sb_edac.c 91.7 KB
Newer Older
1 2 3 4 5 6 7 8 9
/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
 *
 * This driver supports the memory controllers found on the Intel
 * processor family Sandy Bridge.
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
 * Copyright (c) 2011 by:
10
 *	 Mauro Carvalho Chehab
11 12 13 14 15 16 17 18 19 20 21 22
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/smp.h>
#include <linux/bitmap.h>
23
#include <linux/math64.h>
24 25
#include <linux/mod_devicetable.h>
#include <asm/cpu_device_id.h>
26
#include <asm/intel-family.h>
27
#include <asm/processor.h>
28
#include <asm/mce.h>
29

30
#include "edac_module.h"
31 32 33 34 35 36 37

/* Static vars */
static LIST_HEAD(sbridge_edac_list);

/*
 * Alter this version for the module when modifications are made
 */
38
#define SBRIDGE_REVISION    " Ver: 1.1.2 "
39
#define EDAC_MOD_STR	    "sb_edac"
40 41 42 43 44 45 46 47 48 49 50 51 52 53

/*
 * Debug macros
 */
#define sbridge_printk(level, fmt, arg...)			\
	edac_printk(level, "sbridge", fmt, ##arg)

#define sbridge_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)

/*
 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
 */
#define GET_BITFIELD(v, lo, hi)	\
54
	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
55 56

/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57
static const u32 sbridge_dram_rule[] = {
58 59 60 61
	0x80, 0x88, 0x90, 0x98, 0xa0,
	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
};

62 63 64 65 66 67
static const u32 ibridge_dram_rule[] = {
	0x60, 0x68, 0x70, 0x78, 0x80,
	0x88, 0x90, 0x98, 0xa0,	0xa8,
	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
};
68

69 70 71 72 73 74 75 76
static const u32 knl_dram_rule[] = {
	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
};

77
#define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
78
#define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
79

80
static char *show_dram_attr(u32 attr)
81
{
82
	switch (attr) {
83 84 85 86 87 88 89 90 91 92 93
		case 0:
			return "DRAM";
		case 1:
			return "MMCFG";
		case 2:
			return "NXM";
		default:
			return "unknown";
	}
}

94
static const u32 sbridge_interleave_list[] = {
95 96 97 98
	0x84, 0x8c, 0x94, 0x9c, 0xa4,
	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
};

99 100 101 102 103 104 105
static const u32 ibridge_interleave_list[] = {
	0x64, 0x6c, 0x74, 0x7c, 0x84,
	0x8c, 0x94, 0x9c, 0xa4, 0xac,
	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
};

106 107 108 109 110 111 112
static const u32 knl_interleave_list[] = {
	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
};
113 114 115 116
#define MAX_INTERLEAVE							\
	(max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),	\
	       max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list),	\
		     ARRAY_SIZE(knl_interleave_list))))
117

A
Aristeu Rozanski 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
struct interleave_pkg {
	unsigned char start;
	unsigned char end;
};

static const struct interleave_pkg sbridge_interleave_pkg[] = {
	{ 0, 2 },
	{ 3, 5 },
	{ 8, 10 },
	{ 11, 13 },
	{ 16, 18 },
	{ 19, 21 },
	{ 24, 26 },
	{ 27, 29 },
};

134 135 136 137 138 139 140 141 142 143 144
static const struct interleave_pkg ibridge_interleave_pkg[] = {
	{ 0, 3 },
	{ 4, 7 },
	{ 8, 11 },
	{ 12, 15 },
	{ 16, 19 },
	{ 20, 23 },
	{ 24, 27 },
	{ 28, 31 },
};

A
Aristeu Rozanski 已提交
145 146
static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
			  int interleave)
147
{
A
Aristeu Rozanski 已提交
148 149
	return GET_BITFIELD(reg, table[interleave].start,
			    table[interleave].end);
150 151 152 153 154
}

/* Devices 12 Function 7 */

#define TOLM		0x80
155
#define TOHM		0x84
156
#define HASWELL_TOLM	0xd0
157 158
#define HASWELL_TOHM_0	0xd4
#define HASWELL_TOHM_1	0xd8
159 160 161
#define KNL_TOLM	0xd0
#define KNL_TOHM_0	0xd4
#define KNL_TOHM_1	0xd8
162 163 164 165 166 167 168 169 170 171

#define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
#define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)

/* Device 13 Function 6 */

#define SAD_TARGET	0xf0

#define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)

172 173
#define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
#define SAD_CONTROL	0xf4

/* Device 14 function 0 */

static const u32 tad_dram_rule[] = {
	0x40, 0x44, 0x48, 0x4c,
	0x50, 0x54, 0x58, 0x5c,
	0x60, 0x64, 0x68, 0x6c,
};
#define MAX_TAD	ARRAY_SIZE(tad_dram_rule)

#define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
#define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
#define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
#define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
#define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
#define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
#define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)

/* Device 15, function 0 */

#define MCMTR			0x7c
196
#define KNL_MCMTR		0x624
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

#define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
#define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
#define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)

/* Device 15, function 1 */

#define RASENABLES		0xac
#define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)

/* Device 15, functions 2-5 */

static const int mtr_regs[] = {
	0x80, 0x84, 0x88,
};

213 214
static const int knl_mtr_reg = 0xb60;

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
#define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
#define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
#define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
#define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
#define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)

static const u32 tad_ch_nilv_offset[] = {
	0x90, 0x94, 0x98, 0x9c,
	0xa0, 0xa4, 0xa8, 0xac,
	0xb0, 0xb4, 0xb8, 0xbc,
};
#define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
#define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)

static const u32 rir_way_limit[] = {
	0x108, 0x10c, 0x110, 0x114, 0x118,
};
#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)

#define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
#define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)

#define MAX_RIR_WAY	8

static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
};

247 248 249 250 251
#define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))

#define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

/* Device 16, functions 2-7 */

/*
 * FIXME: Implement the error count reads directly
 */

static const u32 correrrcnt[] = {
	0x104, 0x108, 0x10c, 0x110,
};

#define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
#define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
#define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)

static const u32 correrrthrsld[] = {
	0x11c, 0x120, 0x124, 0x128,
};

#define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)


/* Device 17, function 0 */

278
#define SB_RANK_CFG_A		0x0328
279

280
#define IB_RANK_CFG_A		0x0320
281 282 283 284 285

/*
 * sbridge structs
 */

286
#define NUM_CHANNELS		6	/* Max channels per MC */
287
#define MAX_DIMMS		3	/* Max DIMMS per channel */
288 289 290
#define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
#define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
#define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
291
#define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
292

293 294 295
enum type {
	SANDY_BRIDGE,
	IVY_BRIDGE,
296
	HASWELL,
297
	BROADWELL,
298
	KNIGHTS_LANDING,
299 300
};

301 302 303 304 305 306
enum domain {
	IMC0 = 0,
	IMC1,
	SOCK,
};

307 308 309 310 311 312
enum mirroring_mode {
	NON_MIRRORING,
	ADDR_RANGE_MIRRORING,
	FULL_MIRRORING,
};

A
Aristeu Rozanski 已提交
313
struct sbridge_pvt;
314
struct sbridge_info {
315
	enum type	type;
316 317 318 319
	u32		mcmtr;
	u32		rankcfgr;
	u64		(*get_tolm)(struct sbridge_pvt *pvt);
	u64		(*get_tohm)(struct sbridge_pvt *pvt);
320
	u64		(*rir_limit)(u32 reg);
321 322 323
	u64		(*sad_limit)(u32 reg);
	u32		(*interleave_mode)(u32 reg);
	u32		(*dram_attr)(u32 reg);
324
	const u32	*dram_rule;
325
	const u32	*interleave_list;
A
Aristeu Rozanski 已提交
326
	const struct interleave_pkg *interleave_pkg;
327
	u8		max_sad;
328
	u8		(*get_node_id)(struct sbridge_pvt *pvt);
329
	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
330
	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
331
	struct pci_dev	*pci_vtd;
332 333 334 335 336 337 338 339
};

struct sbridge_channel {
	u32		ranks;
	u32		dimms;
};

struct pci_id_descr {
340
	int			dev_id;
341
	int			optional;
342
	enum domain		dom;
343 344 345 346
};

struct pci_id_table {
	const struct pci_id_descr	*descr;
347 348 349
	int				n_devs_per_imc;
	int				n_devs_per_sock;
	int				n_imcs_per_sock;
350
	enum type			type;
351 352 353 354
};

struct sbridge_dev {
	struct list_head	list;
355
	int			seg;
356 357 358
	u8			bus, mc;
	u8			node_id, source_id;
	struct pci_dev		**pdev;
359
	enum domain		dom;
360
	int			n_devs;
361
	int			i_devs;
362 363 364
	struct mem_ctl_info	*mci;
};

365 366 367 368 369 370 371 372 373 374
struct knl_pvt {
	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
	struct pci_dev          *pci_mc0;
	struct pci_dev          *pci_mc1;
	struct pci_dev          *pci_mc0_misc;
	struct pci_dev          *pci_mc1_misc;
	struct pci_dev          *pci_mc_info; /* tolm, tohm */
};

375
struct sbridge_pvt {
376 377
	/* Devices per socket */
	struct pci_dev		*pci_ddrio;
378 379
	struct pci_dev		*pci_sad0, *pci_sad1;
	struct pci_dev		*pci_br0, *pci_br1;
380 381
	/* Devices per memory controller */
	struct pci_dev		*pci_ha, *pci_ta, *pci_ras;
382 383 384 385 386 387 388 389
	struct pci_dev		*pci_tad[NUM_CHANNELS];

	struct sbridge_dev	*sbridge_dev;

	struct sbridge_info	info;
	struct sbridge_channel	channel[NUM_CHANNELS];

	/* Memory type detection */
390
	bool			is_cur_addr_mirrored, is_lockstep, is_close_pg;
391
	bool			is_chan_hash;
392
	enum mirroring_mode	mirror_mode;
393 394 395

	/* Memory description */
	u64			tolm, tohm;
396
	struct knl_pvt knl;
397 398
};

399
#define PCI_DESCR(device_id, opt, domain)	\
400
	.dev_id = (device_id),		\
401 402
	.optional = opt,	\
	.dom = domain
403 404 405

static const struct pci_id_descr pci_dev_descr_sbridge[] = {
		/* Processor Home Agent */
406
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
407 408

		/* Memory controller */
409 410 411 412 413 414 415
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
416 417

		/* System Address Decoder */
418 419
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
420 421

		/* Broadcast Registers */
422
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
423 424
};

