g1CollectorPolicy.cpp 83.4 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30
#include "precompiled.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
33
#include "gc_implementation/g1/g1Log.hpp"
34 35 36 37 38 39
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/shared/gcPolicyCounters.hpp"
#include "runtime/arguments.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/debug.hpp"
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

// Different defaults for different number of GC threads
// They were chosen by running GCOld and SPECjbb on debris with different
//   numbers of GC threads and choosing them based on the results

// all the same
static double rs_length_diff_defaults[] = {
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};

static double cost_per_card_ms_defaults[] = {
  0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
};

// all the same
55
static double young_cards_per_entry_ratio_defaults[] = {
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
};

static double cost_per_entry_ms_defaults[] = {
  0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
};

static double cost_per_byte_ms_defaults[] = {
  0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
};

// these should be pretty consistent
static double constant_other_time_ms_defaults[] = {
  5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
};


static double young_other_cost_per_region_ms_defaults[] = {
  0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
};

static double non_young_other_cost_per_region_ms_defaults[] = {
  1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
};

G1CollectorPolicy::G1CollectorPolicy() :
82
  _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
83
                        ? ParallelGCThreads : 1),
84

85 86 87 88 89 90 91 92 93 94 95
  _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _stop_world_start(0.0),

  _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),

  _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _prev_collection_pause_end_ms(0.0),
  _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
96 97
  _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
98
  _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
99
  _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
100 101 102 103 104 105 106 107 108 109
  _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
  _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _non_young_other_cost_per_region_ms_seq(
                                         new TruncatedSeq(TruncatedSeqLength)),

  _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),

J
johnc 已提交
110
  _pause_time_target_ms((double) MaxGCPauseMillis),
111

112
  _gcs_are_young(true),
113 114 115 116 117

  _during_marking(false),
  _in_marking_window(false),
  _in_marking_window_im(false),

118 119
  _recent_prev_end_times_for_all_gcs_sec(
                                new TruncatedSeq(NumPrevPausesForHeuristics)),
120 121 122

  _recent_avg_pause_time_ratio(0.0),

123 124
  _initiate_conc_mark_if_possible(false),
  _during_initial_mark_pause(false),
125 126
  _last_young_gc(false),
  _last_gc_was_young(false),
127

128 129 130 131
  _eden_bytes_before_gc(0),
  _survivor_bytes_before_gc(0),
  _capacity_before_gc(0),

132 133 134 135
  _eden_cset_region_length(0),
  _survivor_cset_region_length(0),
  _old_cset_region_length(0),

136
  _collection_set(NULL),
137 138 139 140 141 142 143 144 145
  _collection_set_bytes_used_before(0),

  // Incremental CSet attributes
  _inc_cset_build_state(Inactive),
  _inc_cset_head(NULL),
  _inc_cset_tail(NULL),
  _inc_cset_bytes_used_before(0),
  _inc_cset_max_finger(NULL),
  _inc_cset_recorded_rs_lengths(0),
146
  _inc_cset_recorded_rs_lengths_diffs(0),
147
  _inc_cset_predicted_elapsed_time_ms(0.0),
148
  _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
149

150 151 152 153 154 155 156
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

  _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
                                                 G1YoungSurvRateNumRegionsSummary)),
  _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
157
                                              G1YoungSurvRateNumRegionsSummary)),
158
  // add here any more surv rate groups
159 160 161
  _recorded_survivor_regions(0),
  _recorded_survivor_head(NULL),
  _recorded_survivor_tail(NULL),
T
tonyp 已提交
162 163
  _survivors_age_table(true),

164
  _gc_overhead_perc(0.0) {
165

166 167 168 169
  // Set up the region size and associated fields. Given that the
  // policy is created before the heap, we have to set this up here,
  // so it's done as soon as possible.
  HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
170
  HeapRegionRemSet::setup_remset_size();
171

172 173 174 175 176 177 178 179 180 181 182 183
  G1ErgoVerbose::initialize();
  if (PrintAdaptiveSizePolicy) {
    // Currently, we only use a single switch for all the heuristics.
    G1ErgoVerbose::set_enabled(true);
    // Given that we don't currently have a verboseness level
    // parameter, we'll hardcode this to high. This can be easily
    // changed in the future.
    G1ErgoVerbose::set_level(ErgoHigh);
  } else {
    G1ErgoVerbose::set_enabled(false);
  }

184
  // Verify PLAB sizes
185
  const size_t region_size = HeapRegion::GrainWords;
186 187
  if (YoungPLABSize > region_size || OldPLABSize > region_size) {
    char buffer[128];
188
    jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
189 190 191 192
                 OldPLABSize > region_size ? "Old" : "Young", region_size);
    vm_exit_during_initialization(buffer);
  }

193 194 195
  _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
  _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;

196
  _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
197

198
  int index = MIN2(_parallel_gc_threads - 1, 7);
199 200 201 202

  _pending_card_diff_seq->add(0.0);
  _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
  _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
203 204
  _young_cards_per_entry_ratio_seq->add(
                                  young_cards_per_entry_ratio_defaults[index]);
205 206 207 208 209 210 211 212
  _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
  _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
  _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
  _young_other_cost_per_region_ms_seq->add(
                               young_other_cost_per_region_ms_defaults[index]);
  _non_young_other_cost_per_region_ms_seq->add(
                           non_young_other_cost_per_region_ms_defaults[index]);

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
  // Below, we might need to calculate the pause time target based on
  // the pause interval. When we do so we are going to give G1 maximum
  // flexibility and allow it to do pauses when it needs to. So, we'll
  // arrange that the pause interval to be pause time target + 1 to
  // ensure that a) the pause time target is maximized with respect to
  // the pause interval and b) we maintain the invariant that pause
  // time target < pause interval. If the user does not want this
  // maximum flexibility, they will have to set the pause interval
  // explicitly.

  // First make sure that, if either parameter is set, its value is
  // reasonable.
  if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (MaxGCPauseMillis < 1) {
      vm_exit_during_initialization("MaxGCPauseMillis should be "
                                    "greater than 0");
    }
  }
  if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    if (GCPauseIntervalMillis < 1) {
      vm_exit_during_initialization("GCPauseIntervalMillis should be "
                                    "greater than 0");
    }
  }

  // Then, if the pause time target parameter was not set, set it to
  // the default value.
  if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
      // The default pause time target in G1 is 200ms
      FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
    } else {
      // We do not allow the pause interval to be set without the
      // pause time target
      vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
                                    "without setting MaxGCPauseMillis");
    }
  }

  // Then, if the interval parameter was not set, set it according to
  // the pause time target (this will also deal with the case when the
  // pause time target is the default value).
  if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
  }

  // Finally, make sure that the two parameters are consistent.
  if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
    char buffer[256];
    jio_snprintf(buffer, 256,
                 "MaxGCPauseMillis (%u) should be less than "
                 "GCPauseIntervalMillis (%u)",
                 MaxGCPauseMillis, GCPauseIntervalMillis);
    vm_exit_during_initialization(buffer);
  }

J
johnc 已提交
269
  double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
270
  double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
271
  _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
J
johnc 已提交
272
  _sigma = (double) G1ConfidencePercent / 100.0;
273 274 275 276 277

  // start conservatively (around 50ms is about right)
  _concurrent_mark_remark_times_ms->add(0.05);
  _concurrent_mark_cleanup_times_ms->add(0.20);
  _tenuring_threshold = MaxTenuringThreshold;
278
  // _max_survivor_regions will be calculated by
279
  // update_young_list_target_length() during initialization.
280
  _max_survivor_regions = 0;
281

T
tonyp 已提交
282 283 284 285 286
  assert(GCTimeRatio > 0,
         "we should have set it to a default value set_g1_gc_flags() "
         "if a user set it to 0");
  _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));

287 288 289 290 291 292 293 294
  uintx reserve_perc = G1ReservePercent;
  // Put an artificial ceiling on this so that it's not set to a silly value.
  if (reserve_perc > 50) {
    reserve_perc = 50;
    warning("G1ReservePercent is set to a value that is too large, "
            "it's been updated to %u", reserve_perc);
  }
  _reserve_factor = (double) reserve_perc / 100.0;
295
  // This will be set when the heap is expanded
296 297 298
  // for the first time during initialization.
  _reserve_regions = 0;

299
  initialize_all();
300
  _collectionSetChooser = new CollectionSetChooser();
301
  _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
302 303 304 305 306
}

void G1CollectorPolicy::initialize_flags() {
  set_min_alignment(HeapRegion::GrainBytes);
  set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
307 308 309
  if (SurvivorRatio < 1) {
    vm_exit_during_initialization("Invalid survivor ratio specified");
  }
310 311 312
  CollectorPolicy::initialize_flags();
}

313 314 315 316
G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
  assert(G1DefaultMinNewGenPercent <= G1DefaultMaxNewGenPercent, "Min larger than max");
  assert(G1DefaultMinNewGenPercent > 0 && G1DefaultMinNewGenPercent < 100, "Min out of bounds");
  assert(G1DefaultMaxNewGenPercent > 0 && G1DefaultMaxNewGenPercent < 100, "Max out of bounds");
317

