core.c 98.9 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/of.h>
28
#include <linux/regmap.h>
29
#include <linux/regulator/of_regulator.h>
30 31 32
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
33
#include <linux/module.h>
34

35 36 37
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

38 39
#include "dummy.h"

M
Mark Brown 已提交
40 41
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 43 44 45 46 47 48 49 50
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

51 52 53
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
54
static LIST_HEAD(regulator_ena_gpio_list);
55
static bool has_full_constraints;
56
static bool board_wants_dummy_regulator;
57

58 59
static struct dentry *debugfs_root;

60
/*
61 62 63 64 65 66
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
67
	const char *dev_name;   /* The dev_name() for the consumer */
68
	const char *supply;
69
	struct regulator_dev *regulator;
70 71
};

72 73 74 75 76 77 78 79 80 81 82 83 84
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
	int gpio;
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

85 86 87 88 89 90 91 92
/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
93
	unsigned int always_on:1;
94
	unsigned int bypass:1;
95 96 97 98 99 100
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
101
	struct dentry *debugfs;
102 103 104
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
105
static int _regulator_disable(struct regulator_dev *rdev);
106 107 108 109 110
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
111 112
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
113 114 115
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
116

117 118 119 120 121 122 123 124 125 126
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

127 128 129 130 131 132
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
133
 * returns the device node corresponding to the regulator if found, else
134 135 136 137 138 139 140 141 142 143 144 145 146
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
147
		dev_dbg(dev, "Looking up %s property in node %s failed",
148 149 150 151 152 153
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

154 155 156 157 158 159 160 161 162 163 164
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

165 166 167 168 169 170 171
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
172
		rdev_err(rdev, "no constraints\n");
173 174 175
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176
		rdev_err(rdev, "operation not allowed\n");
177 178 179 180 181 182 183 184
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

185 186
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187
			 *min_uV, *max_uV);
188
		return -EINVAL;
189
	}
190 191 192 193

	return 0;
}

194 195 196 197 198 199 200 201 202
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203 204 205 206 207 208 209
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

210 211 212 213 214 215
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

216
	if (*min_uV > *max_uV) {
217 218
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
219
		return -EINVAL;
220
	}
221 222 223 224

	return 0;
}

225 226 227 228 229 230 231
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
232
		rdev_err(rdev, "no constraints\n");
233 234 235
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236
		rdev_err(rdev, "operation not allowed\n");
237 238 239 240 241 242 243 244
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

245 246
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247
			 *min_uA, *max_uA);
248
		return -EINVAL;
249
	}
250 251 252 253 254

	return 0;
}

/* operating mode constraint check */
255
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256
{
257
	switch (*mode) {
258 259 260 261 262 263
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
264
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 266 267
		return -EINVAL;
	}

268
	if (!rdev->constraints) {
269
		rdev_err(rdev, "no constraints\n");
270 271 272
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273
		rdev_err(rdev, "operation not allowed\n");
274 275
		return -EPERM;
	}
276 277 278 279 280 281 282 283

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
284
	}
285 286

	return -EINVAL;
287 288 289 290 291 292
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
293
		rdev_err(rdev, "no constraints\n");
294 295 296
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297
		rdev_err(rdev, "operation not allowed\n");
298 299 300 301 302 303 304 305
		return -EPERM;
	}
	return 0;
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
306
	struct regulator_dev *rdev = dev_get_drvdata(dev);
307 308 309 310 311 312 313 314
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
315
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316 317 318 319

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
320
	struct regulator_dev *rdev = dev_get_drvdata(dev);
321 322 323

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
324
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325

326 327
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
328 329 330
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

331
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332
}
333
static DEVICE_ATTR_RO(name);
334

D
David Brownell 已提交
335
static ssize_t regulator_print_opmode(char *buf, int mode)
336 337 338 339 340 341 342 343 344 345 346 347 348 349
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
350 351
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
352
{
353
	struct regulator_dev *rdev = dev_get_drvdata(dev);
354

D
David Brownell 已提交
355 356
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
357
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
358 359 360

static ssize_t regulator_print_state(char *buf, int state)
{
361 362 363 364 365 366 367 368
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
369 370 371 372
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
373 374 375 376 377
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
378

379
	return ret;
D
David Brownell 已提交
380
}
381
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
382

D
David Brownell 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
416 417 418
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
419 420 421
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
422 423 424 425 426 427 428 429
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

430 431 432
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
433
	struct regulator_dev *rdev = dev_get_drvdata(dev);
434 435 436 437 438 439

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
440
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441 442 443 444

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
445
	struct regulator_dev *rdev = dev_get_drvdata(dev);
446 447 448 449 450 451

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
452
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453 454 455 456

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
457
	struct regulator_dev *rdev = dev_get_drvdata(dev);
458 459 460 461 462 463

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
464
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465 466 467 468

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
469
	struct regulator_dev *rdev = dev_get_drvdata(dev);
470 471 472 473 474 475

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
476
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477 478 479 480

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
481
	struct regulator_dev *rdev = dev_get_drvdata(dev);
482 483 484 485 486
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
487
		uA += regulator->uA_load;
488 489 490
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
491
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492

493 494
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
495
{
496
	struct regulator_dev *rdev = dev_get_drvdata(dev);
497 498
	return sprintf(buf, "%d\n", rdev->use_count);
}
499
static DEVICE_ATTR_RO(num_users);
500

501 502
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
503
{
504
	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 506 507 508 509 510 511 512 513

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
514
static DEVICE_ATTR_RO(type);
515 516 517 518

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
519
	struct regulator_dev *rdev = dev_get_drvdata(dev);
520 521 522

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
523 524
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
525 526 527 528

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
529
	struct regulator_dev *rdev = dev_get_drvdata(dev);
530 531 532

