core.c 99.2 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/of.h>
28
#include <linux/regmap.h>
29
#include <linux/regulator/of_regulator.h>
30 31 32
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
33
#include <linux/module.h>
34

35 36 37
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

38
#include "dummy.h"
39
#include "internal.h"
40

M
Mark Brown 已提交
41 42
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 44 45 46 47 48 49 50 51
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

52 53 54
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
55
static LIST_HEAD(regulator_ena_gpio_list);
56
static LIST_HEAD(regulator_supply_alias_list);
57
static bool has_full_constraints;
58

59 60
static struct dentry *debugfs_root;

61
/*
62 63 64 65 66 67
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
68
	const char *dev_name;   /* The dev_name() for the consumer */
69
	const char *supply;
70
	struct regulator_dev *regulator;
71 72
};

73 74 75 76 77 78 79 80 81 82 83 84 85
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
	int gpio;
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

99
static int _regulator_is_enabled(struct regulator_dev *rdev);
100
static int _regulator_disable(struct regulator_dev *rdev);
101 102 103 104 105
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
106 107
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
108 109 110
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
111

112 113 114 115 116 117 118 119 120 121
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

122 123
static bool have_full_constraints(void)
{
124
	return has_full_constraints || of_have_populated_dt();
125 126
}

127 128 129 130 131 132
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
133
 * returns the device node corresponding to the regulator if found, else
134 135 136 137 138 139 140 141 142 143 144 145 146
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
147
		dev_dbg(dev, "Looking up %s property in node %s failed",
148 149 150 151 152 153
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

154 155 156 157 158 159 160 161 162 163 164
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

165 166 167 168 169 170 171
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
172
		rdev_err(rdev, "no constraints\n");
173 174 175
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176
		rdev_err(rdev, "operation not allowed\n");
177 178 179 180 181 182 183 184
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

185 186
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187
			 *min_uV, *max_uV);
188
		return -EINVAL;
189
	}
190 191 192 193

	return 0;
}

194 195 196 197 198 199 200 201 202
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
203 204 205 206 207 208 209
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

210 211 212 213 214 215
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

216
	if (*min_uV > *max_uV) {
217 218
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
219
		return -EINVAL;
220
	}
221 222 223 224

	return 0;
}

225 226 227 228 229 230 231
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
232
		rdev_err(rdev, "no constraints\n");
233 234 235
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236
		rdev_err(rdev, "operation not allowed\n");
237 238 239 240 241 242 243 244
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

245 246
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247
			 *min_uA, *max_uA);
248
		return -EINVAL;
249
	}
250 251 252 253 254

	return 0;
}

/* operating mode constraint check */
255
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256
{
257
	switch (*mode) {
258 259 260 261 262 263
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
264
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 266 267
		return -EINVAL;
	}

268
	if (!rdev->constraints) {
269
		rdev_err(rdev, "no constraints\n");
270 271 272
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273
		rdev_err(rdev, "operation not allowed\n");
274 275
		return -EPERM;
	}
276 277 278 279 280 281 282 283

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
284
	}
285 286

	return -EINVAL;
287 288 289 290 291 292
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
293
		rdev_err(rdev, "no constraints\n");
294 295 296
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297
		rdev_err(rdev, "operation not allowed\n");
298 299 300 301 302 303 304 305
		return -EPERM;
	}
	return 0;
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
306
	struct regulator_dev *rdev = dev_get_drvdata(dev);
307 308 309 310 311 312 313 314
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
315
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316 317 318 319

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
320
	struct regulator_dev *rdev = dev_get_drvdata(dev);
321 322 323

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
324
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325

326 327
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
328 329 330
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

331
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
332
}
333
static DEVICE_ATTR_RO(name);
334

D
David Brownell 已提交
335
static ssize_t regulator_print_opmode(char *buf, int mode)
336 337 338 339 340 341 342 343 344 345 346 347 348 349
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
350 351
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
352
{
353
	struct regulator_dev *rdev = dev_get_drvdata(dev);
354

D
David Brownell 已提交
355 356
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
357
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
358 359 360

static ssize_t regulator_print_state(char *buf, int state)
{
361 362 363 364 365 366 367 368
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
369 370 371 372
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
373 374 375 376 377
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
378

379
	return ret;
D
David Brownell 已提交
380
}
381
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
382

D
David Brownell 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
416 417 418
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
419 420 421
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
422 423 424 425 426 427 428 429
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

430 431 432
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
433
	struct regulator_dev *rdev = dev_get_drvdata(dev);
434 435 436 437 438 439

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
440
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441 442 443 444

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
445
	struct regulator_dev *rdev = dev_get_drvdata(dev);
446 447 448 449 450 451

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
452
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453 454 455 456

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
457
	struct regulator_dev *rdev = dev_get_drvdata(dev);
458 459 460 461 462 463

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
464
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465 466 467 468

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
469
	struct regulator_dev *rdev = dev_get_drvdata(dev);
470 471 472 473 474 475

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
476
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477 478 479 480

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
481
	struct regulator_dev *rdev = dev_get_drvdata(dev);
482 483 484 485 486
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
487
		uA += regulator->uA_load;
488 489 490
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
491
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492

493 494
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
495
{
496
	struct regulator_dev *rdev = dev_get_drvdata(dev);
497 498
	return sprintf(buf, "%d\n", rdev->use_count);
}
499
static DEVICE_ATTR_RO(num_users);
500