318 319 320 321 322 323 324 325
  if (FLAG_IS_CMDLINE(NewRatio)) {
    if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
      warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
    } else {
      _sizer_kind = SizerNewRatio;
      _adaptive_size = false;
      return;
    }
326
  }
327 328

  if (FLAG_IS_CMDLINE(NewSize)) {
329 330
    _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
                                     1U);
331
    if (FLAG_IS_CMDLINE(MaxNewSize)) {
332 333 334
      _max_desired_young_length =
                             MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
                                  1U);
335 336 337 338 339 340
      _sizer_kind = SizerMaxAndNewSize;
      _adaptive_size = _min_desired_young_length == _max_desired_young_length;
    } else {
      _sizer_kind = SizerNewSizeOnly;
    }
  } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
341 342 343
    _max_desired_young_length =
                             MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
                                  1U);
344
    _sizer_kind = SizerMaxNewSizeOnly;
345
  }
346 347
}

348 349 350
uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
  uint default_value = (new_number_of_heap_regions * G1DefaultMinNewGenPercent) / 100;
  return MAX2(1U, default_value);
351 352
}

353 354 355
uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
  uint default_value = (new_number_of_heap_regions * G1DefaultMaxNewGenPercent) / 100;
  return MAX2(1U, default_value);
356 357
}

358
void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
  assert(new_number_of_heap_regions > 0, "Heap must be initialized");

  switch (_sizer_kind) {
    case SizerDefaults:
      _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
      _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
      break;
    case SizerNewSizeOnly:
      _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
      _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
      break;
    case SizerMaxNewSizeOnly:
      _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
      _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
      break;
    case SizerMaxAndNewSize:
      // Do nothing. Values set on the command line, don't update them at runtime.
      break;
    case SizerNewRatio:
      _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
      _max_desired_young_length = _min_desired_young_length;
      break;
    default:
      ShouldNotReachHere();
383 384
  }

385
  assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
386 387
}

388 389 390 391 392 393
void G1CollectorPolicy::init() {
  // Set aside an initial future to_space.
  _g1 = G1CollectedHeap::heap();

  assert(Heap_lock->owned_by_self(), "Locking discipline.");

394 395
  initialize_gc_policy_counters();

396
  if (adaptive_young_list_length()) {
397
    _young_list_fixed_length = 0;
398
  } else {
399
    _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
400
  }
401
  _free_regions_at_end_of_collection = _g1->free_regions();
402
  update_young_list_target_length();
403
  _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
404 405 406 407

  // We may immediately start allocating regions and placing them on the
  // collection set list. Initialize the per-collection set info
  start_incremental_cset_building();
408 409
}

410
// Create the jstat counters for the policy.
411
void G1CollectorPolicy::initialize_gc_policy_counters() {
412
  _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
413 414
}

415
bool G1CollectorPolicy::predict_will_fit(uint young_length,
416
                                         double base_time_ms,
417
                                         uint base_free_regions,
418 419 420 421 422
                                         double target_pause_time_ms) {
  if (young_length >= base_free_regions) {
    // end condition 1: not enough space for the young regions
    return false;
  }
423

424
  double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
425 426 427 428 429 430 431 432 433
  size_t bytes_to_copy =
               (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
  double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
  double young_other_time_ms = predict_young_other_time_ms(young_length);
  double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
  if (pause_time_ms > target_pause_time_ms) {
    // end condition 2: prediction is over the target pause time
    return false;
  }
434

435
  size_t free_bytes =
436
                   (base_free_regions - young_length) * HeapRegion::GrainBytes;
437 438 439
  if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
    // end condition 3: out-of-space (conservatively!)
    return false;
440
  }
441 442 443 444 445

  // success!
  return true;
}

446
void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
447 448
  // re-calculate the necessary reserve
  double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
449 450
  // We use ceiling so that if reserve_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
451
  _reserve_regions = (uint) ceil(reserve_regions_d);
452

453
  _young_gen_sizer->heap_size_changed(new_number_of_regions);
454 455
}

456 457 458
uint G1CollectorPolicy::calculate_young_list_desired_min_length(
                                                       uint base_min_length) {
  uint desired_min_length = 0;
459
  if (adaptive_young_list_length()) {
460 461 462 463
    if (_alloc_rate_ms_seq->num() > 3) {
      double now_sec = os::elapsedTime();
      double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
      double alloc_rate_ms = predict_alloc_rate_ms();
464
      desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
465 466
    } else {
      // otherwise we don't have enough info to make the prediction
467 468
    }
  }
469 470
  desired_min_length += base_min_length;
  // make sure we don't go below any user-defined minimum bound
471
  return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
472 473
}

474
uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
475 476 477
  // Here, we might want to also take into account any additional
  // constraints (i.e., user-defined minimum bound). Currently, we
  // effectively don't set this bound.
478
  return _young_gen_sizer->max_desired_young_length();
479
}
480

481 482 483 484 485 486
void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
  if (rs_lengths == (size_t) -1) {
    // if it's set to the default value (-1), we should predict it;
    // otherwise, use the given value.
    rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
  }
487

488
  // Calculate the absolute and desired min bounds.
489

490
  // This is how many young regions we already have (currently: the survivors).
491
  uint base_min_length = recorded_survivor_regions();
492 493
  // This is the absolute minimum young length, which ensures that we
  // can allocate one eden region in the worst-case.
494 495
  uint absolute_min_length = base_min_length + 1;
  uint desired_min_length =
496 497 498 499
                     calculate_young_list_desired_min_length(base_min_length);
  if (desired_min_length < absolute_min_length) {
    desired_min_length = absolute_min_length;
  }
500

501
  // Calculate the absolute and desired max bounds.
502

503
  // We will try our best not to "eat" into the reserve.
504
  uint absolute_max_length = 0;
505 506 507
  if (_free_regions_at_end_of_collection > _reserve_regions) {
    absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
  }
508
  uint desired_max_length = calculate_young_list_desired_max_length();
509 510 511
  if (desired_max_length > absolute_max_length) {
    desired_max_length = absolute_max_length;
  }
512

513
  uint young_list_target_length = 0;
514
  if (adaptive_young_list_length()) {
515
    if (gcs_are_young()) {
516 517 518 519 520 521 522 523 524 525 526 527
      young_list_target_length =
                        calculate_young_list_target_length(rs_lengths,
                                                           base_min_length,
                                                           desired_min_length,
                                                           desired_max_length);
      _rs_lengths_prediction = rs_lengths;
    } else {
      // Don't calculate anything and let the code below bound it to
      // the desired_min_length, i.e., do the next GC as soon as
      // possible to maximize how many old regions we can add to it.
    }
  } else {
528 529 530
    // The user asked for a fixed young gen so we'll fix the young gen
    // whether the next GC is young or mixed.
    young_list_target_length = _young_list_fixed_length;
531
  }
532

533 534 535 536 537 538 539 540 541
  // Make sure we don't go over the desired max length, nor under the
  // desired min length. In case they clash, desired_min_length wins
  // which is why that test is second.
  if (young_list_target_length > desired_max_length) {
    young_list_target_length = desired_max_length;
  }
  if (young_list_target_length < desired_min_length) {
    young_list_target_length = desired_min_length;
  }
542

543 544 545 546
  assert(young_list_target_length > recorded_survivor_regions(),
         "we should be able to allocate at least one eden region");
  assert(young_list_target_length >= absolute_min_length, "post-condition");
  _young_list_target_length = young_list_target_length;
547

548 549
  update_max_gc_locker_expansion();
}
550

551
uint
552
G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
553 554 555
                                                     uint base_min_length,
                                                     uint desired_min_length,
                                                     uint desired_max_length) {
556
  assert(adaptive_young_list_length(), "pre-condition");
557
  assert(gcs_are_young(), "only call this for young GCs");
558 559 560 561 562 563 564 565 566 567 568 569

  // In case some edge-condition makes the desired max length too small...
  if (desired_max_length <= desired_min_length) {
    return desired_min_length;
  }

  // We'll adjust min_young_length and max_young_length not to include
  // the already allocated young regions (i.e., so they reflect the
  // min and max eden regions we'll allocate). The base_min_length
  // will be reflected in the predictions by the
  // survivor_regions_evac_time prediction.
  assert(desired_min_length > base_min_length, "invariant");
570
  uint min_young_length = desired_min_length - base_min_length;
571
  assert(desired_max_length > base_min_length, "invariant");
572
  uint max_young_length = desired_max_length - base_min_length;
573 574 575 576 577 578 579 580 581

  double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
  double survivor_regions_evac_time = predict_survivor_regions_evac_time();
  size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
  size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
  size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
  double base_time_ms =
    predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
    survivor_regions_evac_time;
582 583
  uint available_free_regions = _free_regions_at_end_of_collection;
  uint base_free_regions = 0;
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
  if (available_free_regions > _reserve_regions) {
    base_free_regions = available_free_regions - _reserve_regions;
  }

  // Here, we will make sure that the shortest young length that
  // makes sense fits within the target pause time.

