 3881
  TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());

3882 3883
  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
3884
  }
3885
  g1mm()->update_sizes();
3886

3887 3888 3889 3890 3891
  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_summary_info();
  }
3892 3893

  return true;
3894 3895
}

3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
  size_t gclab_word_size;
  switch (purpose) {
    case GCAllocForSurvived:
      gclab_word_size = YoungPLABSize;
      break;
    case GCAllocForTenured:
      gclab_word_size = OldPLABSize;
      break;
    default:
      assert(false, "unknown GCAllocPurpose");
      gclab_word_size = OldPLABSize;
      break;
  }
  return gclab_word_size;
}

3914 3915 3916 3917 3918 3919 3920 3921 3922
void G1CollectedHeap::init_mutator_alloc_region() {
  assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  _mutator_alloc_region.init();
}

void G1CollectedHeap::release_mutator_alloc_region() {
  _mutator_alloc_region.release();
  assert(_mutator_alloc_region.get() == NULL, "post-condition");
}
3923

3924
void G1CollectedHeap::init_gc_alloc_regions() {
3925
  assert_at_safepoint(true /* should_be_vm_thread */);
3926

3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
  _survivor_gc_alloc_region.init();
  _old_gc_alloc_region.init();
  HeapRegion* retained_region = _retained_old_gc_alloc_region;
  _retained_old_gc_alloc_region = NULL;

  // We will discard the current GC alloc region if:
  // a) it's in the collection set (it can happen!),
  // b) it's already full (no point in using it),
  // c) it's empty (this means that it was emptied during
  // a cleanup and it should be on the free list now), or
  // d) it's humongous (this means that it was emptied
  // during a cleanup and was added to the free list, but
  // has been subseqently used to allocate a humongous
  // object that may be less than the region size).
  if (retained_region != NULL &&
      !retained_region->in_collection_set() &&
      !(retained_region->top() == retained_region->end()) &&
      !retained_region->is_empty() &&
      !retained_region->isHumongous()) {
    retained_region->set_saved_mark();
T
tonyp 已提交
3947 3948 3949 3950 3951
    // The retained region was added to the old region set when it was
    // retired. We have to remove it now, since we don't allow regions
    // we allocate to in the region sets. We'll re-add it later, when
    // it's retired again.
    _old_set.remove(retained_region);
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
    _old_gc_alloc_region.set(retained_region);
    _hr_printer.reuse(retained_region);
  }
}

void G1CollectedHeap::release_gc_alloc_regions() {
  _survivor_gc_alloc_region.release();
  // If we have an old GC alloc region to release, we'll save it in
  // _retained_old_gc_alloc_region. If we don't
  // _retained_old_gc_alloc_region will become NULL. This is what we
  // want either way so no reason to check explicitly for either
  // condition.
  _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
3965 3966
}

3967 3968 3969 3970
void G1CollectedHeap::abandon_gc_alloc_regions() {
  assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  _retained_old_gc_alloc_region = NULL;
3971 3972
}

3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
3984
  delete _evac_failure_scan_stack;
3985 3986 3987
  _evac_failure_scan_stack = NULL;
}

3988 3989 3990 3991 3992 3993 3994 3995 3996
class UpdateRSetDeferred : public OopsInHeapRegionClosure {
private:
  G1CollectedHeap* _g1;
  DirtyCardQueue *_dcq;
  CardTableModRefBS* _ct_bs;

public:
  UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
    _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
3997

3998 3999 4000
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
  template <class T> void do_oop_work(T* p) {
4001
    assert(_from->is_in_reserved(p), "paranoia");
4002 4003
    if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
        !_from->is_survivor()) {
4004 4005 4006 4007
      size_t card_index = _ct_bs->index_for(p);
      if (_ct_bs->mark_card_deferred(card_index)) {
        _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
      }
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
    }
  }
};

class RemoveSelfPointerClosure: public ObjectClosure {
private:
  G1CollectedHeap* _g1;
  ConcurrentMark* _cm;
  HeapRegion* _hr;
  size_t _prev_marked_bytes;
  size_t _next_marked_bytes;
4019
  OopsInHeapRegionClosure *_cl;
4020
public:
4021 4022 4023
  RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
                           OopsInHeapRegionClosure* cl) :
    _g1(g1), _hr(hr), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
4024
    _next_marked_bytes(0), _cl(cl) {}
4025 4026 4027 4028

  size_t prev_marked_bytes() { return _prev_marked_bytes; }
  size_t next_marked_bytes() { return _next_marked_bytes; }

4029
  // <original comment>
4030 4031 4032 4033 4034 4035 4036 4037 4038
  // The original idea here was to coalesce evacuated and dead objects.
  // However that caused complications with the block offset table (BOT).
  // In particular if there were two TLABs, one of them partially refined.
  // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  // The BOT entries of the unrefined part of TLAB_2 point to the start
  // of TLAB_2. If the last object of the TLAB_1 and the first object
  // of TLAB_2 are coalesced, then the cards of the unrefined part
  // would point into middle of the filler object.
  // The current approach is to not coalesce and leave the BOT contents intact.
4039 4040 4041 4042 4043 4044
  // </original comment>
  //
  // We now reset the BOT when we start the object iteration over the
  // region and refine its entries for every object we come across. So
  // the above comment is not really relevant and we should be able
  // to coalesce dead objects if we want to.
4045
  void do_object(oop obj) {
4046 4047 4048 4049
    HeapWord* obj_addr = (HeapWord*) obj;
    assert(_hr->is_in(obj_addr), "sanity");
    size_t obj_size = obj->size();
    _hr->update_bot_for_object(obj_addr, obj_size);
4050 4051 4052 4053 4054
    if (obj->is_forwarded() && obj->forwardee() == obj) {
      // The object failed to move.
      assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
      _cm->markPrev(obj);
      assert(_cm->isPrevMarked(obj), "Should be marked!");
4055
      _prev_marked_bytes += (obj_size * HeapWordSize);
4056 4057
      if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
        _cm->markAndGrayObjectIfNecessary(obj);
4058
      }
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
      obj->set_mark(markOopDesc::prototype());
      // While we were processing RSet buffers during the
      // collection, we actually didn't scan any cards on the
      // collection set, since we didn't want to update remebered
      // sets with entries that point into the collection set, given
      // that live objects fromthe collection set are about to move
      // and such entries will be stale very soon. This change also
      // dealt with a reliability issue which involved scanning a
      // card in the collection set and coming across an array that
      // was being chunked and looking malformed. The problem is
      // that, if evacuation fails, we might have remembered set
      // entries missing given that we skipped cards on the
      // collection set. So, we'll recreate such entries now.
4072
      obj->oop_iterate(_cl);
4073 4074 4075 4076
      assert(_cm->isPrevMarked(obj), "Should be marked!");
    } else {
      // The object has been either evacuated or is dead. Fill it with a
      // dummy object.
4077
      MemRegion mr((HeapWord*)obj, obj_size);
4078
      CollectedHeap::fill_with_object(mr);
4079
      _cm->clearRangeBothMaps(mr);
4080 4081 4082 4083 4084
    }
  }
};

void G1CollectedHeap::remove_self_forwarding_pointers() {
J
johnc 已提交
4085
  UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
4086 4087 4088 4089 4090 4091 4092 4093
  DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  UpdateRSetDeferred deferred_update(_g1h, &dcq);
  OopsInHeapRegionClosure *cl;
  if (G1DeferredRSUpdate) {
    cl = &deferred_update;
  } else {
    cl = &immediate_update;
  }
4094 4095 4096
  HeapRegion* cur = g1_policy()->collection_set();
  while (cur != NULL) {
    assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
4097
    assert(!cur->isHumongous(), "sanity");
4098 4099 4100

    if (cur->evacuation_failed()) {
      assert(cur->in_collection_set(), "bad CS");
4101 4102
      RemoveSelfPointerClosure rspc(_g1h, cur, cl);

4103 4104 4105 4106 4107 4108 4109 4110
      // In the common case we make sure that this is done when the
      // region is freed so that it is "ready-to-go" when it's
      // re-allocated. However, when evacuation failure happens, a
      // region will remain in the heap and might ultimately be added
      // to a CSet in the future. So we have to be careful here and
      // make sure the region's RSet is ready for parallel iteration
      // whenever this might be required in the future.
      cur->rem_set()->reset_for_par_iteration();
4111
      cur->reset_bot();
4112
      cl->set_region(cur);
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
      cur->object_iterate(&rspc);