501 502
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
503
{
504
	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 506 507 508 509 510 511 512 513

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
514
static DEVICE_ATTR_RO(type);
515 516 517 518

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
519
	struct regulator_dev *rdev = dev_get_drvdata(dev);
520 521 522

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
523 524
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
525 526 527 528

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
529
	struct regulator_dev *rdev = dev_get_drvdata(dev);
530 531 532

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
533 534
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
535 536 537 538

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
539
	struct regulator_dev *rdev = dev_get_drvdata(dev);
540 541 542

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
543 544
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
545 546 547 548

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
549
	struct regulator_dev *rdev = dev_get_drvdata(dev);
550

D
David Brownell 已提交
551 552
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
553
}
554 555
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
556 557 558 559

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
560
	struct regulator_dev *rdev = dev_get_drvdata(dev);
561

D
David Brownell 已提交
562 563
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
564
}
565 566
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
567 568 569 570

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
571
	struct regulator_dev *rdev = dev_get_drvdata(dev);
572

D
David Brownell 已提交
573 574
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
575
}
576 577
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
578 579 580 581

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
582
	struct regulator_dev *rdev = dev_get_drvdata(dev);
583

D
David Brownell 已提交
584 585
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
586
}
587 588
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
589 590 591 592

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
593
	struct regulator_dev *rdev = dev_get_drvdata(dev);
594

D
David Brownell 已提交
595 596
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
597
}
598 599
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
600 601 602 603

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
604
	struct regulator_dev *rdev = dev_get_drvdata(dev);
605

D
David Brownell 已提交
606 607
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
608
}
609 610 611
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
633

634 635 636 637
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
638 639 640 641 642
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	NULL,
643
};
644
ATTRIBUTE_GROUPS(regulator_dev);
645 646 647

static void regulator_dev_release(struct device *dev)
{
648
	struct regulator_dev *rdev = dev_get_drvdata(dev);
649 650 651 652 653 654
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
655
	.dev_groups = regulator_dev_groups,
656 657 658 659 660 661 662 663 664 665 666 667
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668 669 670
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
671
		return;
672 673

	/* get output voltage */
674
	output_uV = _regulator_get_voltage(rdev);
675 676 677 678
	if (output_uV <= 0)
		return;

	/* get input voltage */
679 680
	input_uV = 0;
	if (rdev->supply)
681
		input_uV = regulator_get_voltage(rdev->supply);
682
	if (input_uV <= 0)
683 684 685 686 687 688
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
689
		current_uA += sibling->uA_load;
690 691 692 693 694 695

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
696
	err = regulator_mode_constrain(rdev, &mode);
697 698 699 700 701 702 703 704
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
705 706

	/* If we have no suspend mode configration don't set anything;
707 708
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
709 710
	 */
	if (!rstate->enabled && !rstate->disabled) {
711 712
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
713
			rdev_warn(rdev, "No configuration\n");
714 715 716 717
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
718
		rdev_err(rdev, "invalid configuration\n");
719 720
		return -EINVAL;
	}
721

722
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723
		ret = rdev->desc->ops->set_suspend_enable(rdev);
724
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725
		ret = rdev->desc->ops->set_suspend_disable(rdev);
726 727 728
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

729
	if (ret < 0) {
730
		rdev_err(rdev, "failed to enabled/disable\n");
731 732 733 734 735 736
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
737
			rdev_err(rdev, "failed to set voltage\n");
738 739 740 741 742 743 744
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
745
			rdev_err(rdev, "failed to set mode\n");
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
776
	char buf[80] = "";
777 778
	int count = 0;
	int ret;
779

780
	if (constraints->min_uV && constraints->max_uV) {
781
		if (constraints->min_uV == constraints->max_uV)
782 783
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
784
		else
785 786 787 788 789 790 791 792 793 794 795 796
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

797 798 799 800
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

801
	if (constraints->min_uA && constraints->max_uA) {
802
		if (constraints->min_uA == constraints->max_uA)
803 804
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
805
		else
806 807 808 809 810 811 812 813 814
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
815
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
816
	}
817

818 819 820 821 822 823 824 825 826
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

827 828 829
	if (!count)
		sprintf(buf, "no parameters");

M
Mark Brown 已提交
830
	rdev_info(rdev, "%s\n", buf);
831 832 833 834 835

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 837
}

838
static int machine_constraints_voltage(struct regulator_dev *rdev,
839
	struct regulation_constraints *constraints)
840
{
841
	struct regulator_ops *ops = rdev->desc->ops;
842 843 844 845
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
846
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
		int current_uV = _regulator_get_voltage(rdev);
		if (current_uV < 0) {
			rdev_err(rdev, "failed to get the current voltage\n");
			return current_uV;
		}
		if (current_uV < rdev->constraints->min_uV ||
		    current_uV > rdev->constraints->max_uV) {
			ret = _regulator_do_set_voltage(
				rdev, rdev->constraints->min_uV,
				rdev->constraints->max_uV);
			if (ret < 0) {
				rdev_err(rdev,
					"failed to apply %duV constraint\n",
					rdev->constraints->min_uV);
				return ret;
			}
863
		}
864
	}
865

866 867 868 869 870 871 872 873 874 875 876
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

877 878
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
879
		if (count == 1 && !cmin) {
880
			cmin = 1;
881
			cmax = INT_MAX;
882 883
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
884 885
		}

886 887
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
888
			return 0;
889