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
533 534
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
535 536 537 538

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
539
	struct regulator_dev *rdev = dev_get_drvdata(dev);
540 541 542

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
543 544
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
545 546 547 548

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
549
	struct regulator_dev *rdev = dev_get_drvdata(dev);
550

D
David Brownell 已提交
551 552
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
553
}
554 555
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
556 557 558 559

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
560
	struct regulator_dev *rdev = dev_get_drvdata(dev);
561

D
David Brownell 已提交
562 563
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
564
}
565 566
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
567 568 569 570

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
571
	struct regulator_dev *rdev = dev_get_drvdata(dev);
572

D
David Brownell 已提交
573 574
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
575
}
576 577
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
578 579 580 581

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
582
	struct regulator_dev *rdev = dev_get_drvdata(dev);
583

D
David Brownell 已提交
584 585
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
586
}
587 588
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
589 590 591 592

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
593
	struct regulator_dev *rdev = dev_get_drvdata(dev);
594

D
David Brownell 已提交
595 596
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
597
}
598 599
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
600 601 602 603

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
604
	struct regulator_dev *rdev = dev_get_drvdata(dev);
605

D
David Brownell 已提交
606 607
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
608
}
609 610 611
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
633

634 635 636 637
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
638 639 640 641 642
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	NULL,
643
};
644
ATTRIBUTE_GROUPS(regulator_dev);
645 646 647

static void regulator_dev_release(struct device *dev)
{
648
	struct regulator_dev *rdev = dev_get_drvdata(dev);
649 650 651 652 653 654
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
655
	.dev_groups = regulator_dev_groups,
656 657 658 659 660 661 662 663 664 665 666 667
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668 669 670
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
671
		return;
672 673

	/* get output voltage */
674
	output_uV = _regulator_get_voltage(rdev);
675 676 677 678
	if (output_uV <= 0)
		return;

	/* get input voltage */
679 680
	input_uV = 0;
	if (rdev->supply)
681
		input_uV = regulator_get_voltage(rdev->supply);
682
	if (input_uV <= 0)
683 684 685 686 687 688
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
689
		current_uA += sibling->uA_load;
690 691 692 693 694 695

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
696
	err = regulator_mode_constrain(rdev, &mode);
697 698 699 700 701 702 703 704
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
705 706

	/* If we have no suspend mode configration don't set anything;
707 708
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
709 710
	 */
	if (!rstate->enabled && !rstate->disabled) {
711 712
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
713
			rdev_warn(rdev, "No configuration\n");
714 715 716 717
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
718
		rdev_err(rdev, "invalid configuration\n");
719 720
		return -EINVAL;
	}
721

722
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723
		ret = rdev->desc->ops->set_suspend_enable(rdev);
724
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725
		ret = rdev->desc->ops->set_suspend_disable(rdev);
726 727 728
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

729
	if (ret < 0) {
730
		rdev_err(rdev, "failed to enabled/disable\n");
731 732 733 734 735 736
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
737
			rdev_err(rdev, "failed to set voltage\n");
738 739 740 741 742 743 744
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
745
			rdev_err(rdev, "failed to set mode\n");
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
776
	char buf[80] = "";
777 778
	int count = 0;
	int ret;
779

780
	if (constraints->min_uV && constraints->max_uV) {
781
		if (constraints->min_uV == constraints->max_uV)
782 783
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
784
		else
785 786 787 788 789 790 791 792 793 794 795 796
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

797 798 799 800
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

801
	if (constraints->min_uA && constraints->max_uA) {
802
		if (constraints->min_uA == constraints->max_uA)
803 804
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
805
		else
806 807 808 809 810 811 812 813 814
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
815
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
816
	}
817

818 819 820 821 822 823 824 825 826
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

827 828 829
	if (!count)
		sprintf(buf, "no parameters");

M
Mark Brown 已提交
830
	rdev_info(rdev, "%s\n", buf);
831 832 833 834 835

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 837
}

838
static int machine_constraints_voltage(struct regulator_dev *rdev,
839
	struct regulation_constraints *constraints)
840
{
841
	struct regulator_ops *ops = rdev->desc->ops;
842 843 844 845
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
846 847 848 849 850 851 852 853 854
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
		ret = _regulator_do_set_voltage(rdev,
						rdev->constraints->min_uV,
						rdev->constraints->max_uV);
		if (ret < 0) {
			rdev_err(rdev, "failed to apply %duV constraint\n",
				 rdev->constraints->min_uV);
			return ret;
		}
855
	}
856

857 858 859 860 861 862 863 864 865 866 867
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

868 869
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
870
		if (count == 1 && !cmin) {
871
			cmin = 1;
872
			cmax = INT_MAX;
873 874
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
875 876
		}

877 878
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
879
			return 0;
880

881
		/* else require explicit machine-level constraints */
882
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883
			rdev_err(rdev, "invalid voltage constraints\n");
884
			return -EINVAL;
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
904 905 906
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
907
			return -EINVAL;
908 909 910 911
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
912 913
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
914 915 916
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
917 918
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
919 920 921 922
			constraints->max_uV = max_uV;
		}
	}

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
938
	const struct regulation_constraints *constraints)
939 940 941 942
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

943 944 945 946 947 948
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
949 950
	if (!rdev->constraints)
		return -ENOMEM;
951

952
	ret = machine_constraints_voltage(rdev, rdev->constraints);
953 954 955
	if (ret != 0)
		goto out;

956
	/* do we need to setup our suspend state */
957
	if (rdev->constraints->initial_state) {
958
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
959
		if (ret < 0) {
960
			rdev_err(rdev, "failed to set suspend state\n");
961 962 963
			goto out;
		}
	}
964