      // A number of manipulations to make the TAMS be the current top,
      // and the marked bytes be the ones observed in the iteration.
      if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
        // The comments below are the postconditions achieved by the
        // calls.  Note especially the last such condition, which says that
        // the count of marked bytes has been properly restored.
        cur->note_start_of_marking(false);
        // _next_top_at_mark_start == top, _next_marked_bytes == 0
        cur->add_to_marked_bytes(rspc.prev_marked_bytes());
        // _next_marked_bytes == prev_marked_bytes.
        cur->note_end_of_marking();
        // _prev_top_at_mark_start == top(),
        // _prev_marked_bytes == prev_marked_bytes
      }
      // If there is no mark in progress, we modified the _next variables
      // above needlessly, but harmlessly.
      if (_g1h->mark_in_progress()) {
        cur->note_start_of_marking(false);
        // _next_top_at_mark_start == top, _next_marked_bytes == 0
        // _next_marked_bytes == next_marked_bytes.
      }
    }
    cur = cur->next_in_collection_set();
  }
  assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");

  // Now restore saved marks, if any.
  if (_objs_with_preserved_marks != NULL) {
    assert(_preserved_marks_of_objs != NULL, "Both or none.");
    guarantee(_objs_with_preserved_marks->length() ==
              _preserved_marks_of_objs->length(), "Both or none.");
    for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
      oop obj   = _objs_with_preserved_marks->at(i);
      markOop m = _preserved_marks_of_objs->at(i);
      obj->set_mark(m);
    }
    // Delete the preserved marks growable arrays (allocated on the C heap).
    delete _objs_with_preserved_marks;
    delete _preserved_marks_of_objs;
    _objs_with_preserved_marks = NULL;
    _preserved_marks_of_objs = NULL;
  }
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

oop
G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4175 4176
                                               oop old,
                                               bool should_mark_root) {
4177 4178 4179
  assert(obj_in_cs(old),
         err_msg("obj: "PTR_FORMAT" should still be in the CSet",
                 (HeapWord*) old));
4180 4181 4182 4183
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193

    // should_mark_root will be true when this routine is called
    // from a root scanning closure during an initial mark pause.
    // In this case the thread that succeeds in self-forwarding the
    // object is also responsible for marking the object.
    if (should_mark_root) {
      assert(!oopDesc::is_null(old), "shouldn't be");
      _cm->grayRoot(old);
    }

4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
4212 4213 4214 4215 4216 4217 4218
    // Forward-to-self failed. Either someone else managed to allocate
    // space for this object (old != forward_ptr) or they beat us in
    // self-forwarding it (old == forward_ptr).
    assert(old == forward_ptr || !obj_in_cs(forward_ptr),
           err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
                   "should not be in the CSet",
                   (HeapWord*) old, (HeapWord*) forward_ptr));
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  set_evacuation_failed(true);

  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4231
    _hr_printer.evac_failure(r);
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4245 4246 4247 4248
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
    if (_objs_with_preserved_marks == NULL) {
      assert(_preserved_marks_of_objs == NULL, "Both or none.");
      _objs_with_preserved_marks =
        new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
      _preserved_marks_of_objs =
        new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
    }
    _objs_with_preserved_marks->push(obj);
    _preserved_marks_of_objs->push(m);
  }
}

HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
                                                  size_t word_size) {
4263 4264 4265 4266
  if (purpose == GCAllocForSurvived) {
    HeapWord* result = survivor_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4267
    } else {
4268 4269 4270
      // Let's try to allocate in the old gen in case we can fit the
      // object there.
      return old_attempt_allocation(word_size);
4271
    }
4272 4273 4274 4275 4276
  } else {
    assert(purpose ==  GCAllocForTenured, "sanity");
    HeapWord* result = old_attempt_allocation(word_size);
    if (result != NULL) {
      return result;
4277
    } else {
4278 4279 4280
      // Let's try to allocate in the survivors in case we can fit the
      // object there.
      return survivor_attempt_allocation(word_size);
4281 4282 4283
    }
  }

4284 4285 4286
  ShouldNotReachHere();
  // Trying to keep some compilers happy.
  return NULL;
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
}

#ifndef PRODUCT
bool GCLabBitMapClosure::do_bit(size_t offset) {
  HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  guarantee(_cm->isMarked(oop(addr)), "it should be!");
  return true;
}
#endif // PRODUCT

4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  ParGCAllocBuffer(gclab_word_size),
  _should_mark_objects(false),
  _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
  _retired(false)
{
  //_should_mark_objects is set to true when G1ParCopyHelper needs to
  // mark the forwarded location of an evacuated object.
  // We set _should_mark_objects to true if marking is active, i.e. when we
  // need to propagate a mark, or during an initial mark pause, i.e. when we
  // need to mark objects immediately reachable by the roots.
  if (G1CollectedHeap::heap()->mark_in_progress() ||
      G1CollectedHeap::heap()->g1_policy()->during_initial_mark_pause()) {
    _should_mark_objects = true;
  }
}

4314 4315 4316 4317 4318 4319 4320 4321
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  : _g1h(g1h),
    _refs(g1h->task_queue(queue_num)),
    _dcq(&g1h->dirty_card_queue_set()),
    _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
    _g1_rem(g1h->g1_rem_set()),
    _hash_seed(17), _queue_num(queue_num),
    _term_attempts(0),
4322 4323
    _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
    _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4324 4325 4326 4327 4328 4329 4330 4331 4332
    _age_table(false),
    _strong_roots_time(0), _term_time(0),
    _alloc_buffer_waste(0), _undo_waste(0)
{
  // we allocate G1YoungSurvRateNumRegions plus one entries, since
  // we "sacrifice" entry 0 to keep track of surviving bytes for
  // non-young regions (where the age is -1)
  // We also add a few elements at the beginning and at the end in
  // an attempt to eliminate cache contention
4333
  size_t real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
  size_t array_length = PADDING_ELEM_NUM +
                        real_length +
                        PADDING_ELEM_NUM;
  _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  if (_surviving_young_words_base == NULL)
    vm_exit_out_of_memory(array_length * sizeof(size_t),
                          "Not enough space for young surv histo.");
  _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  memset(_surviving_young_words, 0, real_length * sizeof(size_t));

4344 4345 4346
  _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;

4347 4348
  _start = os::elapsedTime();
}
4349

4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
void
G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
{
  st->print_raw_cr("GC Termination Stats");
  st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
                   " ------waste (KiB)------");
  st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
                   "  total   alloc    undo");
  st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
                   " ------- ------- -------");
}

void
G1ParScanThreadState::print_termination_stats(int i,
                                              outputStream* const st) const
{
  const double elapsed_ms = elapsed_time() * 1000.0;
  const double s_roots_ms = strong_roots_time() * 1000.0;
  const double term_ms    = term_time() * 1000.0;
  st->print_cr("%3d %9.2f %9.2f %6.2f "
               "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
               SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
               i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
               term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
               (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
               alloc_buffer_waste() * HeapWordSize / K,
               undo_waste() * HeapWordSize / K);
}

4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
#ifdef ASSERT
bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  assert(ref != NULL, "invariant");
  assert(UseCompressedOops, "sanity");
  assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  oop p = oopDesc::load_decode_heap_oop(ref);
  assert(_g1h->is_in_g1_reserved(p),
         err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  return true;
}

bool G1ParScanThreadState::verify_ref(oop* ref) const {
  assert(ref != NULL, "invariant");
  if (has_partial_array_mask(ref)) {
    // Must be in the collection set--it's already been copied.
    oop p = clear_partial_array_mask(ref);
    assert(_g1h->obj_in_cs(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  } else {
    oop p = oopDesc::load_decode_heap_oop(ref);
    assert(_g1h->is_in_g1_reserved(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  }
  return true;
}

bool G1ParScanThreadState::verify_task(StarTask ref) const {
  if (ref.is_narrow()) {
    return verify_ref((narrowOop*) ref);
  } else {
    return verify_ref((oop*) ref);
  }
}
#endif // ASSERT

void G1ParScanThreadState::trim_queue() {
4415 4416 4417 4418
  assert(_evac_cl != NULL, "not set");
  assert(_evac_failure_cl != NULL, "not set");
  assert(_partial_scan_cl != NULL, "not set");

4419 4420 4421 4422 4423 4424
  StarTask ref;
  do {
    // Drain the overflow stack first, so other threads can steal.
    while (refs()->pop_overflow(ref)) {
      deal_with_reference(ref);
    }
4425

4426 4427 4428 4429 4430 4431
    while (refs()->pop_local(ref)) {
      deal_with_reference(ref);
    }
  } while (!refs()->is_empty());
}

4432 4433
G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4434 4435 4436
  _par_scan_state(par_scan_state),
  _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  _mark_in_progress(_g1->mark_in_progress()) { }
4437

4438 4439 4440 4441
template <class T> void G1ParCopyHelper::mark_object(T* p) {
  // This is called from do_oop_work for objects that are not
  // in the collection set. Objects in the collection set
  // are marked after they have been evacuated.
4442