890
		/* else require explicit machine-level constraints */
891
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
892
			rdev_err(rdev, "invalid voltage constraints\n");
893
			return -EINVAL;
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
913 914 915
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
916
			return -EINVAL;
917 918 919 920
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
921 922
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
923 924 925
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
926 927
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
928 929 930 931
			constraints->max_uV = max_uV;
		}
	}

932 933 934
	return 0;
}

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
	struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

965 966
static int _regulator_do_enable(struct regulator_dev *rdev);

967 968 969 970 971 972 973 974 975 976 977 978
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
979
	const struct regulation_constraints *constraints)
980 981 982 983
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

984 985 986 987 988 989
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
990 991
	if (!rdev->constraints)
		return -ENOMEM;
992

993
	ret = machine_constraints_voltage(rdev, rdev->constraints);
994 995 996
	if (ret != 0)
		goto out;

997
	ret = machine_constraints_current(rdev, rdev->constraints);
998 999 1000
	if (ret != 0)
		goto out;

1001
	/* do we need to setup our suspend state */
1002
	if (rdev->constraints->initial_state) {
1003
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1004
		if (ret < 0) {
1005
			rdev_err(rdev, "failed to set suspend state\n");
1006 1007 1008
			goto out;
		}
	}
1009

1010
	if (rdev->constraints->initial_mode) {
1011
		if (!ops->set_mode) {
1012
			rdev_err(rdev, "no set_mode operation\n");
1013 1014 1015 1016
			ret = -EINVAL;
			goto out;
		}

1017
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1018
		if (ret < 0) {
1019
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1020 1021 1022 1023
			goto out;
		}
	}

1024 1025 1026
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1027 1028 1029
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1030
			rdev_err(rdev, "failed to enable\n");
1031 1032 1033 1034
			goto out;
		}
	}

1035 1036
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1037 1038 1039 1040 1041 1042 1043
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
			goto out;
		}
	}

1044
	print_constraints(rdev);
1045
	return 0;
1046
out:
1047 1048
	kfree(rdev->constraints);
	rdev->constraints = NULL;
1049 1050 1051 1052 1053
	return ret;
}

/**
 * set_supply - set regulator supply regulator
1054 1055
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1056 1057 1058 1059 1060 1061
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1062
		      struct regulator_dev *supply_rdev)
1063 1064 1065
{
	int err;

1066 1067 1068
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1069 1070
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1071
		return err;
1072
	}
1073
	supply_rdev->open_count++;
1074 1075

	return 0;
1076 1077 1078
}

/**
1079
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1080
 * @rdev:         regulator source
1081
 * @consumer_dev_name: dev_name() string for device supply applies to
1082
 * @supply:       symbolic name for supply
1083 1084 1085 1086 1087 1088 1089
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1090 1091
				      const char *consumer_dev_name,
				      const char *supply)
1092 1093
{
	struct regulator_map *node;
1094
	int has_dev;
1095 1096 1097 1098

	if (supply == NULL)
		return -EINVAL;

1099 1100 1101 1102 1103
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1104
	list_for_each_entry(node, &regulator_map_list, list) {
1105 1106 1107 1108
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1109
			continue;
1110 1111
		}

1112 1113 1114
		if (strcmp(node->supply, supply) != 0)
			continue;

1115 1116 1117 1118 1119 1120
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1121 1122 1123
		return -EBUSY;
	}

1124
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1125 1126 1127 1128 1129 1130
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1131 1132 1133 1134 1135 1136
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1137 1138
	}

1139 1140 1141 1142
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1143 1144 1145 1146 1147 1148 1149
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1150
			kfree(node->dev_name);
1151 1152 1153 1154 1155
			kfree(node);
		}
	}
}

1156
#define REG_STR_SIZE	64
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1175 1176
		regulator->dev = dev;

1177
		/* Add a link to the device sysfs entry */
1178 1179 1180
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1181
			goto overflow_err;
1182 1183 1184

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1185
			goto overflow_err;
1186 1187 1188 1189

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1190 1191
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1192
			/* non-fatal */
1193
		}
1194 1195 1196
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1197
			goto overflow_err;
1198 1199 1200 1201
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1202
	if (!regulator->debugfs) {
1203 1204 1205 1206 1207 1208 1209 1210
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1211
	}
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1222 1223 1224 1225 1226 1227 1228 1229 1230
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1231 1232
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1233 1234
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1235
	if (!rdev->desc->ops->enable_time)
1236
		return rdev->desc->enable_time;
1237 1238 1239
	return rdev->desc->ops->enable_time(rdev);
}

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1266
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1267 1268
						  const char *supply,
						  int *ret)
1269 1270 1271
{
	struct regulator_dev *r;
	struct device_node *node;
1272 1273
	struct regulator_map *map;
	const char *devname = NULL;
1274

1275 1276
	regulator_supply_alias(&dev, &supply);

1277 1278 1279
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1280
		if (node) {
1281 1282 1283 1284
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1285 1286
			*ret = -EPROBE_DEFER;
			return NULL;
1287 1288 1289 1290 1291 1292 1293 1294 1295
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1296 1297 1298
	}

	/* if not found, try doing it non-dt way */
1299 1300 1301
	if (dev)
		devname = dev_name(dev);

1302 1303 1304 1305
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1317 1318 1319
	return NULL;
}