965
	if (rdev->constraints->initial_mode) {
966
		if (!ops->set_mode) {
967
			rdev_err(rdev, "no set_mode operation\n");
968 969 970 971
			ret = -EINVAL;
			goto out;
		}

972
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
973
		if (ret < 0) {
974
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
975 976 977 978
			goto out;
		}
	}

979 980 981
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
982 983
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
984 985
		ret = ops->enable(rdev);
		if (ret < 0) {
986
			rdev_err(rdev, "failed to enable\n");
987 988 989 990
			goto out;
		}
	}

991 992
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
993 994 995 996 997 998 999
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
			goto out;
		}
	}

1000
	print_constraints(rdev);
1001
	return 0;
1002
out:
1003 1004
	kfree(rdev->constraints);
	rdev->constraints = NULL;
1005 1006 1007 1008 1009
	return ret;
}

/**
 * set_supply - set regulator supply regulator
1010 1011
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1012 1013 1014 1015 1016 1017
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1018
		      struct regulator_dev *supply_rdev)
1019 1020 1021
{
	int err;

1022 1023 1024
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1025 1026
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1027
		return err;
1028
	}
1029
	supply_rdev->open_count++;
1030 1031

	return 0;
1032 1033 1034
}

/**
1035
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1036
 * @rdev:         regulator source
1037
 * @consumer_dev_name: dev_name() string for device supply applies to
1038
 * @supply:       symbolic name for supply
1039 1040 1041 1042 1043 1044 1045
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1046 1047
				      const char *consumer_dev_name,
				      const char *supply)
1048 1049
{
	struct regulator_map *node;
1050
	int has_dev;
1051 1052 1053 1054

	if (supply == NULL)
		return -EINVAL;

1055 1056 1057 1058 1059
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1060
	list_for_each_entry(node, &regulator_map_list, list) {
1061 1062 1063 1064
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1065
			continue;
1066 1067
		}

1068 1069 1070
		if (strcmp(node->supply, supply) != 0)
			continue;

1071 1072 1073 1074 1075 1076
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1077 1078 1079
		return -EBUSY;
	}

1080
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1081 1082 1083 1084 1085 1086
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1087 1088 1089 1090 1091 1092
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1093 1094
	}

1095 1096 1097 1098
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1099 1100 1101 1102 1103 1104 1105
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1106
			kfree(node->dev_name);
1107 1108 1109 1110 1111
			kfree(node);
		}
	}
}

1112
#define REG_STR_SIZE	64
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1131 1132
		regulator->dev = dev;

1133
		/* Add a link to the device sysfs entry */
1134 1135 1136
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1137
			goto overflow_err;
1138 1139 1140

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1141
			goto overflow_err;
1142 1143 1144 1145

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1146 1147
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1148
			/* non-fatal */
1149
		}
1150 1151 1152
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1153
			goto overflow_err;
1154 1155 1156 1157
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1158
	if (!regulator->debugfs) {
1159 1160 1161 1162 1163 1164 1165 1166
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1167
	}
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1178 1179 1180 1181 1182 1183 1184 1185 1186
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1187 1188 1189
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
1190
		return rdev->desc->enable_time;
1191 1192 1193
	return rdev->desc->ops->enable_time(rdev);
}

1194
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1195 1196
						  const char *supply,
						  int *ret)
1197 1198 1199
{
	struct regulator_dev *r;
	struct device_node *node;
1200 1201
	struct regulator_map *map;
	const char *devname = NULL;
1202 1203 1204 1205

	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1206
		if (node) {
1207 1208 1209 1210
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1211 1212 1213 1214 1215 1216 1217 1218 1219
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1220 1221 1222
	}

	/* if not found, try doing it non-dt way */
1223 1224 1225
	if (dev)
		devname = dev_name(dev);

1226 1227 1228 1229
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1241 1242 1243
	return NULL;
}

1244 1245
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
1246
					bool exclusive)
1247 1248
{
	struct regulator_dev *rdev;
1249
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1250
	const char *devname = NULL;
1251
	int ret = 0;
1252 1253

	if (id == NULL) {
1254
		pr_err("get() with no identifier\n");
1255 1256 1257
		return regulator;
	}

1258 1259 1260
	if (dev)
		devname = dev_name(dev);

1261 1262
	mutex_lock(&regulator_list_mutex);

1263
	rdev = regulator_dev_lookup(dev, id, &ret);
1264 1265 1266
	if (rdev)
		goto found;

1267 1268 1269 1270 1271 1272 1273 1274 1275
	/*
	 * If we have return value from dev_lookup fail, we do not expect to
	 * succeed, so, quit with appropriate error value
	 */
	if (ret) {
		regulator = ERR_PTR(ret);
		goto out;
	}

1276 1277 1278 1279 1280
	if (board_wants_dummy_regulator) {
		rdev = dummy_regulator_rdev;
		goto found;
	}

1281 1282 1283 1284 1285 1286 1287 1288
#ifdef CONFIG_REGULATOR_DUMMY
	if (!devname)
		devname = "deviceless";

	/* If the board didn't flag that it was fully constrained then
	 * substitute in a dummy regulator so consumers can continue.
	 */
	if (!has_full_constraints) {
1289 1290
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1291 1292 1293 1294 1295
		rdev = dummy_regulator_rdev;
		goto found;
	}
#endif

1296 1297 1298 1299
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1310 1311 1312
	if (!try_module_get(rdev->owner))
		goto out;

1313 1314 1315 1316
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1317
		goto out;
1318 1319
	}

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1331
out:
1332
	mutex_unlock(&regulator_list_mutex);
1333

