core.c 105.1 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54 55
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
56
static LIST_HEAD(regulator_ena_gpio_list);
57
static LIST_HEAD(regulator_supply_alias_list);
58
static bool has_full_constraints;
59

60 61
static struct dentry *debugfs_root;

62
/*
63 64 65 66 67 68
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
69
	const char *dev_name;   /* The dev_name() for the consumer */
70
	const char *supply;
71
	struct regulator_dev *regulator;
72 73
};

74 75 76 77 78 79 80
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
81
	struct gpio_desc *gpiod;
82 83 84 85 86
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

87 88 89 90 91 92 93 94 95 96 97 98 99
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

100
static int _regulator_is_enabled(struct regulator_dev *rdev);
101
static int _regulator_disable(struct regulator_dev *rdev);
102 103 104
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105
static int _notifier_call_chain(struct regulator_dev *rdev,
106
				  unsigned long event, void *data);
107 108
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
109 110 111
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
112

113 114 115 116 117 118 119 120 121 122
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

123 124
static bool have_full_constraints(void)
{
125
	return has_full_constraints || of_have_populated_dt();
126 127
}

128 129 130 131 132 133
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
134
 * returns the device node corresponding to the regulator if found, else
135 136 137 138 139 140 141 142 143 144 145 146 147
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
148
		dev_dbg(dev, "Looking up %s property in node %s failed",
149 150 151 152 153 154
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

155 156 157 158 159 160 161 162 163 164 165
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

166 167 168 169 170 171 172
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
173
		rdev_err(rdev, "no constraints\n");
174 175 176
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177
		rdev_err(rdev, "operation not allowed\n");
178 179 180 181 182 183 184 185
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

186 187
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188
			 *min_uV, *max_uV);
189
		return -EINVAL;
190
	}
191 192 193 194

	return 0;
}

195 196 197 198 199 200 201 202 203
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 205 206 207 208 209 210
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

211 212 213 214 215 216
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

217
	if (*min_uV > *max_uV) {
218 219
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
220
		return -EINVAL;
221
	}
222 223 224 225

	return 0;
}

226 227 228 229 230 231 232
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
233
		rdev_err(rdev, "no constraints\n");
234 235 236
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237
		rdev_err(rdev, "operation not allowed\n");
238 239 240 241 242 243 244 245
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

246 247
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248
			 *min_uA, *max_uA);
249
		return -EINVAL;
250
	}
251 252 253 254 255

	return 0;
}

/* operating mode constraint check */
256
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257
{
258
	switch (*mode) {
259 260 261 262 263 264
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
265
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
266 267 268
		return -EINVAL;
	}

269
	if (!rdev->constraints) {
270
		rdev_err(rdev, "no constraints\n");
271 272 273
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274
		rdev_err(rdev, "operation not allowed\n");
275 276
		return -EPERM;
	}
277 278 279 280 281 282 283 284

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
285
	}
286 287

	return -EINVAL;
288 289 290 291 292 293
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
294
		rdev_err(rdev, "no constraints\n");
295 296 297
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298
		rdev_err(rdev, "operation not allowed\n");
299 300 301 302 303 304 305 306
		return -EPERM;
	}
	return 0;
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
307
	struct regulator_dev *rdev = dev_get_drvdata(dev);
308 309 310 311 312 313 314 315
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
316
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317 318 319 320

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
321
	struct regulator_dev *rdev = dev_get_drvdata(dev);
322 323 324

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
325
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326

327 328
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
329 330 331
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

332
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
333
}
334
static DEVICE_ATTR_RO(name);
335

D
David Brownell 已提交
336
static ssize_t regulator_print_opmode(char *buf, int mode)
337 338 339 340 341 342 343 344 345 346 347 348 349 350
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
351 352
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
353
{
354
	struct regulator_dev *rdev = dev_get_drvdata(dev);
355

D
David Brownell 已提交
356 357
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
358
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
359 360 361

static ssize_t regulator_print_state(char *buf, int state)
{
362 363 364 365 366 367 368 369
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
370 371 372 373
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
374 375 376 377 378
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
379

380
	return ret;
D
David Brownell 已提交
381
}
382
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
383

D
David Brownell 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
417 418 419
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
420 421 422
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
423 424 425 426 427 428 429 430
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

431 432 433
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
434
	struct regulator_dev *rdev = dev_get_drvdata(dev);
435 436 437 438 439 440

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
441
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442 443 444 445

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
446
	struct regulator_dev *rdev = dev_get_drvdata(dev);
447 448 449 450 451 452

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
453
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454 455 456 457

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
458
	struct regulator_dev *rdev = dev_get_drvdata(dev);
459 460 461 462 463 464

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
465
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466 467 468 469

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
470
	struct regulator_dev *rdev = dev_get_drvdata(dev);
471 472 473 474 475 476

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
477
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478 479 480 481

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
482
	struct regulator_dev *rdev = dev_get_drvdata(dev);
483 484 485 486 487
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
488
		uA += regulator->uA_load;
489 490 491
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
492
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493

494 495
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
496
{
497
	struct regulator_dev *rdev = dev_get_drvdata(dev);
498 499
	return sprintf(buf, "%d\n", rdev->use_count);
}
500
static DEVICE_ATTR_RO(num_users);
501

502 503
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
504
{
505
	struct regulator_dev *rdev = dev_get_drvdata(dev);
506 507 508 509 510 511 512 513 514

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
515
static DEVICE_ATTR_RO(type);
516 517 518 519

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
520
	struct regulator_dev *rdev = dev_get_drvdata(dev);
521 522 523

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
524 525
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
526 527 528 529