425
#define PCI_ID_TABLE_ENTRY(A, N, M, T) {	\
426
	.descr = A,			\
427 428 429
	.n_devs_per_imc = N,	\
	.n_devs_per_sock = ARRAY_SIZE(A),	\
	.n_imcs_per_sock = M,	\
430 431 432
	.type = T			\
}

433
static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
434
	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
435 436 437
	{0,}			/* 0 terminated list. */
};

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
/* This changes depending if 1HA or 2HA:
 * 1HA:
 *	0x0eb8 (17.0) is DDRIO0
 * 2HA:
 *	0x0ebc (17.4) is DDRIO0
 */
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc

/* pci ids */
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
463 464
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
465 466 467

static const struct pci_id_descr pci_dev_descr_ibridge[] = {
		/* Processor Home Agent */
468
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
469
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
470 471

		/* Memory controller */
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },

		/* Optional, mode 2HA */
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
489 490

		/* System Address Decoder */
491
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
492 493

		/* Broadcast Registers */
494 495
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
496 497 498 499

};

static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
500
	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
501 502 503
	{0,}			/* 0 terminated list. */
};

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
/* Haswell support */
/* EN processor:
 *	- 1 IMC
 *	- 3 DDR3 channels, 2 DPC per channel
 * EP processor:
 *	- 1 or 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EP 4S processor:
 *	- 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EX processor:
 *	- 2 IMC
 *	- each IMC interfaces with a SMI 2 channel
 *	- each SMI channel interfaces with a scalable memory buffer
 *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 */
520
#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
521 522 523 524 525
#define HASWELL_HASYSDEFEATURE2 0x84
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
526
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM	0x2f71
527
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
528
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM	0x2f79
529 530 531 532 533 534 535 536 537 538 539
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
540 541 542
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
543 544
static const struct pci_id_descr pci_dev_descr_haswell[] = {
	/* first item must be the HA */
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
568 569 570
};

static const struct pci_id_table pci_dev_descr_haswell_table[] = {
571
	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
572 573 574
	{0,}			/* 0 terminated list. */
};

575 576 577
/* Knight's Landing Support */
/*
 * KNL's memory channels are swizzled between memory controllers.
578
 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
579
 */
580
#define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
581 582 583 584

/* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
/* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
585
#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
/* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
/* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
/* SAD target - 1-29-1 (1 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
/* Caching / Home Agent */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
/* Device with TOLM and TOHM, 0-5-0 (1 of these) */
#define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810

/*
 * KNL differs from SB, IB, and Haswell in that it has multiple
 * instances of the same device with the same device ID, so we handle that
 * by creating as many copies in the table as we expect to find.
 * (Like device ID must be grouped together.)
 */

static const struct pci_id_descr pci_dev_descr_knl[] = {
605 606 607 608 609 610 611
	[0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
	[2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
	[8]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
	[9]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
	[10]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
	[11]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
	[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
612 613 614
};

static const struct pci_id_table pci_dev_descr_knl_table[] = {
615
	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
616 617 618
	{0,}
};

619 620 621 622 623 624
/*
 * Broadwell support
 *
 * DE processor:
 *	- 1 IMC
 *	- 2 DDR3 channels, 2 DPC per channel
625 626 627 628 629 630 631 632 633 634 635
 * EP processor:
 *	- 1 or 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EP 4S processor:
 *	- 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EX processor:
 *	- 2 IMC
 *	- each IMC interfaces with a SMI 2 channel
 *	- each SMI channel interfaces with a scalable memory buffer
 *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
636 637 638
 */
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
639
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
640
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
641
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM	0x6f71
642
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
643
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM	0x6f79
644 645 646 647 648 649
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
650 651 652 653
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
654 655 656 657
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf

static const struct pci_id_descr pci_dev_descr_broadwell[] = {
	/* first item must be the HA */
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
678 679 680
};

static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
681
	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
682 683 684
	{0,}			/* 0 terminated list. */
};

685 686

/****************************************************************************
D
David Mackey 已提交
687
			Ancillary status routines
688 689
 ****************************************************************************/

690
static inline int numrank(enum type type, u32 mtr)
691 692
{
	int ranks = (1 << RANK_CNT_BITS(mtr));
693 694
	int max = 4;

695
	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
696
		max = 8;
697

698 699 700
	if (ranks > max) {
		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
701 702 703 704 705 706 707 708 709 710 711
		return -EINVAL;
	}

	return ranks;
}

static inline int numrow(u32 mtr)
{
	int rows = (RANK_WIDTH_BITS(mtr) + 12);

	if (rows < 13 || rows > 18) {
712 713
		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
714 715 716 717 718 719 720 721 722 723 724
		return -EINVAL;
	}

	return 1 << rows;
}

static inline int numcol(u32 mtr)
{
	int cols = (COL_WIDTH_BITS(mtr) + 10);

	if (cols > 12) {
725 726
		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
727 728 729 730 731 732
		return -EINVAL;
	}

	return 1 << cols;
}

733 734
static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
					   int multi_bus,
735
					   struct sbridge_dev *prev)
736 737 738
{
	struct sbridge_dev *sbridge_dev;

739 740 741 742 743 744 745 746 747
	/*
	 * If we have devices scattered across several busses that pertain
	 * to the same memory controller, we'll lump them all together.
	 */
	if (multi_bus) {
		return list_first_entry_or_null(&sbridge_edac_list,
				struct sbridge_dev, list);
	}

748 749 750 751
	sbridge_dev = list_entry(prev ? prev->list.next
				      : sbridge_edac_list.next, struct sbridge_dev, list);

	list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
752 753
		if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
				(dom == SOCK || dom == sbridge_dev->dom))
754 755 756 757 758 759
			return sbridge_dev;
	}

	return NULL;
}

760
static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
761
					     const struct pci_id_table *table)
762 763 764 765 766 767 768
{
	struct sbridge_dev *sbridge_dev;

	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
	if (!sbridge_dev)
		return NULL;

769 770 771
	sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
				    sizeof(*sbridge_dev->pdev),
				    GFP_KERNEL);
772 773 774 775 776
	if (!sbridge_dev->pdev) {
		kfree(sbridge_dev);
		return NULL;
	}

777
	sbridge_dev->seg = seg;
778
	sbridge_dev->bus = bus;
779
	sbridge_dev->dom = dom;
780
	sbridge_dev->n_devs = table->n_devs_per_imc;
781 782 783 784 785 786 787 788 789 790 791 792
	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);

	return sbridge_dev;
}

static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
{
	list_del(&sbridge_dev->list);
	kfree(sbridge_dev->pdev);
	kfree(sbridge_dev);
}

A
Aristeu Rozanski 已提交
793 794 795 796 797 798 799 800 801
static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	/* Address range is 32:28 */
	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
	return GET_TOLM(reg);
}

A
Aristeu Rozanski 已提交
802 803 804 805 806 807 808 809
static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
	return GET_TOHM(reg);
}

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);

	return GET_TOLM(reg);
}

static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);

	return GET_TOHM(reg);
}

828 829 830 831 832
static u64 rir_limit(u32 reg)
{
	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
}

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
static u64 sad_limit(u32 reg)
{
	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
}

static u32 interleave_mode(u32 reg)
{
	return GET_BITFIELD(reg, 1, 1);
}

static u32 dram_attr(u32 reg)
{
	return GET_BITFIELD(reg, 2, 3);
}

848 849 850 851 852 853 854 855 856 857
static u64 knl_sad_limit(u32 reg)
{
	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
}

static u32 knl_interleave_mode(u32 reg)
{
	return GET_BITFIELD(reg, 1, 2);
}

858 859 860
static const char * const knl_intlv_mode[] = {
	"[8:6]", "[10:8]", "[14:12]", "[32:30]"
};
861

862 863 864 865 866 867
static const char *get_intlv_mode_str(u32 reg, enum type t)
{
	if (t == KNIGHTS_LANDING)
		return knl_intlv_mode[knl_interleave_mode(reg)];
	else
		return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
868 869 870 871 872 873 874 875
}

static u32 dram_attr_knl(u32 reg)
{
	return GET_BITFIELD(reg, 3, 4);
}


876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
{
	u32 reg;
	enum mem_type mtype;

	if (pvt->pci_ddrio) {
		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
				      &reg);
		if (GET_BITFIELD(reg, 11, 11))
			/* FIXME: Can also be LRDIMM */
			mtype = MEM_RDDR3;
		else
			mtype = MEM_DDR3;
	} else
		mtype = MEM_UNKNOWN;

	return mtype;
}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
{
	u32 reg;
	bool registered = false;
	enum mem_type mtype = MEM_UNKNOWN;

	if (!pvt->pci_ddrio)
		goto out;

	pci_read_config_dword(pvt->pci_ddrio,
			      HASWELL_DDRCRCLKCONTROLS, &reg);
	/* Is_Rdimm */
	if (GET_BITFIELD(reg, 16, 16))
		registered = true;

	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
	if (GET_BITFIELD(reg, 14, 14)) {
		if (registered)
			mtype = MEM_RDDR4;
		else
			mtype = MEM_DDR4;
	} else {
		if (registered)
			mtype = MEM_RDDR3;
		else
			mtype = MEM_DDR3;
	}

out:
	return mtype;
}

927 928 929 930 931 932
static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
	/* for KNL value is fixed */
	return DEV_X16;
}

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
	/* there's no way to figure out */
	return DEV_UNKNOWN;
}

static enum dev_type __ibridge_get_width(u32 mtr)
{
	enum dev_type type;

	switch (mtr) {
	case 3:
		type = DEV_UNKNOWN;
		break;
	case 2:
		type = DEV_X16;
		break;
	case 1:
		type = DEV_X8;
		break;
	case 0:
		type = DEV_X4;
		break;
	}

	return type;
}

static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
	/*
	 * ddr3_width on the documentation but also valid for DDR4 on
	 * Haswell
	 */
	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
}

static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
{
	/* ddr3_width on the documentation but also valid for DDR4 */
	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
}

976 977 978 979 980 981
static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
{
	/* DDR4 RDIMMS and LRDIMMS are supported */
	return MEM_RDDR4;
}

982 983 984 985 986 987 988
static u8 get_node_id(struct sbridge_pvt *pvt)
{
	u32 reg;
	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
	return GET_BITFIELD(reg, 0, 2);
}

989 990 991 992 993 994 995 996
static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
	return GET_BITFIELD(reg, 0, 3);
}

997 998 999 1000 1001 1002 1003 1004 1005
static u8 knl_get_node_id(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
	return GET_BITFIELD(reg, 0, 2);
}


1006 1007 1008 1009
static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

1010 1011
	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
}

static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
{
	u64 rc;
	u32 reg;

