sb_edac.c 53.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
 *
 * This driver supports the memory controllers found on the Intel
 * processor family Sandy Bridge.
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
 * Copyright (c) 2011 by:
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/smp.h>
#include <linux/bitmap.h>
23
#include <linux/math64.h>
24
#include <asm/processor.h>
25
#include <asm/mce.h>
26 27 28 29 30 31 32 33 34 35 36

#include "edac_core.h"

/* Static vars */
static LIST_HEAD(sbridge_edac_list);
static DEFINE_MUTEX(sbridge_edac_lock);
static int probed;

/*
 * Alter this version for the module when modifications are made
 */
37
#define SBRIDGE_REVISION    " Ver: 1.1.0 "
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
#define EDAC_MOD_STR      "sbridge_edac"

/*
 * Debug macros
 */
#define sbridge_printk(level, fmt, arg...)			\
	edac_printk(level, "sbridge", fmt, ##arg)

#define sbridge_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)

/*
 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
 */
#define GET_BITFIELD(v, lo, hi)	\
53
	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
54 55 56 57 58 59 60

/*
 * sbridge Memory Controller Registers
 */

/*
 * FIXME: For now, let's order by device function, as it makes
D
David Mackey 已提交
61
 * easier for driver's development process. This table should be
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
 * moved to pci_id.h when submitted upstream
 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0	0x3cf4	/* 12.6 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1	0x3cf6	/* 12.7 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_BR		0x3cf5	/* 13.6 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0	0x3ca0	/* 14.0 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA	0x3ca8	/* 15.0 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS	0x3c71	/* 15.1 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0	0x3caa	/* 15.2 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1	0x3cab	/* 15.3 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2	0x3cac	/* 15.4 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3	0x3cad	/* 15.5 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO	0x3cb8	/* 17.0 */

	/*
	 * Currently, unused, but will be needed in the future
	 * implementations, as they hold the error counters
	 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0	0x3c72	/* 16.2 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1	0x3c73	/* 16.3 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2	0x3c76	/* 16.6 */
#define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3	0x3c77	/* 16.7 */

/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
86
static const u32 sbridge_dram_rule[] = {
87 88 89 90
	0x80, 0x88, 0x90, 0x98, 0xa0,
	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
};

91 92 93 94 95 96
static const u32 ibridge_dram_rule[] = {
	0x60, 0x68, 0x70, 0x78, 0x80,
	0x88, 0x90, 0x98, 0xa0,	0xa8,
	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
};
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

#define SAD_LIMIT(reg)		((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
#define DRAM_ATTR(reg)		GET_BITFIELD(reg, 2,  3)
#define INTERLEAVE_MODE(reg)	GET_BITFIELD(reg, 1,  1)
#define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)

static char *get_dram_attr(u32 reg)
{
	switch(DRAM_ATTR(reg)) {
		case 0:
			return "DRAM";
		case 1:
			return "MMCFG";
		case 2:
			return "NXM";
		default:
			return "unknown";
	}
}

117
static const u32 sbridge_interleave_list[] = {
118 119 120 121
	0x84, 0x8c, 0x94, 0x9c, 0xa4,
	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
};

122 123 124 125 126 127 128
static const u32 ibridge_interleave_list[] = {
	0x64, 0x6c, 0x74, 0x7c, 0x84,
	0x8c, 0x94, 0x9c, 0xa4, 0xac,
	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
};

A
Aristeu Rozanski 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
struct interleave_pkg {
	unsigned char start;
	unsigned char end;
};

static const struct interleave_pkg sbridge_interleave_pkg[] = {
	{ 0, 2 },
	{ 3, 5 },
	{ 8, 10 },
	{ 11, 13 },
	{ 16, 18 },
	{ 19, 21 },
	{ 24, 26 },
	{ 27, 29 },
};

145 146 147 148 149 150 151 152 153 154 155
static const struct interleave_pkg ibridge_interleave_pkg[] = {
	{ 0, 3 },
	{ 4, 7 },
	{ 8, 11 },
	{ 12, 15 },
	{ 16, 19 },
	{ 20, 23 },
	{ 24, 27 },
	{ 28, 31 },
};

A
Aristeu Rozanski 已提交
156 157
static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
			  int interleave)
158
{
A
Aristeu Rozanski 已提交
159 160
	return GET_BITFIELD(reg, table[interleave].start,
			    table[interleave].end);
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
}