1320 1321
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
1322
					bool exclusive, bool allow_dummy)
1323 1324
{
	struct regulator_dev *rdev;
1325
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1326
	const char *devname = NULL;
1327
	int ret;
1328 1329

	if (id == NULL) {
1330
		pr_err("get() with no identifier\n");
1331
		return ERR_PTR(-EINVAL);
1332 1333
	}

1334 1335 1336
	if (dev)
		devname = dev_name(dev);

1337 1338 1339 1340 1341
	if (have_full_constraints())
		ret = -ENODEV;
	else
		ret = -EPROBE_DEFER;

1342 1343
	mutex_lock(&regulator_list_mutex);

1344
	rdev = regulator_dev_lookup(dev, id, &ret);
1345 1346 1347
	if (rdev)
		goto found;

1348 1349
	regulator = ERR_PTR(ret);

1350 1351 1352 1353
	/*
	 * If we have return value from dev_lookup fail, we do not expect to
	 * succeed, so, quit with appropriate error value
	 */
1354
	if (ret && ret != -ENODEV)
1355 1356
		goto out;

1357 1358 1359
	if (!devname)
		devname = "deviceless";

1360 1361 1362
	/*
	 * Assume that a regulator is physically present and enabled
	 * even if it isn't hooked up and just provide a dummy.
1363
	 */
1364
	if (have_full_constraints() && allow_dummy) {
1365 1366
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1367

1368 1369
		rdev = dummy_regulator_rdev;
		goto found;
1370 1371
	/* Don't log an error when called from regulator_get_optional() */
	} else if (!have_full_constraints() || exclusive) {
1372
		dev_warn(dev, "dummy supplies not allowed\n");
1373 1374
	}

1375 1376 1377 1378
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1389 1390 1391
	if (!try_module_get(rdev->owner))
		goto out;

1392 1393 1394 1395
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1396
		goto out;
1397 1398
	}

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1410
out:
1411
	mutex_unlock(&regulator_list_mutex);
1412

1413 1414
	return regulator;
}
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1431
	return _regulator_get(dev, id, false, true);
1432
}
1433 1434
EXPORT_SYMBOL_GPL(regulator_get);

1435 1436 1437 1438 1439 1440 1441
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1442 1443 1444
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1458
	return _regulator_get(dev, id, true, false);
1459 1460 1461
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1462 1463 1464 1465 1466 1467
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1468
 * or IS_ERR() condition containing errno.
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1484
	return _regulator_get(dev, id, false, false);
1485 1486 1487
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1488 1489
/* Locks held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
1490 1491 1492 1493 1494 1495 1496 1497
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	rdev = regulator->rdev;

1498 1499
	debugfs_remove_recursive(regulator->debugfs);

1500
	/* remove any sysfs entries */
1501
	if (regulator->dev)
1502
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1503
	kfree(regulator->supply_name);
1504 1505 1506
	list_del(&regulator->list);
	kfree(regulator);

1507 1508 1509
	rdev->open_count--;
	rdev->exclusive = 0;

1510
	module_put(rdev->owner);
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1525 1526 1527 1528
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
1606 1607
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
1608
					 struct device *alias_dev,
1609
					 const char *const *alias_id,
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
1647
					    const char *const *id,
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
	int ret;

	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
		if (pin->gpio == config->ena_gpio) {
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

	ret = gpio_request_one(config->ena_gpio,
				GPIOF_DIR_OUT | config->ena_gpio_flags,
				rdev_get_name(rdev));
	if (ret)
		return ret;

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
		gpio_free(config->ena_gpio);
		return -ENOMEM;
	}

	pin->gpio = config->ena_gpio;
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
		if (pin->gpio == rdev->ena_pin->gpio) {
			if (pin->request_count <= 1) {
				pin->request_count = 0;
				gpio_free(pin->gpio);
				list_del(&pin->list);
				kfree(pin);
			} else {
				pin->request_count--;
			}
		}
	}
}

1717
/**
1718 1719 1720 1721
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
			gpio_set_value_cansleep(pin->gpio,
						!pin->ena_gpio_invert);

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
			gpio_set_value_cansleep(pin->gpio,
						pin->ena_gpio_invert);
			pin->enable_count = 0;
		}
	}

	return 0;
}

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

1771 1772 1773 1774
	if (rdev->ena_pin) {
		ret = regulator_ena_gpio_ctrl(rdev, true);
		if (ret < 0)
			return ret;
1775 1776
		rdev->ena_gpio_state = 1;
	} else if (rdev->desc->ops->enable) {
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	/*
	 * Delay for the requested amount of time as per the guidelines in:
	 *
	 *     Documentation/timers/timers-howto.txt
	 *
	 * The assumption here is that regulators will never be enabled in
	 * atomic context and therefore sleeping functions can be used.
	 */
	if (delay) {
		unsigned int ms = delay / 1000;
		unsigned int us = delay % 1000;

		if (ms > 0) {
			/*
			 * For small enough values, handle super-millisecond
			 * delays in the usleep_range() call below.
			 */
			if (ms < 20)
				us += ms * 1000;
			else
				msleep(ms);
		}

		/*
		 * Give the scheduler some room to coalesce with any other
		 * wakeup sources. For delays shorter than 10 us, don't even
		 * bother setting up high-resolution timers and just busy-
		 * loop.
		 */
		if (us >= 10)
			usleep_range(us, us + 100);
		else
			udelay(us);
1822 1823 1824 1825 1826 1827 1828
	}

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

1829 1830 1831
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1832
	int ret;
1833 1834

	/* check voltage and requested load before enabling */
1835 1836 1837
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1838