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
530
	struct regulator_dev *rdev = dev_get_drvdata(dev);
531 532 533

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
534 535
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
536 537 538 539

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
540
	struct regulator_dev *rdev = dev_get_drvdata(dev);
541 542 543

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
544 545
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
546 547 548 549

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
550
	struct regulator_dev *rdev = dev_get_drvdata(dev);
551

D
David Brownell 已提交
552 553
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
554
}
555 556
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
557 558 559 560

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
561
	struct regulator_dev *rdev = dev_get_drvdata(dev);
562

D
David Brownell 已提交
563 564
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
565
}
566 567
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
568 569 570 571

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
572
	struct regulator_dev *rdev = dev_get_drvdata(dev);
573

D
David Brownell 已提交
574 575
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
576
}
577 578
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
579 580 581 582

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
583
	struct regulator_dev *rdev = dev_get_drvdata(dev);
584

D
David Brownell 已提交
585 586
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
587
}
588 589
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
590 591 592 593

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
594
	struct regulator_dev *rdev = dev_get_drvdata(dev);
595

D
David Brownell 已提交
596 597
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
598
}
599 600
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
601 602 603 604

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
605
	struct regulator_dev *rdev = dev_get_drvdata(dev);
606

D
David Brownell 已提交
607 608
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
609
}
610 611 612
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
634

635 636 637 638 639 640 641 642 643 644
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
645 646 647
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
648
		return;
649 650

	/* get output voltage */
651
	output_uV = _regulator_get_voltage(rdev);
652 653 654 655
	if (output_uV <= 0)
		return;

	/* get input voltage */
656 657
	input_uV = 0;
	if (rdev->supply)
658
		input_uV = regulator_get_voltage(rdev->supply);
659
	if (input_uV <= 0)
660 661 662 663 664 665
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
666
		current_uA += sibling->uA_load;
667 668 669 670 671 672

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
673
	err = regulator_mode_constrain(rdev, &mode);
674 675 676 677 678 679 680 681
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
682 683

	/* If we have no suspend mode configration don't set anything;
684 685
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
686 687
	 */
	if (!rstate->enabled && !rstate->disabled) {
688 689
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
690
			rdev_warn(rdev, "No configuration\n");
691 692 693 694
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
695
		rdev_err(rdev, "invalid configuration\n");
696 697
		return -EINVAL;
	}
698

699
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
700
		ret = rdev->desc->ops->set_suspend_enable(rdev);
701
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
702
		ret = rdev->desc->ops->set_suspend_disable(rdev);
703 704 705
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

706
	if (ret < 0) {
707
		rdev_err(rdev, "failed to enabled/disable\n");
708 709 710 711 712 713
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
714
			rdev_err(rdev, "failed to set voltage\n");
715 716 717 718 719 720 721
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
722
			rdev_err(rdev, "failed to set mode\n");
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
753
	char buf[80] = "";
754 755
	int count = 0;
	int ret;
756

757
	if (constraints->min_uV && constraints->max_uV) {
758
		if (constraints->min_uV == constraints->max_uV)
759 760
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
761
		else
762 763 764 765 766 767 768 769 770 771 772 773
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

774 775 776 777
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

778
	if (constraints->min_uA && constraints->max_uA) {
779
		if (constraints->min_uA == constraints->max_uA)
780 781
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
782
		else
783 784 785 786 787 788 789 790 791
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
792
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
793
	}
794

795 796 797 798 799 800 801 802 803
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

804 805 806
	if (!count)
		sprintf(buf, "no parameters");

807
	rdev_dbg(rdev, "%s\n", buf);
808 809 810 811 812

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
813 814
}

815
static int machine_constraints_voltage(struct regulator_dev *rdev,
816
	struct regulation_constraints *constraints)
817
{
818
	const struct regulator_ops *ops = rdev->desc->ops;
819 820 821 822
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
823
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
824 825
		int current_uV = _regulator_get_voltage(rdev);
		if (current_uV < 0) {
826 827 828
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
829 830 831 832 833 834 835 836 837
			return current_uV;
		}
		if (current_uV < rdev->constraints->min_uV ||
		    current_uV > rdev->constraints->max_uV) {
			ret = _regulator_do_set_voltage(
				rdev, rdev->constraints->min_uV,
				rdev->constraints->max_uV);
			if (ret < 0) {
				rdev_err(rdev,
838 839
					"failed to apply %duV constraint(%d)\n",
					rdev->constraints->min_uV, ret);
840 841
				return ret;
			}
842
		}
843
	}
844

845 846 847 848 849 850 851 852 853 854 855
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

856 857
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
858
		if (count == 1 && !cmin) {
859
			cmin = 1;
860
			cmax = INT_MAX;
861 862
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
863 864
		}

865 866
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
867
			return 0;
868

869
		/* else require explicit machine-level constraints */
870
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
871
			rdev_err(rdev, "invalid voltage constraints\n");
872
			return -EINVAL;
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
892 893 894
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
895
			return -EINVAL;
896 897 898 899
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
900 901
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
902 903 904
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
905 906
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
907 908 909 910
			constraints->max_uV = max_uV;
		}
	}

911 912 913
	return 0;
}

914 915 916
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
917
	const struct regulator_ops *ops = rdev->desc->ops;
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

944 945
static int _regulator_do_enable(struct regulator_dev *rdev);

946 947 948 949 950 951 952 953 954 955 956 957
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
958
	const struct regulation_constraints *constraints)
959 960
{
	int ret = 0;
961
	const struct regulator_ops *ops = rdev->desc->ops;
962