	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
	rc = GET_BITFIELD(reg, 26, 31);
	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
	rc = ((reg << 6) | rc) << 26;

	return rc | 0x1ffffff;
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
static u64 knl_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
}

static u64 knl_get_tohm(struct sbridge_pvt *pvt)
{
	u64 rc;
	u32 reg_lo, reg_hi;

	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
	rc = ((u64)reg_hi << 32) | reg_lo;
	return rc | 0x3ffffff;
}


1047 1048 1049 1050 1051
static u64 haswell_rir_limit(u32 reg)
{
	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
}

1052 1053 1054
static inline u8 sad_pkg_socket(u8 pkg)
{
	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1055
	return ((pkg >> 3) << 2) | (pkg & 0x3);
1056 1057 1058 1059 1060 1061 1062
}

static inline u8 sad_pkg_ha(u8 pkg)
{
	return (pkg >> 2) & 0x1;
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
static int haswell_chan_hash(int idx, u64 addr)
{
	int i;

	/*
	 * XOR even bits from 12:26 to bit0 of idx,
	 *     odd bits from 13:27 to bit1
	 */
	for (i = 12; i < 28; i += 2)
		idx ^= (addr >> i) & 3;

	return idx;
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
/* Low bits of TAD limit, and some metadata. */
static const u32 knl_tad_dram_limit_lo[] = {
	0x400, 0x500, 0x600, 0x700,
	0x800, 0x900, 0xa00, 0xb00,
};

/* Low bits of TAD offset. */
static const u32 knl_tad_dram_offset_lo[] = {
	0x404, 0x504, 0x604, 0x704,
	0x804, 0x904, 0xa04, 0xb04,
};

/* High 16 bits of TAD limit and offset. */
static const u32 knl_tad_dram_hi[] = {
	0x408, 0x508, 0x608, 0x708,
	0x808, 0x908, 0xa08, 0xb08,
};

/* Number of ways a tad entry is interleaved. */
static const u32 knl_tad_ways[] = {
	8, 6, 4, 3, 2, 1,
};

/*
 * Retrieve the n'th Target Address Decode table entry
 * from the memory controller's TAD table.
 *
 * @pvt:	driver private data
 * @entry:	which entry you want to retrieve
 * @mc:		which memory controller (0 or 1)
 * @offset:	output tad range offset
 * @limit:	output address of first byte above tad range
 * @ways:	output number of interleave ways
 *
 * The offset value has curious semantics.  It's a sort of running total
 * of the sizes of all the memory regions that aren't mapped in this
 * tad table.
 */
static int knl_get_tad(const struct sbridge_pvt *pvt,
		const int entry,
		const int mc,
		u64 *offset,
		u64 *limit,
		int *ways)
{
	u32 reg_limit_lo, reg_offset_lo, reg_hi;
	struct pci_dev *pci_mc;
	int way_id;

	switch (mc) {
	case 0:
		pci_mc = pvt->knl.pci_mc0;
		break;
	case 1:
		pci_mc = pvt->knl.pci_mc1;
		break;
	default:
		WARN_ON(1);
		return -EINVAL;
	}

	pci_read_config_dword(pci_mc,
			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
	pci_read_config_dword(pci_mc,
			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
	pci_read_config_dword(pci_mc,
			knl_tad_dram_hi[entry], &reg_hi);

	/* Is this TAD entry enabled? */
	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
		return -ENODEV;

	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);

	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
		*ways = knl_tad_ways[way_id];
	} else {
		*ways = 0;
		sbridge_printk(KERN_ERR,
				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
				way_id);
		return -ENODEV;
	}

	/*
	 * The least significant 6 bits of base and limit are truncated.
	 * For limit, we fill the missing bits with 1s.
	 */
	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);

	return 0;
}

/* Determine which memory controller is responsible for a given channel. */
static int knl_channel_mc(int channel)
{
	WARN_ON(channel < 0 || channel >= 6);

	return channel < 3 ? 1 : 0;
}

/*
 * Get the Nth entry from EDC_ROUTE_TABLE register.
 * (This is the per-tile mapping of logical interleave targets to
 *  physical EDC modules.)
 *
 * entry 0: 0:2
 *       1: 3:5
 *       2: 6:8
 *       3: 9:11
 *       4: 12:14
 *       5: 15:17
 *       6: 18:20
 *       7: 21:23
 * reserved: 24:31
 */
static u32 knl_get_edc_route(int entry, u32 reg)
{
	WARN_ON(entry >= KNL_MAX_EDCS);
	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
}

/*
 * Get the Nth entry from MC_ROUTE_TABLE register.
 * (This is the per-tile mapping of logical interleave targets to
 *  physical DRAM channels modules.)
 *
 * entry 0: mc 0:2   channel 18:19
 *       1: mc 3:5   channel 20:21
 *       2: mc 6:8   channel 22:23
 *       3: mc 9:11  channel 24:25
 *       4: mc 12:14 channel 26:27
 *       5: mc 15:17 channel 28:29
 * reserved: 30:31
 *
 * Though we have 3 bits to identify the MC, we should only see
 * the values 0 or 1.
 */

static u32 knl_get_mc_route(int entry, u32 reg)
{
	int mc, chan;

	WARN_ON(entry >= KNL_MAX_CHANNELS);

	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);

1228
	return knl_channel_remap(mc, chan);
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
}

/*
 * Render the EDC_ROUTE register in human-readable form.
 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
 */
static void knl_show_edc_route(u32 reg, char *s)
{
	int i;

	for (i = 0; i < KNL_MAX_EDCS; i++) {
		s[i*2] = knl_get_edc_route(i, reg) + '0';
		s[i*2+1] = '-';
	}

	s[KNL_MAX_EDCS*2 - 1] = '\0';
}

/*
 * Render the MC_ROUTE register in human-readable form.
 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
 */
static void knl_show_mc_route(u32 reg, char *s)
{
	int i;

	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
		s[i*2] = knl_get_mc_route(i, reg) + '0';
		s[i*2+1] = '-';
	}

	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
}

#define KNL_EDC_ROUTE 0xb8
#define KNL_MC_ROUTE 0xb4

/* Is this dram rule backed by regular DRAM in flat mode? */
#define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)

/* Is this dram rule cached? */
#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)

/* Is this rule backed by edc ? */
#define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)

/* Is this rule backed by DRAM, cacheable in EDRAM? */
#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)

/* Is this rule mod3? */
#define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)

/*
 * Figure out how big our RAM modules are.
 *
 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
 * have to figure this out from the SAD rules, interleave lists, route tables,
 * and TAD rules.
 *
 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
 * inspect the TAD rules to figure out how large the SAD regions really are.
 *
 * When we know the real size of a SAD region and how many ways it's
 * interleaved, we know the individual contribution of each channel to
 * TAD is size/ways.
 *
 * Finally, we have to check whether each channel participates in each SAD
 * region.
 *
 * Fortunately, KNL only supports one DIMM per channel, so once we know how
 * much memory the channel uses, we know the DIMM is at least that large.
 * (The BIOS might possibly choose not to map all available memory, in which
 * case we will underreport the size of the DIMM.)
 *
 * In theory, we could try to determine the EDC sizes as well, but that would
 * only work in flat mode, not in cache mode.
 *
 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
 *            elements)
 */
static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
{
	u64 sad_base, sad_size, sad_limit = 0;
	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
	int sad_rule = 0;
	int tad_rule = 0;
	int intrlv_ways, tad_ways;
	u32 first_pkg, pkg;
	int i;
	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
	u32 dram_rule, interleave_reg;
	u32 mc_route_reg[KNL_MAX_CHAS];
	u32 edc_route_reg[KNL_MAX_CHAS];
	int edram_only;
	char edc_route_string[KNL_MAX_EDCS*2];
	char mc_route_string[KNL_MAX_CHANNELS*2];
	int cur_reg_start;
	int mc;
	int channel;
	int participants[KNL_MAX_CHANNELS];

	for (i = 0; i < KNL_MAX_CHANNELS; i++)
		mc_sizes[i] = 0;

	/* Read the EDC route table in each CHA. */
	cur_reg_start = 0;
	for (i = 0; i < KNL_MAX_CHAS; i++) {
		pci_read_config_dword(pvt->knl.pci_cha[i],
				KNL_EDC_ROUTE, &edc_route_reg[i]);

		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
			knl_show_edc_route(edc_route_reg[i-1],
					edc_route_string);
			if (cur_reg_start == i-1)
				edac_dbg(0, "edc route table for CHA %d: %s\n",
					cur_reg_start, edc_route_string);
			else
				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
					cur_reg_start, i-1, edc_route_string);
			cur_reg_start = i;
		}
	}
	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
	if (cur_reg_start == i-1)
		edac_dbg(0, "edc route table for CHA %d: %s\n",
			cur_reg_start, edc_route_string);
	else
		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
			cur_reg_start, i-1, edc_route_string);

	/* Read the MC route table in each CHA. */
	cur_reg_start = 0;
	for (i = 0; i < KNL_MAX_CHAS; i++) {
		pci_read_config_dword(pvt->knl.pci_cha[i],
			KNL_MC_ROUTE, &mc_route_reg[i]);

		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
			if (cur_reg_start == i-1)
				edac_dbg(0, "mc route table for CHA %d: %s\n",
					cur_reg_start, mc_route_string);
			else
				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
					cur_reg_start, i-1, mc_route_string);
			cur_reg_start = i;
		}
	}
	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
	if (cur_reg_start == i-1)
		edac_dbg(0, "mc route table for CHA %d: %s\n",
			cur_reg_start, mc_route_string);
	else
		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
			cur_reg_start, i-1, mc_route_string);

	/* Process DRAM rules */
	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
		/* previous limit becomes the new base */
		sad_base = sad_limit;

		pci_read_config_dword(pvt->pci_sad0,
			pvt->info.dram_rule[sad_rule], &dram_rule);

		if (!DRAM_RULE_ENABLE(dram_rule))
			break;

		edram_only = KNL_EDRAM_ONLY(dram_rule);

		sad_limit = pvt->info.sad_limit(dram_rule)+1;
		sad_size = sad_limit - sad_base;

		pci_read_config_dword(pvt->pci_sad0,
			pvt->info.interleave_list[sad_rule], &interleave_reg);

		/*
		 * Find out how many ways this dram rule is interleaved.
		 * We stop when we see the first channel again.
		 */
		first_pkg = sad_pkg(pvt->info.interleave_pkg,
						interleave_reg, 0);
		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
			pkg = sad_pkg(pvt->info.interleave_pkg,
						interleave_reg, intrlv_ways);

			if ((pkg & 0x8) == 0) {
				/*
				 * 0 bit means memory is non-local,
				 * which KNL doesn't support
				 */
				edac_dbg(0, "Unexpected interleave target %d\n",
					pkg);
				return -1;
			}

			if (pkg == first_pkg)
				break;
		}
		if (KNL_MOD3(dram_rule))
			intrlv_ways *= 3;