4443 4444 4445 4446
  T heap_oop = oopDesc::load_heap_oop(p);
  if (!oopDesc::is_null(heap_oop)) {
    oop obj = oopDesc::decode_heap_oop(heap_oop);
    HeapWord* addr = (HeapWord*)obj;
4447
    if (_g1->is_in_g1_reserved(addr)) {
4448
      _cm->grayRoot(oop(addr));
4449
    }
4450 4451 4452
  }
}

4453 4454
oop G1ParCopyHelper::copy_to_survivor_space(oop old, bool should_mark_root,
                                                     bool should_mark_copy) {
4455 4456 4457 4458 4459 4460 4461 4462
  size_t    word_sz = old->size();
  HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  // +1 to make the -1 indexes valid...
  int       young_index = from_region->young_index_in_cset()+1;
  assert( (from_region->is_young() && young_index > 0) ||
          (!from_region->is_young() && young_index == 0), "invariant" );
  G1CollectorPolicy* g1p = _g1->g1_policy();
  markOop m = old->mark();
4463 4464 4465
  int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
                                           : m->age();
  GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4466 4467 4468 4469 4470 4471 4472 4473
                                                             word_sz);
  HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  oop       obj     = oop(obj_ptr);

  if (obj_ptr == NULL) {
    // This will either forward-to-self, or detect that someone else has
    // installed a forwarding pointer.
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4474
    return _g1->handle_evacuation_failure_par(cl, old, should_mark_root);
4475 4476
  }

4477 4478 4479
  // We're going to allocate linearly, so might as well prefetch ahead.
  Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);

4480 4481 4482 4483
  oop forward_ptr = old->forward_to_atomic(obj);
  if (forward_ptr == NULL) {
    Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
    if (g1p->track_object_age(alloc_purpose)) {
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
      // We could simply do obj->incr_age(). However, this causes a
      // performance issue. obj->incr_age() will first check whether
      // the object has a displaced mark by checking its mark word;
      // getting the mark word from the new location of the object
      // stalls. So, given that we already have the mark word and we
      // are about to install it anyway, it's better to increase the
      // age on the mark word, when the object does not have a
      // displaced mark word. We're not expecting many objects to have
      // a displaced marked word, so that case is not optimized
      // further (it could be...) and we simply call obj->incr_age().

      if (m->has_displaced_mark_helper()) {
        // in this case, we have to install the mark word first,
        // otherwise obj looks to be forwarded (the old mark word,
        // which contains the forward pointer, was copied)
        obj->set_mark(m);
        obj->incr_age();
      } else {
        m = m->incr_age();
4503
        obj->set_mark(m);
4504
      }
4505 4506 4507
      _par_scan_state->age_table()->add(obj, word_sz);
    } else {
      obj->set_mark(m);
4508
    }
4509

4510 4511
    // Mark the evacuated object or propagate "next" mark bit
    if (should_mark_copy) {
4512 4513 4514 4515 4516 4517 4518
      if (!use_local_bitmaps ||
          !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
        // if we couldn't mark it on the local bitmap (this happens when
        // the object was not allocated in the GCLab), we have to bite
        // the bullet and do the standard parallel mark
        _cm->markAndGrayObjectIfNecessary(obj);
      }
4519

4520
      if (_g1->isMarkedNext(old)) {
4521 4522
        // Unmark the object's old location so that marking
        // doesn't think the old object is alive.
4523 4524 4525 4526 4527 4528 4529 4530 4531
        _cm->nextMarkBitMap()->parClear((HeapWord*)old);
      }
    }

    size_t* surv_young_words = _par_scan_state->surviving_young_words();
    surv_young_words[young_index] += word_sz;

    if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
      arrayOop(old)->set_length(0);
4532 4533
      oop* old_p = set_partial_array_mask(old);
      _par_scan_state->push_on_queue(old_p);
4534
    } else {
4535 4536 4537
      // No point in using the slower heap_region_containing() method,
      // given that we know obj is in the heap.
      _scanner->set_region(_g1->heap_region_containing_raw(obj));
4538 4539 4540 4541 4542 4543 4544 4545 4546
      obj->oop_iterate_backwards(_scanner);
    }
  } else {
    _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
    obj = forward_ptr;
  }
  return obj;
}

4547
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4548
template <class T>
4549
void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4550 4551
::do_oop_work(T* p) {
  oop obj = oopDesc::load_decode_heap_oop(p);
4552 4553 4554
  assert(barrier != G1BarrierRS || obj != NULL,
         "Precondition: G1BarrierRS implies obj is nonNull");

4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
  // Marking:
  // If the object is in the collection set, then the thread
  // that copies the object should mark, or propagate the
  // mark to, the evacuated object.
  // If the object is not in the collection set then we
  // should call the mark_object() method depending on the
  // value of the template parameter do_mark_object (which will
  // be true for root scanning closures during an initial mark
  // pause).
  // The mark_object() method first checks whether the object
  // is marked and, if not, attempts to mark the object.

4567
  // here the null check is implicit in the cset_fast_test() test
4568
  if (_g1->in_cset_fast_test(obj)) {
4569
    if (obj->is_forwarded()) {
4570
      oopDesc::encode_store_heap_oop(p, obj->forwardee());
4571 4572 4573 4574 4575
      // If we are a root scanning closure during an initial
      // mark pause (i.e. do_mark_object will be true) then
      // we also need to handle marking of roots in the
      // event of an evacuation failure. In the event of an
      // evacuation failure, the object is forwarded to itself
4576 4577 4578 4579 4580 4581
      // and not copied. For root-scanning closures, the
      // object would be marked after a successful self-forward
      // but an object could be pointed to by both a root and non
      // root location and be self-forwarded by a non-root-scanning
      // closure. Therefore we also have to attempt to mark the
      // self-forwarded root object here.
4582 4583 4584
      if (do_mark_object && obj->forwardee() == obj) {
        mark_object(p);
      }
4585
    } else {
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
      // During an initial mark pause, objects that are pointed to
      // by the roots need to be marked - even in the event of an
      // evacuation failure. We pass the template parameter
      // do_mark_object (which is true for root scanning closures
      // during an initial mark pause) to copy_to_survivor_space
      // which will pass it on to the evacuation failure handling
      // code. The thread that successfully self-forwards a root
      // object to itself is responsible for marking the object.
      bool should_mark_root = do_mark_object;

4596 4597 4598 4599 4600 4601 4602 4603
      // We need to mark the copied object if we're a root scanning
      // closure during an initial mark pause (i.e. do_mark_object
      // will be true), or the object is already marked and we need
      // to propagate the mark to the evacuated copy.
      bool should_mark_copy = do_mark_object ||
                              _during_initial_mark ||
                              (_mark_in_progress && !_g1->is_obj_ill(obj));

4604 4605
      oop copy_oop = copy_to_survivor_space(obj, should_mark_root,
                                                 should_mark_copy);
4606
      oopDesc::encode_store_heap_oop(p, copy_oop);
4607
    }
4608 4609
    // When scanning the RS, we only care about objs in CS.
    if (barrier == G1BarrierRS) {
4610
      _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4611
    }
4612 4613 4614 4615 4616 4617 4618
  } else {
    // The object is not in collection set. If we're a root scanning
    // closure during an initial mark pause (i.e. do_mark_object will
    // be true) then attempt to mark the object.
    if (do_mark_object) {
      mark_object(p);
    }
4619
  }
4620

4621
  if (barrier == G1BarrierEvac && obj != NULL) {
4622
    _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4623 4624 4625 4626
  }

  if (do_gen_barrier && obj != NULL) {
    par_do_barrier(p);
4627 4628 4629
  }
}

4630 4631
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4632

4633
template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4634 4635
  assert(has_partial_array_mask(p), "invariant");
  oop old = clear_partial_array_mask(p);
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
  assert(old->is_objArray(), "must be obj array");
  assert(old->is_forwarded(), "must be forwarded");
  assert(Universe::heap()->is_in_reserved(old), "must be in heap.");

  objArrayOop obj = objArrayOop(old->forwardee());
  assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  // Process ParGCArrayScanChunk elements now
  // and push the remainder back onto queue
  int start     = arrayOop(old)->length();
  int end       = obj->length();
  int remainder = end - start;
  assert(start <= end, "just checking");
  if (remainder > 2 * ParGCArrayScanChunk) {
    // Test above combines last partial chunk with a full chunk
    end = start + ParGCArrayScanChunk;
    arrayOop(old)->set_length(end);
    // Push remainder.
4653 4654 4655
    oop* old_p = set_partial_array_mask(old);
    assert(arrayOop(old)->length() < obj->length(), "Empty push?");
    _par_scan_state->push_on_queue(old_p);
4656 4657 4658 4659 4660
  } else {
    // Restore length so that the heap remains parsable in
    // case of evacuation failure.
    arrayOop(old)->set_length(end);
  }
4661
  _scanner.set_region(_g1->heap_region_containing_raw(obj));
4662
  // process our set of indices (include header in first chunk)
4663
  obj->oop_iterate_range(&_scanner, start, end);
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
}