963 964 965 966 967 968
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
969 970
	if (!rdev->constraints)
		return -ENOMEM;
971

972
	ret = machine_constraints_voltage(rdev, rdev->constraints);
973 974 975
	if (ret != 0)
		goto out;

976
	ret = machine_constraints_current(rdev, rdev->constraints);
977 978 979
	if (ret != 0)
		goto out;

980
	/* do we need to setup our suspend state */
981
	if (rdev->constraints->initial_state) {
982
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
983
		if (ret < 0) {
984
			rdev_err(rdev, "failed to set suspend state\n");
985 986 987
			goto out;
		}
	}
988

989
	if (rdev->constraints->initial_mode) {
990
		if (!ops->set_mode) {
991
			rdev_err(rdev, "no set_mode operation\n");
992 993 994 995
			ret = -EINVAL;
			goto out;
		}

996
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
997
		if (ret < 0) {
998
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
999 1000 1001 1002
			goto out;
		}
	}

1003 1004 1005
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1006 1007 1008
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1009
			rdev_err(rdev, "failed to enable\n");
1010 1011 1012 1013
			goto out;
		}
	}

1014 1015
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1016 1017 1018 1019 1020 1021 1022
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
			goto out;
		}
	}

1023
	print_constraints(rdev);
1024
	return 0;
1025
out:
1026 1027
	kfree(rdev->constraints);
	rdev->constraints = NULL;
1028 1029 1030 1031 1032
	return ret;
}

/**
 * set_supply - set regulator supply regulator
1033 1034
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1035 1036 1037 1038 1039 1040
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1041
		      struct regulator_dev *supply_rdev)
1042 1043 1044
{
	int err;

1045 1046 1047
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1048 1049
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1050
		return err;
1051
	}
1052
	supply_rdev->open_count++;
1053 1054

	return 0;
1055 1056 1057
}

/**
1058
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1059
 * @rdev:         regulator source
1060
 * @consumer_dev_name: dev_name() string for device supply applies to
1061
 * @supply:       symbolic name for supply
1062 1063 1064 1065 1066 1067 1068
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1069 1070
				      const char *consumer_dev_name,
				      const char *supply)
1071 1072
{
	struct regulator_map *node;
1073
	int has_dev;
1074 1075 1076 1077

	if (supply == NULL)
		return -EINVAL;

1078 1079 1080 1081 1082
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1083
	list_for_each_entry(node, &regulator_map_list, list) {
1084 1085 1086 1087
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1088
			continue;
1089 1090
		}

1091 1092 1093
		if (strcmp(node->supply, supply) != 0)
			continue;

1094 1095 1096 1097 1098 1099
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1100 1101 1102
		return -EBUSY;
	}

1103
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1104 1105 1106 1107 1108 1109
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1110 1111 1112 1113 1114 1115
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1116 1117
	}

1118 1119 1120 1121
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1122 1123 1124 1125 1126 1127 1128
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1129
			kfree(node->dev_name);
1130 1131 1132 1133 1134
			kfree(node);
		}
	}
}

1135
#define REG_STR_SIZE	64
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1154 1155
		regulator->dev = dev;

1156
		/* Add a link to the device sysfs entry */
1157 1158 1159
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1160
			goto overflow_err;
1161 1162 1163

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1164
			goto overflow_err;
1165 1166 1167 1168

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1169 1170
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1171
			/* non-fatal */
1172
		}
1173 1174 1175
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1176
			goto overflow_err;
1177 1178 1179 1180
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1181
	if (!regulator->debugfs) {
1182 1183 1184 1185 1186 1187 1188 1189
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1190
	}
1191

1192 1193 1194 1195 1196 1197 1198 1199 1200
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1201 1202 1203 1204 1205 1206 1207 1208 1209
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1210 1211
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1212 1213
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1214
	if (!rdev->desc->ops->enable_time)
1215
		return rdev->desc->enable_time;
1216 1217 1218
	return rdev->desc->ops->enable_time(rdev);
}

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1245
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1246 1247
						  const char *supply,
						  int *ret)
1248 1249 1250
{
	struct regulator_dev *r;
	struct device_node *node;
1251 1252
	struct regulator_map *map;
	const char *devname = NULL;
1253

1254 1255
	regulator_supply_alias(&dev, &supply);

1256 1257 1258
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1259
		if (node) {
1260 1261 1262 1263
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1264 1265
			*ret = -EPROBE_DEFER;
			return NULL;
1266 1267 1268 1269 1270 1271 1272 1273 1274
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1275 1276 1277
	}

	/* if not found, try doing it non-dt way */
1278 1279 1280
	if (dev)
		devname = dev_name(dev);

1281 1282 1283 1284
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1296 1297 1298
	return NULL;
}

1299 1300
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
1301
					bool exclusive, bool allow_dummy)
1302 1303
{
	struct regulator_dev *rdev;
1304
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1305
	const char *devname = NULL;
1306
	int ret;
1307 1308

	if (id == NULL) {
1309
		pr_err("get() with no identifier\n");
1310
		return ERR_PTR(-EINVAL);
1311 1312
	}

1313 1314 1315
	if (dev)
		devname = dev_name(dev);

1316 1317 1318 1319 1320
	if (have_full_constraints())
		ret = -ENODEV;
	else
		ret = -EPROBE_DEFER;

1321 1322
	mutex_lock(&regulator_list_mutex);

1323
	rdev = regulator_dev_lookup(dev, id, &ret);
1324 1325 1326
	if (rdev)
		goto found;

1327 1328
	regulator = ERR_PTR(ret);