1334 1335
	return regulator;
}
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
enum {
	NORMAL_GET,
	EXCLUSIVE_GET,
	OPTIONAL_GET,
};

static void devm_regulator_release(struct device *dev, void *res)
{
	regulator_put(*(struct regulator **)res);
}

static struct regulator *_devm_regulator_get(struct device *dev, const char *id,
					     int get_type)
{
	struct regulator **ptr, *regulator;

	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	switch (get_type) {
	case NORMAL_GET:
		regulator = regulator_get(dev, id);
		break;
	case EXCLUSIVE_GET:
		regulator = regulator_get_exclusive(dev, id);
		break;
	case OPTIONAL_GET:
		regulator = regulator_get_optional(dev, id);
		break;
	default:
		regulator = ERR_PTR(-EINVAL);
	}

	if (!IS_ERR(regulator)) {
		*ptr = regulator;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regulator;
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1396
	return _regulator_get(dev, id, false);
1397
}
1398 1399
EXPORT_SYMBOL_GPL(regulator_get);

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
/**
 * devm_regulator_get - Resource managed regulator_get()
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Managed regulator_get(). Regulators returned from this function are
 * automatically regulator_put() on driver detach. See regulator_get() for more
 * information.
 */
struct regulator *devm_regulator_get(struct device *dev, const char *id)
{
1411
	return _devm_regulator_get(dev, id, NORMAL_GET);
1412 1413 1414
}
EXPORT_SYMBOL_GPL(devm_regulator_get);

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1438
	return _regulator_get(dev, id, true);
1439 1440 1441
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
/**
 * devm_regulator_get_exclusive - Resource managed regulator_get_exclusive()
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Managed regulator_get_exclusive(). Regulators returned from this function
 * are automatically regulator_put() on driver detach. See regulator_get() for
 * more information.
 */
struct regulator *devm_regulator_get_exclusive(struct device *dev,
					       const char *id)
{
	return _devm_regulator_get(dev, id, EXCLUSIVE_GET);
}
EXPORT_SYMBOL_GPL(devm_regulator_get_exclusive);

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
	return _regulator_get(dev, id, 0);
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

/**
 * devm_regulator_get_optional - Resource managed regulator_get_optional()
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Managed regulator_get_optional(). Regulators returned from this
 * function are automatically regulator_put() on driver detach. See
 * regulator_get_optional() for more information.
 */
struct regulator *devm_regulator_get_optional(struct device *dev,
					      const char *id)
{
1499
	return _devm_regulator_get(dev, id, OPTIONAL_GET);
1500 1501 1502
}
EXPORT_SYMBOL_GPL(devm_regulator_get_optional);

1503 1504
/* Locks held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
1505 1506 1507 1508 1509 1510 1511 1512
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	rdev = regulator->rdev;

1513 1514
	debugfs_remove_recursive(regulator->debugfs);

1515
	/* remove any sysfs entries */
1516
	if (regulator->dev)
1517
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1518
	kfree(regulator->supply_name);
1519 1520 1521
	list_del(&regulator->list);
	kfree(regulator);

1522 1523 1524
	rdev->open_count--;
	rdev->exclusive = 0;

1525
	module_put(rdev->owner);
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1540 1541 1542 1543
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
static int devm_regulator_match(struct device *dev, void *res, void *data)
{
	struct regulator **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}
	return *r == data;
}

/**
 * devm_regulator_put - Resource managed regulator_put()
 * @regulator: regulator to free
 *
 * Deallocate a regulator allocated with devm_regulator_get(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_regulator_put(struct regulator *regulator)
{
	int rc;

1566
	rc = devres_release(regulator->dev, devm_regulator_release,
1567
			    devm_regulator_match, regulator);
1568
	if (rc != 0)
1569
		WARN_ON(rc);
1570 1571 1572
}
EXPORT_SYMBOL_GPL(devm_regulator_put);

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
	int ret;

	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
		if (pin->gpio == config->ena_gpio) {
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

	ret = gpio_request_one(config->ena_gpio,
				GPIOF_DIR_OUT | config->ena_gpio_flags,
				rdev_get_name(rdev));
	if (ret)
		return ret;

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
		gpio_free(config->ena_gpio);
		return -ENOMEM;
	}

	pin->gpio = config->ena_gpio;
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
		if (pin->gpio == rdev->ena_pin->gpio) {
			if (pin->request_count <= 1) {
				pin->request_count = 0;
				gpio_free(pin->gpio);
				list_del(&pin->list);
				kfree(pin);
			} else {
				pin->request_count--;
			}
		}
	}
}

1632
/**
1633 1634 1635 1636
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
			gpio_set_value_cansleep(pin->gpio,
						!pin->ena_gpio_invert);

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
			gpio_set_value_cansleep(pin->gpio,
						pin->ena_gpio_invert);
			pin->enable_count = 0;
		}
	}

	return 0;
}

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

1686 1687 1688 1689
	if (rdev->ena_pin) {
		ret = regulator_ena_gpio_ctrl(rdev, true);
		if (ret < 0)
			return ret;
1690 1691
		rdev->ena_gpio_state = 1;
	} else if (rdev->desc->ops->enable) {
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
	}

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

1716 1717 1718
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1719
	int ret;
1720 1721

	/* check voltage and requested load before enabling */
1722 1723 1724
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1725

1726 1727 1728 1729 1730 1731 1732
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1733
			ret = _regulator_do_enable(rdev);
1734 1735 1736
			if (ret < 0)
				return ret;

1737
		} else if (ret < 0) {
1738
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1739 1740
			return ret;
		}
1741
		/* Fallthrough on positive return values - already enabled */
1742 1743
	}