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4685
  void do_void();
4686

4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  StarTask stolen_task;
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();

  do {
    while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
      assert(pss->verify_task(stolen_task), "sanity");
      if (stolen_task.is_narrow()) {
4708
        pss->deal_with_reference((narrowOop*) stolen_task);
4709
      } else {
4710
        pss->deal_with_reference((oop*) stolen_task);
4711
      }
4712 4713 4714 4715

      // We've just processed a reference and we might have made
      // available new entries on the queues. So we have to make sure
      // we drain the queues as necessary.
4716
      pss->trim_queue();
4717
    }
4718 4719 4720 4721
  } while (!offer_termination());

  pss->retire_alloc_buffers();
}
4722 4723 4724 4725 4726 4727

class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
4728
  int _n_workers;
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

  size_t getNCards() {
    return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
      / G1BlockOffsetSharedArray::N_bytes;
  }

public:
4739 4740
  G1ParTask(G1CollectedHeap* g1h,
            RefToScanQueueSet *task_queues)
4741 4742 4743
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
4744 4745
      _terminator(0, _queues),
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4746 4747 4748 4749 4750 4751 4752 4753
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
  ParallelTaskTerminator* terminator() { return &_terminator; }

  virtual void set_for_termination(int active_workers) {
    // This task calls set_n_termination() in par_non_clean_card_iterate_work()
    // in the young space (_par_seq_tasks) in the G1 heap
    // for SequentialSubTasksDone.
    // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
    // both of which need setting by set_n_termination().
    _g1h->SharedHeap::set_n_termination(active_workers);
    _g1h->set_n_termination(active_workers);
    terminator()->reset_for_reuse(active_workers);
    _n_workers = active_workers;
  }

4768
  void work(int i) {
4769
    if (i >= _n_workers) return;  // no work needed this round
4770 4771 4772 4773

    double start_time_ms = os::elapsedTime() * 1000.0;
    _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);

4774 4775 4776
    ResourceMark rm;
    HandleMark   hm;

4777 4778
    ReferenceProcessor*             rp = _g1h->ref_processor_stw();

4779
    G1ParScanThreadState            pss(_g1h, i);
4780 4781 4782
    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4783 4784 4785 4786 4787

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

4788 4789
    G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
    G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
4790

4791 4792
    G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
    G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
4793

4794 4795
    OopClosure*                    scan_root_cl = &only_scan_root_cl;
    OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
4796

4797
    if (_g1h->g1_policy()->during_initial_mark_pause()) {
4798
      // We also need to mark copied objects.
4799 4800 4801 4802
      scan_root_cl = &scan_mark_root_cl;
      scan_perm_cl = &scan_mark_perm_cl;
    }

4803
    G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4804

4805 4806 4807 4808
    pss.start_strong_roots();
    _g1h->g1_process_strong_roots(/* not collecting perm */ false,
                                  SharedHeap::SO_AllClasses,
                                  scan_root_cl,
4809
                                  &push_heap_rs_cl,
4810 4811 4812
                                  scan_perm_cl,
                                  i);
    pss.end_strong_roots();
4813

4814 4815 4816 4817 4818 4819 4820
    {
      double start = os::elapsedTime();
      G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
      evac.do_void();
      double elapsed_ms = (os::elapsedTime()-start)*1000.0;
      double term_ms = pss.term_time()*1000.0;
      _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
4821
      _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
4822
    }
4823
    _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4824 4825 4826 4827 4828 4829
    _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

    // Clean up any par-expanded rem sets.
    HeapRegionRemSet::par_cleanup();

    if (ParallelGCVerbose) {
4830 4831
      MutexLocker x(stats_lock());
      pss.print_termination_stats(i);
4832 4833
    }

4834
    assert(pss.refs()->is_empty(), "should be empty");
4835 4836
    double end_time_ms = os::elapsedTime() * 1000.0;
    _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
4837 4838 4839 4840 4841
  }
};

// *** Common G1 Evacuation Stuff

4842 4843
// This method is run in a GC worker.

4844 4845 4846 4847 4848 4849 4850 4851
void
G1CollectedHeap::
g1_process_strong_roots(bool collecting_perm_gen,
                        SharedHeap::ScanningOption so,
                        OopClosure* scan_non_heap_roots,
                        OopsInHeapRegionClosure* scan_rs,
                        OopsInGenClosure* scan_perm,
                        int worker_i) {
4852

4853 4854 4855 4856 4857 4858 4859 4860
  // First scan the strong roots, including the perm gen.
  double ext_roots_start = os::elapsedTime();
  double closure_app_time_sec = 0.0;

  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  buf_scan_perm.set_generation(perm_gen());

4861 4862 4863 4864 4865 4866
  // Walk the code cache w/o buffering, because StarTask cannot handle
  // unaligned oop locations.
  CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);

  process_strong_roots(false, // no scoping; this is parallel code
                       collecting_perm_gen, so,
4867
                       &buf_scan_non_heap_roots,
4868
                       &eager_scan_code_roots,
4869
                       &buf_scan_perm);
4870

4871
  // Now the CM ref_processor roots.
4872
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4873 4874 4875 4876 4877
    // We need to treat the discovered reference lists of the
    // concurrent mark ref processor as roots and keep entries
    // (which are added by the marking threads) on them live
    // until they can be processed at the end of marking.
    ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4878 4879 4880
  }

  // Finish up any enqueued closure apps (attributed as object copy time).
4881 4882
  buf_scan_non_heap_roots.done();
  buf_scan_perm.done();
4883

4884
  double ext_roots_end = os::elapsedTime();
4885

4886
  g1_policy()->reset_obj_copy_time(worker_i);
4887 4888
  double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
                                buf_scan_non_heap_roots.closure_app_seconds();
4889
  g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4890

4891 4892
  double ext_root_time_ms =
    ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4893

4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
  g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);

  // Scan strong roots in mark stack.
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
    concurrent_mark()->oops_do(scan_non_heap_roots);
  }
  double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);

  // Now scan the complement of the collection set.
  if (scan_rs != NULL) {
    g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  }
4907

4908 4909 4910 4911 4912 4913
  _process_strong_tasks->all_tasks_completed();
}

void
G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
                                       OopClosure* non_root_closure) {
4914 4915
  CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4916 4917
}

4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
// Weak Reference Processing support

// An always "is_alive" closure that is used to preserve referents.
// If the object is non-null then it's alive.  Used in the preservation
// of referent objects that are pointed to by reference objects
// discovered by the CM ref processor.
class G1AlwaysAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_object(oop p) { assert(false, "Do not call."); }
  bool do_object_b(oop p) {
    if (p != NULL) {
      return true;
    }
    return false;
  }
};

bool G1STWIsAliveClosure::do_object_b(oop p) {
  // An object is reachable if it is outside the collection set,
  // or is inside and copied.
  return !_g1->obj_in_cs(p) || p->is_forwarded();
}

// Non Copying Keep Alive closure
class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  void do_oop(      oop* p) {
    oop obj = *p;

    if (_g1->obj_in_cs(obj)) {
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
    }
  }
};

// Copying Keep Alive closure - can be called from both
// serial and parallel code as long as different worker
// threads utilize different G1ParScanThreadState instances
// and different queues.

class G1CopyingKeepAliveClosure: public OopClosure {
  G1CollectedHeap*         _g1h;
  OopClosure*              _copy_non_heap_obj_cl;
  OopsInHeapRegionClosure* _copy_perm_obj_cl;
  G1ParScanThreadState*    _par_scan_state;

public:
  G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
                            OopClosure* non_heap_obj_cl,
                            OopsInHeapRegionClosure* perm_obj_cl,
                            G1ParScanThreadState* pss):
    _g1h(g1h),
    _copy_non_heap_obj_cl(non_heap_obj_cl),
    _copy_perm_obj_cl(perm_obj_cl),
    _par_scan_state(pss)
  {}

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);

    if (_g1h->obj_in_cs(obj)) {
      // If the referent object has been forwarded (either copied
      // to a new location or to itself in the event of an
      // evacuation failure) then we need to update the reference
      // field and, if both reference and referent are in the G1
      // heap, update the RSet for the referent.
      //
      // If the referent has not been forwarded then we have to keep
      // it alive by policy. Therefore we have copy the referent.
      //
      // If the reference field is in the G1 heap then we can push
      // on the PSS queue. When the queue is drained (after each
      // phase of reference processing) the object and it's followers
      // will be copied, the reference field set to point to the
      // new location, and the RSet updated. Otherwise we need to
      // use the the non-heap or perm closures directly to copy
      // the refernt object and update the pointer, while avoiding
      // updating the RSet.