1329 1330 1331 1332
	/*
	 * If we have return value from dev_lookup fail, we do not expect to
	 * succeed, so, quit with appropriate error value
	 */
1333
	if (ret && ret != -ENODEV)
1334 1335
		goto out;

1336 1337 1338
	if (!devname)
		devname = "deviceless";

1339 1340 1341
	/*
	 * Assume that a regulator is physically present and enabled
	 * even if it isn't hooked up and just provide a dummy.
1342
	 */
1343
	if (have_full_constraints() && allow_dummy) {
1344 1345
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1346

1347 1348
		rdev = dummy_regulator_rdev;
		goto found;
1349 1350
	/* Don't log an error when called from regulator_get_optional() */
	} else if (!have_full_constraints() || exclusive) {
1351
		dev_warn(dev, "dummy supplies not allowed\n");
1352 1353
	}

1354 1355 1356 1357
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1368 1369 1370
	if (!try_module_get(rdev->owner))
		goto out;

1371 1372 1373 1374
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1375
		goto out;
1376 1377
	}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1389
out:
1390
	mutex_unlock(&regulator_list_mutex);
1391

1392 1393
	return regulator;
}
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1410
	return _regulator_get(dev, id, false, true);
1411
}
1412 1413
EXPORT_SYMBOL_GPL(regulator_get);

1414 1415 1416 1417 1418 1419 1420
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1421 1422 1423
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1437
	return _regulator_get(dev, id, true, false);
1438 1439 1440
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1441 1442 1443 1444 1445 1446
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1447
 * or IS_ERR() condition containing errno.
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1463
	return _regulator_get(dev, id, false, false);
1464 1465 1466
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1467
/* regulator_list_mutex lock held by regulator_put() */
1468
static void _regulator_put(struct regulator *regulator)
1469 1470 1471 1472 1473 1474 1475 1476
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	rdev = regulator->rdev;

1477 1478
	debugfs_remove_recursive(regulator->debugfs);

1479
	/* remove any sysfs entries */
1480
	if (regulator->dev)
1481
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1482
	mutex_lock(&rdev->mutex);
1483
	kfree(regulator->supply_name);
1484 1485 1486
	list_del(&regulator->list);
	kfree(regulator);

1487 1488
	rdev->open_count--;
	rdev->exclusive = 0;
1489
	mutex_unlock(&rdev->mutex);
1490

1491
	module_put(rdev->owner);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1506 1507 1508 1509
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
1587 1588
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
1589
					 struct device *alias_dev,
1590
					 const char *const *alias_id,
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
1628
					    const char *const *id,
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


1639 1640 1641 1642 1643
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
1644
	struct gpio_desc *gpiod;
1645 1646
	int ret;

1647 1648
	gpiod = gpio_to_desc(config->ena_gpio);

1649
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1650
		if (pin->gpiod == gpiod) {
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

	ret = gpio_request_one(config->ena_gpio,
				GPIOF_DIR_OUT | config->ena_gpio_flags,
				rdev_get_name(rdev));
	if (ret)
		return ret;

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
		gpio_free(config->ena_gpio);
		return -ENOMEM;
	}

1669
	pin->gpiod = gpiod;
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1688
		if (pin->gpiod == rdev->ena_pin->gpiod) {
1689 1690
			if (pin->request_count <= 1) {
				pin->request_count = 0;
1691
				gpiod_put(pin->gpiod);
1692 1693
				list_del(&pin->list);
				kfree(pin);
1694 1695
				rdev->ena_pin = NULL;
				return;
1696 1697 1698 1699 1700 1701 1702
			} else {
				pin->request_count--;
			}
		}
	}
}

1703
/**
1704 1705 1706 1707
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
1721 1722
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
1733 1734
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
1735 1736 1737 1738 1739 1740 1741
			pin->enable_count = 0;
		}
	}

	return 0;
}

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

1821 1822 1823 1824
	if (rdev->ena_pin) {
		ret = regulator_ena_gpio_ctrl(rdev, true);
		if (ret < 0)
			return ret;
1825 1826
		rdev->ena_gpio_state = 1;
	} else if (rdev->desc->ops->enable) {
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

1839
	_regulator_enable_delay(delay);
1840 1841 1842 1843 1844 1845

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

1846 1847 1848
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1849
	int ret;
1850 1851

	/* check voltage and requested load before enabling */
1852 1853 1854
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1855

1856 1857 1858 1859 1860 1861 1862
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1863
			ret = _regulator_do_enable(rdev);
1864 1865 1866
			if (ret < 0)
				return ret;

1867
		} else if (ret < 0) {
1868
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1869 1870
			return ret;
		}
1871
		/* Fallthrough on positive return values - already enabled */
1872 1873
	}

1874 1875 1876
	rdev->use_count++;

	return 0;
1877 1878 1879 1880 1881 1882
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1883 1884 1885 1886
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1887
 * NOTE: the output value can be set by other drivers, boot loader or may be
1888
 * hardwired in the regulator.
1889 1890 1891
 */
int regulator_enable(struct regulator *regulator)
{
1892 1893
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1894

1895 1896 1897
	if (regulator->always_on)
		return 0;

1898 1899 1900 1901 1902 1903
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1904
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1905
	ret = _regulator_enable(rdev);
1906
	mutex_unlock(&rdev->mutex);
1907

1908
	if (ret != 0 && rdev->supply)
1909 1910
		regulator_disable(rdev->supply);

1911 1912 1913 1914
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

1915 1916 1917 1918 1919 1920
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