/* Devices 12 Function 7 */

#define TOLM		0x80
#define	TOHM		0x84

#define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
#define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)

/* Device 13 Function 6 */

#define SAD_TARGET	0xf0

#define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)

#define SAD_CONTROL	0xf4

#define NODE_ID(reg)		GET_BITFIELD(reg, 0, 2)

/* Device 14 function 0 */

static const u32 tad_dram_rule[] = {
	0x40, 0x44, 0x48, 0x4c,
	0x50, 0x54, 0x58, 0x5c,
	0x60, 0x64, 0x68, 0x6c,
};
#define MAX_TAD	ARRAY_SIZE(tad_dram_rule)

#define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
#define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
#define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
#define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
#define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
#define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
#define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)

/* Device 15, function 0 */

#define MCMTR			0x7c

#define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
#define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
#define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)

/* Device 15, function 1 */

#define RASENABLES		0xac
#define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)

/* Device 15, functions 2-5 */

static const int mtr_regs[] = {
	0x80, 0x84, 0x88,
};

#define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
#define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
#define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
#define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
#define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)

static const u32 tad_ch_nilv_offset[] = {
	0x90, 0x94, 0x98, 0x9c,
	0xa0, 0xa4, 0xa8, 0xac,
	0xb0, 0xb4, 0xb8, 0xbc,
};
#define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
#define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)

static const u32 rir_way_limit[] = {
	0x108, 0x10c, 0x110, 0x114, 0x118,
};
#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)

#define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
#define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
#define RIR_LIMIT(reg)		((GET_BITFIELD(reg,  1, 10) << 29)| 0x1fffffff)

#define MAX_RIR_WAY	8

static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
};

#define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
#define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)

/* Device 16, functions 2-7 */

/*
 * FIXME: Implement the error count reads directly
 */

static const u32 correrrcnt[] = {
	0x104, 0x108, 0x10c, 0x110,
};

#define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
#define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
#define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)

static const u32 correrrthrsld[] = {
	0x11c, 0x120, 0x124, 0x128,
};

#define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)


/* Device 17, function 0 */

278
#define SB_RANK_CFG_A		0x0328
279

280
#define IB_RANK_CFG_A		0x0320
281 282 283 284 285 286 287 288 289 290

#define IS_RDIMM_ENABLED(reg)		GET_BITFIELD(reg, 11, 11)

/*
 * sbridge structs
 */

#define NUM_CHANNELS	4
#define MAX_DIMMS	3		/* Max DIMMS per channel */

291 292 293 294 295
enum type {
	SANDY_BRIDGE,
	IVY_BRIDGE,
};

A
Aristeu Rozanski 已提交
296
struct sbridge_pvt;
297
struct sbridge_info {
298
	enum type	type;
299 300 301 302 303
	u32		mcmtr;
	u32		rankcfgr;
	u64		(*get_tolm)(struct sbridge_pvt *pvt);
	u64		(*get_tohm)(struct sbridge_pvt *pvt);
	const u32	*dram_rule;
304
	const u32	*interleave_list;
A
Aristeu Rozanski 已提交
305
	const struct interleave_pkg *interleave_pkg;
306
	u8		max_sad;
307
	u8		max_interleave;
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
};

struct sbridge_channel {
	u32		ranks;
	u32		dimms;
};

struct pci_id_descr {
	int			dev;
	int			func;
	int 			dev_id;
	int			optional;
};

struct pci_id_table {
	const struct pci_id_descr	*descr;
	int				n_devs;
};

struct sbridge_dev {
	struct list_head	list;
	u8			bus, mc;
	u8			node_id, source_id;
	struct pci_dev		**pdev;
	int			n_devs;
	struct mem_ctl_info	*mci;
};

struct sbridge_pvt {
	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
338 339 340
	struct pci_dev		*pci_sad0, *pci_sad1;
	struct pci_dev		*pci_ha0, *pci_ha1;
	struct pci_dev		*pci_br0, *pci_br1;
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
	struct pci_dev		*pci_tad[NUM_CHANNELS];

	struct sbridge_dev	*sbridge_dev;

	struct sbridge_info	info;
	struct sbridge_channel	channel[NUM_CHANNELS];

	/* Memory type detection */
	bool			is_mirrored, is_lockstep, is_close_pg;

	/* Fifo double buffers */
	struct mce		mce_entry[MCE_LOG_LEN];
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;

	/* Memory description */
	u64			tolm, tohm;
};