		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
			sad_rule,
			sad_base,
			sad_limit,
			intrlv_ways,
			edram_only ? ", EDRAM" : "");

		/*
		 * Find out how big the SAD region really is by iterating
		 * over TAD tables (SAD regions may contain holes).
		 * Each memory controller might have a different TAD table, so
		 * we have to look at both.
		 *
		 * Livespace is the memory that's mapped in this TAD table,
		 * deadspace is the holes (this could be the MMIO hole, or it
		 * could be memory that's mapped by the other TAD table but
		 * not this one).
		 */
		for (mc = 0; mc < 2; mc++) {
			sad_actual_size[mc] = 0;
			tad_livespace = 0;
			for (tad_rule = 0;
					tad_rule < ARRAY_SIZE(
						knl_tad_dram_limit_lo);
					tad_rule++) {
				if (knl_get_tad(pvt,
						tad_rule,
						mc,
						&tad_deadspace,
						&tad_limit,
						&tad_ways))
					break;

				tad_size = (tad_limit+1) -
					(tad_livespace + tad_deadspace);
				tad_livespace += tad_size;
				tad_base = (tad_limit+1) - tad_size;

				if (tad_base < sad_base) {
					if (tad_limit > sad_base)
						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
				} else if (tad_base < sad_limit) {
					if (tad_limit+1 > sad_limit) {
						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
					} else {
						/* TAD region is completely inside SAD region */
						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
							tad_rule, tad_base,
							tad_limit, tad_size,
							mc);
						sad_actual_size[mc] += tad_size;
					}
				}
				tad_base = tad_limit+1;
			}
		}

		for (mc = 0; mc < 2; mc++) {
			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
				mc, sad_actual_size[mc], sad_actual_size[mc]);
		}

		/* Ignore EDRAM rule */
		if (edram_only)
			continue;

		/* Figure out which channels participate in interleave. */
		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
			participants[channel] = 0;

		/* For each channel, does at least one CHA have
		 * this channel mapped to the given target?
		 */
		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1503 1504
			int target;
			int cha;
1505

1506
			for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1507 1508 1509
				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
					if (knl_get_mc_route(target,
						mc_route_reg[cha]) == channel
1510
						&& !participants[channel]) {
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
						participants[channel] = 1;
						break;
					}
				}
			}
		}

		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
			mc = knl_channel_mc(channel);
			if (participants[channel]) {
				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
					channel,
					sad_actual_size[mc]/intrlv_ways,
					sad_rule);
				mc_sizes[channel] +=
					sad_actual_size[mc]/intrlv_ways;
			}
		}
	}

	return 0;
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
static void get_source_id(struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	u32 reg;

	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
	    pvt->info.type == KNIGHTS_LANDING)
		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
	else
		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);

	if (pvt->info.type == KNIGHTS_LANDING)
		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
	else
		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
}

1551 1552 1553
static int __populate_dimms(struct mem_ctl_info *mci,
			    u64 knl_mc_sizes[KNL_MAX_CHANNELS],
			    enum edac_type mode)
1554 1555
{
	struct sbridge_pvt *pvt = mci->pvt_info;
1556 1557 1558
	int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
							 : NUM_CHANNELS;
	unsigned int i, j, banks, ranks, rows, cols, npages;
1559
	struct dimm_info *dimm;
1560
	enum mem_type mtype;
1561
	u64 size;
1562

1563
	mtype = pvt->info.get_memory_type(pvt);
1564
	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1565 1566
		edac_dbg(0, "Memory is registered\n");
	else if (mtype == MEM_UNKNOWN)
1567
		edac_dbg(0, "Cannot determine memory type\n");
1568 1569
	else
		edac_dbg(0, "Memory is unregistered\n");
1570

1571
	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1572 1573 1574
		banks = 16;
	else
		banks = 8;
1575

1576
	for (i = 0; i < channels; i++) {
1577 1578
		u32 mtr;

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
		int max_dimms_per_channel;

		if (pvt->info.type == KNIGHTS_LANDING) {
			max_dimms_per_channel = 1;
			if (!pvt->knl.pci_channel[i])
				continue;
		} else {
			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
			if (!pvt->pci_tad[i])
				continue;
		}

		for (j = 0; j < max_dimms_per_channel; j++) {
1592
			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
1593 1594 1595 1596 1597 1598 1599
			if (pvt->info.type == KNIGHTS_LANDING) {
				pci_read_config_dword(pvt->knl.pci_channel[i],
					knl_mtr_reg, &mtr);
			} else {
				pci_read_config_dword(pvt->pci_tad[i],
					mtr_regs[j], &mtr);
			}
1600
			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1601
			if (IS_DIMM_PRESENT(mtr)) {
1602 1603 1604 1605 1606 1607
				if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
					sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
						       pvt->sbridge_dev->source_id,
						       pvt->sbridge_dev->dom, i);
					return -ENODEV;
				}
1608 1609
				pvt->channel[i].dimms++;

1610
				ranks = numrank(pvt->info.type, mtr);
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620

				if (pvt->info.type == KNIGHTS_LANDING) {
					/* For DDR4, this is fixed. */
					cols = 1 << 10;
					rows = knl_mc_sizes[i] /
						((u64) cols * ranks * banks * 8);
				} else {
					rows = numrow(mtr);
					cols = numcol(mtr);
				}
1621

1622
				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1623 1624
				npages = MiB_TO_PAGES(size);

1625
				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1626
					 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1627 1628
					 size, npages,
					 banks, ranks, rows, cols);
1629

1630
				dimm->nr_pages = npages;
1631
				dimm->grain = 32;
1632
				dimm->dtype = pvt->info.get_width(pvt, mtr);
1633 1634 1635
				dimm->mtype = mtype;
				dimm->edac_mode = mode;
				snprintf(dimm->label, sizeof(dimm->label),
1636 1637
						 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
						 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1638 1639 1640
			}
		}
	}
1641 1642

	return 0;
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
}

static int get_dimm_config(struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
	enum edac_type mode;
	u32 reg;

	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
		 pvt->sbridge_dev->mc,
		 pvt->sbridge_dev->node_id,
		 pvt->sbridge_dev->source_id);

	/* KNL doesn't support mirroring or lockstep,
	 * and is always closed page
	 */
	if (pvt->info.type == KNIGHTS_LANDING) {
		mode = EDAC_S4ECD4ED;
1663 1664
		pvt->mirror_mode = NON_MIRRORING;
		pvt->is_cur_addr_mirrored = false;
1665 1666 1667

		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
			return -1;
1668 1669 1670 1671
		if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
			edac_dbg(0, "Failed to read KNL_MCMTR register\n");
			return -ENODEV;
		}
1672
	} else {
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
			if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
				edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
				return -ENODEV;
			}
			pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
			if (GET_BITFIELD(reg, 28, 28)) {
				pvt->mirror_mode = ADDR_RANGE_MIRRORING;
				edac_dbg(0, "Address range partial memory mirroring is enabled\n");
				goto next;
			}
		}
		if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
			edac_dbg(0, "Failed to read RASENABLES register\n");
			return -ENODEV;
		}
1689
		if (IS_MIRROR_ENABLED(reg)) {
1690 1691
			pvt->mirror_mode = FULL_MIRRORING;
			edac_dbg(0, "Full memory mirroring is enabled\n");
1692
		} else {
1693 1694
			pvt->mirror_mode = NON_MIRRORING;
			edac_dbg(0, "Memory mirroring is disabled\n");
1695 1696
		}

1697 1698 1699 1700 1701
next:
		if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
			edac_dbg(0, "Failed to read MCMTR register\n");
			return -ENODEV;
		}
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
			edac_dbg(0, "Lockstep is enabled\n");
			mode = EDAC_S8ECD8ED;
			pvt->is_lockstep = true;
		} else {
			edac_dbg(0, "Lockstep is disabled\n");
			mode = EDAC_S4ECD4ED;
			pvt->is_lockstep = false;
		}
		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
			edac_dbg(0, "address map is on closed page mode\n");
			pvt->is_close_pg = true;
		} else {
			edac_dbg(0, "address map is on open page mode\n");
			pvt->is_close_pg = false;
		}
	}

1720
	return __populate_dimms(mci, knl_mc_sizes, mode);
1721 1722 1723 1724 1725 1726 1727 1728 1729
}

static void get_memory_layout(const struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	int i, j, k, n_sads, n_tads, sad_interl;
	u32 reg;
	u64 limit, prv = 0;
	u64 tmp_mb;
1730
	u32 gb, mb;
1731 1732 1733 1734 1735 1736
	u32 rir_way;

	/*
	 * Step 1) Get TOLM/TOHM ranges
	 */

A
Aristeu Rozanski 已提交
1737
	pvt->tolm = pvt->info.get_tolm(pvt);
1738 1739
	tmp_mb = (1 + pvt->tolm) >> 20;

1740 1741 1742
	gb = div_u64_rem(tmp_mb, 1024, &mb);
	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
		gb, (mb*1000)/1024, (u64)pvt->tolm);
1743 1744

	/* Address range is already 45:25 */
A
Aristeu Rozanski 已提交
1745
	pvt->tohm = pvt->info.get_tohm(pvt);
1746 1747
	tmp_mb = (1 + pvt->tohm) >> 20;

1748 1749 1750
	gb = div_u64_rem(tmp_mb, 1024, &mb);
	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
		gb, (mb*1000)/1024, (u64)pvt->tohm);
1751 1752 1753 1754 1755 1756 1757 1758

	/*
	 * Step 2) Get SAD range and SAD Interleave list
	 * TAD registers contain the interleave wayness. However, it
	 * seems simpler to just discover it indirectly, with the
	 * algorithm bellow.
	 */
	prv = 0;
1759
	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1760
		/* SAD_LIMIT Address range is 45:26 */
1761
		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1762
				      &reg);
1763
		limit = pvt->info.sad_limit(reg);
1764 1765 1766 1767 1768 1769 1770 1771

		if (!DRAM_RULE_ENABLE(reg))
			continue;

		if (limit <= prv)
			break;

		tmp_mb = (limit + 1) >> 20;
1772
		gb = div_u64_rem(tmp_mb, 1024, &mb);
1773 1774
		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
			 n_sads,
1775
			 show_dram_attr(pvt->info.dram_attr(reg)),
1776
			 gb, (mb*1000)/1024,
1777
			 ((u64)tmp_mb) << 20L,
1778
			 get_intlv_mode_str(reg, pvt->info.type),
1779
			 reg);
1780 1781
		prv = limit;