1921 1922 1923 1924
	if (rdev->ena_pin) {
		ret = regulator_ena_gpio_ctrl(rdev, false);
		if (ret < 0)
			return ret;
1925 1926 1927 1928 1929 1930 1931 1932
		rdev->ena_gpio_state = 0;

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

1933 1934 1935 1936 1937 1938
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

1939 1940 1941 1942 1943
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

1944
/* locks held by regulator_disable() */
1945
static int _regulator_disable(struct regulator_dev *rdev)
1946 1947 1948
{
	int ret = 0;

D
David Brownell 已提交
1949
	if (WARN(rdev->use_count <= 0,
1950
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1951 1952
		return -EIO;

1953
	/* are we the last user and permitted to disable ? */
1954 1955
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1956 1957

		/* we are last user */
1958
		if (_regulator_can_change_status(rdev)) {
1959 1960 1961 1962 1963 1964
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

1965
			ret = _regulator_do_disable(rdev);
1966
			if (ret < 0) {
1967
				rdev_err(rdev, "failed to disable\n");
1968 1969 1970
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
1971 1972
				return ret;
			}
1973 1974
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1987

1988 1989 1990 1991 1992 1993 1994
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1995 1996 1997
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1998
 *
1999
 * NOTE: this will only disable the regulator output if no other consumer
2000 2001
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2002 2003 2004
 */
int regulator_disable(struct regulator *regulator)
{
2005 2006
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2007

2008 2009 2010
	if (regulator->always_on)
		return 0;

2011
	mutex_lock(&rdev->mutex);
2012
	ret = _regulator_disable(rdev);
2013
	mutex_unlock(&rdev->mutex);
2014

2015 2016
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
2017

2018 2019 2020 2021 2022
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2023
static int _regulator_force_disable(struct regulator_dev *rdev)
2024 2025 2026
{
	int ret = 0;

2027 2028 2029 2030 2031
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2032 2033 2034
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2035 2036
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2037
		return ret;
2038 2039
	}

2040 2041 2042 2043
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2057
	struct regulator_dev *rdev = regulator->rdev;
2058 2059
	int ret;

2060
	mutex_lock(&rdev->mutex);
2061
	regulator->uA_load = 0;
2062
	ret = _regulator_force_disable(regulator->rdev);
2063
	mutex_unlock(&rdev->mutex);
2064

2065 2066 2067
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2068

2069 2070 2071 2072
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
2120
	int ret;
2121

2122 2123 2124
	if (regulator->always_on)
		return 0;

2125 2126 2127
	if (!ms)
		return regulator_disable(regulator);

2128 2129 2130 2131
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

2132 2133 2134
	ret = queue_delayed_work(system_power_efficient_wq,
				 &rdev->disable_work,
				 msecs_to_jiffies(ms));
2135 2136 2137 2138
	if (ret < 0)
		return ret;
	else
		return 0;
2139 2140 2141
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2142 2143
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2144
	/* A GPIO control always takes precedence */
2145
	if (rdev->ena_pin)
2146 2147
		return rdev->ena_gpio_state;

2148
	/* If we don't know then assume that the regulator is always on */
2149
	if (!rdev->desc->ops->is_enabled)
2150
		return 1;
2151

2152
	return rdev->desc->ops->is_enabled(rdev);
2153 2154 2155 2156 2157 2158
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2159 2160 2161 2162 2163 2164 2165
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2166 2167 2168
 */
int regulator_is_enabled(struct regulator *regulator)
{
2169 2170
	int ret;

2171 2172 2173
	if (regulator->always_on)
		return 1;

2174 2175 2176 2177 2178
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2179 2180 2181
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2182 2183 2184 2185 2186
/**
 * regulator_can_change_voltage - check if regulator can change voltage
 * @regulator: regulator source
 *
 * Returns positive if the regulator driver backing the source/client
2187
 * can change its voltage, false otherwise. Useful for detecting fixed
2188 2189 2190 2191 2192 2193 2194 2195
 * or dummy regulators and disabling voltage change logic in the client
 * driver.
 */
int regulator_can_change_voltage(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	if (rdev->constraints &&
2196 2197 2198 2199 2200 2201 2202 2203 2204
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
			return 1;

		if (rdev->desc->continuous_voltage_range &&
		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
		    rdev->constraints->min_uV != rdev->constraints->max_uV)
			return 1;
	}
2205 2206 2207 2208 2209

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_can_change_voltage);

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2222 2223 2224 2225 2226 2227 2228
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

	if (!rdev->supply)
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2239
 * zero if this selector code can't be used on this system, or a
2240 2241 2242 2243
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2244 2245 2246
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;
2247

2248 2249 2250
	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

2251 2252 2253 2254 2255 2256 2257 2258 2259
	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		mutex_lock(&rdev->mutex);
		ret = ops->list_voltage(rdev, selector);
		mutex_unlock(&rdev->mutex);
	} else if (rdev->supply) {
		ret = regulator_list_voltage(rdev->supply, selector);
	} else {
2260
		return -EINVAL;
2261
	}
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2306 2307
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	 *vsel_reg = rdev->desc->vsel_reg;
	 *vsel_mask = rdev->desc->vsel_mask;

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2333 2334
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2372
	struct regulator_dev *rdev = regulator->rdev;
2373 2374
	int i, voltages, ret;

2375 2376 2377 2378
	/* If we can't change voltage check the current voltage */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2379
			return min_uV <= ret && ret <= max_uV;
2380 2381 2382 2383
		else
			return ret;
	}

2384 2385 2386 2387 2388
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2403
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2404

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

2454 2455 2456 2457
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2458
	int delay = 0;
2459
	int best_val = 0;
2460
	unsigned int selector;
2461
	int old_selector = -1;
2462 2463 2464