365 366 367 368 369
#define PCI_DESCR(device, function, device_id, opt)	\
	.dev = (device),				\
	.func = (function),				\
	.dev_id = (device_id),				\
	.optional = opt
370 371 372

static const struct pci_id_descr pci_dev_descr_sbridge[] = {
		/* Processor Home Agent */
373
	{ PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)	},
374 375

		/* Memory controller */
376 377 378 379 380 381 382
	{ PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)	},
	{ PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)	},
	{ PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)	},
	{ PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)	},
	{ PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)	},
	{ PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)	},
	{ PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)	},
383 384

		/* System Address Decoder */
385 386
	{ PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)		},
	{ PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)		},
387 388

		/* Broadcast Registers */
389
	{ PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)		},
390 391 392 393 394 395 396 397
};

#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
	{0,}			/* 0 terminated list. */
};

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
/* This changes depending if 1HA or 2HA:
 * 1HA:
 *	0x0eb8 (17.0) is DDRIO0
 * 2HA:
 *	0x0ebc (17.4) is DDRIO0
 */
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc

/* pci ids */
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b

static const struct pci_id_descr pci_dev_descr_ibridge[] = {
		/* Processor Home Agent */
	{ PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)	},

		/* Memory controller */
	{ PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)	},
	{ PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)	},
	{ PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)	},
	{ PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)	},
	{ PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)	},
	{ PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)	},

		/* System Address Decoder */
	{ PCI_DESCR(22, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)		},

		/* Broadcast Registers */
	{ PCI_DESCR(22, 1, PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)		},
	{ PCI_DESCR(22, 2, PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)		},

		/* Optional, mode 2HA */
	{ PCI_DESCR(28, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)	},
#if 0
	{ PCI_DESCR(29, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)	},
	{ PCI_DESCR(29, 1, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1)	},
#endif
	{ PCI_DESCR(29, 2, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)	},
	{ PCI_DESCR(29, 3, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)	},

	{ PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1) },
	{ PCI_DESCR(17, 4, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1) },
};

static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
	{0,}			/* 0 terminated list. */
};

461 462 463
/*
 *	pci_device_id	table for which devices we are looking for
 */
464
static const struct pci_device_id sbridge_pci_tbl[] = {
465
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
466
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
467 468 469 470 471
	{0,}			/* 0 terminated list. */
};


/****************************************************************************
D
David Mackey 已提交
472
			Ancillary status routines
473 474 475 476 477 478 479
 ****************************************************************************/

static inline int numrank(u32 mtr)
{
	int ranks = (1 << RANK_CNT_BITS(mtr));

	if (ranks > 4) {
480 481
		edac_dbg(0, "Invalid number of ranks: %d (max = 4) raw value = %x (%04x)\n",
			 ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
482 483 484 485 486 487 488 489 490 491 492
		return -EINVAL;
	}

	return ranks;
}

static inline int numrow(u32 mtr)
{
	int rows = (RANK_WIDTH_BITS(mtr) + 12);

	if (rows < 13 || rows > 18) {
493 494
		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
495 496 497 498 499 500 501 502 503 504 505
		return -EINVAL;
	}

	return 1 << rows;
}

static inline int numcol(u32 mtr)
{
	int cols = (COL_WIDTH_BITS(mtr) + 10);

	if (cols > 12) {
506 507
		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
		return -EINVAL;
	}

	return 1 << cols;
}

static struct sbridge_dev *get_sbridge_dev(u8 bus)
{
	struct sbridge_dev *sbridge_dev;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
		if (sbridge_dev->bus == bus)
			return sbridge_dev;
	}

	return NULL;
}

static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
					   const struct pci_id_table *table)
{
	struct sbridge_dev *sbridge_dev;

	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
	if (!sbridge_dev)
		return NULL;

	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
				   GFP_KERNEL);
	if (!sbridge_dev->pdev) {
		kfree(sbridge_dev);
		return NULL;
	}

	sbridge_dev->bus = bus;
	sbridge_dev->n_devs = table->n_devs;
	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);

	return sbridge_dev;
}

static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
{
	list_del(&sbridge_dev->list);
	kfree(sbridge_dev->pdev);
	kfree(sbridge_dev);
}

A
Aristeu Rozanski 已提交
556 557 558 559 560 561 562 563 564
static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	/* Address range is 32:28 */
	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
	return GET_TOLM(reg);
}