      if (_g1h->is_in_g1_reserved(p)) {
        _par_scan_state->push_on_queue(p);
      } else {
        // The reference field is not in the G1 heap.
        if (_g1h->perm_gen()->is_in(p)) {
          _copy_perm_obj_cl->do_oop(p);
        } else {
          _copy_non_heap_obj_cl->do_oop(p);
        }
      }
    }
  }
};

// Serial drain queue closure. Called as the 'complete_gc'
// closure for each discovered list in some of the
// reference processing phases.

class G1STWDrainQueueClosure: public VoidClosure {
protected:
  G1CollectedHeap* _g1h;
  G1ParScanThreadState* _par_scan_state;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }

public:
  G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
    _g1h(g1h),
    _par_scan_state(pss)
  { }

  void do_void() {
    G1ParScanThreadState* const pss = par_scan_state();
    pss->trim_queue();
  }
};

// Parallel Reference Processing closures

// Implementation of AbstractRefProcTaskExecutor for parallel reference
// processing during G1 evacuation pauses.

class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
private:
  G1CollectedHeap*   _g1h;
  RefToScanQueueSet* _queues;
5052
  FlexibleWorkGang*  _workers;
5053 5054 5055 5056
  int                _active_workers;

public:
  G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5057
                        FlexibleWorkGang* workers,
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
                        RefToScanQueueSet *task_queues,
                        int n_workers) :
    _g1h(g1h),
    _queues(task_queues),
    _workers(workers),
    _active_workers(n_workers)
  {
    assert(n_workers > 0, "shouldn't call this otherwise");
  }

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

// Gang task for possibly parallel reference processing

class G1STWRefProcTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  RefToScanQueueSet *_task_queues;
  ParallelTaskTerminator* _terminator;

public:
  G1STWRefProcTaskProxy(ProcessTask& proc_task,
                     G1CollectedHeap* g1h,
                     RefToScanQueueSet *task_queues,
                     ParallelTaskTerminator* terminator) :
    AbstractGangTask("Process reference objects in parallel"),
    _proc_task(proc_task),
    _g1h(g1h),
    _task_queues(task_queues),
    _terminator(terminator)
  {}

  virtual void work(int i) {
    // The reference processing task executed by a single worker.
    ResourceMark rm;
    HandleMark   hm;

    G1STWIsAliveClosure is_alive(_g1h);

    G1ParScanThreadState pss(_g1h, i);

    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
    G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
    G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
    OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
      copy_perm_cl = &copy_mark_perm_cl;
    }

    // Keep alive closure.
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);

    // Complete GC closure
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);

    // Call the reference processing task's work routine.
    _proc_task.work(i, is_alive, keep_alive, drain_queue);

    // Note we cannot assert that the refs array is empty here as not all
    // of the processing tasks (specifically phase2 - pp2_work) execute
    // the complete_gc closure (which ordinarily would drain the queue) so
    // the queue may not be empty.
  }
};

// Driver routine for parallel reference processing.
// Creates an instance of the ref processing gang
// task and has the worker threads execute it.
void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  ParallelTaskTerminator terminator(_active_workers, _queues);
  G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

// Gang task for parallel reference enqueueing.

class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
  G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
    AbstractGangTask("Enqueue reference objects in parallel"),
    _enq_task(enq_task)
  { }

  virtual void work(int i) {
    _enq_task.work(i);
  }
};

// Driver routine for parallel reference enqueing.
// Creates an instance of the ref enqueueing gang
// task and has the worker threads execute it.

void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  assert(_workers != NULL, "Need parallel worker threads.");

  G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

// End of weak reference support closures

// Abstract task used to preserve (i.e. copy) any referent objects
// that are in the collection set and are pointed to by reference
// objects discovered by the CM ref processor.

class G1ParPreserveCMReferentsTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
  int _n_workers;

public:
  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
    AbstractGangTask("ParPreserveCMReferents"),
    _g1h(g1h),
    _queues(task_queues),
    _terminator(workers, _queues),
    _n_workers(workers)
  { }

  void work(int i) {
    ResourceMark rm;
    HandleMark   hm;

    G1ParScanThreadState            pss(_g1h, i);
    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    assert(pss.refs()->is_empty(), "both queue and overflow should be empty");


    G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
    G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);

    G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
    G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);

    OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
    OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;

    if (_g1h->g1_policy()->during_initial_mark_pause()) {
      // We also need to mark copied objects.
      copy_non_heap_cl = &copy_mark_non_heap_cl;
      copy_perm_cl = &copy_mark_perm_cl;
    }

    // Is alive closure
    G1AlwaysAliveClosure always_alive(_g1h);

    // Copying keep alive closure. Applied to referent objects that need
    // to be copied.
    G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);

    ReferenceProcessor* rp = _g1h->ref_processor_cm();

    int limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
    int stride = MIN2(MAX2(_n_workers, 1), limit);

    // limit is set using max_num_q() - which was set using ParallelGCThreads.
    // So this must be true - but assert just in case someone decides to
    // change the worker ids.
    assert(0 <= i && i < limit, "sanity");
    assert(!rp->discovery_is_atomic(), "check this code");

    // Select discovered lists [i, i+stride, i+2*stride,...,limit)
    for (int idx = i; idx < limit; idx += stride) {
5260
      DiscoveredList& ref_list = rp->discovered_refs()[idx];
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312

      DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
      while (iter.has_next()) {
        // Since discovery is not atomic for the CM ref processor, we
        // can see some null referent objects.
        iter.load_ptrs(DEBUG_ONLY(true));
        oop ref = iter.obj();

        // This will filter nulls.
        if (iter.is_referent_alive()) {
          iter.make_referent_alive();
        }
        iter.move_to_next();
      }
    }

    // Drain the queue - which may cause stealing
    G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
    drain_queue.do_void();
    // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
    assert(pss.refs()->is_empty(), "should be");
  }
};

// Weak Reference processing during an evacuation pause (part 1).
void G1CollectedHeap::process_discovered_references() {
  double ref_proc_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(rp->discovery_enabled(), "should have been enabled");

  // Any reference objects, in the collection set, that were 'discovered'
  // by the CM ref processor should have already been copied (either by
  // applying the external root copy closure to the discovered lists, or
  // by following an RSet entry).
  //
  // But some of the referents, that are in the collection set, that these
  // reference objects point to may not have been copied: the STW ref
  // processor would have seen that the reference object had already
  // been 'discovered' and would have skipped discovering the reference,
  // but would not have treated the reference object as a regular oop.
  // As a reult the copy closure would not have been applied to the
  // referent object.
  //
  // We need to explicitly copy these referent objects - the references
  // will be processed at the end of remarking.
  //
  // We also need to do this copying before we process the reference
  // objects discovered by the STW ref processor in case one of these
  // referents points to another object which is also referenced by an
  // object discovered by the STW ref processor.

5313 5314
  int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                        workers()->active_workers() : 1);
5315

5316 5317 5318 5319
  assert(active_workers == workers()->active_workers(),
         "Need to reset active_workers");
  set_par_threads(active_workers);
  G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    workers()->run_task(&keep_cm_referents);
  } else {
    keep_cm_referents.work(0);
  }

  set_par_threads(0);

  // Closure to test whether a referent is alive.
  G1STWIsAliveClosure is_alive(this);

  // Even when parallel reference processing is enabled, the processing
  // of JNI refs is serial and performed serially by the current thread
  // rather than by a worker. The following PSS will be used for processing
  // JNI refs.

  // Use only a single queue for this PSS.
  G1ParScanThreadState pss(this, 0);

  // We do not embed a reference processor in the copying/scanning
  // closures while we're actually processing the discovered
  // reference objects.
  G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);

  pss.set_evac_closure(&scan_evac_cl);
  pss.set_evac_failure_closure(&evac_failure_cl);
  pss.set_partial_scan_closure(&partial_scan_cl);

  assert(pss.refs()->is_empty(), "pre-condition");

  G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);

  G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);

  OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;

  if (_g1h->g1_policy()->during_initial_mark_pause()) {
    // We also need to mark copied objects.
    copy_non_heap_cl = &copy_mark_non_heap_cl;
    copy_perm_cl = &copy_mark_perm_cl;
  }

  // Keep alive closure.
  G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);

  // Serial Complete GC closure
  G1STWDrainQueueClosure drain_queue(this, &pss);

  // Setup the soft refs policy...
  rp->setup_policy(false);

  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->process_discovered_references(&is_alive,
                                      &keep_alive,
                                      &drain_queue,
                                      NULL);
  } else {
    // Parallel reference processing
    assert(rp->num_q() == active_workers, "sanity");
    assert(active_workers <= rp->max_num_q(), "sanity");

    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
    rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
  }