  if (predict_will_fit(min_young_length, base_time_ms,
                       base_free_regions, target_pause_time_ms)) {
    // The shortest young length will fit into the target pause time;
    // we'll now check whether the absolute maximum number of young
    // regions will fit in the target pause time. If not, we'll do
    // a binary search between min_young_length and max_young_length.
    if (predict_will_fit(max_young_length, base_time_ms,
                         base_free_regions, target_pause_time_ms)) {
      // The maximum young length will fit into the target pause time.
      // We are done so set min young length to the maximum length (as
      // the result is assumed to be returned in min_young_length).
      min_young_length = max_young_length;
    } else {
      // The maximum possible number of young regions will not fit within
      // the target pause time so we'll search for the optimal
      // length. The loop invariants are:
      //
      // min_young_length < max_young_length
      // min_young_length is known to fit into the target pause time
      // max_young_length is known not to fit into the target pause time
      //
      // Going into the loop we know the above hold as we've just
      // checked them. Every time around the loop we check whether
      // the middle value between min_young_length and
      // max_young_length fits into the target pause time. If it
      // does, it becomes the new min. If it doesn't, it becomes
      // the new max. This way we maintain the loop invariants.

      assert(min_young_length < max_young_length, "invariant");
620
      uint diff = (max_young_length - min_young_length) / 2;
621
      while (diff > 0) {
622
        uint young_length = min_young_length + diff;
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
        if (predict_will_fit(young_length, base_time_ms,
                             base_free_regions, target_pause_time_ms)) {
          min_young_length = young_length;
        } else {
          max_young_length = young_length;
        }
        assert(min_young_length <  max_young_length, "invariant");
        diff = (max_young_length - min_young_length) / 2;
      }
      // The results is min_young_length which, according to the
      // loop invariants, should fit within the target pause time.

      // These are the post-conditions of the binary search above:
      assert(min_young_length < max_young_length,
             "otherwise we should have discovered that max_young_length "
             "fits into the pause target and not done the binary search");
      assert(predict_will_fit(min_young_length, base_time_ms,
                              base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should "
             "fit into the pause target");
      assert(!predict_will_fit(min_young_length + 1, base_time_ms,
                               base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should be "
             "optimal, so no larger length should fit into the pause target");
    }
  } else {
    // Even the minimum length doesn't fit into the pause time
    // target, return it as the result nevertheless.
  }
  return base_min_length + min_young_length;
653 654
}

655 656 657 658 659 660 661 662 663 664
double G1CollectorPolicy::predict_survivor_regions_evac_time() {
  double survivor_regions_evac_time = 0.0;
  for (HeapRegion * r = _recorded_survivor_head;
       r != NULL && r != _recorded_survivor_tail->get_next_young_region();
       r = r->get_next_young_region()) {
    survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
  }
  return survivor_regions_evac_time;
}

665
void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
666 667
  guarantee( adaptive_young_list_length(), "should not call this otherwise" );

668
  size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
669 670 671
  if (rs_lengths > _rs_lengths_prediction) {
    // add 10% to avoid having to recalculate often
    size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
672
    update_young_list_target_length(rs_lengths_prediction);
673 674 675
  }
}

676 677


678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
                                               bool is_tlab,
                                               bool* gc_overhead_limit_was_exceeded) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}

// This method controls how a collector handles one or more
// of its generations being fully allocated.
HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
                                                       bool is_tlab) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}


#ifndef PRODUCT
bool G1CollectorPolicy::verify_young_ages() {
696
  HeapRegion* head = _g1->young_list()->first_region();
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
  return
    verify_young_ages(head, _short_lived_surv_rate_group);
  // also call verify_young_ages on any additional surv rate groups
}

bool
G1CollectorPolicy::verify_young_ages(HeapRegion* head,
                                     SurvRateGroup *surv_rate_group) {
  guarantee( surv_rate_group != NULL, "pre-condition" );

  const char* name = surv_rate_group->name();
  bool ret = true;
  int prev_age = -1;

  for (HeapRegion* curr = head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    SurvRateGroup* group = curr->surv_rate_group();
    if (group == NULL && !curr->is_survivor()) {
      gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
      ret = false;
    }

    if (surv_rate_group == group) {
      int age = curr->age_in_surv_rate_group();

      if (age < 0) {
        gclog_or_tty->print_cr("## %s: encountered negative age", name);
        ret = false;
      }

      if (age <= prev_age) {
        gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
                               "(%d, %d)", name, age, prev_age);
        ret = false;
      }
      prev_age = age;
    }
  }

  return ret;
}
#endif // PRODUCT

void G1CollectorPolicy::record_full_collection_start() {
742
  _full_collection_start_sec = os::elapsedTime();
743 744 745 746 747 748 749 750
  // Release the future to-space so that it is available for compaction into.
  _g1->set_full_collection();
}

void G1CollectorPolicy::record_full_collection_end() {
  // Consider this like a collection pause for the purposes of allocation
  // since last pause.
  double end_sec = os::elapsedTime();
751
  double full_gc_time_sec = end_sec - _full_collection_start_sec;
752 753
  double full_gc_time_ms = full_gc_time_sec * 1000.0;

754
  _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
755

756
  update_recent_gc_times(end_sec, full_gc_time_ms);
757 758 759

  _g1->clear_full_collection();

760 761 762 763
  // "Nuke" the heuristics that control the young/mixed GC
  // transitions and make sure we start with young GCs after the Full GC.
  set_gcs_are_young(true);
  _last_young_gc = false;
764 765
  clear_initiate_conc_mark_if_possible();
  clear_during_initial_mark_pause();
766 767 768 769 770 771
  _in_marking_window = false;
  _in_marking_window_im = false;

  _short_lived_surv_rate_group->start_adding_regions();
  // also call this on any additional surv rate groups

772 773
  record_survivor_regions(0, NULL, NULL);

774
  _free_regions_at_end_of_collection = _g1->free_regions();
775 776
  // Reset survivors SurvRateGroup.
  _survivor_surv_rate_group->reset();
777
  update_young_list_target_length();
778
  _collectionSetChooser->clear();
779
}
780 781 782 783 784 785 786

void G1CollectorPolicy::record_stop_world_start() {
  _stop_world_start = os::elapsedTime();
}

void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
                                                      size_t start_used) {
787 788 789 790
  // We only need to do this here as the policy will only be applied
  // to the GC we're about to start. so, no point is calculating this
  // every time we calculate / recalculate the target young length.
  update_survivors_policy();
791

792 793 794
  assert(_g1->used() == _g1->recalculate_used(),
         err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
                 _g1->used(), _g1->recalculate_used()));
795 796

  double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
797
  _trace_gen0_time_data.record_start_collection(s_w_t_ms);
798 799
  _stop_world_start = 0.0;

800
  phase_times()->_cur_collection_start_sec = start_time_sec;
801 802 803 804 805 806
  _cur_collection_pause_used_at_start_bytes = start_used;
  _cur_collection_pause_used_regions_at_start = _g1->used_regions();
  _pending_cards = _g1->pending_card_num();
  _max_pending_cards = _g1->max_pending_card_num();

  _bytes_in_collection_set_before_gc = 0;
807
  _bytes_copied_during_gc = 0;
808

809 810 811 812 813
  YoungList* young_list = _g1->young_list();
  _eden_bytes_before_gc = young_list->eden_used_bytes();
  _survivor_bytes_before_gc = young_list->survivor_used_bytes();
  _capacity_before_gc = _g1->capacity();

814
  _last_gc_was_young = false;
815 816 817

  // do that for any other surv rate groups
  _short_lived_surv_rate_group->stop_adding_regions();
818
  _survivors_age_table.clear();
819

820 821 822
  assert( verify_young_ages(), "region age verification" );
}

823
void G1CollectorPolicy::record_concurrent_mark_init_end(double
824 825
                                                   mark_init_elapsed_time_ms) {
  _during_marking = true;
826 827
  assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
  clear_during_initial_mark_pause();
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
  _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
}

void G1CollectorPolicy::record_concurrent_mark_remark_start() {
  _mark_remark_start_sec = os::elapsedTime();
  _during_marking = false;
}

void G1CollectorPolicy::record_concurrent_mark_remark_end() {
  double end_time_sec = os::elapsedTime();
  double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
  _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;

  _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
}

void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
  _mark_cleanup_start_sec = os::elapsedTime();
}

850
void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
851
  _last_young_gc = true;
852
  _in_marking_window = false;
853 854 855 856 857
}

void G1CollectorPolicy::record_concurrent_pause() {
  if (_stop_world_start > 0.0) {
    double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
858
    _trace_gen0_time_data.record_yield_time(yield_ms);
859 860 861
  }
}

862 863
bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
  if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
864 865 866 867 868 869
    return false;
  }

  size_t marking_initiating_used_threshold =
    (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  size_t cur_used_bytes = _g1->non_young_capacity_bytes();
870
  size_t alloc_byte_size = alloc_word_size * HeapWordSize;
871