A
Aristeu Rozanski 已提交
565 566 567 568 569 570 571 572
static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
	return GET_TOHM(reg);
}

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);

	return GET_TOLM(reg);
}

static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);

	return GET_TOHM(reg);
}

static inline u8 sad_pkg_socket(u8 pkg)
{
	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
	return (pkg >> 3) | (pkg & 0x3);
}

static inline u8 sad_pkg_ha(u8 pkg)
{
	return (pkg >> 2) & 0x1;
}

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
/****************************************************************************
			Memory check routines
 ****************************************************************************/
static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
					  unsigned func)
{
	struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
	int i;

	if (!sbridge_dev)
		return NULL;

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		if (!sbridge_dev->pdev[i])
			continue;

		if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
		    PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
620 621
			edac_dbg(1, "Associated %02x.%02x.%d with %p\n",
				 bus, slot, func, sbridge_dev->pdev[i]);
622 623 624 625 626 627 628 629
			return sbridge_dev->pdev[i];
		}
	}

	return NULL;
}

/**
630
 * check_if_ecc_is_active() - Checks if ECC is active
631 632
 * bus:		Device bus
 */
633
static int check_if_ecc_is_active(const u8 bus)
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
{
	struct pci_dev *pdev = NULL;
	u32 mcmtr;

	pdev = get_pdev_slot_func(bus, 15, 0);
	if (!pdev) {
		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
					"%2x.%02d.%d!!!\n",
					bus, 15, 0);
		return -ENODEV;
	}

	pci_read_config_dword(pdev, MCMTR, &mcmtr);
	if (!IS_ECC_ENABLED(mcmtr)) {
		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
		return -ENODEV;
	}
	return 0;
}

654
static int get_dimm_config(struct mem_ctl_info *mci)
655 656
{
	struct sbridge_pvt *pvt = mci->pvt_info;
657
	struct dimm_info *dimm;
658 659
	unsigned i, j, banks, ranks, rows, cols, npages;
	u64 size;
660 661
	u32 reg;
	enum edac_type mode;
662
	enum mem_type mtype;
663

A
Aristeu Rozanski 已提交
664
	pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
665 666
	pvt->sbridge_dev->source_id = SOURCE_ID(reg);

A
Aristeu Rozanski 已提交
667
	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
668
	pvt->sbridge_dev->node_id = NODE_ID(reg);
669 670 671 672
	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
		 pvt->sbridge_dev->mc,
		 pvt->sbridge_dev->node_id,
		 pvt->sbridge_dev->source_id);
673 674 675

	pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
	if (IS_MIRROR_ENABLED(reg)) {
676
		edac_dbg(0, "Memory mirror is enabled\n");
677 678
		pvt->is_mirrored = true;
	} else {
679
		edac_dbg(0, "Memory mirror is disabled\n");
680 681 682 683 684
		pvt->is_mirrored = false;
	}

	pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
	if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
685
		edac_dbg(0, "Lockstep is enabled\n");
686 687 688
		mode = EDAC_S8ECD8ED;
		pvt->is_lockstep = true;
	} else {
689
		edac_dbg(0, "Lockstep is disabled\n");
690 691 692 693
		mode = EDAC_S4ECD4ED;
		pvt->is_lockstep = false;
	}
	if (IS_CLOSE_PG(pvt->info.mcmtr)) {
694
		edac_dbg(0, "address map is on closed page mode\n");
695 696
		pvt->is_close_pg = true;
	} else {
697
		edac_dbg(0, "address map is on open page mode\n");
698 699 700
		pvt->is_close_pg = false;
	}

701
	if (pvt->pci_ddrio) {
702 703
		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
				      &reg);
704 705 706 707 708 709 710 711
		if (IS_RDIMM_ENABLED(reg)) {
			/* FIXME: Can also be LRDIMM */
			edac_dbg(0, "Memory is registered\n");
			mtype = MEM_RDDR3;
		} else {
			edac_dbg(0, "Memory is unregistered\n");
			mtype = MEM_DDR3;
		}
712
	} else {
713 714
		edac_dbg(0, "Cannot determine memory type\n");
		mtype = MEM_UNKNOWN;
715 716 717 718 719 720 721 722 723
	}

	/* On all supported DDR3 DIMM types, there are 8 banks available */
	banks = 8;

	for (i = 0; i < NUM_CHANNELS; i++) {
		u32 mtr;