1839 1840 1841 1842 1843 1844 1845
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1846
			ret = _regulator_do_enable(rdev);
1847 1848 1849
			if (ret < 0)
				return ret;

1850
		} else if (ret < 0) {
1851
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1852 1853
			return ret;
		}
1854
		/* Fallthrough on positive return values - already enabled */
1855 1856
	}

1857 1858 1859
	rdev->use_count++;

	return 0;
1860 1861 1862 1863 1864 1865
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1866 1867 1868 1869
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1870
 * NOTE: the output value can be set by other drivers, boot loader or may be
1871
 * hardwired in the regulator.
1872 1873 1874
 */
int regulator_enable(struct regulator *regulator)
{
1875 1876
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1877

1878 1879 1880
	if (regulator->always_on)
		return 0;

1881 1882 1883 1884 1885 1886
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1887
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1888
	ret = _regulator_enable(rdev);
1889
	mutex_unlock(&rdev->mutex);
1890

1891
	if (ret != 0 && rdev->supply)
1892 1893
		regulator_disable(rdev->supply);

1894 1895 1896 1897
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

1898 1899 1900 1901 1902 1903
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

1904 1905 1906 1907
	if (rdev->ena_pin) {
		ret = regulator_ena_gpio_ctrl(rdev, false);
		if (ret < 0)
			return ret;
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
		rdev->ena_gpio_state = 0;

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

1921
/* locks held by regulator_disable() */
1922
static int _regulator_disable(struct regulator_dev *rdev)
1923 1924 1925
{
	int ret = 0;

D
David Brownell 已提交
1926
	if (WARN(rdev->use_count <= 0,
1927
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1928 1929
		return -EIO;

1930
	/* are we the last user and permitted to disable ? */
1931 1932
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1933 1934

		/* we are last user */
1935 1936
		if (_regulator_can_change_status(rdev)) {
			ret = _regulator_do_disable(rdev);
1937
			if (ret < 0) {
1938
				rdev_err(rdev, "failed to disable\n");
1939 1940
				return ret;
			}
1941 1942
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1955

1956 1957 1958 1959 1960 1961 1962
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1963 1964 1965
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1966
 *
1967
 * NOTE: this will only disable the regulator output if no other consumer
1968 1969
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1970 1971 1972
 */
int regulator_disable(struct regulator *regulator)
{
1973 1974
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1975

1976 1977 1978
	if (regulator->always_on)
		return 0;

1979
	mutex_lock(&rdev->mutex);
1980
	ret = _regulator_disable(rdev);
1981
	mutex_unlock(&rdev->mutex);
1982

1983 1984
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
1985

1986 1987 1988 1989 1990
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1991
static int _regulator_force_disable(struct regulator_dev *rdev)
1992 1993 1994
{
	int ret = 0;

1995 1996 1997 1998
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
		return ret;
1999 2000
	}

2001 2002 2003 2004
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2018
	struct regulator_dev *rdev = regulator->rdev;
2019 2020
	int ret;

2021
	mutex_lock(&rdev->mutex);
2022
	regulator->uA_load = 0;
2023
	ret = _regulator_force_disable(regulator->rdev);
2024
	mutex_unlock(&rdev->mutex);
2025

2026 2027 2028
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2029

2030 2031 2032 2033
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
2081
	int ret;
2082

2083 2084 2085
	if (regulator->always_on)
		return 0;

2086 2087 2088
	if (!ms)
		return regulator_disable(regulator);

2089 2090 2091 2092
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

2093 2094 2095
	ret = queue_delayed_work(system_power_efficient_wq,
				 &rdev->disable_work,
				 msecs_to_jiffies(ms));
2096 2097 2098 2099
	if (ret < 0)
		return ret;
	else
		return 0;
2100 2101 2102
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2103 2104
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2105
	/* A GPIO control always takes precedence */
2106
	if (rdev->ena_pin)
2107 2108
		return rdev->ena_gpio_state;

2109
	/* If we don't know then assume that the regulator is always on */
2110
	if (!rdev->desc->ops->is_enabled)
2111
		return 1;
2112

2113
	return rdev->desc->ops->is_enabled(rdev);
2114 2115 2116 2117 2118 2119
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2120 2121 2122 2123 2124 2125 2126
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2127 2128 2129
 */
int regulator_is_enabled(struct regulator *regulator)
{
2130 2131
	int ret;

2132 2133 2134
	if (regulator->always_on)
		return 1;

2135 2136 2137 2138 2139
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2140 2141 2142
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2143 2144 2145 2146 2147
/**
 * regulator_can_change_voltage - check if regulator can change voltage
 * @regulator: regulator source
 *
 * Returns positive if the regulator driver backing the source/client
2148
 * can change its voltage, false otherwise. Useful for detecting fixed
2149 2150 2151 2152 2153 2154 2155 2156
 * or dummy regulators and disabling voltage change logic in the client
 * driver.
 */
int regulator_can_change_voltage(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	if (rdev->constraints &&
2157 2158 2159 2160 2161 2162 2163 2164 2165
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
			return 1;

		if (rdev->desc->continuous_voltage_range &&
		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
		    rdev->constraints->min_uV != rdev->constraints->max_uV)
			return 1;
	}
2166 2167 2168 2169 2170

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_can_change_voltage);

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2194
 * zero if this selector code can't be used on this system, or a
2195 2196 2197 2198 2199 2200 2201 2202
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