1782
		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1783
				      &reg);
A
Aristeu Rozanski 已提交
1784
		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1785
		for (j = 0; j < 8; j++) {
A
Aristeu Rozanski 已提交
1786 1787
			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
			if (j > 0 && sad_interl == pkg)
1788 1789
				break;

1790
			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
A
Aristeu Rozanski 已提交
1791
				 n_sads, j, pkg);
1792 1793 1794
		}
	}

1795 1796 1797
	if (pvt->info.type == KNIGHTS_LANDING)
		return;

1798 1799 1800 1801 1802
	/*
	 * Step 3) Get TAD range
	 */
	prv = 0;
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1803
		pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1804 1805 1806 1807 1808
		limit = TAD_LIMIT(reg);
		if (limit <= prv)
			break;
		tmp_mb = (limit + 1) >> 20;

1809
		gb = div_u64_rem(tmp_mb, 1024, &mb);
1810
		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1811
			 n_tads, gb, (mb*1000)/1024,
1812
			 ((u64)tmp_mb) << 20L,
1813 1814
			 (u32)(1 << TAD_SOCK(reg)),
			 (u32)TAD_CH(reg) + 1,
1815 1816 1817 1818 1819
			 (u32)TAD_TGT0(reg),
			 (u32)TAD_TGT1(reg),
			 (u32)TAD_TGT2(reg),
			 (u32)TAD_TGT3(reg),
			 reg);
1820
		prv = limit;
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	}

	/*
	 * Step 4) Get TAD offsets, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < n_tads; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      tad_ch_nilv_offset[j],
					      &reg);
			tmp_mb = TAD_OFFSET(reg) >> 20;
1834
			gb = div_u64_rem(tmp_mb, 1024, &mb);
1835 1836
			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
				 i, j,
1837
				 gb, (mb*1000)/1024,
1838 1839
				 ((u64)tmp_mb) << 20L,
				 reg);
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
		}
	}

	/*
	 * Step 6) Get RIR Wayness/Limit, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < MAX_RIR_RANGES; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      rir_way_limit[j],
					      &reg);

			if (!IS_RIR_VALID(reg))
				continue;

1857
			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1858
			rir_way = 1 << RIR_WAY(reg);
1859
			gb = div_u64_rem(tmp_mb, 1024, &mb);
1860 1861
			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
				 i, j,
1862
				 gb, (mb*1000)/1024,
1863 1864 1865
				 ((u64)tmp_mb) << 20L,
				 rir_way,
				 reg);
1866 1867 1868 1869 1870

			for (k = 0; k < rir_way; k++) {
				pci_read_config_dword(pvt->pci_tad[i],
						      rir_offset[j][k],
						      &reg);
1871
				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1872

1873
				gb = div_u64_rem(tmp_mb, 1024, &mb);
1874 1875
				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
					 i, j, k,
1876
					 gb, (mb*1000)/1024,
1877
					 ((u64)tmp_mb) << 20L,
1878
					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1879
					 reg);
1880 1881 1882 1883 1884
			}
		}
	}
}

1885
static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1886 1887 1888 1889
{
	struct sbridge_dev *sbridge_dev;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1890
		if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1891 1892 1893 1894 1895 1896 1897
			return sbridge_dev->mci;
	}
	return NULL;
}

static int get_memory_error_data(struct mem_ctl_info *mci,
				 u64 addr,
1898
				 u8 *socket, u8 *ha,
1899 1900
				 long *channel_mask,
				 u8 *rank,
1901
				 char **area_type, char *msg)
1902 1903 1904
{
	struct mem_ctl_info	*new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
1905
	struct pci_dev		*pci_ha;
1906
	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1907
	int			sad_interl, idx, base_ch;
1908
	int			interleave_mode, shiftup = 0;
1909
	unsigned int		sad_interleave[MAX_INTERLEAVE];
1910
	u32			reg, dram_rule;
1911
	u8			ch_way, sck_way, pkg, sad_ha = 0;
1912 1913
	u32			tad_offset;
	u32			rir_way;
1914
	u32			mb, gb;
1915
	u64			ch_addr, offset, limit = 0, prv = 0;
1916 1917 1918 1919 1920 1921 1922 1923 1924


	/*
	 * Step 0) Check if the address is at special memory ranges
	 * The check bellow is probably enough to fill all cases where
	 * the error is not inside a memory, except for the legacy
	 * range (e. g. VGA addresses). It is unlikely, however, that the
	 * memory controller would generate an error on that range.
	 */
1925
	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
		return -EINVAL;
	}
	if (addr >= (u64)pvt->tohm) {
		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
		return -EINVAL;
	}

	/*
	 * Step 1) Get socket
	 */
1937 1938
	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1939 1940 1941 1942 1943
				      &reg);

		if (!DRAM_RULE_ENABLE(reg))
			continue;

1944
		limit = pvt->info.sad_limit(reg);
1945 1946 1947 1948 1949 1950 1951 1952
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory socket");
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
1953
	if (n_sads == pvt->info.max_sad) {
1954 1955 1956
		sprintf(msg, "Can't discover the memory socket");
		return -EINVAL;
	}
1957
	dram_rule = reg;
1958 1959
	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
	interleave_mode = pvt->info.interleave_mode(dram_rule);
1960

1961
	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1962
			      &reg);
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

	if (pvt->info.type == SANDY_BRIDGE) {
		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
		for (sad_way = 0; sad_way < 8; sad_way++) {
			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
			if (sad_way > 0 && sad_interl == pkg)
				break;
			sad_interleave[sad_way] = pkg;
			edac_dbg(0, "SAD interleave #%d: %d\n",
				 sad_way, sad_interleave[sad_way]);
		}
		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
			 pvt->sbridge_dev->mc,
			 n_sads,
			 addr,
			 limit,
			 sad_way + 7,
			 !interleave_mode ? "" : "XOR[18:16]");
		if (interleave_mode)
			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
		else
			idx = (addr >> 6) & 7;
		switch (sad_way) {
		case 1:
			idx = 0;
1988
			break;
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
		case 2:
			idx = idx & 1;
			break;
		case 4:
			idx = idx & 3;
			break;
		case 8:
			break;
		default:
			sprintf(msg, "Can't discover socket interleave");
			return -EINVAL;
		}
		*socket = sad_interleave[idx];
		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
			 idx, sad_way, *socket);
2004
	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2005 2006 2007 2008 2009 2010 2011
		int bits, a7mode = A7MODE(dram_rule);

		if (a7mode) {
			/* A7 mode swaps P9 with P6 */
			bits = GET_BITFIELD(addr, 7, 8) << 1;
			bits |= GET_BITFIELD(addr, 9, 9);
		} else
2012
			bits = GET_BITFIELD(addr, 6, 8);
2013

2014
		if (interleave_mode == 0) {
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
			/* interleave mode will XOR {8,7,6} with {18,17,16} */
			idx = GET_BITFIELD(addr, 16, 18);
			idx ^= bits;
		} else
			idx = bits;

		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
		*socket = sad_pkg_socket(pkg);
		sad_ha = sad_pkg_ha(pkg);

		if (a7mode) {
			/* MCChanShiftUpEnable */
2027
			pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2028 2029 2030 2031 2032
			shiftup = GET_BITFIELD(reg, 22, 22);
		}

		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
			 idx, *socket, sad_ha, shiftup);
2033 2034
	} else {
		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2035
		idx = (addr >> 6) & 7;
2036 2037 2038 2039 2040
		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
		*socket = sad_pkg_socket(pkg);
		sad_ha = sad_pkg_ha(pkg);
		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
			 idx, *socket, sad_ha);
2041 2042
	}

2043 2044
	*ha = sad_ha;

2045 2046 2047 2048
	/*
	 * Move to the proper node structure, in order to access the
	 * right PCI registers
	 */
2049
	new_mci = get_mci_for_node_id(*socket, sad_ha);
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
	if (!new_mci) {
		sprintf(msg, "Struct for socket #%u wasn't initialized",
			*socket);
		return -EINVAL;
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	/*
	 * Step 2) Get memory channel
	 */
	prv = 0;
2062
	pci_ha = pvt->pci_ha;
2063
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2064
		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2065 2066 2067 2068 2069 2070 2071 2072 2073
		limit = TAD_LIMIT(reg);
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory channel");
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
2074 2075 2076 2077 2078
	if (n_tads == MAX_TAD) {
		sprintf(msg, "Can't discover the memory channel");
		return -EINVAL;
	}

2079
	ch_way = TAD_CH(reg) + 1;
2080
	sck_way = TAD_SOCK(reg);
2081 2082 2083

	if (ch_way == 3)
		idx = addr >> 6;
2084
	else {
2085
		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2086 2087 2088
		if (pvt->is_chan_hash)
			idx = haswell_chan_hash(idx, addr);
	}
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
	idx = idx % ch_way;

	/*
	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
	 */
	switch (idx) {
	case 0:
		base_ch = TAD_TGT0(reg);
		break;
	case 1:
		base_ch = TAD_TGT1(reg);
		break;
	case 2:
		base_ch = TAD_TGT2(reg);
		break;
	case 3:
		base_ch = TAD_TGT3(reg);
		break;
	default:
		sprintf(msg, "Can't discover the TAD target");
		return -EINVAL;
	}
	*channel_mask = 1 << base_ch;

2113
	pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2114

2115 2116
	if (pvt->mirror_mode == FULL_MIRRORING ||
	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2117 2118 2119 2120
		*channel_mask |= 1 << ((base_ch + 2) % 4);
		switch(ch_way) {
		case 2:
		case 4:
2121
			sck_xch = (1 << sck_way) * (ch_way >> 1);
2122 2123 2124 2125 2126
			break;
		default:
			sprintf(msg, "Invalid mirror set. Can't decode addr");
			return -EINVAL;
		}
2127 2128 2129

		pvt->is_cur_addr_mirrored = true;
	} else {
2130
		sck_xch = (1 << sck_way) * ch_way;
2131 2132
		pvt->is_cur_addr_mirrored = false;
	}
2133 2134 2135 2136 2137 2138

	if (pvt->is_lockstep)
		*channel_mask |= 1 << ((base_ch + 1) % 4);

	offset = TAD_OFFSET(tad_offset);

2139 2140 2141 2142
	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
		 n_tads,
		 addr,
		 limit,
2143
		 sck_way,
2144 2145 2146 2147 2148
		 ch_way,
		 offset,
		 idx,
		 base_ch,
		 *channel_mask);
2149 2150 2151 2152 2153 2154 2155 2156 2157