1744 1745 1746
	rdev->use_count++;

	return 0;
1747 1748 1749 1750 1751 1752
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1753 1754 1755 1756
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1757
 * NOTE: the output value can be set by other drivers, boot loader or may be
1758
 * hardwired in the regulator.
1759 1760 1761
 */
int regulator_enable(struct regulator *regulator)
{
1762 1763
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1764

1765 1766 1767
	if (regulator->always_on)
		return 0;

1768 1769 1770 1771 1772 1773
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1774
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1775
	ret = _regulator_enable(rdev);
1776
	mutex_unlock(&rdev->mutex);
1777

1778
	if (ret != 0 && rdev->supply)
1779 1780
		regulator_disable(rdev->supply);

1781 1782 1783 1784
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

1785 1786 1787 1788 1789 1790
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

1791 1792 1793 1794
	if (rdev->ena_pin) {
		ret = regulator_ena_gpio_ctrl(rdev, false);
		if (ret < 0)
			return ret;
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
		rdev->ena_gpio_state = 0;

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

	trace_regulator_disable_complete(rdev_get_name(rdev));

	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
			     NULL);
	return 0;
}

1810
/* locks held by regulator_disable() */
1811
static int _regulator_disable(struct regulator_dev *rdev)
1812 1813 1814
{
	int ret = 0;

D
David Brownell 已提交
1815
	if (WARN(rdev->use_count <= 0,
1816
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1817 1818
		return -EIO;

1819
	/* are we the last user and permitted to disable ? */
1820 1821
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1822 1823

		/* we are last user */
1824 1825
		if (_regulator_can_change_status(rdev)) {
			ret = _regulator_do_disable(rdev);
1826
			if (ret < 0) {
1827
				rdev_err(rdev, "failed to disable\n");
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
				return ret;
			}
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1842

1843 1844 1845 1846 1847 1848 1849
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1850 1851 1852
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1853
 *
1854
 * NOTE: this will only disable the regulator output if no other consumer
1855 1856
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1857 1858 1859
 */
int regulator_disable(struct regulator *regulator)
{
1860 1861
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1862

1863 1864 1865
	if (regulator->always_on)
		return 0;

1866
	mutex_lock(&rdev->mutex);
1867
	ret = _regulator_disable(rdev);
1868
	mutex_unlock(&rdev->mutex);
1869

1870 1871
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
1872

1873 1874 1875 1876 1877
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1878
static int _regulator_force_disable(struct regulator_dev *rdev)
1879 1880 1881 1882 1883 1884 1885 1886
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1887
			rdev_err(rdev, "failed to force disable\n");
1888 1889 1890
			return ret;
		}
		/* notify other consumers that power has been forced off */
1891 1892
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	}

	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1909
	struct regulator_dev *rdev = regulator->rdev;
1910 1911
	int ret;

1912
	mutex_lock(&rdev->mutex);
1913
	regulator->uA_load = 0;
1914
	ret = _regulator_force_disable(regulator->rdev);
1915
	mutex_unlock(&rdev->mutex);
1916

1917 1918 1919
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
1920

1921 1922 1923 1924
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
1972
	int ret;
1973

1974 1975 1976
	if (regulator->always_on)
		return 0;

1977 1978 1979
	if (!ms)
		return regulator_disable(regulator);

1980 1981 1982 1983
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

1984 1985 1986
	ret = queue_delayed_work(system_power_efficient_wq,
				 &rdev->disable_work,
				 msecs_to_jiffies(ms));
1987 1988 1989 1990
	if (ret < 0)
		return ret;
	else
		return 0;
1991 1992 1993
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

1994 1995
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
1996
	/* A GPIO control always takes precedence */
1997
	if (rdev->ena_pin)
1998 1999
		return rdev->ena_gpio_state;

2000
	/* If we don't know then assume that the regulator is always on */
2001
	if (!rdev->desc->ops->is_enabled)
2002
		return 1;
2003

2004
	return rdev->desc->ops->is_enabled(rdev);
2005 2006 2007 2008 2009 2010
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2011 2012 2013 2014 2015 2016 2017
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2018 2019 2020
 */
int regulator_is_enabled(struct regulator *regulator)
{
2021 2022
	int ret;

2023 2024 2025
	if (regulator->always_on)
		return 1;

2026 2027 2028 2029 2030
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2031 2032 2033
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
/**
 * regulator_can_change_voltage - check if regulator can change voltage
 * @regulator: regulator source
 *
 * Returns positive if the regulator driver backing the source/client
 * can change its voltage, false otherwise. Usefull for detecting fixed
 * or dummy regulators and disabling voltage change logic in the client
 * driver.
 */
int regulator_can_change_voltage(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	if (rdev->constraints &&
2048 2049 2050 2051 2052 2053 2054 2055 2056
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
			return 1;

		if (rdev->desc->continuous_voltage_range &&
		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
		    rdev->constraints->min_uV != rdev->constraints->max_uV)
			return 1;
	}
2057 2058 2059 2060 2061

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_can_change_voltage);

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2085
 * zero if this selector code can't be used on this system, or a
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2139
	struct regulator_dev *rdev = regulator->rdev;
2140 2141
	int i, voltages, ret;

2142 2143 2144 2145
	/* If we can't change voltage check the current voltage */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2146
			return (min_uV <= ret && ret <= max_uV);
2147 2148 2149 2150
		else
			return ret;
	}

2151 2152 2153 2154 2155
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2170
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2171

2172 2173 2174 2175
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2176
	int delay = 0;
2177
	int best_val = 0;
2178
	unsigned int selector;
2179
	int old_selector = -1;
2180 2181 2182

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2183 2184 2185
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2186 2187 2188 2189
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2190 2191
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2192 2193 2194 2195 2196 2197
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2198 2199 2200
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);
2201 2202 2203 2204 2205 2206 2207 2208 2209

		if (ret >= 0) {
			if (rdev->desc->ops->list_voltage)
				best_val = rdev->desc->ops->list_voltage(rdev,
									 selector);
			else
				best_val = _regulator_get_voltage(rdev);
		}