2203 2204 2205
	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2251
	struct regulator_dev *rdev = regulator->rdev;
2252 2253
	int i, voltages, ret;

2254 2255 2256 2257
	/* If we can't change voltage check the current voltage */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2258
			return min_uV <= ret && ret <= max_uV;
2259 2260 2261 2262
		else
			return ret;
	}

2263 2264 2265 2266 2267
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2282
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2283

2284 2285 2286 2287
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2288
	int delay = 0;
2289
	int best_val = 0;
2290
	unsigned int selector;
2291
	int old_selector = -1;
2292 2293 2294

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2295 2296 2297
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2298 2299 2300 2301
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2302 2303
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2304 2305 2306 2307 2308 2309
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2310 2311 2312
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);
2313 2314 2315 2316 2317 2318 2319 2320 2321

		if (ret >= 0) {
			if (rdev->desc->ops->list_voltage)
				best_val = rdev->desc->ops->list_voltage(rdev,
									 selector);
			else
				best_val = _regulator_get_voltage(rdev);
		}

2322
	} else if (rdev->desc->ops->set_voltage_sel) {
2323
		if (rdev->desc->ops->map_voltage) {
2324 2325
			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
							   max_uV);
2326 2327 2328 2329 2330
		} else {
			if (rdev->desc->ops->list_voltage ==
			    regulator_list_voltage_linear)
				ret = regulator_map_voltage_linear(rdev,
								min_uV, max_uV);
2331 2332 2333 2334
			else if (rdev->desc->ops->list_voltage ==
				 regulator_list_voltage_linear_range)
				ret = regulator_map_voltage_linear_range(rdev,
								min_uV, max_uV);
2335 2336 2337 2338
			else
				ret = regulator_map_voltage_iterate(rdev,
								min_uV, max_uV);
		}
2339

2340
		if (ret >= 0) {
2341 2342 2343
			best_val = rdev->desc->ops->list_voltage(rdev, ret);
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2344 2345 2346 2347 2348
				if (old_selector == selector)
					ret = 0;
				else
					ret = rdev->desc->ops->set_voltage_sel(
								rdev, ret);
2349 2350 2351
			} else {
				ret = -EINVAL;
			}
2352
		}
2353 2354 2355
	} else {
		ret = -EINVAL;
	}
2356

2357
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2358 2359
	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
		&& old_selector != selector) {
2360

2361 2362 2363 2364 2365 2366
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2367
		}
2368

2369 2370 2371 2372 2373 2374 2375
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2376 2377
	}

2378 2379 2380
	if (ret == 0 && best_val >= 0) {
		unsigned long data = best_val;

2381
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2382 2383
				     (void *)data);
	}
2384

2385
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2386 2387 2388 2389

	return ret;
}

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
2405
 * Regulator system constraints must be set for this regulator before
2406 2407 2408 2409 2410
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
2411
	int ret = 0;
2412
	int old_min_uV, old_max_uV;
2413
	int current_uV;
2414 2415 2416

	mutex_lock(&rdev->mutex);

2417 2418 2419 2420 2421 2422 2423
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	/* If we're trying to set a range that overlaps the current voltage,
	 * return succesfully even though the regulator does not support
	 * changing the voltage.
	 */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
			regulator->min_uV = min_uV;
			regulator->max_uV = max_uV;
			goto out;
		}
	}

2437
	/* sanity check */
2438 2439
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2440 2441 2442 2443 2444 2445 2446 2447
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2448

2449 2450 2451
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2452 2453
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2454

2455 2456
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2457
		goto out2;
2458

2459
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2460 2461
	if (ret < 0)
		goto out2;
2462

2463 2464 2465
out:
	mutex_unlock(&rdev->mutex);
	return ret;
2466 2467 2468 2469
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
	mutex_unlock(&rdev->mutex);
2470 2471 2472 2473
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2519
/**
2520 2521
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
2522 2523 2524 2525 2526 2527
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
2528
 * Drivers providing ramp_delay in regulation_constraints can use this as their
2529
 * set_voltage_time_sel() operation.
2530 2531 2532 2533 2534
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
2535
	unsigned int ramp_delay = 0;
2536
	int old_volt, new_volt;
2537 2538 2539 2540 2541 2542 2543

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
2544
		rdev_warn(rdev, "ramp_delay not set\n");
2545
		return 0;
2546
	}
2547

2548 2549 2550
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
2551

2552 2553 2554 2555
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2556
}
2557
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2558

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2606 2607
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2608
	int sel, ret;
2609 2610 2611 2612 2613

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2614
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2615
	} else if (rdev->desc->ops->get_voltage) {
2616
		ret = rdev->desc->ops->get_voltage(rdev);
2617 2618
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
2619 2620
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
2621
	} else {
2622
		return -EINVAL;
2623
	}
2624

2625 2626
	if (ret < 0)
		return ret;
2627
	return ret - rdev->constraints->uV_offset;
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
2656
 * @min_uA: Minimum supported current in uA
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2743
	int regulator_curr_mode;
2744 2745 2746 2747 2748 2749 2750 2751 2752

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2753 2754 2755 2756 2757 2758 2759 2760 2761
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2762
	/* constraints check */
2763
	ret = regulator_mode_constrain(rdev, &mode);
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
2834
	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2835 2836
	unsigned int mode;

2837 2838 2839
	if (rdev->supply)
		input_uV = regulator_get_voltage(rdev->supply);