  // We have completed copying any necessary live referent objects
  // (that were not copied during the actual pause) so we can
  // retire any active alloc buffers
  pss.retire_alloc_buffers();
  assert(pss.refs()->is_empty(), "both queue and overflow should be empty");

  double ref_proc_time = os::elapsedTime() - ref_proc_start;
  g1_policy()->record_ref_proc_time(ref_proc_time * 1000.0);
}

// Weak Reference processing during an evacuation pause (part 2).
void G1CollectedHeap::enqueue_discovered_references() {
  double ref_enq_start = os::elapsedTime();

  ReferenceProcessor* rp = _ref_processor_stw;
  assert(!rp->discovery_enabled(), "should have been disabled as part of processing");

  // Now enqueue any remaining on the discovered lists on to
  // the pending list.
  if (!rp->processing_is_mt()) {
    // Serial reference processing...
    rp->enqueue_discovered_references();
  } else {
    // Parallel reference enqueuing

5417 5418 5419
    int active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
    assert(active_workers == workers()->active_workers(),
           "Need to reset active_workers");
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
    assert(rp->num_q() == active_workers, "sanity");
    assert(active_workers <= rp->max_num_q(), "sanity");

    G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
    rp->enqueue_discovered_references(&par_task_executor);
  }

  rp->verify_no_references_recorded();
  assert(!rp->discovery_enabled(), "should have been disabled");

  // FIXME
  // CM's reference processing also cleans up the string and symbol tables.
  // Should we do that here also? We could, but it is a serial operation
  // and could signicantly increase the pause time.

  double ref_enq_time = os::elapsedTime() - ref_enq_start;
  g1_policy()->record_ref_enq_time(ref_enq_time * 1000.0);
}

5439 5440 5441 5442 5443
void G1CollectedHeap::evacuate_collection_set() {
  set_evacuation_failed(false);

  g1_rem_set()->prepare_for_oops_into_collection_set_do();
  concurrent_g1_refine()->set_use_cache(false);
5444 5445
  concurrent_g1_refine()->clear_hot_cache_claimed_index();

5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
  int n_workers;
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    n_workers =
      AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
                                     workers()->active_workers(),
                                     Threads::number_of_non_daemon_threads());
    assert(UseDynamicNumberOfGCThreads ||
           n_workers == workers()->total_workers(),
           "If not dynamic should be using all the  workers");
    set_par_threads(n_workers);
  } else {
    assert(n_par_threads() == 0,
           "Should be the original non-parallel value");
    n_workers = 1;
  }
  workers()->set_active_workers(n_workers);

  G1ParTask g1_par_task(this, _task_queues);
5464 5465 5466 5467 5468

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

5469 5470
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  double start_par = os::elapsedTime();
5471

5472
  if (G1CollectedHeap::use_parallel_gc_threads()) {
5473
    // The individual threads will set their evac-failure closures.
5474
    StrongRootsScope srs(this);
5475
    if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5476 5477 5478 5479
    // These tasks use ShareHeap::_process_strong_tasks
    assert(UseDynamicNumberOfGCThreads ||
           workers()->active_workers() == workers()->total_workers(),
           "If not dynamic should be using all the  workers");
5480 5481
    workers()->run_task(&g1_par_task);
  } else {
5482
    StrongRootsScope srs(this);
5483 5484 5485 5486 5487
    g1_par_task.work(0);
  }

  double par_time = (os::elapsedTime() - start_par) * 1000.0;
  g1_policy()->record_par_time(par_time);
5488

5489
  set_par_threads(0);
5490

5491 5492 5493 5494 5495 5496 5497
  // Process any discovered reference objects - we have
  // to do this _before_ we retire the GC alloc regions
  // as we may have to copy some 'reachable' referent
  // objects (and their reachable sub-graphs) that were
  // not copied during the pause.
  process_discovered_references();

5498 5499 5500 5501
  // Weak root processing.
  // Note: when JSR 292 is enabled and code blobs can contain
  // non-perm oops then we will need to process the code blobs
  // here too.
5502
  {
5503
    G1STWIsAliveClosure is_alive(this);
5504 5505 5506
    G1KeepAliveClosure keep_alive(this);
    JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  }
5507

5508
  release_gc_alloc_regions();
5509
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5510

5511
  concurrent_g1_refine()->clear_hot_cache();
5512 5513 5514 5515
  concurrent_g1_refine()->set_use_cache(true);

  finalize_for_evac_failure();

5516 5517 5518 5519 5520
  // Must do this before clearing the per-region evac-failure flags
  // (which is currently done when we free the collection set).
  // We also only do this if marking is actually in progress and so
  // have to do this before we set the mark_in_progress flag at the
  // end of an initial mark pause.
5521 5522 5523 5524 5525
  concurrent_mark()->complete_marking_in_collection_set();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
    if (PrintGCDetails) {
5526
      gclog_or_tty->print(" (to-space overflow)");
5527 5528 5529 5530 5531
    } else if (PrintGC) {
      gclog_or_tty->print("--");
    }
  }

5532 5533 5534 5535 5536 5537 5538 5539 5540
  // Enqueue any remaining references remaining on the STW
  // reference processor's discovered lists. We need to do
  // this after the card table is cleaned (and verified) as
  // the act of enqueuing entries on to the pending list
  // will log these updates (and dirty their associated
  // cards). We need these updates logged to update any
  // RSets.
  enqueue_discovered_references();

5541 5542 5543 5544
  if (G1DeferredRSUpdate) {
    RedirtyLoggedCardTableEntryFastClosure redirty;
    dirty_card_queue_set().set_closure(&redirty);
    dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5545 5546 5547

    DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
    dcq.merge_bufferlists(&dirty_card_queue_set());
5548 5549
    assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  }
5550 5551 5552
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

T
tonyp 已提交
5553
void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5554 5555
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
T
tonyp 已提交
5556
                                     OldRegionSet* old_proxy_set,
5557
                                     HumongousRegionSet* humongous_proxy_set,
T
tonyp 已提交
5558
                                     HRRSCleanupTask* hrrs_cleanup_task,
5559 5560 5561 5562 5563 5564
                                     bool par) {
  if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
    if (hr->isHumongous()) {
      assert(hr->startsHumongous(), "we should only see starts humongous");
      free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
    } else {
T
tonyp 已提交
5565
      _old_set.remove_with_proxy(hr, old_proxy_set);
5566 5567
      free_region(hr, pre_used, free_list, par);
    }
T
tonyp 已提交
5568 5569
  } else {
    hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5570 5571 5572
  }
}

5573 5574 5575
void G1CollectedHeap::free_region(HeapRegion* hr,
                                  size_t* pre_used,
                                  FreeRegionList* free_list,
5576
                                  bool par) {
5577 5578 5579 5580 5581 5582
  assert(!hr->isHumongous(), "this is only for non-humongous regions");
  assert(!hr->is_empty(), "the region should not be empty");
  assert(free_list != NULL, "pre-condition");

  *pre_used += hr->used();
  hr->hr_clear(par, true /* clear_space */);
5583
  free_list->add_as_head(hr);
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601
}

void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
                                     size_t* pre_used,
                                     FreeRegionList* free_list,
                                     HumongousRegionSet* humongous_proxy_set,
                                     bool par) {
  assert(hr->startsHumongous(), "this is only for starts humongous regions");
  assert(free_list != NULL, "pre-condition");
  assert(humongous_proxy_set != NULL, "pre-condition");

  size_t hr_used = hr->used();
  size_t hr_capacity = hr->capacity();
  size_t hr_pre_used = 0;
  _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  hr->set_notHumongous();
  free_region(hr, &hr_pre_used, free_list, par);

5602
  size_t i = hr->hrs_index() + 1;
5603
  size_t num = 1;
5604 5605
  while (i < n_regions()) {
    HeapRegion* curr_hr = region_at(i);
5606 5607
    if (!curr_hr->continuesHumongous()) {
      break;
5608
    }
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621
    curr_hr->set_notHumongous();
    free_region(curr_hr, &hr_pre_used, free_list, par);
    num += 1;
    i += 1;
  }
  assert(hr_pre_used == hr_used,
         err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
                 "should be the same", hr_pre_used, hr_used));
  *pre_used += hr_pre_used;
}

void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
                                       FreeRegionList* free_list,
T
tonyp 已提交
5622
                                       OldRegionSet* old_proxy_set,
5623 5624 5625 5626
                                       HumongousRegionSet* humongous_proxy_set,
                                       bool par) {
  if (pre_used > 0) {
    Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5627
    MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5628 5629 5630 5631
    assert(_summary_bytes_used >= pre_used,
           err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
                   "should be >= pre_used: "SIZE_FORMAT,
                   _summary_bytes_used, pre_used));
5632
    _summary_bytes_used -= pre_used;
5633 5634 5635
  }
  if (free_list != NULL && !free_list->is_empty()) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5636
    _free_list.add_as_head(free_list);
5637
  }
T
tonyp 已提交
5638 5639 5640 5641
  if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
    _old_set.update_from_proxy(old_proxy_set);
  }
5642 5643 5644
  if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
    _humongous_set.update_from_proxy(humongous_proxy_set);
5645 5646 5647
  }
}