		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
724 725
			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
				       i, j, 0);
726 727
			pci_read_config_dword(pvt->pci_tad[i],
					      mtr_regs[j], &mtr);
728
			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
729 730 731 732 733 734 735 736
			if (IS_DIMM_PRESENT(mtr)) {
				pvt->channel[i].dimms++;

				ranks = numrank(mtr);
				rows = numrow(mtr);
				cols = numcol(mtr);

				/* DDR3 has 8 I/O banks */
737
				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
738 739
				npages = MiB_TO_PAGES(size);

740
				edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
741 742 743
					 pvt->sbridge_dev->mc, i, j,
					 size, npages,
					 banks, ranks, rows, cols);
744

745
				dimm->nr_pages = npages;
746 747 748 749 750
				dimm->grain = 32;
				dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
				dimm->mtype = mtype;
				dimm->edac_mode = mode;
				snprintf(dimm->label, sizeof(dimm->label),
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
					 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
					 pvt->sbridge_dev->source_id, i, j);
			}
		}
	}

	return 0;
}

static void get_memory_layout(const struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	int i, j, k, n_sads, n_tads, sad_interl;
	u32 reg;
	u64 limit, prv = 0;
	u64 tmp_mb;
767
	u32 mb, kb;
768 769 770 771 772 773
	u32 rir_way;

	/*
	 * Step 1) Get TOLM/TOHM ranges
	 */

A
Aristeu Rozanski 已提交
774
	pvt->tolm = pvt->info.get_tolm(pvt);
775 776
	tmp_mb = (1 + pvt->tolm) >> 20;

777
	mb = div_u64_rem(tmp_mb, 1000, &kb);
778
	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm);
779 780

	/* Address range is already 45:25 */
A
Aristeu Rozanski 已提交
781
	pvt->tohm = pvt->info.get_tohm(pvt);
782 783
	tmp_mb = (1 + pvt->tohm) >> 20;

784
	mb = div_u64_rem(tmp_mb, 1000, &kb);
785
	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tohm);
786 787 788 789 790 791 792 793

	/*
	 * Step 2) Get SAD range and SAD Interleave list
	 * TAD registers contain the interleave wayness. However, it
	 * seems simpler to just discover it indirectly, with the
	 * algorithm bellow.
	 */
	prv = 0;
794
	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
795
		/* SAD_LIMIT Address range is 45:26 */
796
		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
797 798 799 800 801 802 803 804 805 806
				      &reg);
		limit = SAD_LIMIT(reg);

		if (!DRAM_RULE_ENABLE(reg))
			continue;

		if (limit <= prv)
			break;

		tmp_mb = (limit + 1) >> 20;
807
		mb = div_u64_rem(tmp_mb, 1000, &kb);
808 809 810 811 812 813 814
		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
			 n_sads,
			 get_dram_attr(reg),
			 mb, kb,
			 ((u64)tmp_mb) << 20L,
			 INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
			 reg);
815 816
		prv = limit;

817
		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
818
				      &reg);
A
Aristeu Rozanski 已提交
819
		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
820
		for (j = 0; j < 8; j++) {
A
Aristeu Rozanski 已提交
821 822
			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
			if (j > 0 && sad_interl == pkg)
823 824
				break;

825
			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
A
Aristeu Rozanski 已提交
826
				 n_sads, j, pkg);
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
		}
	}

	/*
	 * Step 3) Get TAD range
	 */
	prv = 0;
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
				      &reg);
		limit = TAD_LIMIT(reg);
		if (limit <= prv)
			break;
		tmp_mb = (limit + 1) >> 20;

842
		mb = div_u64_rem(tmp_mb, 1000, &kb);
843 844 845 846 847 848 849 850 851 852
		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
			 n_tads, mb, kb,
			 ((u64)tmp_mb) << 20L,
			 (u32)TAD_SOCK(reg),
			 (u32)TAD_CH(reg),
			 (u32)TAD_TGT0(reg),
			 (u32)TAD_TGT1(reg),
			 (u32)TAD_TGT2(reg),
			 (u32)TAD_TGT3(reg),
			 reg);
853
		prv = limit;
854 855 856 857 858 859 860 861 862 863 864 865 866
	}