872
  if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
873
    if (gcs_are_young()) {
874
      ergo_verbose5(ErgoConcCycles,
875 876 877
        "request concurrent cycle initiation",
        ergo_format_reason("occupancy higher than threshold")
        ergo_format_byte("occupancy")
878
        ergo_format_byte("allocation request")
879 880 881
        ergo_format_byte_perc("threshold")
        ergo_format_str("source"),
        cur_used_bytes,
882
        alloc_byte_size,
883 884 885 886 887
        marking_initiating_used_threshold,
        (double) InitiatingHeapOccupancyPercent,
        source);
      return true;
    } else {
888
      ergo_verbose5(ErgoConcCycles,
889 890 891
        "do not request concurrent cycle initiation",
        ergo_format_reason("still doing mixed collections")
        ergo_format_byte("occupancy")
892
        ergo_format_byte("allocation request")
893 894 895
        ergo_format_byte_perc("threshold")
        ergo_format_str("source"),
        cur_used_bytes,
896
        alloc_byte_size,
897 898 899 900 901 902 903 904 905
        marking_initiating_used_threshold,
        (double) InitiatingHeapOccupancyPercent,
        source);
    }
  }

  return false;
}

906 907 908
// Anything below that is considered to be zero
#define MIN_TIMER_GRANULARITY 0.0000001

909
void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms) {
910
  double end_time_sec = os::elapsedTime();
911 912
  assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
         "otherwise, the subtraction below does not make sense");
913
  size_t rs_size =
914
            _cur_collection_pause_used_regions_at_start - cset_region_length();
915 916 917
  size_t cur_used_bytes = _g1->used();
  assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  bool last_pause_included_initial_mark = false;
918
  bool update_stats = !_g1->evacuation_failed();
919 920 921 922 923 924 925 926 927

#ifndef PRODUCT
  if (G1YoungSurvRateVerbose) {
    gclog_or_tty->print_cr("");
    _short_lived_surv_rate_group->print();
    // do that for any other surv rate groups too
  }
#endif // PRODUCT

928
  last_pause_included_initial_mark = during_initial_mark_pause();
929
  if (last_pause_included_initial_mark) {
930
    record_concurrent_mark_init_end(0.0);
931
  } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
932 933 934 935 936
    // Note: this might have already been set, if during the last
    // pause we decided to start a cycle but at the beginning of
    // this pause we decided to postpone it. That's OK.
    set_initiate_conc_mark_if_possible();
  }
937

938
  _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
939 940 941 942 943
                          end_time_sec, false);

  size_t freed_bytes =
    _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
944

945 946 947 948
  double survival_fraction =
    (double)surviving_bytes/
    (double)_collection_set_bytes_used_before;

949
  if (update_stats) {
950
    _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
951 952
    // this is where we update the allocation rate of the application
    double app_time_ms =
953
      (phase_times()->_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
954 955 956 957 958 959
    if (app_time_ms < MIN_TIMER_GRANULARITY) {
      // This usually happens due to the timer not having the required
      // granularity. Some Linuxes are the usual culprits.
      // We'll just set it to something (arbitrarily) small.
      app_time_ms = 1.0;
    }
960 961 962 963 964 965 966 967
    // We maintain the invariant that all objects allocated by mutator
    // threads will be allocated out of eden regions. So, we can use
    // the eden region number allocated since the previous GC to
    // calculate the application's allocate rate. The only exception
    // to that is humongous objects that are allocated separately. But
    // given that humongous object allocations do not really affect
    // either the pause's duration nor when the next pause will take
    // place we can safely ignore them here.
968
    uint regions_allocated = eden_cset_region_length();
969 970 971 972 973
    double alloc_rate_ms = (double) regions_allocated / app_time_ms;
    _alloc_rate_ms_seq->add(alloc_rate_ms);

    double interval_ms =
      (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
974
    update_recent_gc_times(end_time_sec, pause_time_ms);
975
    _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
976 977 978 979 980 981 982 983 984 985 986 987
    if (recent_avg_pause_time_ratio() < 0.0 ||
        (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
#ifndef PRODUCT
      // Dump info to allow post-facto debugging
      gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
      gclog_or_tty->print_cr("-------------------------------------------");
      gclog_or_tty->print_cr("Recent GC Times (ms):");
      _recent_gc_times_ms->dump();
      gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
      _recent_prev_end_times_for_all_gcs_sec->dump();
      gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
                             _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
988 989 990 991 992
      // In debug mode, terminate the JVM if the user wants to debug at this point.
      assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
#endif  // !PRODUCT
      // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
      // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
993 994 995 996 997 998 999
      if (_recent_avg_pause_time_ratio < 0.0) {
        _recent_avg_pause_time_ratio = 0.0;
      } else {
        assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
        _recent_avg_pause_time_ratio = 1.0;
      }
    }
1000 1001 1002
  }
  bool new_in_marking_window = _in_marking_window;
  bool new_in_marking_window_im = false;
1003
  if (during_initial_mark_pause()) {
1004 1005 1006 1007
    new_in_marking_window = true;
    new_in_marking_window_im = true;
  }

1008
  if (_last_young_gc) {
1009 1010 1011
    // This is supposed to to be the "last young GC" before we start
    // doing mixed GCs. Here we decide whether to start mixed GCs or not.

1012
    if (!last_pause_included_initial_mark) {
1013 1014 1015 1016
      if (next_gc_should_be_mixed("start mixed GCs",
                                  "do not start mixed GCs")) {
        set_gcs_are_young(false);
      }
1017
    } else {
1018 1019
      ergo_verbose0(ErgoMixedGCs,
                    "do not start mixed GCs",
1020 1021
                    ergo_format_reason("concurrent cycle is about to start"));
    }
1022
    _last_young_gc = false;
1023
  }
1024

1025
  if (!_last_gc_was_young) {
1026 1027 1028 1029 1030
    // This is a mixed GC. Here we decide whether to continue doing
    // mixed GCs or not.

    if (!next_gc_should_be_mixed("continue mixed GCs",
                                 "do not continue mixed GCs")) {
1031
      set_gcs_are_young(true);
1032
    }
1033
  }
1034 1035 1036 1037

  _short_lived_surv_rate_group->start_adding_regions();
  // do that for any other surv rate groupsx

1038
  if (update_stats) {
1039
    size_t diff = 0;
1040
    if (_max_pending_cards >= _pending_cards) {
1041
      diff = _max_pending_cards - _pending_cards;
1042
    }
1043 1044 1045 1046
    _pending_card_diff_seq->add((double) diff);

    double cost_per_card_ms = 0.0;
    if (_pending_cards > 0) {
1047
      cost_per_card_ms = phase_times()->_update_rs_time / (double) _pending_cards;
1048 1049 1050 1051 1052 1053 1054
      _cost_per_card_ms_seq->add(cost_per_card_ms);
    }

    size_t cards_scanned = _g1->cards_scanned();

    double cost_per_entry_ms = 0.0;
    if (cards_scanned > 10) {
1055
      cost_per_entry_ms = phase_times()->_scan_rs_time / (double) cards_scanned;
1056
      if (_last_gc_was_young) {
1057
        _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1058 1059 1060
      } else {
        _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
      }
1061 1062 1063 1064 1065
    }

    if (_max_rs_lengths > 0) {
      double cards_per_entry_ratio =
        (double) cards_scanned / (double) _max_rs_lengths;
1066 1067 1068 1069 1070
      if (_last_gc_was_young) {
        _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      } else {
        _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      }
1071 1072
    }

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
    // This is defensive. For a while _max_rs_lengths could get
    // smaller than _recorded_rs_lengths which was causing
    // rs_length_diff to get very large and mess up the RSet length
    // predictions. The reason was unsafe concurrent updates to the
    // _inc_cset_recorded_rs_lengths field which the code below guards
    // against (see CR 7118202). This bug has now been fixed (see CR
    // 7119027). However, I'm still worried that
    // _inc_cset_recorded_rs_lengths might still end up somewhat
    // inaccurate. The concurrent refinement thread calculates an
    // RSet's length concurrently with other CR threads updating it
    // which might cause it to calculate the length incorrectly (if,
    // say, it's in mid-coarsening). So I'll leave in the defensive
    // conditional below just in case.
1086 1087 1088 1089 1090
    size_t rs_length_diff = 0;
    if (_max_rs_lengths > _recorded_rs_lengths) {
      rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
    }
    _rs_length_diff_seq->add((double) rs_length_diff);
1091 1092 1093 1094

    size_t copied_bytes = surviving_bytes;
    double cost_per_byte_ms = 0.0;
    if (copied_bytes > 0) {
1095
      cost_per_byte_ms = phase_times()->_obj_copy_time / (double) copied_bytes;
1096
      if (_in_marking_window) {
1097
        _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1098
      } else {
1099
        _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1100
      }
1101 1102 1103
    }

    double all_other_time_ms = pause_time_ms -
1104
      (phase_times()->_update_rs_time + phase_times()->_scan_rs_time + phase_times()->_obj_copy_time + phase_times()->_termination_time);
1105 1106

    double young_other_time_ms = 0.0;
1107
    if (young_cset_region_length() > 0) {
1108
      young_other_time_ms =
1109 1110
        phase_times()->_recorded_young_cset_choice_time_ms +
        phase_times()->_recorded_young_free_cset_time_ms;
1111
      _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1112
                                          (double) young_cset_region_length());
1113 1114
    }
    double non_young_other_time_ms = 0.0;
1115
    if (old_cset_region_length() > 0) {
1116
      non_young_other_time_ms =
1117 1118
        phase_times()->_recorded_non_young_cset_choice_time_ms +
        phase_times()->_recorded_non_young_free_cset_time_ms;
1119 1120