5648 5649 5650
class G1ParCleanupCTTask : public AbstractGangTask {
  CardTableModRefBS* _ct_bs;
  G1CollectedHeap* _g1h;
5651
  HeapRegion* volatile _su_head;
5652 5653
public:
  G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5654
                     G1CollectedHeap* g1h) :
5655
    AbstractGangTask("G1 Par Cleanup CT Task"),
5656
    _ct_bs(ct_bs), _g1h(g1h) { }
5657 5658 5659 5660 5661 5662 5663

  void work(int i) {
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
  }
5664

5665
  void clear_cards(HeapRegion* r) {
5666
    // Cards of the survivors should have already been dirtied.
5667
    if (!r->is_survivor()) {
5668 5669 5670 5671 5672
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
};

5673 5674
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
5675
  G1CollectedHeap* _g1h;
5676 5677
  CardTableModRefBS* _ct_bs;
public:
5678 5679
  G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
    : _g1h(g1h), _ct_bs(ct_bs) { }
5680
  virtual bool doHeapRegion(HeapRegion* r) {
5681
    if (r->is_survivor()) {
5682
      _g1h->verify_dirty_region(r);
5683
    } else {
5684
      _g1h->verify_not_dirty_region(r);
5685 5686 5687 5688
    }
    return false;
  }
};
5689

5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  // All of the region should be clean.
  CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  MemRegion mr(hr->bottom(), hr->end());
  ct_bs->verify_not_dirty_region(mr);
}

void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  // dirty allocated blocks as they allocate them. The thread that
  // retires each region and replaces it with a new one will do a
  // maximal allocation to fill in [pre_dummy_top(),end()] but will
  // not dirty that area (one less thing to have to do while holding
  // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  // is dirty.
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  ct_bs->verify_dirty_region(mr);
}

5710
void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5711
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5712
  for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5713
    verify_dirty_region(hr);
5714 5715 5716 5717 5718 5719 5720
  }
}

void G1CollectedHeap::verify_dirty_young_regions() {
  verify_dirty_young_list(_young_list->first_region());
  verify_dirty_young_list(_young_list->first_survivor_region());
}
5721 5722
#endif

5723 5724 5725 5726
void G1CollectedHeap::cleanUpCardTable() {
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  double start = os::elapsedTime();

J
johnc 已提交
5727 5728 5729
  {
    // Iterate over the dirty cards region list.
    G1ParCleanupCTTask cleanup_task(ct_bs, this);
5730

J
johnc 已提交
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
    if (ParallelGCThreads > 0) {
      set_par_threads(workers()->total_workers());
      workers()->run_task(&cleanup_task);
      set_par_threads(0);
    } else {
      while (_dirty_cards_region_list) {
        HeapRegion* r = _dirty_cards_region_list;
        cleanup_task.clear_cards(r);
        _dirty_cards_region_list = r->get_next_dirty_cards_region();
        if (_dirty_cards_region_list == r) {
          // The last region.
          _dirty_cards_region_list = NULL;
        }
        r->set_next_dirty_cards_region(NULL);
5745 5746
      }
    }
J
johnc 已提交
5747 5748 5749 5750 5751 5752
#ifndef PRODUCT
    if (G1VerifyCTCleanup || VerifyAfterGC) {
      G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
      heap_region_iterate(&cleanup_verifier);
    }
#endif
5753
  }
5754

5755
  double elapsed = os::elapsedTime() - start;
5756
  g1_policy()->record_clear_ct_time(elapsed * 1000.0);
5757 5758 5759
}

void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5760 5761 5762
  size_t pre_used = 0;
  FreeRegionList local_free_list("Local List for CSet Freeing");

5763 5764 5765
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

5766 5767 5768 5769 5770
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

5771 5772 5773 5774 5775 5776 5777 5778 5779 5780
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
T
tonyp 已提交
5781
    assert(!is_on_master_free_list(cur), "sanity");
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
5792 5793 5794 5795
      if (!cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        young_time_ms += elapsed_ms;
5796

5797 5798 5799
        start_sec = os::elapsedTime();
        non_young = true;
      }
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
    }

    rs_lengths += cur->rem_set()->occupied();

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
5811 5812
      assert(index != -1, "invariant");
      assert((size_t) index < policy->young_cset_region_length(), "invariant");
5813 5814
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
5815 5816 5817 5818 5819 5820

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
5821 5822
    } else {
      int index = cur->young_index_in_cset();
5823
      assert(index == -1, "invariant");
5824 5825 5826 5827 5828 5829 5830
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
5831 5832
      MemRegion used_mr = cur->used_region();

5833
      // And the region is empty.
5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
      assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");

      // If marking is in progress then clear any objects marked in
      // the current region. Note mark_in_progress() returns false,
      // even during an initial mark pause, until the set_marking_started()
      // call which takes place later in the pause.
      if (mark_in_progress()) {
        assert(!g1_policy()->during_initial_mark_pause(), "sanity");
        _cm->nextMarkBitMap()->clearRange(used_mr);
      }

5845
      free_region(cur, &pre_used, &local_free_list, false /* par */);
5846 5847
    } else {
      cur->uninstall_surv_rate_group();
5848
      if (cur->is_young()) {
5849
        cur->set_young_index_in_cset(-1);
5850
      }
5851 5852
      cur->set_not_young();
      cur->set_evacuation_failed(false);
T
tonyp 已提交
5853 5854
      // The region is now considered to be old.
      _old_set.add(cur);
5855 5856 5857 5858 5859 5860 5861 5862 5863
    }
    cur = next;
  }

  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
5864 5865

  if (non_young) {
5866
    non_young_time_ms += elapsed_ms;
5867
  } else {
5868
    young_time_ms += elapsed_ms;
5869
  }
5870

5871
  update_sets_after_freeing_regions(pre_used, &local_free_list,
T
tonyp 已提交
5872
                                    NULL /* old_proxy_set */,
5873 5874
                                    NULL /* humongous_proxy_set */,
                                    false /* par */);
5875 5876 5877 5878
  policy->record_young_free_cset_time_ms(young_time_ms);
  policy->record_non_young_free_cset_time_ms(non_young_time_ms);
}

5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

5900 5901 5902 5903
void G1CollectedHeap::set_free_regions_coming() {
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "setting free regions coming");
5904 5905
  }

5906 5907
  assert(!free_regions_coming(), "pre-condition");
  _free_regions_coming = true;
5908 5909
}

5910 5911 5912 5913 5914 5915
void G1CollectedHeap::reset_free_regions_coming() {
  {
    assert(free_regions_coming(), "pre-condition");
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _free_regions_coming = false;
    SecondaryFreeList_lock->notify_all();
5916 5917
  }

5918 5919 5920
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
                           "reset free regions coming");
5921 5922 5923
  }
}

5924 5925 5926 5927 5928
void G1CollectedHeap::wait_while_free_regions_coming() {
  // Most of the time we won't have to wait, so let's do a quick test
  // first before we take the lock.
  if (!free_regions_coming()) {
    return;
5929 5930
  }

5931 5932 5933
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "waiting for free regions");
5934 5935 5936
  }

  {
5937 5938 5939
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    while (free_regions_coming()) {
      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5940 5941 5942
    }
  }

5943 5944 5945
  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
                           "done waiting for free regions");
5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970
  }
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

5971 5972
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
5973

5974
  if (check_heap) {
5975 5976 5977 5978 5979 5980 5981 5982
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

T
tonyp 已提交
5983 5984 5985
class TearDownRegionSetsClosure : public HeapRegionClosure {
private:
  OldRegionSet *_old_set;
5986

T
tonyp 已提交
5987 5988
public:
  TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
5989

T
tonyp 已提交
5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_empty()) {
      // We ignore empty regions, we'll empty the free list afterwards
    } else if (r->is_young()) {
      // We ignore young regions, we'll empty the young list afterwards
    } else if (r->isHumongous()) {
      // We ignore humongous regions, we're not tearing down the
      // humongous region set
    } else {
      // The rest should be old
      _old_set->remove(r);
    }
    return false;
  }

  ~TearDownRegionSetsClosure() {
    assert(_old_set->is_empty(), "post-condition");
  }
};

void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  if (!free_list_only) {
    TearDownRegionSetsClosure cl(&_old_set);
    heap_region_iterate(&cl);

    // Need to do this after the heap iteration to be able to
    // recognize the young regions and ignore them during the iteration.
    _young_list->empty_list();
  }
6021
  _free_list.remove_all();
6022 6023
}

T
tonyp 已提交
6024 6025 6026 6027 6028 6029
class RebuildRegionSetsClosure : public HeapRegionClosure {
private:
  bool            _free_list_only;
  OldRegionSet*   _old_set;
  FreeRegionList* _free_list;
  size_t          _total_used;
6030