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2465 2466 2467
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2468 2469 2470 2471
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2472 2473
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2474 2475 2476 2477 2478 2479
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2480
	if (rdev->desc->ops->set_voltage) {
2481 2482
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
2483 2484 2485 2486 2487 2488 2489 2490 2491

		if (ret >= 0) {
			if (rdev->desc->ops->list_voltage)
				best_val = rdev->desc->ops->list_voltage(rdev,
									 selector);
			else
				best_val = _regulator_get_voltage(rdev);
		}

2492
	} else if (rdev->desc->ops->set_voltage_sel) {
2493
		if (rdev->desc->ops->map_voltage) {
2494 2495
			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
							   max_uV);
2496 2497 2498 2499 2500
		} else {
			if (rdev->desc->ops->list_voltage ==
			    regulator_list_voltage_linear)
				ret = regulator_map_voltage_linear(rdev,
								min_uV, max_uV);
2501 2502 2503 2504
			else if (rdev->desc->ops->list_voltage ==
				 regulator_list_voltage_linear_range)
				ret = regulator_map_voltage_linear_range(rdev,
								min_uV, max_uV);
2505 2506 2507 2508
			else
				ret = regulator_map_voltage_iterate(rdev,
								min_uV, max_uV);
		}
2509

2510
		if (ret >= 0) {
2511 2512 2513
			best_val = rdev->desc->ops->list_voltage(rdev, ret);
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2514 2515 2516
				if (old_selector == selector)
					ret = 0;
				else
2517 2518
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
2519 2520 2521
			} else {
				ret = -EINVAL;
			}
2522
		}
2523 2524 2525
	} else {
		ret = -EINVAL;
	}
2526

2527
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2528 2529
	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
		&& old_selector != selector) {
2530

2531 2532 2533 2534 2535 2536
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2537
		}
2538

2539 2540 2541 2542 2543 2544 2545
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2546 2547
	}

2548 2549 2550
	if (ret == 0 && best_val >= 0) {
		unsigned long data = best_val;

2551
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2552 2553
				     (void *)data);
	}
2554

2555
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2556 2557 2558 2559

	return ret;
}

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
2575
 * Regulator system constraints must be set for this regulator before
2576 2577 2578 2579 2580
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
2581
	int ret = 0;
2582
	int old_min_uV, old_max_uV;
2583
	int current_uV;
2584 2585 2586

	mutex_lock(&rdev->mutex);

2587 2588 2589 2590 2591 2592 2593
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
	/* If we're trying to set a range that overlaps the current voltage,
	 * return succesfully even though the regulator does not support
	 * changing the voltage.
	 */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
			regulator->min_uV = min_uV;
			regulator->max_uV = max_uV;
			goto out;
		}
	}

2607
	/* sanity check */
2608 2609
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2610 2611 2612 2613 2614 2615 2616 2617
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2618

2619 2620 2621
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2622 2623
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2624

2625 2626
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2627
		goto out2;
2628

2629
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2630 2631
	if (ret < 0)
		goto out2;
2632

2633 2634 2635
out:
	mutex_unlock(&rdev->mutex);
	return ret;
2636 2637 2638 2639
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
	mutex_unlock(&rdev->mutex);
2640 2641 2642 2643
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
2657 2658
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2689
/**
2690 2691
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
2692 2693 2694 2695 2696 2697
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
2698
 * Drivers providing ramp_delay in regulation_constraints can use this as their
2699
 * set_voltage_time_sel() operation.
2700 2701 2702 2703 2704
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
2705
	unsigned int ramp_delay = 0;
2706
	int old_volt, new_volt;
2707 2708 2709 2710 2711 2712 2713

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
2714
		rdev_warn(rdev, "ramp_delay not set\n");
2715
		return 0;
2716
	}
2717

2718 2719 2720
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
2721

2722 2723 2724 2725
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2726
}
2727
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2728

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2776 2777
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2778
	int sel, ret;
2779 2780 2781 2782 2783

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2784
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2785
	} else if (rdev->desc->ops->get_voltage) {
2786
		ret = rdev->desc->ops->get_voltage(rdev);
2787 2788
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
2789 2790
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
2791 2792
	} else if (rdev->supply) {
		ret = regulator_get_voltage(rdev->supply);
2793
	} else {
2794
		return -EINVAL;
2795
	}
2796

2797 2798
	if (ret < 0)
		return ret;
2799
	return ret - rdev->constraints->uV_offset;
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
2828
 * @min_uA: Minimum supported current in uA
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2915
	int regulator_curr_mode;
2916 2917 2918 2919 2920 2921 2922 2923 2924

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2925 2926 2927 2928 2929 2930 2931 2932 2933
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2934
	/* constraints check */
2935
	ret = regulator_mode_constrain(rdev, &mode);
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
3006
	int ret, output_uV, input_uV = 0, total_uA_load = 0;
3007 3008
	unsigned int mode;

3009 3010 3011
	if (rdev->supply)
		input_uV = regulator_get_voltage(rdev->supply);

3012 3013
	mutex_lock(&rdev->mutex);

3014 3015 3016 3017
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
3018 3019
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
3020 3021
	if (ret < 0) {
		ret = 0;
3022
		goto out;
3023
	}
3024 3025 3026 3027

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

3028 3029 3030 3031 3032 3033
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

3034 3035 3036
	if (!rdev->desc->ops->set_mode)
		goto out;

3037
	/* get output voltage */
3038
	output_uV = _regulator_get_voltage(rdev);
3039
	if (output_uV <= 0) {
3040
		rdev_err(rdev, "invalid output voltage found\n");
3041 3042 3043
		goto out;
	}