2840 2841
	mutex_lock(&rdev->mutex);

2842 2843 2844 2845
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
2846 2847
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
2848 2849
	if (ret < 0) {
		ret = 0;
2850
		goto out;
2851
	}
2852 2853 2854 2855

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

2856 2857 2858 2859 2860 2861
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

2862 2863 2864
	if (!rdev->desc->ops->set_mode)
		goto out;

2865
	/* get output voltage */
2866
	output_uV = _regulator_get_voltage(rdev);
2867
	if (output_uV <= 0) {
2868
		rdev_err(rdev, "invalid output voltage found\n");
2869 2870 2871
		goto out;
	}

2872
	/* No supply? Use constraint voltage */
2873
	if (input_uV <= 0)
2874 2875
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2876
		rdev_err(rdev, "invalid input voltage found\n");
2877 2878 2879 2880 2881
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2882
		total_uA_load += consumer->uA_load;
2883 2884 2885 2886

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2887
	ret = regulator_mode_constrain(rdev, &mode);
2888
	if (ret < 0) {
2889 2890
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2891 2892 2893 2894
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2895
	if (ret < 0) {
2896
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2897 2898 2899 2900 2901 2902 2903 2904 2905
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

2906 2907 2908 2909
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
2910
 * @enable: enable or disable bypass mode
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

	if (rdev->constraints &&
	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

2959 2960 2961
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
2962
 * @nb: notifier block
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
2977
 * @nb: notifier block
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

2989 2990 2991
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
2992 2993 2994 2995
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	/* call rdev chain first */
2996
	blocking_notifier_call_chain(&rdev->notifier, event, data);
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
3027 3028
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
3029 3030 3031 3032 3033 3034 3035 3036
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3037
	while (--i >= 0)
3038 3039 3040 3041 3042 3043
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3044 3045 3046 3047 3048 3049 3050
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3066
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3067
	int i;
3068
	int ret = 0;
3069

3070 3071 3072 3073 3074 3075 3076
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3077 3078 3079 3080

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3081
	for (i = 0; i < num_consumers; i++) {
3082 3083
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3084
			goto err;
3085
		}
3086 3087 3088 3089 3090
	}

	return 0;

err:
3091 3092 3093 3094 3095 3096 3097
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3111 3112
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3113 3114 3115 3116 3117 3118
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3119
	int ret, r;
3120

3121
	for (i = num_consumers - 1; i >= 0; --i) {
3122 3123 3124 3125 3126 3127 3128 3129
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3130
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3131 3132 3133 3134 3135 3136
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
3137 3138 3139 3140 3141

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3202
 * @rdev: regulator source
3203
 * @event: notifier block
3204
 * @data: callback-specific data.
3205 3206 3207
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3208
 * Note lock must be held by caller.
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3235
	case REGULATOR_MODE_STANDBY:
3236 3237
		return REGULATOR_STATUS_STANDBY;
	default:
3238
		return REGULATOR_STATUS_UNDEFINED;
3239 3240 3241 3242
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
3254
	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3255
	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3256 3257
	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
3272
	if (rdev->ena_pin || ops->is_enabled) {
3273 3274 3275 3276
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
3277 3278 3279 3280 3281
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
3282 3283 3284 3285 3286
	if (ops->get_bypass) {
		status = device_create_file(dev, &dev_attr_bypass);
		if (status < 0)
			return status;
	}
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
3303
	if (ops->set_voltage || ops->set_voltage_sel) {
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

3363 3364 3365
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3366
	if (!rdev->debugfs) {
3367 3368 3369 3370 3371 3372 3373 3374
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3375 3376
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3377 3378
}

3379 3380
/**
 * regulator_register - register regulator
3381
 * @regulator_desc: regulator to register
3382
 * @config: runtime configuration for regulator
3383 3384
 *
 * Called by regulator drivers to register a regulator.
3385 3386
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3387
 */
3388 3389
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3390
		   const struct regulator_config *config)
3391
{
3392
	const struct regulation_constraints *constraints = NULL;
3393
	const struct regulator_init_data *init_data;
3394 3395
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
3396
	struct device *dev;
3397
	int ret, i;
3398
	const char *supply = NULL;
3399

3400
	if (regulator_desc == NULL || config == NULL)
3401 3402
		return ERR_PTR(-EINVAL);

3403
	dev = config->dev;
3404
	WARN_ON(!dev);
3405

3406 3407 3408
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3409 3410
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3411 3412
		return ERR_PTR(-EINVAL);

3413 3414 3415
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3416 3417
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3418 3419 3420 3421 3422 3423

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3424 3425 3426 3427
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3428

3429 3430
	init_data = config->init_data;

3431 3432 3433 3434 3435 3436 3437
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3438
	rdev->reg_data = config->driver_data;
3439 3440
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3441 3442
	if (config->regmap)
		rdev->regmap = config->regmap;
3443
	else if (dev_get_regmap(dev, NULL))
3444
		rdev->regmap = dev_get_regmap(dev, NULL);
3445 3446
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3447 3448 3449
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3450
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3451

3452
	/* preform any regulator specific init */
3453
	if (init_data && init_data->regulator_init) {
3454
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3455 3456
		if (ret < 0)
			goto clean;
3457 3458 3459
	}

	/* register with sysfs */
3460
	rdev->dev.class = &regulator_class;
3461
	rdev->dev.of_node = of_node_get(config->of_node);
3462
	rdev->dev.parent = dev;
3463 3464
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
3465
	ret = device_register(&rdev->dev);
3466 3467
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3468
		goto clean;
3469
	}
3470 3471 3472

	dev_set_drvdata(&rdev->dev, rdev);