      _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1121
                                            (double) old_cset_region_length());
1122 1123 1124 1125 1126 1127 1128 1129
    }

    double constant_other_time_ms = all_other_time_ms -
      (young_other_time_ms + non_young_other_time_ms);
    _constant_other_time_ms_seq->add(constant_other_time_ms);

    double survival_ratio = 0.0;
    if (_bytes_in_collection_set_before_gc > 0) {
1130 1131
      survival_ratio = (double) _bytes_copied_during_gc /
                                   (double) _bytes_in_collection_set_before_gc;
1132 1133 1134 1135 1136 1137 1138 1139 1140
    }

    _pending_cards_seq->add((double) _pending_cards);
    _rs_lengths_seq->add((double) _max_rs_lengths);
  }

  _in_marking_window = new_in_marking_window;
  _in_marking_window_im = new_in_marking_window_im;
  _free_regions_at_end_of_collection = _g1->free_regions();
1141
  update_young_list_target_length();
1142

1143
  // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1144
  double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1145
  adjust_concurrent_refinement(phase_times()->_update_rs_time, phase_times()->_update_rs_processed_buffers, update_rs_time_goal_ms);
1146

1147
  _collectionSetChooser->verify();
1148 1149
}

1150
#define EXT_SIZE_FORMAT "%.1f%s"
1151
#define EXT_SIZE_PARAMS(bytes)                                  \
1152
  byte_size_in_proper_unit((double)(bytes)),                    \
1153 1154 1155
  proper_unit_for_byte_size((bytes))

void G1CollectorPolicy::print_heap_transition() {
1156
  if (G1Log::finer()) {
1157 1158 1159 1160 1161 1162
    YoungList* young_list = _g1->young_list();
    size_t eden_bytes = young_list->eden_used_bytes();
    size_t survivor_bytes = young_list->survivor_used_bytes();
    size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
    size_t used = _g1->used();
    size_t capacity = _g1->capacity();
1163 1164
    size_t eden_capacity =
      (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
1165 1166

    gclog_or_tty->print_cr(
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
      "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
      "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
      "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
      EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
      EXT_SIZE_PARAMS(_eden_bytes_before_gc),
      EXT_SIZE_PARAMS(_prev_eden_capacity),
      EXT_SIZE_PARAMS(eden_bytes),
      EXT_SIZE_PARAMS(eden_capacity),
      EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
      EXT_SIZE_PARAMS(survivor_bytes),
      EXT_SIZE_PARAMS(used_before_gc),
      EXT_SIZE_PARAMS(_capacity_before_gc),
      EXT_SIZE_PARAMS(used),
      EXT_SIZE_PARAMS(capacity));

    _prev_eden_capacity = eden_capacity;
1183
  } else if (G1Log::fine()) {
1184 1185 1186 1187 1188 1189
    _g1->print_size_transition(gclog_or_tty,
                               _cur_collection_pause_used_at_start_bytes,
                               _g1->used(), _g1->capacity());
  }
}

1190 1191 1192 1193 1194 1195
void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
                                                     double update_rs_processed_buffers,
                                                     double goal_ms) {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();

1196
  if (G1UseAdaptiveConcRefinement) {
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
    const int k_gy = 3, k_gr = 6;
    const double inc_k = 1.1, dec_k = 0.9;

    int g = cg1r->green_zone();
    if (update_rs_time > goal_ms) {
      g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
    } else {
      if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
        g = (int)MAX2(g * inc_k, g + 1.0);
      }
    }
    // Change the refinement threads params
    cg1r->set_green_zone(g);
    cg1r->set_yellow_zone(g * k_gy);
    cg1r->set_red_zone(g * k_gr);
    cg1r->reinitialize_threads();

    int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
    int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
                                    cg1r->yellow_zone());
    // Change the barrier params
    dcqs.set_process_completed_threshold(processing_threshold);
    dcqs.set_max_completed_queue(cg1r->red_zone());
  }

  int curr_queue_size = dcqs.completed_buffers_num();
  if (curr_queue_size >= cg1r->yellow_zone()) {
    dcqs.set_completed_queue_padding(curr_queue_size);
  } else {
    dcqs.set_completed_queue_padding(0);
  }
  dcqs.notify_if_necessary();
}

1231 1232 1233 1234
double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  size_t rs_length = predict_rs_length_diff();
  size_t card_num;
1235
  if (gcs_are_young()) {
1236
    card_num = predict_young_card_num(rs_length);
1237
  } else {
1238
    card_num = predict_non_young_card_num(rs_length);
1239
  }
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
  return predict_base_elapsed_time_ms(pending_cards, card_num);
}

double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
                                                size_t scanned_cards) {
  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(scanned_cards) +
    predict_constant_other_time_ms();
}

double
G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
                                                  bool young) {
  size_t rs_length = hr->rem_set()->occupied();
  size_t card_num;
1257
  if (gcs_are_young()) {
1258
    card_num = predict_young_card_num(rs_length);
1259
  } else {
1260
    card_num = predict_non_young_card_num(rs_length);
1261
  }
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
  size_t bytes_to_copy = predict_bytes_to_copy(hr);

  double region_elapsed_time_ms =
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy);

  if (young)
    region_elapsed_time_ms += predict_young_other_time_ms(1);
  else
    region_elapsed_time_ms += predict_non_young_other_time_ms(1);

  return region_elapsed_time_ms;
}

1276
size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1277 1278 1279 1280
  size_t bytes_to_copy;
  if (hr->is_marked())
    bytes_to_copy = hr->max_live_bytes();
  else {
1281
    assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1282
    int age = hr->age_in_surv_rate_group();
1283
    double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1284 1285 1286 1287 1288 1289
    bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  }
  return bytes_to_copy;
}

void
1290 1291
G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
                                            uint survivor_cset_region_length) {
1292 1293 1294
  _eden_cset_region_length     = eden_cset_region_length;
  _survivor_cset_region_length = survivor_cset_region_length;
  _old_cset_region_length      = 0;
1295 1296 1297 1298 1299 1300
}

void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  _recorded_rs_lengths = rs_lengths;
}

1301 1302 1303 1304 1305 1306 1307 1308
void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
                                               double elapsed_ms) {
  _recent_gc_times_ms->add(elapsed_ms);
  _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  _prev_collection_pause_end_ms = end_time_sec * 1000.0;
}

size_t G1CollectorPolicy::expansion_amount() {
1309 1310 1311
  double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  double threshold = _gc_overhead_perc;
  if (recent_gc_overhead > threshold) {
J
johnc 已提交
1312 1313 1314 1315
    // We will double the existing space, or take
    // G1ExpandByPercentOfAvailable % of the available expansion
    // space, whichever is smaller, bounded below by a minimum
    // expansion (unless that's all that's left.)
1316
    const size_t min_expand_bytes = 1*M;
1317
    size_t reserved_bytes = _g1->max_capacity();
1318 1319 1320 1321
    size_t committed_bytes = _g1->capacity();
    size_t uncommitted_bytes = reserved_bytes - committed_bytes;
    size_t expand_bytes;
    size_t expand_bytes_via_pct =
J
johnc 已提交
1322
      uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1323 1324 1325
    expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
    expand_bytes = MAX2(expand_bytes, min_expand_bytes);
    expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338

    ergo_verbose5(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("recent GC overhead higher than "
                                     "threshold after GC")
                  ergo_format_perc("recent GC overhead")
                  ergo_format_perc("threshold")
                  ergo_format_byte("uncommitted")
                  ergo_format_byte_perc("calculated expansion amount"),
                  recent_gc_overhead, threshold,
                  uncommitted_bytes,
                  expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
    return expand_bytes;
  } else {
    return 0;
  }
}

class CountCSClosure: public HeapRegionClosure {
  G1CollectorPolicy* _g1_policy;
public:
  CountCSClosure(G1CollectorPolicy* g1_policy) :
    _g1_policy(g1_policy) {}
  bool doHeapRegion(HeapRegion* r) {
    _g1_policy->_bytes_in_collection_set_before_gc += r->used();
    return false;
  }
};

void G1CollectorPolicy::count_CS_bytes_used() {
  CountCSClosure cs_closure(this);
  _g1->collection_set_iterate(&cs_closure);
}

void G1CollectorPolicy::print_tracing_info() const {
1362 1363
  _trace_gen0_time_data.print();
  _trace_gen1_time_data.print();
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
}

void G1CollectorPolicy::print_yg_surv_rate_info() const {
#ifndef PRODUCT
  _short_lived_surv_rate_group->print_surv_rate_summary();
  // add this call for any other surv rate groups
#endif // PRODUCT
}