3044
	/* No supply? Use constraint voltage */
3045
	if (input_uV <= 0)
3046 3047
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
3048
		rdev_err(rdev, "invalid input voltage found\n");
3049 3050 3051 3052 3053
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
3054
		total_uA_load += consumer->uA_load;
3055 3056 3057 3058

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
3059
	ret = regulator_mode_constrain(rdev, &mode);
3060
	if (ret < 0) {
3061 3062
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
3063 3064 3065 3066
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
3067
	if (ret < 0) {
3068
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
3069 3070 3071 3072 3073 3074 3075 3076 3077
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

3078 3079 3080 3081
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
3082
 * @enable: enable or disable bypass mode
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

	if (rdev->constraints &&
	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

3131 3132 3133
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
3134
 * @nb: notifier block
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
3149
 * @nb: notifier block
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

3161 3162 3163
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
3164
static int _notifier_call_chain(struct regulator_dev *rdev,
3165 3166 3167
				  unsigned long event, void *data)
{
	/* call rdev chain first */
3168
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
3199 3200
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
3201 3202 3203 3204 3205 3206 3207 3208
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3209
	while (--i >= 0)
3210 3211 3212 3213 3214 3215
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3216 3217 3218 3219 3220 3221 3222
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3238
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3239
	int i;
3240
	int ret = 0;
3241

3242 3243 3244 3245 3246 3247 3248
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3249 3250 3251 3252

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3253
	for (i = 0; i < num_consumers; i++) {
3254 3255
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3256
			goto err;
3257
		}
3258 3259 3260 3261 3262
	}

	return 0;

err:
3263 3264 3265 3266 3267 3268 3269
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3283 3284
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3285 3286 3287 3288 3289 3290
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3291
	int ret, r;
3292

3293
	for (i = num_consumers - 1; i >= 0; --i) {
3294 3295 3296 3297 3298 3299 3300 3301
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3302
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3303 3304 3305 3306 3307 3308
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
3309 3310 3311 3312 3313

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3374
 * @rdev: regulator source
3375
 * @event: notifier block
3376
 * @data: callback-specific data.
3377 3378 3379
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3380
 * Note lock must be held by caller.
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3407
	case REGULATOR_MODE_STANDBY:
3408 3409
		return REGULATOR_STATUS_STANDBY;
	default:
3410
		return REGULATOR_STATUS_UNDEFINED;
3411 3412 3413 3414
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

3442 3443 3444 3445
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
3446 3447
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
3448
{
3449 3450
	struct device *dev = kobj_to_dev(kobj);
	struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3451
	const struct regulator_ops *ops = rdev->desc->ops;
3452 3453 3454 3455 3456 3457 3458
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
3459 3460

	/* some attributes need specific methods to be displayed */
3461 3462 3463 3464 3465 3466 3467
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
3468
	}
3469

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

3485
	/* some attributes are type-specific */
3486 3487
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3488 3489 3490 3491 3492 3493

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
3494
		return 0;
3495 3496

	/* constraints need specific supporting methods */
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
3532

3533 3534 3535 3536
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	kfree(rdev);
3537 3538
}

3539 3540 3541 3542 3543 3544
static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
};

3545 3546 3547
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3548
	if (!rdev->debugfs) {
3549 3550 3551 3552 3553 3554 3555 3556
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3557 3558
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3559 3560
}

3561 3562
/**
 * regulator_register - register regulator
3563
 * @regulator_desc: regulator to register
3564
 * @cfg: runtime configuration for regulator
3565 3566
 *
 * Called by regulator drivers to register a regulator.
3567 3568
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3569
 */
3570 3571
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3572
		   const struct regulator_config *cfg)
3573
{
3574
	const struct regulation_constraints *constraints = NULL;
3575
	const struct regulator_init_data *init_data;
3576
	struct regulator_config *config = NULL;
3577
	static atomic_t regulator_no = ATOMIC_INIT(-1);
3578
	struct regulator_dev *rdev;
3579
	struct device *dev;
3580
	int ret, i;
3581
	const char *supply = NULL;
3582

3583
	if (regulator_desc == NULL || cfg == NULL)
3584 3585
		return ERR_PTR(-EINVAL);

3586
	dev = cfg->dev;
3587
	WARN_ON(!dev);
3588

3589 3590 3591
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3592 3593
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3594 3595
		return ERR_PTR(-EINVAL);

3596 3597 3598
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3599 3600
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3601 3602 3603 3604 3605 3606

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3607 3608 3609 3610
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3611

3612 3613 3614 3615
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

3626
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3627 3628 3629 3630 3631 3632
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

3633 3634 3635
	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3636
	rdev->reg_data = config->driver_data;
3637 3638
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3639 3640
	if (config->regmap)
		rdev->regmap = config->regmap;
3641
	else if (dev_get_regmap(dev, NULL))
3642
		rdev->regmap = dev_get_regmap(dev, NULL);
3643 3644
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3645 3646 3647
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3648
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3649

3650
	/* preform any regulator specific init */
3651
	if (init_data && init_data->regulator_init) {
3652
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3653 3654
		if (ret < 0)
			goto clean;
3655 3656 3657
	}

	/* register with sysfs */
3658
	rdev->dev.class = &regulator_class;
3659
	rdev->dev.parent = dev;
3660
	dev_set_name(&rdev->dev, "regulator.%lu",
3661
		    (unsigned long) atomic_inc_return(&regulator_no));
3662
	ret = device_register(&rdev->dev);
3663 3664
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3665
		goto clean;
3666
	}
3667 3668 3669

	dev_set_drvdata(&rdev->dev, rdev);