3473
	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3474
		ret = regulator_ena_gpio_request(rdev, config);
3475 3476 3477
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
3478
			goto wash;
3479 3480 3481 3482 3483
		}

		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
			rdev->ena_gpio_state = 1;

3484
		if (config->ena_gpio_invert)
3485 3486 3487
			rdev->ena_gpio_state = !rdev->ena_gpio_state;
	}

3488
	/* set regulator constraints */
3489 3490 3491 3492
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3493 3494 3495
	if (ret < 0)
		goto scrub;

3496 3497 3498 3499 3500
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

3501
	if (init_data && init_data->supply_regulator)
3502 3503 3504 3505 3506
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
3507 3508
		struct regulator_dev *r;

3509
		r = regulator_dev_lookup(dev, supply, &ret);
3510

3511 3512 3513 3514 3515 3516 3517 3518
		if (ret == -ENODEV) {
			/*
			 * No supply was specified for this regulator and
			 * there will never be one.
			 */
			ret = 0;
			goto add_dev;
		} else if (!r) {
3519
			dev_err(dev, "Failed to find supply %s\n", supply);
3520
			ret = -EPROBE_DEFER;
3521 3522 3523 3524 3525 3526
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
3527 3528

		/* Enable supply if rail is enabled */
3529
		if (_regulator_is_enabled(rdev)) {
3530 3531 3532 3533
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
3534 3535
	}

3536
add_dev:
3537
	/* add consumers devices */
3538 3539 3540 3541
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3542
				init_data->consumer_supplies[i].supply);
3543 3544 3545 3546 3547
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3548
		}
3549
	}
3550 3551

	list_add(&rdev->list, &regulator_list);
3552 3553

	rdev_init_debugfs(rdev);
3554
out:
3555 3556
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
3557

3558 3559 3560
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3561
scrub:
3562
	if (rdev->supply)
3563
		_regulator_put(rdev->supply);
3564
	regulator_ena_gpio_free(rdev);
3565
	kfree(rdev->constraints);
3566
wash:
D
David Brownell 已提交
3567
	device_unregister(&rdev->dev);
3568 3569 3570 3571
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3572 3573 3574 3575
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3576 3577 3578 3579 3580
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3581
 * @rdev: regulator to unregister
3582 3583 3584 3585 3586 3587 3588 3589
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

3590 3591 3592
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
3593
		regulator_put(rdev->supply);
3594
	}
3595
	mutex_lock(&regulator_list_mutex);
3596
	debugfs_remove_recursive(rdev->debugfs);
3597
	flush_work(&rdev->disable_work.work);
3598
	WARN_ON(rdev->open_count);
3599
	unset_regulator_supplies(rdev);
3600
	list_del(&rdev->list);
3601
	kfree(rdev->constraints);
3602
	regulator_ena_gpio_free(rdev);
3603
	of_node_put(rdev->dev.of_node);
3604
	device_unregister(&rdev->dev);
3605 3606 3607 3608 3609
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3610
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3633
			rdev_err(rdev, "failed to prepare\n");
3634 3635 3636 3637 3638 3639 3640 3641 3642
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		mutex_lock(&rdev->mutex);
3657 3658
		if (rdev->use_count > 0  || rdev->constraints->always_on) {
			error = _regulator_do_enable(rdev);
3659 3660 3661
			if (error)
				ret = error;
		} else {
3662
			if (!have_full_constraints())
3663
				goto unlock;
3664
			if (!_regulator_is_enabled(rdev))
3665 3666
				goto unlock;

3667
			error = _regulator_do_disable(rdev);
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3696 3697
/**
 * rdev_get_drvdata - get rdev regulator driver data
3698
 * @rdev: regulator
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3735
 * @rdev: regulator
3736 3737 3738 3739 3740 3741 3742
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
3785
#endif
3786 3787

static const struct file_operations supply_map_fops = {
3788
#ifdef CONFIG_DEBUG_FS
3789 3790 3791
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
3792
};
3793

3794 3795
static int __init regulator_init(void)
{
3796 3797 3798 3799
	int ret;

	ret = class_register(&regulator_class);

3800
	debugfs_root = debugfs_create_dir("regulator", NULL);
3801
	if (!debugfs_root)
3802
		pr_warn("regulator: Failed to create debugfs directory\n");
3803

3804 3805
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
3806

3807 3808 3809
	regulator_dummy_init();

	return ret;
3810 3811 3812 3813
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
3814 3815 3816 3817 3818 3819 3820 3821

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

3822 3823 3824 3825 3826 3827 3828 3829 3830
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

3831 3832 3833
	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
3834 3835 3836
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
3837 3838 3839 3840 3841
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

3842
		if (c && c->always_on)
3843 3844
			continue;

3845 3846 3847
		if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
			continue;

3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

3862
		if (have_full_constraints()) {
3863 3864
			/* We log since this may kill the system if it
			 * goes wrong. */
3865
			rdev_info(rdev, "disabling\n");
3866
			ret = _regulator_do_disable(rdev);
3867
			if (ret != 0)
3868
				rdev_err(rdev, "couldn't disable: %d\n", ret);
3869 3870 3871 3872 3873 3874
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
3875
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
3886
late_initcall_sync(regulator_init_complete);