6031
public:
T
tonyp 已提交
6032 6033 6034 6035 6036 6037 6038 6039 6040
  RebuildRegionSetsClosure(bool free_list_only,
                           OldRegionSet* old_set, FreeRegionList* free_list) :
    _free_list_only(free_list_only),
    _old_set(old_set), _free_list(free_list), _total_used(0) {
    assert(_free_list->is_empty(), "pre-condition");
    if (!free_list_only) {
      assert(_old_set->is_empty(), "pre-condition");
    }
  }
6041

6042
  bool doHeapRegion(HeapRegion* r) {
T
tonyp 已提交
6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057
    if (r->continuesHumongous()) {
      return false;
    }

    if (r->is_empty()) {
      // Add free regions to the free list
      _free_list->add_as_tail(r);
    } else if (!_free_list_only) {
      assert(!r->is_young(), "we should not come across young regions");

      if (r->isHumongous()) {
        // We ignore humongous regions, we left the humongous set unchanged
      } else {
        // The rest should be old, add them to the old set
        _old_set->add(r);
6058
      }
T
tonyp 已提交
6059
      _total_used += r->used();
6060
    }
T
tonyp 已提交
6061

6062 6063 6064
    return false;
  }

T
tonyp 已提交
6065 6066
  size_t total_used() {
    return _total_used;
6067
  }
6068 6069
};

T
tonyp 已提交
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  assert_at_safepoint(true /* should_be_vm_thread */);

  RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  heap_region_iterate(&cl);

  if (!free_list_only) {
    _summary_bytes_used = cl.total_used();
  }
  assert(_summary_bytes_used == recalculate_used(),
         err_msg("inconsistent _summary_bytes_used, "
                 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
                 _summary_bytes_used, recalculate_used()));
6083 6084 6085 6086 6087 6088
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

6089 6090 6091 6092 6093 6094
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
    return is_in_permanent(p);
  } else {
    return hr->is_in(p);
6095
  }
6096 6097
}

6098 6099
// Methods for the mutator alloc region

6100 6101 6102 6103 6104
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
                                                      bool force) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(!force || g1_policy()->can_expand_young_list(),
         "if force is true we should be able to expand the young list");
6105 6106
  bool young_list_full = g1_policy()->is_young_list_full();
  if (force || !young_list_full) {
6107 6108 6109 6110
    HeapRegion* new_alloc_region = new_region(word_size,
                                              false /* do_expand */);
    if (new_alloc_region != NULL) {
      set_region_short_lived_locked(new_alloc_region);
6111
      _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124
      return new_alloc_region;
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
                                                  size_t allocated_bytes) {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  assert(alloc_region->is_young(), "all mutator alloc regions should be young");

  g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  _summary_bytes_used += allocated_bytes;
6125
  _hr_printer.retire(alloc_region);
6126 6127 6128 6129
  // We update the eden sizes here, when the region is retired,
  // instead of when it's allocated, since this is the point that its
  // used space has been recored in _summary_bytes_used.
  g1mm()->update_eden_size();
6130 6131 6132 6133 6134 6135 6136
}

HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
                                                    bool force) {
  return _g1h->new_mutator_alloc_region(word_size, force);
}

6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
void G1CollectedHeap::set_par_threads() {
  // Don't change the number of workers.  Use the value previously set
  // in the workgroup.
  int n_workers = workers()->active_workers();
    assert(UseDynamicNumberOfGCThreads ||
           n_workers == workers()->total_workers(),
      "Otherwise should be using the total number of workers");
  if (n_workers == 0) {
    assert(false, "Should have been set in prior evacuation pause.");
    n_workers = ParallelGCThreads;
    workers()->set_active_workers(n_workers);
  }
  set_par_threads(n_workers);
}

6152 6153 6154 6155 6156
void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
                                       size_t allocated_bytes) {
  _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
}

6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192
// Methods for the GC alloc regions

HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
                                                 size_t count,
                                                 GCAllocPurpose ap) {
  assert(FreeList_lock->owned_by_self(), "pre-condition");

  if (count < g1_policy()->max_regions(ap)) {
    HeapRegion* new_alloc_region = new_region(word_size,
                                              true /* do_expand */);
    if (new_alloc_region != NULL) {
      // We really only need to do this for old regions given that we
      // should never scan survivors. But it doesn't hurt to do it
      // for survivors too.
      new_alloc_region->set_saved_mark();
      if (ap == GCAllocForSurvived) {
        new_alloc_region->set_survivor();
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
      } else {
        _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
      }
      return new_alloc_region;
    } else {
      g1_policy()->note_alloc_region_limit_reached(ap);
    }
  }
  return NULL;
}

void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
                                             size_t allocated_bytes,
                                             GCAllocPurpose ap) {
  alloc_region->note_end_of_copying();
  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  if (ap == GCAllocForSurvived) {
    young_list()->add_survivor_region(alloc_region);
T
tonyp 已提交
6193 6194
  } else {
    _old_set.add(alloc_region);
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
  }
  _hr_printer.retire(alloc_region);
}

HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
                                                       bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
}

void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                          size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForSurvived);
}

HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
                                                  bool force) {
  assert(!force, "not supported for GC alloc regions");
  return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
}

void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
                                     size_t allocated_bytes) {
  _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
                               GCAllocForTenured);
}
6222 6223
// Heap region set verification

6224 6225 6226
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
  FreeRegionList*     _free_list;
T
tonyp 已提交
6227 6228
  OldRegionSet*       _old_set;
  HumongousRegionSet* _humongous_set;
6229
  size_t              _region_count;
6230 6231

public:
T
tonyp 已提交
6232 6233
  VerifyRegionListsClosure(OldRegionSet* old_set,
                           HumongousRegionSet* humongous_set,
6234
                           FreeRegionList* free_list) :
T
tonyp 已提交
6235 6236
    _old_set(old_set), _humongous_set(humongous_set),
    _free_list(free_list), _region_count(0) { }
6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252

  size_t region_count()      { return _region_count;      }

  bool doHeapRegion(HeapRegion* hr) {
    _region_count += 1;

    if (hr->continuesHumongous()) {
      return false;
    }

    if (hr->is_young()) {
      // TODO
    } else if (hr->startsHumongous()) {
      _humongous_set->verify_next_region(hr);
    } else if (hr->is_empty()) {
      _free_list->verify_next_region(hr);
T
tonyp 已提交
6253 6254
    } else {
      _old_set->verify_next_region(hr);
6255
    }
6256 6257 6258 6259
    return false;
  }
};

6260 6261 6262 6263 6264 6265 6266 6267 6268
HeapRegion* G1CollectedHeap::new_heap_region(size_t hrs_index,
                                             HeapWord* bottom) {
  HeapWord* end = bottom + HeapRegion::GrainWords;
  MemRegion mr(bottom, end);
  assert(_g1_reserved.contains(mr), "invariant");
  // This might return NULL if the allocation fails
  return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
}

6269 6270
void G1CollectedHeap::verify_region_sets() {
  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6271

6272 6273 6274 6275 6276 6277 6278 6279 6280
  // First, check the explicit lists.
  _free_list.verify();
  {
    // Given that a concurrent operation might be adding regions to
    // the secondary free list we have to take the lock before
    // verifying it.
    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
    _secondary_free_list.verify();
  }
T
tonyp 已提交
6281
  _old_set.verify();
6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
  _humongous_set.verify();

  // If a concurrent region freeing operation is in progress it will
  // be difficult to correctly attributed any free regions we come
  // across to the correct free list given that they might belong to
  // one of several (free_list, secondary_free_list, any local lists,
  // etc.). So, if that's the case we will skip the rest of the
  // verification operation. Alternatively, waiting for the concurrent
  // operation to complete will have a non-trivial effect on the GC's
  // operation (no concurrent operation will last longer than the
  // interval between two calls to verification) and it might hide
  // any issues that we would like to catch during testing.
  if (free_regions_coming()) {
    return;
  }
6297

T
tonyp 已提交
6298 6299 6300 6301
  // Make sure we append the secondary_free_list on the free_list so
  // that all free regions we will come across can be safely
  // attributed to the free_list.
  append_secondary_free_list_if_not_empty_with_lock();
6302

6303 6304
  // Finally, make sure that the region accounting in the lists is
  // consistent with what we see in the heap.
T
tonyp 已提交
6305
  _old_set.verify_start();
6306 6307
  _humongous_set.verify_start();
  _free_list.verify_start();
6308

T
tonyp 已提交
6309
  VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6310
  heap_region_iterate(&cl);
6311

T
tonyp 已提交
6312
  _old_set.verify_end();
6313 6314
  _humongous_set.verify_end();
  _free_list.verify_end();
6315
}