#ifndef PRODUCT
// for debugging, bit of a hack...
static char*
region_num_to_mbs(int length) {
  static char buffer[64];
  double bytes = (double) (length * HeapRegion::GrainBytes);
  double mbs = bytes / (double) (1024 * 1024);
  sprintf(buffer, "%7.2lfMB", mbs);
  return buffer;
}
#endif // PRODUCT

1385
uint G1CollectorPolicy::max_regions(int purpose) {
1386 1387
  switch (purpose) {
    case GCAllocForSurvived:
1388
      return _max_survivor_regions;
1389
    case GCAllocForTenured:
1390
      return REGIONS_UNLIMITED;
1391
    default:
1392 1393
      ShouldNotReachHere();
      return REGIONS_UNLIMITED;
1394 1395 1396
  };
}

1397
void G1CollectorPolicy::update_max_gc_locker_expansion() {
1398
  uint expansion_region_num = 0;
1399 1400 1401 1402 1403
  if (GCLockerEdenExpansionPercent > 0) {
    double perc = (double) GCLockerEdenExpansionPercent / 100.0;
    double expansion_region_num_d = perc * (double) _young_list_target_length;
    // We use ceiling so that if expansion_region_num_d is > 0.0 (but
    // less than 1.0) we'll get 1.
1404
    expansion_region_num = (uint) ceil(expansion_region_num_d);
1405 1406 1407 1408 1409 1410 1411
  } else {
    assert(expansion_region_num == 0, "sanity");
  }
  _young_list_max_length = _young_list_target_length + expansion_region_num;
  assert(_young_list_target_length <= _young_list_max_length, "post-condition");
}

1412
// Calculates survivor space parameters.
1413 1414 1415 1416 1417
void G1CollectorPolicy::update_survivors_policy() {
  double max_survivor_regions_d =
                 (double) _young_list_target_length / (double) SurvivorRatio;
  // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
1418
  _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1419

1420
  _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1421 1422 1423
        HeapRegion::GrainWords * _max_survivor_regions);
}

1424 1425
bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
                                                     GCCause::Cause gc_cause) {
1426 1427
  bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  if (!during_cycle) {
1428 1429 1430 1431 1432
    ergo_verbose1(ErgoConcCycles,
                  "request concurrent cycle initiation",
                  ergo_format_reason("requested by GC cause")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
1433 1434 1435
    set_initiate_conc_mark_if_possible();
    return true;
  } else {
1436 1437 1438 1439 1440
    ergo_verbose1(ErgoConcCycles,
                  "do not request concurrent cycle initiation",
                  ergo_format_reason("concurrent cycle already in progress")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
1441 1442 1443 1444
    return false;
  }
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
void
G1CollectorPolicy::decide_on_conc_mark_initiation() {
  // We are about to decide on whether this pause will be an
  // initial-mark pause.

  // First, during_initial_mark_pause() should not be already set. We
  // will set it here if we have to. However, it should be cleared by
  // the end of the pause (it's only set for the duration of an
  // initial-mark pause).
  assert(!during_initial_mark_pause(), "pre-condition");

  if (initiate_conc_mark_if_possible()) {
    // We had noticed on a previous pause that the heap occupancy has
    // gone over the initiating threshold and we should start a
    // concurrent marking cycle. So we might initiate one.

    bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
    if (!during_cycle) {
      // The concurrent marking thread is not "during a cycle", i.e.,
      // it has completed the last one. So we can go ahead and
      // initiate a new cycle.

      set_during_initial_mark_pause();
1468 1469 1470 1471 1472
      // We do not allow mixed GCs during marking.
      if (!gcs_are_young()) {
        set_gcs_are_young(true);
        ergo_verbose0(ErgoMixedGCs,
                      "end mixed GCs",
1473 1474
                      ergo_format_reason("concurrent cycle is about to start"));
      }
1475 1476 1477 1478

      // And we can now clear initiate_conc_mark_if_possible() as
      // we've already acted on it.
      clear_initiate_conc_mark_if_possible();
1479 1480 1481 1482

      ergo_verbose0(ErgoConcCycles,
                  "initiate concurrent cycle",
                  ergo_format_reason("concurrent cycle initiation requested"));
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
    } else {
      // The concurrent marking thread is still finishing up the
      // previous cycle. If we start one right now the two cycles
      // overlap. In particular, the concurrent marking thread might
      // be in the process of clearing the next marking bitmap (which
      // we will use for the next cycle if we start one). Starting a
      // cycle now will be bad given that parts of the marking
      // information might get cleared by the marking thread. And we
      // cannot wait for the marking thread to finish the cycle as it
      // periodically yields while clearing the next marking bitmap
      // and, if it's in a yield point, it's waiting for us to
      // finish. So, at this point we will not start a cycle and we'll
      // let the concurrent marking thread complete the last one.
1496 1497 1498
      ergo_verbose0(ErgoConcCycles,
                    "do not initiate concurrent cycle",
                    ergo_format_reason("concurrent cycle already in progress"));
1499 1500 1501 1502
    }
  }
}

1503
class KnownGarbageClosure: public HeapRegionClosure {
1504
  G1CollectedHeap* _g1h;
1505 1506 1507 1508
  CollectionSetChooser* _hrSorted;

public:
  KnownGarbageClosure(CollectionSetChooser* hrSorted) :
1509
    _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
1510 1511 1512 1513 1514 1515 1516 1517

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.

    // Do we have any marking information for this region?
    if (r->is_marked()) {
1518 1519 1520
      // We will skip any region that's currently used as an old GC
      // alloc region (we should not consider those for collection
      // before we fill them up).
1521 1522
      if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
        _hrSorted->add_region(r);
1523 1524 1525 1526 1527 1528 1529
      }
    }
    return false;
  }
};

class ParKnownGarbageHRClosure: public HeapRegionClosure {
1530
  G1CollectedHeap* _g1h;
1531
  CSetChooserParUpdater _cset_updater;
1532 1533 1534

public:
  ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1535
                           uint chunk_size) :
1536 1537
    _g1h(G1CollectedHeap::heap()),
    _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1538 1539 1540 1541

  bool doHeapRegion(HeapRegion* r) {
    // Do we have any marking information for this region?
    if (r->is_marked()) {
1542 1543 1544
      // We will skip any region that's currently used as an old GC
      // alloc region (we should not consider those for collection
      // before we fill them up).
1545 1546
      if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
        _cset_updater.add_region(r);
1547 1548 1549 1550 1551 1552 1553 1554
      }
    }
    return false;
  }
};

class ParKnownGarbageTask: public AbstractGangTask {
  CollectionSetChooser* _hrSorted;
1555
  uint _chunk_size;
1556 1557
  G1CollectedHeap* _g1;
public:
1558
  ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
1559 1560
    AbstractGangTask("ParKnownGarbageTask"),
    _hrSorted(hrSorted), _chunk_size(chunk_size),
1561
    _g1(G1CollectedHeap::heap()) { }
1562

1563
  void work(uint worker_id) {
1564 1565
    ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);

1566
    // Back to zero for the claim value.
1567
    _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
1568
                                         _g1->workers()->active_workers(),
1569
                                         HeapRegion::InitialClaimValue);
1570 1571 1572 1573
  }
};

void
1574
G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
1575
  _collectionSetChooser->clear();
1576

1577
  uint region_num = _g1->n_regions();
1578
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1579 1580
    const uint OverpartitionFactor = 4;
    uint WorkUnit;
1581 1582 1583 1584 1585
    // The use of MinChunkSize = 8 in the original code
    // causes some assertion failures when the total number of
    // region is less than 8.  The code here tries to fix that.
    // Should the original code also be fixed?
    if (no_of_gc_threads > 0) {
1586 1587 1588
      const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
      WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
                      MinWorkUnit);
1589 1590 1591 1592
    } else {
      assert(no_of_gc_threads > 0,
        "The active gc workers should be greater than 0");
      // In a product build do something reasonable to avoid a crash.
1593
      const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
1594
      WorkUnit =
1595
        MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
1596 1597
             MinWorkUnit);
    }
1598 1599
    _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
                                                           WorkUnit);
1600
    ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
1601
                                            (int) WorkUnit);
1602
    _g1->workers()->run_task(&parKnownGarbageTask);
1603 1604 1605

    assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
1606 1607 1608 1609
  } else {
    KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
    _g1->heap_region_iterate(&knownGarbagecl);
  }
1610

1611
  _collectionSetChooser->sort_regions();
1612

1613
  double end_sec = os::elapsedTime();
1614 1615 1616 1617 1618
  double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;
  _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1619 1620
}

1621
// Add the heap region at the head of the non-incremental collection set
1622
void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1623 1624 1625 1626
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(!hr->is_young(), "non-incremental add of young region");

  assert(!hr->in_collection_set(), "should not already be in the CSet");
1627 1628 1629 1630
  hr->set_in_collection_set(true);
  hr->set_next_in_collection_set(_collection_set);
  _collection_set = hr;
  _collection_set_bytes_used_before += hr->used();
1631
  _g1->register_region_with_in_cset_fast_test(hr);
1632 1633 1634
  size_t rs_length = hr->rem_set()->occupied();
  _recorded_rs_lengths += rs_length;
  _old_cset_region_length += 1;
1635 1636
}