2210
	} else if (rdev->desc->ops->set_voltage_sel) {
2211
		if (rdev->desc->ops->map_voltage) {
2212 2213
			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
							   max_uV);
2214 2215 2216 2217 2218 2219 2220 2221 2222
		} else {
			if (rdev->desc->ops->list_voltage ==
			    regulator_list_voltage_linear)
				ret = regulator_map_voltage_linear(rdev,
								min_uV, max_uV);
			else
				ret = regulator_map_voltage_iterate(rdev,
								min_uV, max_uV);
		}
2223

2224
		if (ret >= 0) {
2225 2226 2227
			best_val = rdev->desc->ops->list_voltage(rdev, ret);
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2228 2229 2230 2231 2232
				if (old_selector == selector)
					ret = 0;
				else
					ret = rdev->desc->ops->set_voltage_sel(
								rdev, ret);
2233 2234 2235
			} else {
				ret = -EINVAL;
			}
2236
		}
2237 2238 2239
	} else {
		ret = -EINVAL;
	}
2240

2241
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2242 2243
	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
		&& old_selector != selector) {
2244

2245 2246 2247 2248 2249 2250
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2251
		}
2252

2253 2254 2255 2256 2257 2258 2259
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2260 2261
	}

2262 2263 2264
	if (ret == 0 && best_val >= 0) {
		unsigned long data = best_val;

2265
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2266 2267
				     (void *)data);
	}
2268

2269
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2270 2271 2272 2273

	return ret;
}

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
2289
 * Regulator system constraints must be set for this regulator before
2290 2291 2292 2293 2294
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
2295
	int ret = 0;
2296
	int old_min_uV, old_max_uV;
2297 2298 2299

	mutex_lock(&rdev->mutex);

2300 2301 2302 2303 2304 2305 2306
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2307
	/* sanity check */
2308 2309
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2310 2311 2312 2313 2314 2315 2316 2317
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2318 2319 2320 2321
	
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2322 2323
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2324

2325 2326
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2327
		goto out2;
2328

2329
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2330 2331 2332
	if (ret < 0)
		goto out2;
	
2333 2334 2335
out:
	mutex_unlock(&rdev->mutex);
	return ret;
2336 2337 2338 2339
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
	mutex_unlock(&rdev->mutex);
2340 2341 2342 2343
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2389
/**
2390 2391
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
2392 2393 2394 2395 2396 2397
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
2398
 * Drivers providing ramp_delay in regulation_constraints can use this as their
2399
 * set_voltage_time_sel() operation.
2400 2401 2402 2403 2404
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
2405
	unsigned int ramp_delay = 0;
2406
	int old_volt, new_volt;
2407 2408 2409 2410 2411 2412 2413

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
2414
		rdev_warn(rdev, "ramp_delay not set\n");
2415
		return 0;
2416
	}
2417

2418 2419 2420
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
2421

2422 2423 2424 2425
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2426
}
2427
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2428

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2476 2477
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2478
	int sel, ret;
2479 2480 2481 2482 2483

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2484
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2485
	} else if (rdev->desc->ops->get_voltage) {
2486
		ret = rdev->desc->ops->get_voltage(rdev);
2487 2488
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
2489
	} else {
2490
		return -EINVAL;
2491
	}
2492

2493 2494
	if (ret < 0)
		return ret;
2495
	return ret - rdev->constraints->uV_offset;
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
2524
 * @min_uA: Minimum supported current in uA
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2611
	int regulator_curr_mode;
2612 2613 2614 2615 2616 2617 2618 2619 2620

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2621 2622 2623 2624 2625 2626 2627 2628 2629
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2630
	/* constraints check */
2631
	ret = regulator_mode_constrain(rdev, &mode);
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
2702
	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2703 2704
	unsigned int mode;

2705 2706 2707
	if (rdev->supply)
		input_uV = regulator_get_voltage(rdev->supply);

2708 2709
	mutex_lock(&rdev->mutex);

2710 2711 2712 2713
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
2714 2715
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
2716 2717
	if (ret < 0) {
		ret = 0;
2718
		goto out;
2719
	}
2720 2721 2722 2723

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

2724 2725 2726 2727 2728 2729
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

2730 2731 2732
	if (!rdev->desc->ops->set_mode)
		goto out;

2733
	/* get output voltage */
2734
	output_uV = _regulator_get_voltage(rdev);
2735
	if (output_uV <= 0) {
2736
		rdev_err(rdev, "invalid output voltage found\n");
2737 2738 2739
		goto out;
	}

2740
	/* No supply? Use constraint voltage */
2741
	if (input_uV <= 0)
2742 2743
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2744
		rdev_err(rdev, "invalid input voltage found\n");
2745 2746 2747 2748 2749
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2750
		total_uA_load += consumer->uA_load;
2751 2752 2753 2754

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2755
	ret = regulator_mode_constrain(rdev, &mode);
2756
	if (ret < 0) {
2757 2758
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2759 2760 2761 2762
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2763
	if (ret < 0) {
2764
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2765 2766 2767 2768 2769 2770 2771 2772 2773
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

2774 2775 2776 2777
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
2778
 * @enable: enable or disable bypass mode
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

	if (rdev->constraints &&
	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

2827 2828 2829
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
2830
 * @nb: notifier block
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
2845
 * @nb: notifier block
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