	/* Calculate channel address */
	/* Remove the TAD offset */

	if (offset > addr) {
		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
			offset, addr);
		return -EINVAL;
	}
2158 2159 2160

	ch_addr = addr - offset;
	ch_addr >>= (6 + shiftup);
2161
	ch_addr /= sck_xch;
2162 2163
	ch_addr <<= (6 + shiftup);
	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2164 2165 2166 2167 2168

	/*
	 * Step 3) Decode rank
	 */
	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2169
		pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2170 2171 2172 2173

		if (!IS_RIR_VALID(reg))
			continue;

2174
		limit = pvt->info.rir_limit(reg);
2175
		gb = div_u64_rem(limit >> 20, 1024, &mb);
2176 2177
		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
			 n_rir,
2178
			 gb, (mb*1000)/1024,
2179 2180
			 limit,
			 1 << RIR_WAY(reg));
2181 2182 2183 2184 2185 2186 2187 2188 2189
		if  (ch_addr <= limit)
			break;
	}
	if (n_rir == MAX_RIR_RANGES) {
		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
			ch_addr);
		return -EINVAL;
	}
	rir_way = RIR_WAY(reg);
2190

2191 2192 2193 2194 2195 2196
	if (pvt->is_close_pg)
		idx = (ch_addr >> 6);
	else
		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
	idx %= 1 << rir_way;

2197
	pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2198
	*rank = RIR_RNK_TGT(pvt->info.type, reg);
2199

2200 2201 2202 2203 2204 2205
	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
		 n_rir,
		 ch_addr,
		 limit,
		 rir_way,
		 idx);
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221

	return 0;
}

/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
 *	sbridge_put_all_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
{
	int i;

2222
	edac_dbg(0, "\n");
2223 2224 2225 2226
	for (i = 0; i < sbridge_dev->n_devs; i++) {
		struct pci_dev *pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
2227 2228 2229
		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
			 pdev->bus->number,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
		pci_dev_put(pdev);
	}
}

static void sbridge_put_all_devices(void)
{
	struct sbridge_dev *sbridge_dev, *tmp;

	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
		sbridge_put_devices(sbridge_dev);
		free_sbridge_dev(sbridge_dev);
	}
}

static int sbridge_get_onedevice(struct pci_dev **prev,
				 u8 *num_mc,
				 const struct pci_id_table *table,
2247 2248
				 const unsigned devno,
				 const int multi_bus)
2249
{
2250
	struct sbridge_dev *sbridge_dev = NULL;
2251 2252
	const struct pci_id_descr *dev_descr = &table->descr[devno];
	struct pci_dev *pdev = NULL;
2253
	int seg = 0;
2254
	u8 bus = 0;
2255
	int i = 0;
2256

2257
	sbridge_printk(KERN_DEBUG,
2258
		"Seeking for: PCI ID %04x:%04x\n",
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
			      dev_descr->dev_id, *prev);

	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
		}

		if (dev_descr->optional)
			return 0;

2273
		/* if the HA wasn't found */
2274 2275 2276 2277
		if (devno == 0)
			return -ENODEV;

		sbridge_printk(KERN_INFO,
2278
			"Device not found: %04x:%04x\n",
2279 2280 2281 2282 2283
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

		/* End of list, leave */
		return -ENODEV;
	}
2284
	seg = pci_domain_nr(pdev->bus);
2285 2286
	bus = pdev->bus->number;

2287
next_imc:
2288 2289
	sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
				      multi_bus, sbridge_dev);
2290
	if (!sbridge_dev) {
2291 2292 2293 2294 2295 2296 2297
		/* If the HA1 wasn't found, don't create EDAC second memory controller */
		if (dev_descr->dom == IMC1 && devno != 1) {
			edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
				 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
			pci_dev_put(pdev);
			return 0;
		}
2298 2299 2300 2301

		if (dev_descr->dom == SOCK)
			goto out_imc;

2302
		sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
2303 2304 2305 2306 2307 2308 2309
		if (!sbridge_dev) {
			pci_dev_put(pdev);
			return -ENOMEM;
		}
		(*num_mc)++;
	}

2310
	if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2311
		sbridge_printk(KERN_ERR,
2312
			"Duplicated device for %04x:%04x\n",
2313 2314 2315 2316 2317
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		pci_dev_put(pdev);
		return -ENODEV;
	}

2318 2319 2320 2321 2322 2323 2324 2325
	sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;

	/* pdev belongs to more than one IMC, do extra gets */
	if (++i > 1)
		pci_dev_get(pdev);

	if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
		goto next_imc;
2326

2327
out_imc:
2328 2329 2330
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		sbridge_printk(KERN_ERR,
2331
			"Couldn't enable %04x:%04x\n",
2332 2333 2334 2335
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		return -ENODEV;
	}

2336
	edac_dbg(0, "Detected %04x:%04x\n",
2337
		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350

	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

	*prev = pdev;

	return 0;
}

2351 2352
/*
 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2353
 *			     devices we want to reference for this driver.
2354
 * @num_mc: pointer to the memory controllers count, to be incremented in case
2355
 *	    of success.
2356 2357 2358 2359
 * @table: model specific table
 *
 * returns 0 in case of success or error code
 */
T
Tony Luck 已提交
2360 2361
static int sbridge_get_all_devices(u8 *num_mc,
					const struct pci_id_table *table)
2362 2363 2364
{
	int i, rc;
	struct pci_dev *pdev = NULL;
T
Tony Luck 已提交
2365 2366
	int allow_dups = 0;
	int multi_bus = 0;
2367

T
Tony Luck 已提交
2368 2369
	if (table->type == KNIGHTS_LANDING)
		allow_dups = multi_bus = 1;
2370
	while (table && table->descr) {
2371
		for (i = 0; i < table->n_devs_per_sock; i++) {
2372 2373 2374 2375 2376
			if (!allow_dups || i == 0 ||
					table->descr[i].dev_id !=
						table->descr[i-1].dev_id) {
				pdev = NULL;
			}
2377 2378
			do {
				rc = sbridge_get_onedevice(&pdev, num_mc,
2379
							   table, i, multi_bus);
2380 2381
				if (rc < 0) {
					if (i == 0) {
2382
						i = table->n_devs_per_sock;
2383 2384 2385 2386 2387
						break;
					}
					sbridge_put_all_devices();
					return -ENODEV;
				}
2388
			} while (pdev && !allow_dups);
2389 2390 2391 2392 2393 2394 2395
		}
		table++;
	}

	return 0;
}

2396 2397 2398 2399 2400 2401 2402
/*
 * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
 * the format: XXXa. So we can convert from a device to the corresponding
 * channel like this
 */
#define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)

A
Aristeu Rozanski 已提交
2403 2404
static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
2405 2406 2407
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
2408
	u8 saw_chan_mask = 0;
2409
	int i;
2410 2411 2412 2413 2414

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
2415 2416 2417 2418

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
			pvt->pci_sad0 = pdev;
2419
			break;
2420 2421
		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
			pvt->pci_sad1 = pdev;
2422
			break;
2423 2424
		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
			pvt->pci_br0 = pdev;
2425
			break;
2426
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2427
			pvt->pci_ha = pdev;
2428
			break;
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
			pvt->pci_ta = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
		{
2440
			int id = TAD_DEV_TO_CHAN(pdev->device);
2441
			pvt->pci_tad[id] = pdev;
2442
			saw_chan_mask |= 1 << id;
2443 2444 2445 2446
		}
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
			pvt->pci_ddrio = pdev;
2447 2448 2449 2450 2451
			break;
		default:
			goto error;
		}

2452 2453
		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
			 pdev->vendor, pdev->device,
2454 2455
			 sbridge_dev->bus,
			 pdev);
2456 2457 2458
	}

	/* Check if everything were registered */
2459
	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2460
	    !pvt->pci_ras || !pvt->pci_ta)
2461 2462
		goto enodev;

2463 2464
	if (saw_chan_mask != 0x0f)
		goto enodev;
2465 2466 2467 2468 2469 2470 2471
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;

error:
2472 2473
	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
		       PCI_VENDOR_ID_INTEL, pdev->device);
2474 2475 2476
	return -EINVAL;
}

2477 2478 2479 2480
static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
2481 2482
	struct pci_dev *pdev;
	u8 saw_chan_mask = 0;
2483
	int i;
2484 2485 2486 2487 2488 2489

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

2490 2491
		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2492
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2493
			pvt->pci_ha = pdev;
2494 2495
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2496
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2497
			pvt->pci_ta = pdev;
2498
			break;
2499
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2500
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2501 2502 2503 2504
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2505 2506
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2507 2508 2509 2510
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2511
		{
2512
			int id = TAD_DEV_TO_CHAN(pdev->device);
2513
			pvt->pci_tad[id] = pdev;
2514
			saw_chan_mask |= 1 << id;
2515
		}
2516
			break;
2517 2518 2519 2520
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
			pvt->pci_ddrio = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2521
			pvt->pci_ddrio = pdev;
2522
			break;
2523 2524 2525 2526 2527 2528 2529 2530 2531
		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
			pvt->pci_br0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
			pvt->pci_br1 = pdev;
			break;
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
		default:
			goto error;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
2543
	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2544
	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2545 2546
		goto enodev;

2547 2548
	if (saw_chan_mask != 0x0f && /* -EN/-EX */
	    saw_chan_mask != 0x03)   /* -EP */
2549
		goto enodev;
2550 2551 2552 2553 2554 2555 2556 2557
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;

error:
	sbridge_printk(KERN_ERR,
2558 2559
		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
			pdev->device);
2560 2561 2562
	return -EINVAL;
}

2563 2564 2565 2566
static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
2567 2568
	struct pci_dev *pdev;
	u8 saw_chan_mask = 0;
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
	int i;

	/* there's only one device per system; not tied to any bus */
	if (pvt->info.pci_vtd == NULL)
		/* result will be checked later */
		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
						   NULL);

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
			pvt->pci_sad1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2591
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2592
			pvt->pci_ha = pdev;
2593 2594
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2595
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2596 2597
			pvt->pci_ta = pdev;
			break;
2598
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2599
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2600 2601 2602 2603 2604 2605
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2606 2607 2608 2609 2610
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
		{
2611
			int id = TAD_DEV_TO_CHAN(pdev->device);
2612 2613 2614
			pvt->pci_tad[id] = pdev;
			saw_chan_mask |= 1 << id;
		}
2615 2616
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2617 2618 2619 2620 2621
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
			if (!pvt->pci_ddrio)
				pvt->pci_ddrio = pdev;
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
			break;
		default:
			break;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
2634
	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2635 2636 2637
	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
		goto enodev;