	/*
	 * Step 4) Get TAD offsets, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < n_tads; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      tad_ch_nilv_offset[j],
					      &reg);
			tmp_mb = TAD_OFFSET(reg) >> 20;
867
			mb = div_u64_rem(tmp_mb, 1000, &kb);
868 869 870 871 872
			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
				 i, j,
				 mb, kb,
				 ((u64)tmp_mb) << 20L,
				 reg);
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
		}
	}

	/*
	 * Step 6) Get RIR Wayness/Limit, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < MAX_RIR_RANGES; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      rir_way_limit[j],
					      &reg);

			if (!IS_RIR_VALID(reg))
				continue;

			tmp_mb = RIR_LIMIT(reg) >> 20;
			rir_way = 1 << RIR_WAY(reg);
892
			mb = div_u64_rem(tmp_mb, 1000, &kb);
893 894 895 896 897 898
			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
				 i, j,
				 mb, kb,
				 ((u64)tmp_mb) << 20L,
				 rir_way,
				 reg);
899 900 901 902 903 904 905

			for (k = 0; k < rir_way; k++) {
				pci_read_config_dword(pvt->pci_tad[i],
						      rir_offset[j][k],
						      &reg);
				tmp_mb = RIR_OFFSET(reg) << 6;

906
				mb = div_u64_rem(tmp_mb, 1000, &kb);
907 908 909 910 911 912
				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
					 i, j, k,
					 mb, kb,
					 ((u64)tmp_mb) << 20L,
					 (u32)RIR_RNK_TGT(reg),
					 reg);
913 914 915 916 917
			}
		}
	}
}

918
static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
{
	struct sbridge_dev *sbridge_dev;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
		if (sbridge_dev->node_id == node_id)
			return sbridge_dev->mci;
	}
	return NULL;
}

static int get_memory_error_data(struct mem_ctl_info *mci,
				 u64 addr,
				 u8 *socket,
				 long *channel_mask,
				 u8 *rank,
934
				 char **area_type, char *msg)
935 936 937
{
	struct mem_ctl_info	*new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
938
	struct pci_dev		*pci_ha;
939 940 941
	int 			n_rir, n_sads, n_tads, sad_way, sck_xch;
	int			sad_interl, idx, base_ch;
	int			interleave_mode;
942
	unsigned		sad_interleave[pvt->info.max_interleave];
943
	u32			reg;
944
	u8			ch_way, sck_way, pkg, sad_ha = 0;
945 946
	u32			tad_offset;
	u32			rir_way;
947
	u32			mb, kb;
948
	u64			ch_addr, offset, limit = 0, prv = 0;
949 950 951 952 953 954 955 956 957


	/*
	 * Step 0) Check if the address is at special memory ranges
	 * The check bellow is probably enough to fill all cases where
	 * the error is not inside a memory, except for the legacy
	 * range (e. g. VGA addresses). It is unlikely, however, that the
	 * memory controller would generate an error on that range.
	 */
958
	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
959 960 961 962 963 964 965 966 967 968 969
		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
		return -EINVAL;
	}
	if (addr >= (u64)pvt->tohm) {
		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
		return -EINVAL;
	}

	/*
	 * Step 1) Get socket
	 */
970 971
	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
972 973 974 975 976 977 978 979 980 981 982 983 984 985
				      &reg);

		if (!DRAM_RULE_ENABLE(reg))
			continue;

		limit = SAD_LIMIT(reg);
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory socket");
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
986
	if (n_sads == pvt->info.max_sad) {
987 988 989
		sprintf(msg, "Can't discover the memory socket");
		return -EINVAL;
	}
990
	*area_type = get_dram_attr(reg);
991 992
	interleave_mode = INTERLEAVE_MODE(reg);

993
	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
994
			      &reg);
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

	if (pvt->info.type == SANDY_BRIDGE) {
		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
		for (sad_way = 0; sad_way < 8; sad_way++) {
			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
			if (sad_way > 0 && sad_interl == pkg)
				break;
			sad_interleave[sad_way] = pkg;
			edac_dbg(0, "SAD interleave #%d: %d\n",
				 sad_way, sad_interleave[sad_way]);
		}
		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
			 pvt->sbridge_dev->mc,
			 n_sads,
			 addr,
			 limit,
			 sad_way + 7,
			 !interleave_mode ? "" : "XOR[18:16]");
		if (interleave_mode)
			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
		else
			idx = (addr >> 6) & 7;
		switch (sad_way) {
		case 1:
			idx = 0;
1020
			break;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		case 2:
			idx = idx & 1;
			break;
		case 4:
			idx = idx & 3;
			break;
		case 8:
			break;
		default:
			sprintf(msg, "Can't discover socket interleave");
			return -EINVAL;
		}
		*socket = sad_interleave[idx];
		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
			 idx, sad_way, *socket);
	} else {
		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1038
		idx = (addr >> 6) & 7;
1039 1040 1041 1042 1043
		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
		*socket = sad_pkg_socket(pkg);
		sad_ha = sad_pkg_ha(pkg);
		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
			 idx, *socket, sad_ha);
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	}