2857 2858 2859
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
2860 2861 2862 2863
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	/* call rdev chain first */
2864
	blocking_notifier_call_chain(&rdev->notifier, event, data);
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2895 2896
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2897 2898 2899 2900 2901 2902 2903 2904
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
2905
	while (--i >= 0)
2906 2907 2908 2909 2910 2911
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
/**
 * devm_regulator_bulk_get - managed get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation with management, the regulators will
 * automatically be freed when the device is unbound.  If any of the
 * regulators cannot be acquired then any regulators that were
 * allocated will be freed before returning to the caller.
 */
int devm_regulator_bulk_get(struct device *dev, int num_consumers,
			    struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = devm_regulator_get(dev,
							   consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		devm_regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);

2958 2959 2960 2961 2962 2963 2964
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
2980
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2981
	int i;
2982
	int ret = 0;
2983

2984 2985 2986 2987 2988 2989 2990
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
2991 2992 2993 2994

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
2995
	for (i = 0; i < num_consumers; i++) {
2996 2997
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
2998
			goto err;
2999
		}
3000 3001 3002 3003 3004
	}

	return 0;

err:
3005 3006 3007 3008 3009 3010 3011
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3025 3026
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3027 3028 3029 3030 3031 3032
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3033
	int ret, r;
3034

3035
	for (i = num_consumers - 1; i >= 0; --i) {
3036 3037 3038 3039 3040 3041 3042 3043
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3044
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3045 3046 3047 3048 3049 3050
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
3051 3052 3053 3054 3055

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3116
 * @rdev: regulator source
3117
 * @event: notifier block
3118
 * @data: callback-specific data.
3119 3120 3121
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3122
 * Note lock must be held by caller.
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3149
	case REGULATOR_MODE_STANDBY:
3150 3151
		return REGULATOR_STATUS_STANDBY;
	default:
3152
		return REGULATOR_STATUS_UNDEFINED;
3153 3154 3155 3156
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
3168
	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3169 3170
	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
3185
	if (rdev->ena_pin || ops->is_enabled) {
3186 3187 3188 3189
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
3190 3191 3192 3193 3194
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
3195 3196 3197 3198 3199
	if (ops->get_bypass) {
		status = device_create_file(dev, &dev_attr_bypass);
		if (status < 0)
			return status;
	}
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
3216
	if (ops->set_voltage || ops->set_voltage_sel) {
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

3276 3277 3278
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3279
	if (!rdev->debugfs) {
3280 3281 3282 3283 3284 3285 3286 3287
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3288 3289
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3290 3291
}

3292 3293
/**
 * regulator_register - register regulator
3294
 * @regulator_desc: regulator to register
3295
 * @config: runtime configuration for regulator
3296 3297
 *
 * Called by regulator drivers to register a regulator.
3298 3299
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3300
 */
3301 3302
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3303
		   const struct regulator_config *config)
3304
{
3305
	const struct regulation_constraints *constraints = NULL;
3306
	const struct regulator_init_data *init_data;
3307 3308
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
3309
	struct device *dev;
3310
	int ret, i;
3311
	const char *supply = NULL;
3312

3313
	if (regulator_desc == NULL || config == NULL)
3314 3315
		return ERR_PTR(-EINVAL);

3316
	dev = config->dev;
3317
	WARN_ON(!dev);
3318

3319 3320 3321
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3322 3323
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3324 3325
		return ERR_PTR(-EINVAL);

3326 3327 3328
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3329 3330
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3331 3332 3333 3334 3335 3336

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3337 3338 3339 3340
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3341

3342 3343
	init_data = config->init_data;

3344 3345 3346 3347 3348 3349 3350
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3351
	rdev->reg_data = config->driver_data;
3352 3353
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3354 3355
	if (config->regmap)
		rdev->regmap = config->regmap;
3356
	else if (dev_get_regmap(dev, NULL))
3357
		rdev->regmap = dev_get_regmap(dev, NULL);
3358 3359
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3360 3361 3362
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3363
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3364

3365
	/* preform any regulator specific init */
3366
	if (init_data && init_data->regulator_init) {
3367
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3368 3369
		if (ret < 0)
			goto clean;
3370 3371 3372
	}

	/* register with sysfs */
3373
	rdev->dev.class = &regulator_class;
3374
	rdev->dev.of_node = config->of_node;
3375
	rdev->dev.parent = dev;
3376 3377
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
3378
	ret = device_register(&rdev->dev);
3379 3380
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3381
		goto clean;
3382
	}
3383 3384 3385

	dev_set_drvdata(&rdev->dev, rdev);

3386
	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3387
		ret = regulator_ena_gpio_request(rdev, config);
3388 3389 3390
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
3391
			goto wash;
3392 3393 3394 3395 3396
		}

		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
			rdev->ena_gpio_state = 1;

3397
		if (config->ena_gpio_invert)
3398 3399 3400
			rdev->ena_gpio_state = !rdev->ena_gpio_state;
	}

3401
	/* set regulator constraints */
3402 3403 3404 3405
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3406 3407 3408
	if (ret < 0)
		goto scrub;

3409 3410 3411 3412 3413
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

3414
	if (init_data && init_data->supply_regulator)
3415 3416 3417 3418 3419
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
3420 3421
		struct regulator_dev *r;

3422
		r = regulator_dev_lookup(dev, supply, &ret);
3423

3424 3425 3426 3427 3428 3429 3430 3431
		if (ret == -ENODEV) {
			/*
			 * No supply was specified for this regulator and
			 * there will never be one.
			 */
			ret = 0;
			goto add_dev;
		} else if (!r) {
3432
			dev_err(dev, "Failed to find supply %s\n", supply);
3433
			ret = -EPROBE_DEFER;
3434 3435 3436 3437 3438 3439
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
3440 3441

		/* Enable supply if rail is enabled */
3442
		if (_regulator_is_enabled(rdev)) {
3443 3444 3445 3446
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
3447 3448
	}