2638 2639
	if (saw_chan_mask != 0x0f && /* -EN/-EX */
	    saw_chan_mask != 0x03)   /* -EP */
2640
		goto enodev;
2641 2642 2643 2644 2645 2646 2647
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;
}

2648 2649 2650 2651 2652
static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
2653
	u8 saw_chan_mask = 0;
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
	int i;

	/* there's only one device per system; not tied to any bus */
	if (pvt->info.pci_vtd == NULL)
		/* result will be checked later */
		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
						   NULL);

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
			pvt->pci_sad1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2676
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2677
			pvt->pci_ha = pdev;
2678 2679
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2680
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2681 2682
			pvt->pci_ta = pdev;
			break;
2683
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2684
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2685 2686 2687 2688 2689 2690
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2691 2692 2693 2694 2695
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
		{
2696
			int id = TAD_DEV_TO_CHAN(pdev->device);
2697 2698 2699
			pvt->pci_tad[id] = pdev;
			saw_chan_mask |= 1 << id;
		}
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
			break;
		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
			pvt->pci_ddrio = pdev;
			break;
		default:
			break;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
2715
	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2716 2717 2718
	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
		goto enodev;

2719 2720
	if (saw_chan_mask != 0x0f && /* -EN/-EX */
	    saw_chan_mask != 0x03)   /* -EP */
2721
		goto enodev;
2722 2723 2724 2725 2726 2727 2728
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;
}

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
static int knl_mci_bind_devs(struct mem_ctl_info *mci,
			struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	int dev, func;

	int i;
	int devidx;

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

		/* Extract PCI device and function. */
		dev = (pdev->devfn >> 3) & 0x1f;
		func = pdev->devfn & 0x7;

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
			if (dev == 8)
				pvt->knl.pci_mc0 = pdev;
			else if (dev == 9)
				pvt->knl.pci_mc1 = pdev;
			else {
				sbridge_printk(KERN_ERR,
					"Memory controller in unexpected place! (dev %d, fn %d)\n",
					dev, func);
				continue;
			}
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
			pvt->pci_sad0 = pdev;
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
			pvt->pci_sad1 = pdev;
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
			/* There are one of these per tile, and range from
			 * 1.14.0 to 1.18.5.
			 */
			devidx = ((dev-14)*8)+func;

			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
				sbridge_printk(KERN_ERR,
					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
					dev, func);
				continue;
			}

			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);

			pvt->knl.pci_cha[devidx] = pdev;
			break;

2788
		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
			devidx = -1;

			/*
			 *  MC0 channels 0-2 are device 9 function 2-4,
			 *  MC1 channels 3-5 are device 8 function 2-4.
			 */

			if (dev == 9)
				devidx = func-2;
			else if (dev == 8)
				devidx = 3 + (func-2);

			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
				sbridge_printk(KERN_ERR,
					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
					dev, func);
				continue;
			}

			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
			pvt->knl.pci_channel[devidx] = pdev;
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
			pvt->knl.pci_mc_info = pdev;
			break;

		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
			pvt->pci_ta = pdev;
			break;

		default:
			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
				pdev->device);
			break;
		}
	}

	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
	    !pvt->pci_ta) {
		goto enodev;
	}

	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
		if (!pvt->knl.pci_channel[i]) {
			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
			goto enodev;
		}
	}

	for (i = 0; i < KNL_MAX_CHAS; i++) {
		if (!pvt->knl.pci_cha[i]) {
			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
			goto enodev;
		}
	}

	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;
}

2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
/****************************************************************************
			Error check routines
 ****************************************************************************/

/*
 * While Sandy Bridge has error count registers, SMI BIOS read values from
 * and resets the counters. So, they are not reliable for the OS to read
 * from them. So, we have no option but to just trust on whatever MCE is
 * telling us about the errors.
 */
static void sbridge_mce_output_error(struct mem_ctl_info *mci,
				    const struct mce *m)
{
	struct mem_ctl_info *new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
2869
	enum hw_event_mc_err_type tp_event;
2870
	char *type, *optype, msg[256];
2871 2872 2873
	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
	bool overflow = GET_BITFIELD(m->status, 62, 62);
	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2874
	bool recoverable;
2875 2876 2877 2878 2879 2880
	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
	u32 mscod = GET_BITFIELD(m->status, 16, 31);
	u32 errcode = GET_BITFIELD(m->status, 0, 15);
	u32 channel = GET_BITFIELD(m->status, 0, 3);
	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
	long channel_mask, first_channel;
2881
	u8  rank, socket, ha;
2882
	int rc, dimm;
2883
	char *area_type = NULL;
2884

2885
	if (pvt->info.type != SANDY_BRIDGE)
2886 2887 2888 2889
		recoverable = true;
	else
		recoverable = GET_BITFIELD(m->status, 56, 56);

2890
	if (uncorrected_error) {
2891
		core_err_cnt = 1;
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
		if (ripv) {
			type = "FATAL";
			tp_event = HW_EVENT_ERR_FATAL;
		} else {
			type = "NON_FATAL";
			tp_event = HW_EVENT_ERR_UNCORRECTED;
		}
	} else {
		type = "CORRECTED";
		tp_event = HW_EVENT_ERR_CORRECTED;
	}
2903 2904

	/*
D
David Mackey 已提交
2905
	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	 * memory errors should fit in this mask:
	 *	000f 0000 1mmm cccc (binary)
	 * where:
	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
	 *	    won't be shown
	 *	mmm = error type
	 *	cccc = channel
	 * If the mask doesn't match, report an error to the parsing logic
	 */
	if (! ((errcode & 0xef80) == 0x80)) {
		optype = "Can't parse: it is not a mem";
	} else {
		switch (optypenum) {
		case 0:
2920
			optype = "generic undef request error";
2921 2922
			break;
		case 1:
2923
			optype = "memory read error";
2924 2925
			break;
		case 2:
2926
			optype = "memory write error";
2927 2928
			break;
		case 3:
2929
			optype = "addr/cmd error";
2930 2931
			break;
		case 4:
2932
			optype = "memory scrubbing error";
2933 2934 2935 2936 2937 2938 2939
			break;
		default:
			optype = "reserved";
			break;
		}
	}

2940 2941 2942 2943
	/* Only decode errors with an valid address (ADDRV) */
	if (!GET_BITFIELD(m->status, 58, 58))
		return;

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
	if (pvt->info.type == KNIGHTS_LANDING) {
		if (channel == 14) {
			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
				overflow ? " OVERFLOW" : "",
				(uncorrected_error && recoverable)
				? " recoverable" : "",
				mscod, errcode,
				m->bank);
		} else {
			char A = *("A");

2955 2956 2957 2958 2959 2960 2961
			/*
			 * Reported channel is in range 0-2, so we can't map it
			 * back to mc. To figure out mc we check machine check
			 * bank register that reported this error.
			 * bank15 means mc0 and bank16 means mc1.
			 */
			channel = knl_channel_remap(m->bank == 16, channel);
2962
			channel_mask = 1 << channel;
2963

2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
			snprintf(msg, sizeof(msg),
				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
				overflow ? " OVERFLOW" : "",
				(uncorrected_error && recoverable)
				? " recoverable" : " ",
				mscod, errcode, channel, A + channel);
			edac_mc_handle_error(tp_event, mci, core_err_cnt,
				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
				channel, 0, -1,
				optype, msg);
		}
		return;
	} else {
		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
				&channel_mask, &rank, &area_type, msg);
	}

2981
	if (rc < 0)
2982
		goto err_parsing;
2983
	new_mci = get_mci_for_node_id(socket, ha);
2984
	if (!new_mci) {
2985 2986
		strcpy(msg, "Error: socket got corrupted!");
		goto err_parsing;
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);

	if (rank < 4)
		dimm = 0;
	else if (rank < 8)
		dimm = 1;
	else
		dimm = 2;


	/*
3002 3003 3004 3005
	 * FIXME: On some memory configurations (mirror, lockstep), the
	 * Memory Controller can't point the error to a single DIMM. The
	 * EDAC core should be handling the channel mask, in order to point
	 * to the group of dimm's where the error may be happening.
3006
	 */
3007
	if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3008 3009
		channel = first_channel;

3010
	snprintf(msg, sizeof(msg),
3011
		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3012 3013 3014 3015
		 overflow ? " OVERFLOW" : "",
		 (uncorrected_error && recoverable) ? " recoverable" : "",
		 area_type,
		 mscod, errcode,
3016
		 socket, ha,
3017 3018
		 channel_mask,
		 rank);
3019

3020
	edac_dbg(0, "%s\n", msg);
3021

3022 3023
	/* FIXME: need support for channel mask */

3024 3025 3026
	if (channel == CHANNEL_UNSPECIFIED)
		channel = -1;

3027
	/* Call the helper to output message */
3028
	edac_mc_handle_error(tp_event, mci, core_err_cnt,
3029
			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3030
			     channel, dimm, -1,
3031
			     optype, msg);
3032 3033
	return;
err_parsing:
3034
	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3035
			     -1, -1, -1,
3036
			     msg, "");
3037 3038 3039 3040

}

/*
3041 3042
 * Check that logging is enabled and that this is the right type
 * of error for us to handle.
3043
 */
3044 3045
static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
				   void *data)
3046
{
3047 3048 3049
	struct mce *mce = (struct mce *)data;
	struct mem_ctl_info *mci;
	struct sbridge_pvt *pvt;
3050
	char *type;
3051

3052
	if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3053 3054
		return NOTIFY_DONE;

3055
	mci = get_mci_for_node_id(mce->socketid, IMC0);
3056
	if (!mci)
3057
		return NOTIFY_DONE;
3058
	pvt = mci->pvt_info;
3059 3060 3061 3062 3063 3064 3065 3066

	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller. A memory error
	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
	 * bit 12 has an special meaning.
	 */
	if ((mce->status & 0xefff) >> 7 != 1)
3067
		return NOTIFY_DONE;
3068

3069 3070 3071 3072 3073
	if (mce->mcgstatus & MCG_STATUS_MCIP)
		type = "Exception";
	else
		type = "Event";

3074
	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3075

3076 3077 3078 3079 3080 3081
	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
			  "Bank %d: %016Lx\n", mce->extcpu, type,
			  mce->mcgstatus, mce->bank, mce->status);
	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3082

3083 3084 3085
	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
			  mce->time, mce->socketid, mce->apicid);
3086

3087
	sbridge_mce_output_error(mci, mce);
3088 3089

	/* Advice mcelog that the error were handled */
3090
	return NOTIFY_STOP;
3091 3092
}

3093
static struct notifier_block sbridge_mce_dec = {
3094 3095
	.notifier_call	= sbridge_mce_check_error,
	.priority	= MCE_PRIO_EDAC,
3096 3097
};