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
// Initialize the per-collection-set information
void G1CollectorPolicy::start_incremental_cset_building() {
  assert(_inc_cset_build_state == Inactive, "Precondition");

  _inc_cset_head = NULL;
  _inc_cset_tail = NULL;
  _inc_cset_bytes_used_before = 0;

  _inc_cset_max_finger = 0;
  _inc_cset_recorded_rs_lengths = 0;
1647 1648 1649
  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms = 0.0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1650 1651 1652
  _inc_cset_build_state = Active;
}

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
void G1CollectorPolicy::finalize_incremental_cset_building() {
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");

  // The two "main" fields, _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  // that adds a new region to the CSet. Further updates by the
  // concurrent refinement thread that samples the young RSet lengths
  // are accumulated in the *_diffs fields. Here we add the diffs to
  // the "main" fields.

  if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
    _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  } else {
    // This is defensive. The diff should in theory be always positive
    // as RSets can only grow between GCs. However, given that we
    // sample their size concurrently with other threads updating them
    // it's possible that we might get the wrong size back, which
    // could make the calculations somewhat inaccurate.
    size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
    if (_inc_cset_recorded_rs_lengths >= diffs) {
      _inc_cset_recorded_rs_lengths -= diffs;
    } else {
      _inc_cset_recorded_rs_lengths = 0;
    }
  }
  _inc_cset_predicted_elapsed_time_ms +=
                                     _inc_cset_predicted_elapsed_time_ms_diffs;

  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
}

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  // This routine is used when:
  // * adding survivor regions to the incremental cset at the end of an
  //   evacuation pause,
  // * adding the current allocation region to the incremental cset
  //   when it is retired, and
  // * updating existing policy information for a region in the
  //   incremental cset via young list RSet sampling.
  // Therefore this routine may be called at a safepoint by the
  // VM thread, or in-between safepoints by mutator threads (when
  // retiring the current allocation region) or a concurrent
  // refine thread (RSet sampling).

  double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  size_t used_bytes = hr->used();
  _inc_cset_recorded_rs_lengths += rs_length;
  _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  _inc_cset_bytes_used_before += used_bytes;

  // Cache the values we have added to the aggregated informtion
  // in the heap region in case we have to remove this region from
  // the incremental collection set, or it is updated by the
  // rset sampling code
  hr->set_recorded_rs_length(rs_length);
  hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
}

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
                                                     size_t new_rs_length) {
  // Update the CSet information that is dependent on the new RS length
  assert(hr->is_young(), "Precondition");
  assert(!SafepointSynchronize::is_at_safepoint(),
                                               "should not be at a safepoint");

  // We could have updated _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  // that atomically, as this code is executed by a concurrent
  // refinement thread, potentially concurrently with a mutator thread
  // allocating a new region and also updating the same fields. To
  // avoid the atomic operations we accumulate these updates on two
  // separate fields (*_diffs) and we'll just add them to the "main"
  // fields at the start of a GC.

  ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1732 1733

  double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1734 1735 1736
  double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1737

1738 1739
  hr->set_recorded_rs_length(new_rs_length);
  hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1740 1741 1742
}

void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1743 1744
  assert(hr->is_young(), "invariant");
  assert(hr->young_index_in_cset() > -1, "should have already been set");
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
  assert(_inc_cset_build_state == Active, "Precondition");

  // We need to clear and set the cached recorded/cached collection set
  // information in the heap region here (before the region gets added
  // to the collection set). An individual heap region's cached values
  // are calculated, aggregated with the policy collection set info,
  // and cached in the heap region here (initially) and (subsequently)
  // by the Young List sampling code.

  size_t rs_length = hr->rem_set()->occupied();
  add_to_incremental_cset_info(hr, rs_length);

  HeapWord* hr_end = hr->end();
  _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);

  assert(!hr->in_collection_set(), "invariant");
  hr->set_in_collection_set(true);
  assert( hr->next_in_collection_set() == NULL, "invariant");

  _g1->register_region_with_in_cset_fast_test(hr);
}

// Add the region at the RHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  // We should only ever be appending survivors at the end of a pause
  assert( hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Now add the region at the right hand side
  if (_inc_cset_tail == NULL) {
    assert(_inc_cset_head == NULL, "invariant");
    _inc_cset_head = hr;
  } else {
    _inc_cset_tail->set_next_in_collection_set(hr);
  }
  _inc_cset_tail = hr;
}

// Add the region to the LHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  // Survivors should be added to the RHS at the end of a pause
  assert(!hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Add the region at the left hand side
  hr->set_next_in_collection_set(_inc_cset_head);
  if (_inc_cset_head == NULL) {
    assert(_inc_cset_tail == NULL, "Invariant");
    _inc_cset_tail = hr;
  }
  _inc_cset_head = hr;
}

#ifndef PRODUCT
void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");

  st->print_cr("\nCollection_set:");
  HeapRegion* csr = list_head;
  while (csr != NULL) {
    HeapRegion* next = csr->next_in_collection_set();
    assert(csr->in_collection_set(), "bad CS");
1811 1812 1813 1814
    st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
                 HR_FORMAT_PARAMS(csr),
                 csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
                 csr->age_in_surv_rate_group_cond());
1815 1816 1817 1818 1819
    csr = next;
  }
}
#endif // !PRODUCT

1820 1821 1822
bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
                                                const char* false_action_str) {
  CollectionSetChooser* cset_chooser = _collectionSetChooser;
1823
  if (cset_chooser->is_empty()) {
1824 1825 1826 1827 1828
    ergo_verbose0(ErgoMixedGCs,
                  false_action_str,
                  ergo_format_reason("candidate old regions not available"));
    return false;
  }
1829
  size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1830 1831
  size_t capacity_bytes = _g1->capacity();
  double perc = (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1832
  double threshold = (double) G1HeapWastePercent;
1833 1834 1835 1836 1837 1838 1839
  if (perc < threshold) {
    ergo_verbose4(ErgoMixedGCs,
              false_action_str,
              ergo_format_reason("reclaimable percentage lower than threshold")
              ergo_format_region("candidate old regions")
              ergo_format_byte_perc("reclaimable")
              ergo_format_perc("threshold"),
1840
              cset_chooser->remaining_regions(),
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
              reclaimable_bytes, perc, threshold);
    return false;
  }

  ergo_verbose4(ErgoMixedGCs,
                true_action_str,
                ergo_format_reason("candidate old regions available")
                ergo_format_region("candidate old regions")
                ergo_format_byte_perc("reclaimable")
                ergo_format_perc("threshold"),
1851
                cset_chooser->remaining_regions(),
1852 1853 1854 1855 1856
                reclaimable_bytes, perc, threshold);
  return true;
}

void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) {
1857 1858 1859
  // Set this here - in case we're not doing young collections.
  double non_young_start_time_sec = os::elapsedTime();

1860
  YoungList* young_list = _g1->young_list();
1861
  finalize_incremental_cset_building();
1862

1863 1864 1865 1866
  guarantee(target_pause_time_ms > 0.0,
            err_msg("target_pause_time_ms = %1.6lf should be positive",
                    target_pause_time_ms));
  guarantee(_collection_set == NULL, "Precondition");
1867 1868 1869

  double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  double predicted_pause_time_ms = base_time_ms;
1870
  double time_remaining_ms = target_pause_time_ms - base_time_ms;
1871

1872 1873 1874 1875 1876 1877 1878
  ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
                "start choosing CSet",
                ergo_format_ms("predicted base time")
                ergo_format_ms("remaining time")
                ergo_format_ms("target pause time"),
                base_time_ms, time_remaining_ms, target_pause_time_ms);

1879
  HeapRegion* hr;
1880
  double young_start_time_sec = os::elapsedTime();
1881

1882
  _collection_set_bytes_used_before = 0;
1883
  _last_gc_was_young = gcs_are_young() ? true : false;
1884

1885
  if (_last_gc_was_young) {
1886
    _trace_gen0_time_data.increment_young_collection_count();
1887
  } else {
1888
    _trace_gen0_time_data.increment_mixed_collection_count();
1889
  }
1890

1891 1892 1893
  // The young list is laid with the survivor regions from the previous
  // pause are appended to the RHS of the young list, i.e.
  //   [Newly Young Regions ++ Survivors from last pause].
1894

1895 1896
  uint survivor_region_length = young_list->survivor_length();
  uint eden_region_length = young_list->length() - survivor_region_length;
1897
  init_cset_region_lengths(eden_region_length, survivor_region_length);
1898
  hr = young_list->first_survivor_region();
1899 1900 1901 1902 1903
  while (hr != NULL) {
    assert(hr->is_survivor(), "badly formed young list");
    hr->set_young();
    hr = hr->get_next_young_region();
  }
1904

1905 1906
  // Clear the fields that point to the survivor list - they are all young now.
  young_list->clear_survivors();
1907