3670 3671
	if ((config->ena_gpio || config->ena_gpio_initialized) &&
	    gpio_is_valid(config->ena_gpio)) {
3672
		ret = regulator_ena_gpio_request(rdev, config);
3673 3674 3675
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
3676
			goto wash;
3677 3678 3679 3680 3681
		}

		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
			rdev->ena_gpio_state = 1;

3682
		if (config->ena_gpio_invert)
3683 3684 3685
			rdev->ena_gpio_state = !rdev->ena_gpio_state;
	}

3686
	/* set regulator constraints */
3687 3688 3689 3690
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3691 3692 3693
	if (ret < 0)
		goto scrub;

3694
	if (init_data && init_data->supply_regulator)
3695 3696 3697 3698 3699
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
3700 3701
		struct regulator_dev *r;

3702
		r = regulator_dev_lookup(dev, supply, &ret);
3703

3704 3705 3706 3707 3708 3709 3710 3711
		if (ret == -ENODEV) {
			/*
			 * No supply was specified for this regulator and
			 * there will never be one.
			 */
			ret = 0;
			goto add_dev;
		} else if (!r) {
3712
			dev_err(dev, "Failed to find supply %s\n", supply);
3713
			ret = -EPROBE_DEFER;
3714 3715 3716 3717 3718 3719
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
3720 3721

		/* Enable supply if rail is enabled */
3722
		if (_regulator_is_enabled(rdev)) {
3723 3724 3725 3726
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
3727 3728
	}

3729
add_dev:
3730
	/* add consumers devices */
3731 3732 3733 3734
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3735
				init_data->consumer_supplies[i].supply);
3736 3737 3738 3739 3740
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3741
		}
3742
	}
3743 3744

	list_add(&rdev->list, &regulator_list);
3745 3746

	rdev_init_debugfs(rdev);
3747
out:
3748
	mutex_unlock(&regulator_list_mutex);
3749
	kfree(config);
3750
	return rdev;
D
David Brownell 已提交
3751

3752 3753 3754
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3755
scrub:
3756
	if (rdev->supply)
3757
		_regulator_put(rdev->supply);
3758
	regulator_ena_gpio_free(rdev);
3759
	kfree(rdev->constraints);
3760
wash:
D
David Brownell 已提交
3761
	device_unregister(&rdev->dev);
3762 3763 3764 3765
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3766 3767 3768 3769
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3770 3771 3772 3773 3774
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3775
 * @rdev: regulator to unregister
3776 3777 3778 3779 3780 3781 3782 3783
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

3784 3785 3786
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
3787
		regulator_put(rdev->supply);
3788
	}
3789
	mutex_lock(&regulator_list_mutex);
3790
	debugfs_remove_recursive(rdev->debugfs);
3791
	flush_work(&rdev->disable_work.work);
3792
	WARN_ON(rdev->open_count);
3793
	unset_regulator_supplies(rdev);
3794
	list_del(&rdev->list);
3795
	kfree(rdev->constraints);
3796
	regulator_ena_gpio_free(rdev);
3797
	of_node_put(rdev->dev.of_node);
3798
	device_unregister(&rdev->dev);
3799 3800 3801 3802 3803
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3804
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3827
			rdev_err(rdev, "failed to prepare\n");
3828 3829 3830 3831 3832 3833 3834 3835 3836
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
3851 3852
		if (rdev->use_count > 0  || rdev->constraints->always_on) {
			error = _regulator_do_enable(rdev);
3853 3854 3855
			if (error)
				ret = error;
		} else {
3856
			if (!have_full_constraints())
3857
				goto unlock;
3858
			if (!_regulator_is_enabled(rdev))
3859 3860
				goto unlock;

3861
			error = _regulator_do_disable(rdev);
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3890 3891
/**
 * rdev_get_drvdata - get rdev regulator driver data
3892
 * @rdev: regulator
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3929
 * @rdev: regulator
3930 3931 3932 3933 3934 3935 3936
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
3979
#endif
3980 3981

static const struct file_operations supply_map_fops = {
3982
#ifdef CONFIG_DEBUG_FS
3983 3984 3985
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
3986
};
3987

3988 3989
static int __init regulator_init(void)
{
3990 3991 3992 3993
	int ret;

	ret = class_register(&regulator_class);

3994
	debugfs_root = debugfs_create_dir("regulator", NULL);
3995
	if (!debugfs_root)
3996
		pr_warn("regulator: Failed to create debugfs directory\n");
3997

3998 3999
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
4000

4001 4002 4003
	regulator_dummy_init();

	return ret;
4004 4005 4006 4007
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
4008 4009 4010 4011

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
4012
	const struct regulator_ops *ops;
4013 4014 4015
	struct regulation_constraints *c;
	int enabled, ret;

4016 4017 4018 4019 4020 4021 4022 4023 4024
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

4025 4026 4027
	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
4028 4029 4030
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
4031 4032 4033 4034 4035
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

4036
		if (c && c->always_on)
4037 4038
			continue;

4039 4040 4041
		if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
			continue;

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

4056
		if (have_full_constraints()) {
4057 4058
			/* We log since this may kill the system if it
			 * goes wrong. */
4059
			rdev_info(rdev, "disabling\n");
4060
			ret = _regulator_do_disable(rdev);
4061
			if (ret != 0)
4062
				rdev_err(rdev, "couldn't disable: %d\n", ret);
4063 4064 4065 4066 4067 4068
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
4069
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
4080
late_initcall_sync(regulator_init_complete);