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
/****************************************************************************
			EDAC register/unregister logic
 ****************************************************************************/

static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
{
	struct mem_ctl_info *mci = sbridge_dev->mci;
	struct sbridge_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
3108
		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3109 3110 3111 3112 3113 3114 3115

		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

3116 3117
	edac_dbg(0, "MC: mci = %p, dev = %p\n",
		 mci, &sbridge_dev->pdev[0]->dev);
3118 3119

	/* Remove MC sysfs nodes */
3120
	edac_mc_del_mc(mci->pdev);
3121

3122
	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3123 3124 3125 3126 3127
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
}

3128
static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3129 3130
{
	struct mem_ctl_info *mci;
3131
	struct edac_mc_layer layers[2];
3132
	struct sbridge_pvt *pvt;
3133
	struct pci_dev *pdev = sbridge_dev->pdev[0];
3134
	int rc;
3135 3136

	/* allocate a new MC control structure */
3137
	layers[0].type = EDAC_MC_LAYER_CHANNEL;
3138 3139
	layers[0].size = type == KNIGHTS_LANDING ?
		KNL_MAX_CHANNELS : NUM_CHANNELS;
3140 3141
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
3142
	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3143
	layers[1].is_virt_csrow = true;
3144
	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3145 3146
			    sizeof(*pvt));

3147 3148 3149
	if (unlikely(!mci))
		return -ENOMEM;

3150
	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3151
		 mci, &pdev->dev);
3152 3153 3154 3155 3156 3157 3158 3159

	pvt = mci->pvt_info;
	memset(pvt, 0, sizeof(*pvt));

	/* Associate sbridge_dev and mci for future usage */
	pvt->sbridge_dev = sbridge_dev;
	sbridge_dev->mci = mci;

3160 3161
	mci->mtype_cap = type == KNIGHTS_LANDING ?
		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3162 3163
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
3164
	mci->mod_name = EDAC_MOD_STR;
3165
	mci->dev_name = pci_name(pdev);
3166 3167
	mci->ctl_page_to_phys = NULL;

3168
	pvt->info.type = type;
3169 3170
	switch (type) {
	case IVY_BRIDGE:
3171 3172 3173 3174
		pvt->info.rankcfgr = IB_RANK_CFG_A;
		pvt->info.get_tolm = ibridge_get_tolm;
		pvt->info.get_tohm = ibridge_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
3175
		pvt->info.get_memory_type = get_memory_type;
3176
		pvt->info.get_node_id = get_node_id;
3177
		pvt->info.rir_limit = rir_limit;
3178 3179 3180
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.dram_attr = dram_attr;
3181 3182 3183
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3184
		pvt->info.get_width = ibridge_get_width;
3185 3186 3187 3188 3189

		/* Store pci devices at mci for faster access */
		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
3190
		get_source_id(mci);
3191 3192
		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3193 3194
		break;
	case SANDY_BRIDGE:
3195 3196 3197 3198
		pvt->info.rankcfgr = SB_RANK_CFG_A;
		pvt->info.get_tolm = sbridge_get_tolm;
		pvt->info.get_tohm = sbridge_get_tohm;
		pvt->info.dram_rule = sbridge_dram_rule;
3199
		pvt->info.get_memory_type = get_memory_type;
3200
		pvt->info.get_node_id = get_node_id;
3201
		pvt->info.rir_limit = rir_limit;
3202 3203 3204
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.dram_attr = dram_attr;
3205 3206 3207
		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
		pvt->info.interleave_list = sbridge_interleave_list;
		pvt->info.interleave_pkg = sbridge_interleave_pkg;
3208
		pvt->info.get_width = sbridge_get_width;
3209 3210 3211 3212 3213

		/* Store pci devices at mci for faster access */
		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
3214
		get_source_id(mci);
3215 3216
		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3217 3218 3219 3220 3221 3222 3223 3224 3225
		break;
	case HASWELL:
		/* rankcfgr isn't used */
		pvt->info.get_tolm = haswell_get_tolm;
		pvt->info.get_tohm = haswell_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
		pvt->info.get_memory_type = haswell_get_memory_type;
		pvt->info.get_node_id = haswell_get_node_id;
		pvt->info.rir_limit = haswell_rir_limit;
3226 3227 3228
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.dram_attr = dram_attr;
3229 3230 3231
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3232
		pvt->info.get_width = ibridge_get_width;
3233

3234 3235 3236 3237
		/* Store pci devices at mci for faster access */
		rc = haswell_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
3238
		get_source_id(mci);
3239 3240
		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3241
		break;
3242 3243 3244 3245 3246 3247 3248 3249
	case BROADWELL:
		/* rankcfgr isn't used */
		pvt->info.get_tolm = haswell_get_tolm;
		pvt->info.get_tohm = haswell_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
		pvt->info.get_memory_type = haswell_get_memory_type;
		pvt->info.get_node_id = haswell_get_node_id;
		pvt->info.rir_limit = haswell_rir_limit;
3250 3251 3252
		pvt->info.sad_limit = sad_limit;
		pvt->info.interleave_mode = interleave_mode;
		pvt->info.dram_attr = dram_attr;
3253 3254 3255
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3256
		pvt->info.get_width = broadwell_get_width;
3257 3258 3259 3260 3261

		/* Store pci devices at mci for faster access */
		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
3262
		get_source_id(mci);
3263 3264
		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3265
		break;
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
	case KNIGHTS_LANDING:
		/* pvt->info.rankcfgr == ??? */
		pvt->info.get_tolm = knl_get_tolm;
		pvt->info.get_tohm = knl_get_tohm;
		pvt->info.dram_rule = knl_dram_rule;
		pvt->info.get_memory_type = knl_get_memory_type;
		pvt->info.get_node_id = knl_get_node_id;
		pvt->info.rir_limit = NULL;
		pvt->info.sad_limit = knl_sad_limit;
		pvt->info.interleave_mode = knl_interleave_mode;
		pvt->info.dram_attr = dram_attr_knl;
		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
		pvt->info.interleave_list = knl_interleave_list;
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3280
		pvt->info.get_width = knl_get_width;
3281 3282 3283 3284

		rc = knl_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
3285
		get_source_id(mci);
3286 3287
		mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3288
		break;
3289
	}
3290

3291 3292 3293 3294 3295
	if (!mci->ctl_name) {
		rc = -ENOMEM;
		goto fail0;
	}

3296
	/* Get dimm basic config and the memory layout */
3297 3298 3299 3300 3301
	rc = get_dimm_config(mci);
	if (rc < 0) {
		edac_dbg(0, "MC: failed to get_dimm_config()\n");
		goto fail;
	}
3302 3303 3304
	get_memory_layout(mci);

	/* record ptr to the generic device */
3305
	mci->pdev = &pdev->dev;
3306 3307 3308

	/* add this new MC control structure to EDAC's list of MCs */
	if (unlikely(edac_mc_add_mc(mci))) {
3309
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3310
		rc = -EINVAL;
3311
		goto fail;
3312 3313 3314 3315
	}

	return 0;

3316
fail:
3317
	kfree(mci->ctl_name);
3318
fail0:
3319 3320 3321 3322 3323
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
	return rc;
}

3324 3325 3326 3327
#define ICPU(model, table) \
	{ X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }

static const struct x86_cpu_id sbridge_cpuids[] = {
3328 3329 3330 3331 3332 3333
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,	  pci_dev_descr_sbridge_table),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,	  pci_dev_descr_ibridge_table),
	ICPU(INTEL_FAM6_HASWELL_X,	  pci_dev_descr_haswell_table),
	ICPU(INTEL_FAM6_BROADWELL_X,	  pci_dev_descr_broadwell_table),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, pci_dev_descr_broadwell_table),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,	  pci_dev_descr_knl_table),
3334
	ICPU(INTEL_FAM6_XEON_PHI_KNM,	  pci_dev_descr_knl_table),
3335 3336 3337 3338
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);

3339
/*
3340
 *	sbridge_probe	Get all devices and register memory controllers
3341 3342 3343 3344 3345 3346
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */

3347
static int sbridge_probe(const struct x86_cpu_id *id)
3348
{
3349
	int rc = -ENODEV;
3350 3351
	u8 mc, num_mc = 0;
	struct sbridge_dev *sbridge_dev;
3352
	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3353 3354

	/* get the pci devices we want to reserve for our use */
3355
	rc = sbridge_get_all_devices(&num_mc, ptable);
3356

3357
	if (unlikely(rc < 0)) {
3358
		edac_dbg(0, "couldn't get all devices\n");
3359
		goto fail0;
3360 3361
	}

3362 3363 3364
	mc = 0;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3365 3366
		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
			 mc, mc + 1, num_mc);
3367

3368
		sbridge_dev->mc = mc++;
3369
		rc = sbridge_register_mci(sbridge_dev, ptable->type);
3370 3371 3372 3373
		if (unlikely(rc < 0))
			goto fail1;
	}

3374
	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387

	return 0;

fail1:
	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	sbridge_put_all_devices();
fail0:
	return rc;
}

/*
3388
 *	sbridge_remove	cleanup
3389 3390
 *
 */
3391
static void sbridge_remove(void)
3392 3393 3394
{
	struct sbridge_dev *sbridge_dev;

3395
	edac_dbg(0, "\n");
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	/* Release PCI resources */
	sbridge_put_all_devices();
}

/*
 *	sbridge_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init sbridge_init(void)
{
3410
	const struct x86_cpu_id *id;
3411
	const char *owner;
3412
	int rc;
3413

3414
	edac_dbg(2, "\n");
3415

3416 3417 3418 3419
	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

3420 3421 3422 3423
	id = x86_match_cpu(sbridge_cpuids);
	if (!id)
		return -ENODEV;

3424 3425 3426
	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

3427 3428 3429
	rc = sbridge_probe(id);

	if (rc >= 0) {
3430
		mce_register_decode_chain(&sbridge_mce_dec);
3431
		if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3432
			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3433
		return 0;
3434
	}
3435 3436

	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3437
		      rc);
3438

3439
	return rc;
3440 3441 3442 3443 3444 3445 3446 3447
}

/*
 *	sbridge_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit sbridge_exit(void)
{
3448
	edac_dbg(2, "\n");
3449
	sbridge_remove();
3450
	mce_unregister_decode_chain(&sbridge_mce_dec);
3451 3452 3453 3454 3455 3456 3457 3458 3459
}

module_init(sbridge_init);
module_exit(sbridge_exit);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");

MODULE_LICENSE("GPL");
3460
MODULE_AUTHOR("Mauro Carvalho Chehab");
3461
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3462
MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3463
		   SBRIDGE_REVISION);