1908 1909 1910 1911
  _collection_set = _inc_cset_head;
  _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
  predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1912

1913 1914 1915 1916 1917
  ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
                "add young regions to CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_ms("predicted young region time"),
1918
                eden_region_length, survivor_region_length,
1919 1920
                _inc_cset_predicted_elapsed_time_ms);

1921 1922 1923
  // The number of recorded young regions is the incremental
  // collection set's current size
  set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1924

1925
  double young_end_time_sec = os::elapsedTime();
1926
  phase_times()->_recorded_young_cset_choice_time_ms =
1927
    (young_end_time_sec - young_start_time_sec) * 1000.0;
1928

1929 1930
  // We are doing young collections so reset this.
  non_young_start_time_sec = young_end_time_sec;
1931

1932
  if (!gcs_are_young()) {
1933
    CollectionSetChooser* cset_chooser = _collectionSetChooser;
1934 1935 1936
    cset_chooser->verify();
    const uint min_old_cset_length = cset_chooser->calc_min_old_cset_length();
    const uint max_old_cset_length = cset_chooser->calc_max_old_cset_length();
1937

1938
    uint expensive_region_num = 0;
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
    bool check_time_remaining = adaptive_young_list_length();
    HeapRegion* hr = cset_chooser->peek();
    while (hr != NULL) {
      if (old_cset_region_length() >= max_old_cset_length) {
        // Added maximum number of old regions to the CSet.
        ergo_verbose2(ErgoCSetConstruction,
                      "finish adding old regions to CSet",
                      ergo_format_reason("old CSet region num reached max")
                      ergo_format_region("old")
                      ergo_format_region("max"),
                      old_cset_region_length(), max_old_cset_length);
        break;
1951
      }
1952

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
      double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
      if (check_time_remaining) {
        if (predicted_time_ms > time_remaining_ms) {
          // Too expensive for the current CSet.

          if (old_cset_region_length() >= min_old_cset_length) {
            // We have added the minimum number of old regions to the CSet,
            // we are done with this CSet.
            ergo_verbose4(ErgoCSetConstruction,
                          "finish adding old regions to CSet",
                          ergo_format_reason("predicted time is too high")
                          ergo_format_ms("predicted time")
                          ergo_format_ms("remaining time")
                          ergo_format_region("old")
                          ergo_format_region("min"),
                          predicted_time_ms, time_remaining_ms,
                          old_cset_region_length(), min_old_cset_length);
            break;
1971
          }
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

          // We'll add it anyway given that we haven't reached the
          // minimum number of old regions.
          expensive_region_num += 1;
        }
      } else {
        if (old_cset_region_length() >= min_old_cset_length) {
          // In the non-auto-tuning case, we'll finish adding regions
          // to the CSet if we reach the minimum.
          ergo_verbose2(ErgoCSetConstruction,
                        "finish adding old regions to CSet",
                        ergo_format_reason("old CSet region num reached min")
                        ergo_format_region("old")
                        ergo_format_region("min"),
                        old_cset_region_length(), min_old_cset_length);
          break;
1988 1989
        }
      }
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

      // We will add this region to the CSet.
      time_remaining_ms -= predicted_time_ms;
      predicted_pause_time_ms += predicted_time_ms;
      cset_chooser->remove_and_move_to_next(hr);
      _g1->old_set_remove(hr);
      add_old_region_to_cset(hr);

      hr = cset_chooser->peek();
    }
    if (hr == NULL) {
      ergo_verbose0(ErgoCSetConstruction,
                    "finish adding old regions to CSet",
                    ergo_format_reason("candidate old regions not available"));
    }

    if (expensive_region_num > 0) {
      // We print the information once here at the end, predicated on
      // whether we added any apparently expensive regions or not, to
      // avoid generating output per region.
      ergo_verbose4(ErgoCSetConstruction,
                    "added expensive regions to CSet",
                    ergo_format_reason("old CSet region num not reached min")
                    ergo_format_region("old")
                    ergo_format_region("expensive")
                    ergo_format_region("min")
                    ergo_format_ms("remaining time"),
                    old_cset_region_length(),
                    expensive_region_num,
                    min_old_cset_length,
                    time_remaining_ms);
2021 2022
    }

2023
    cset_chooser->verify();
2024 2025
  }

2026 2027
  stop_incremental_cset_building();

2028 2029
  count_CS_bytes_used();

2030 2031 2032 2033 2034 2035 2036
  ergo_verbose5(ErgoCSetConstruction,
                "finish choosing CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_region("old")
                ergo_format_ms("predicted pause time")
                ergo_format_ms("target pause time"),
2037 2038
                eden_region_length, survivor_region_length,
                old_cset_region_length(),
2039 2040
                predicted_pause_time_ms, target_pause_time_ms);

2041
  double non_young_end_time_sec = os::elapsedTime();
2042
  phase_times()->_recorded_non_young_cset_choice_time_ms =
2043 2044
    (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
}
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057

void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
  if(TraceGen0Time) {
    _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
  }
}

void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
  if(TraceGen0Time) {
    _all_yield_times_ms.add(yield_time_ms);
  }
}

2058
void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2059
  if(TraceGen0Time) {
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
    _total.add(pause_time_ms);
    _other.add(pause_time_ms - phase_times->accounted_time_ms());
    _root_region_scan_wait.add(phase_times->_root_region_scan_wait_time_ms);
    _parallel.add(phase_times->_cur_collection_par_time_ms);
    _ext_root_scan.add(phase_times->_ext_root_scan_time);
    _satb_filtering.add(phase_times->_satb_filtering_time);
    _update_rs.add(phase_times->_update_rs_time);
    _scan_rs.add(phase_times->_scan_rs_time);
    _obj_copy.add(phase_times->_obj_copy_time);
    _termination.add(phase_times->_termination_time);

    double parallel_known_time = phase_times->_ext_root_scan_time +
      phase_times->_satb_filtering_time +
      phase_times->_update_rs_time +
      phase_times->_scan_rs_time +
      phase_times->_obj_copy_time +
      + phase_times->_termination_time;

    double parallel_other_time = phase_times->_cur_collection_par_time_ms - parallel_known_time;
    _parallel_other.add(parallel_other_time);
    _clear_ct.add(phase_times->_cur_clear_ct_time_ms);
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
  }
}

void TraceGen0TimeData::increment_young_collection_count() {
  if(TraceGen0Time) {
    ++_young_pause_num;
  }
}

void TraceGen0TimeData::increment_mixed_collection_count() {
  if(TraceGen0Time) {
    ++_mixed_pause_num;
  }
}

2096
void TraceGen0TimeData::print_summary(const char* str,
2097 2098
                                      const NumberSeq* seq) const {
  double sum = seq->sum();
2099
  gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2100 2101 2102
                str, sum / 1000.0, seq->avg());
}

2103
void TraceGen0TimeData::print_summary_sd(const char* str,
2104
                                         const NumberSeq* seq) const {
2105 2106 2107
  print_summary(str, seq);
  gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
                "(num", seq->num(), seq->sd(), seq->maximum());
2108 2109 2110 2111 2112 2113 2114 2115
}

void TraceGen0TimeData::print() const {
  if (!TraceGen0Time) {
    return;
  }

  gclog_or_tty->print_cr("ALL PAUSES");
2116
  print_summary_sd("   Total", &_total);
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
  gclog_or_tty->print_cr("");
  gclog_or_tty->print_cr("");
  gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  gclog_or_tty->print_cr("");

  gclog_or_tty->print_cr("EVACUATION PAUSES");

  if (_young_pause_num == 0 && _mixed_pause_num == 0) {
    gclog_or_tty->print_cr("none");
  } else {
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
    print_summary_sd("   Evacuation Pauses", &_total);
    print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
    print_summary("      Parallel Time", &_parallel);
    print_summary("         Ext Root Scanning", &_ext_root_scan);
    print_summary("         SATB Filtering", &_satb_filtering);
    print_summary("         Update RS", &_update_rs);
    print_summary("         Scan RS", &_scan_rs);
    print_summary("         Object Copy", &_obj_copy);
    print_summary("         Termination", &_termination);
    print_summary("         Parallel Other", &_parallel_other);
    print_summary("      Clear CT", &_clear_ct);
    print_summary("      Other", &_other);
2140 2141 2142 2143
  }
  gclog_or_tty->print_cr("");

  gclog_or_tty->print_cr("MISC");
2144 2145
  print_summary_sd("   Stop World", &_all_stop_world_times_ms);
  print_summary_sd("   Yields", &_all_yield_times_ms);
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
}

void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
  if (TraceGen1Time) {
    _all_full_gc_times.add(full_gc_time_ms);
  }
}

void TraceGen1TimeData::print() const {
  if (!TraceGen1Time) {
    return;
  }

  if (_all_full_gc_times.num() > 0) {
    gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
      _all_full_gc_times.num(),
      _all_full_gc_times.sum() / 1000.0);
    gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
    gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
      _all_full_gc_times.sd(),
      _all_full_gc_times.maximum());
  }
}