3449
add_dev:
3450
	/* add consumers devices */
3451 3452 3453 3454
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3455
				init_data->consumer_supplies[i].supply);
3456 3457 3458 3459 3460
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3461
		}
3462
	}
3463 3464

	list_add(&rdev->list, &regulator_list);
3465 3466

	rdev_init_debugfs(rdev);
3467
out:
3468 3469
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
3470

3471 3472 3473
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3474
scrub:
3475
	if (rdev->supply)
3476
		_regulator_put(rdev->supply);
3477
	regulator_ena_gpio_free(rdev);
3478
	kfree(rdev->constraints);
3479
wash:
D
David Brownell 已提交
3480
	device_unregister(&rdev->dev);
3481 3482 3483 3484
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3485 3486 3487 3488
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3489 3490 3491
}
EXPORT_SYMBOL_GPL(regulator_register);

3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
static void devm_rdev_release(struct device *dev, void *res)
{
	regulator_unregister(*(struct regulator_dev **)res);
}

/**
 * devm_regulator_register - Resource managed regulator_register()
 * @regulator_desc: regulator to register
 * @config: runtime configuration for regulator
 *
 * Called by regulator drivers to register a regulator.  Returns a
 * valid pointer to struct regulator_dev on success or an ERR_PTR() on
3504
 * error.  The regulator will automatically be released when the device
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
 * is unbound.
 */
struct regulator_dev *devm_regulator_register(struct device *dev,
				  const struct regulator_desc *regulator_desc,
				  const struct regulator_config *config)
{
	struct regulator_dev **ptr, *rdev;

	ptr = devres_alloc(devm_rdev_release, sizeof(*ptr),
			   GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	rdev = regulator_register(regulator_desc, config);
	if (!IS_ERR(rdev)) {
		*ptr = rdev;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return rdev;
}
EXPORT_SYMBOL_GPL(devm_regulator_register);

3530 3531
/**
 * regulator_unregister - unregister regulator
3532
 * @rdev: regulator to unregister
3533 3534 3535 3536 3537 3538 3539 3540
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

3541 3542 3543
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
3544
		regulator_put(rdev->supply);
3545
	}
3546
	mutex_lock(&regulator_list_mutex);
3547
	debugfs_remove_recursive(rdev->debugfs);
3548
	flush_work(&rdev->disable_work.work);
3549
	WARN_ON(rdev->open_count);
3550
	unset_regulator_supplies(rdev);
3551
	list_del(&rdev->list);
3552
	kfree(rdev->constraints);
3553
	regulator_ena_gpio_free(rdev);
3554
	device_unregister(&rdev->dev);
3555 3556 3557 3558
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
static int devm_rdev_match(struct device *dev, void *res, void *data)
{
	struct regulator_dev **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}
	return *r == data;
}

/**
 * devm_regulator_unregister - Resource managed regulator_unregister()
 * @regulator: regulator to free
 *
 * Unregister a regulator registered with devm_regulator_register().
 * Normally this function will not need to be called and the resource
 * management code will ensure that the resource is freed.
 */
void devm_regulator_unregister(struct device *dev, struct regulator_dev *rdev)
{
	int rc;

	rc = devres_release(dev, devm_rdev_release, devm_rdev_match, rdev);
	if (rc != 0)
		WARN_ON(rc);
}
EXPORT_SYMBOL_GPL(devm_regulator_unregister);

3587
/**
3588
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3611
			rdev_err(rdev, "failed to prepare\n");
3612 3613 3614 3615 3616 3617 3618 3619 3620
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		struct regulator_ops *ops = rdev->desc->ops;

		mutex_lock(&rdev->mutex);
		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
				ops->enable) {
			error = ops->enable(rdev);
			if (error)
				ret = error;
		} else {
			if (!has_full_constraints)
				goto unlock;
			if (!ops->disable)
				goto unlock;
3647
			if (!_regulator_is_enabled(rdev))
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
				goto unlock;

			error = ops->disable(rdev);
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
/**
 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
 *
 * Calling this function will cause the regulator API to provide a
 * dummy regulator to consumers if no physical regulator is found,
 * allowing most consumers to proceed as though a regulator were
 * configured.  This allows systems such as those with software
 * controllable regulators for the CPU core only to be brought up more
 * readily.
 */
void regulator_use_dummy_regulator(void)
{
	board_wants_dummy_regulator = true;
}
EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);

3695 3696
/**
 * rdev_get_drvdata - get rdev regulator driver data
3697
 * @rdev: regulator
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3734
 * @rdev: regulator
3735 3736 3737 3738 3739 3740 3741
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
3784
#endif
3785 3786

static const struct file_operations supply_map_fops = {
3787
#ifdef CONFIG_DEBUG_FS
3788 3789 3790
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
3791
};
3792

3793 3794
static int __init regulator_init(void)
{
3795 3796 3797 3798
	int ret;

	ret = class_register(&regulator_class);

3799
	debugfs_root = debugfs_create_dir("regulator", NULL);
3800
	if (!debugfs_root)
3801
		pr_warn("regulator: Failed to create debugfs directory\n");
3802

3803 3804
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
3805

3806 3807 3808
	regulator_dummy_init();

	return ret;
3809 3810 3811 3812
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
3813 3814 3815 3816 3817 3818 3819 3820

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

3821 3822 3823 3824 3825 3826 3827 3828 3829
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

3840
		if (!ops->disable || (c && c->always_on))
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
3860
			rdev_info(rdev, "disabling\n");
3861 3862
			ret = ops->disable(rdev);
			if (ret != 0) {
3863
				rdev_err(rdev, "couldn't disable: %d\n", ret);
3864 3865 3866 3867 3868 3869 3870
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
3871
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);