	/*
	 * Move to the proper node structure, in order to access the
	 * right PCI registers
	 */
	new_mci = get_mci_for_node_id(*socket);
	if (!new_mci) {
		sprintf(msg, "Struct for socket #%u wasn't initialized",
			*socket);
		return -EINVAL;
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	/*
	 * Step 2) Get memory channel
	 */
	prv = 0;
1063 1064 1065 1066 1067 1068 1069 1070
	if (pvt->info.type == SANDY_BRIDGE)
		pci_ha = pvt->pci_ha0;
	else {
		if (sad_ha)
			pci_ha = pvt->pci_ha1;
		else
			pci_ha = pvt->pci_ha0;
	}
1071
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1072
		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
1073 1074 1075 1076 1077 1078 1079 1080 1081
		limit = TAD_LIMIT(reg);
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory channel");
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
1082 1083 1084 1085 1086
	if (n_tads == MAX_TAD) {
		sprintf(msg, "Can't discover the memory channel");
		return -EINVAL;
	}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	ch_way = TAD_CH(reg) + 1;
	sck_way = TAD_SOCK(reg) + 1;

	if (ch_way == 3)
		idx = addr >> 6;
	else
		idx = addr >> (6 + sck_way);
	idx = idx % ch_way;

	/*
	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
	 */
	switch (idx) {
	case 0:
		base_ch = TAD_TGT0(reg);
		break;
	case 1:
		base_ch = TAD_TGT1(reg);
		break;
	case 2:
		base_ch = TAD_TGT2(reg);
		break;
	case 3:
		base_ch = TAD_TGT3(reg);
		break;
	default:
		sprintf(msg, "Can't discover the TAD target");
		return -EINVAL;
	}
	*channel_mask = 1 << base_ch;

1118 1119 1120 1121
	pci_read_config_dword(pvt->pci_tad[base_ch],
				tad_ch_nilv_offset[n_tads],
				&tad_offset);

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	if (pvt->is_mirrored) {
		*channel_mask |= 1 << ((base_ch + 2) % 4);
		switch(ch_way) {
		case 2:
		case 4:
			sck_xch = 1 << sck_way * (ch_way >> 1);
			break;
		default:
			sprintf(msg, "Invalid mirror set. Can't decode addr");
			return -EINVAL;
		}
	} else
		sck_xch = (1 << sck_way) * ch_way;

	if (pvt->is_lockstep)
		*channel_mask |= 1 << ((base_ch + 1) % 4);

	offset = TAD_OFFSET(tad_offset);

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
		 n_tads,
		 addr,
		 limit,
		 (u32)TAD_SOCK(reg),
		 ch_way,
		 offset,
		 idx,
		 base_ch,
		 *channel_mask);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

	/* Calculate channel address */
	/* Remove the TAD offset */

	if (offset > addr) {
		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
			offset, addr);
		return -EINVAL;
	}
	addr -= offset;
	/* Store the low bits [0:6] of the addr */
	ch_addr = addr & 0x7f;
	/* Remove socket wayness and remove 6 bits */
	addr >>= 6;
1165
	addr = div_u64(addr, sck_xch);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
#if 0
	/* Divide by channel way */
	addr = addr / ch_way;
#endif
	/* Recover the last 6 bits */
	ch_addr |= addr << 6;

	/*
	 * Step 3) Decode rank
	 */
	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
		pci_read_config_dword(pvt->pci_tad[base_ch],
				      rir_way_limit[n_rir],
				      &reg);

		if (!IS_RIR_VALID(reg))
			continue;

		limit = RIR_LIMIT(reg);
1185
		mb = div_u64_rem(limit >> 20, 1000, &kb);
1186 1187 1188 1189 1190
		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
			 n_rir,
			 mb, kb,
			 limit,
			 1 << RIR_WAY(reg));
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
		if  (ch_addr <= limit)
			break;
	}
	if (n_rir == MAX_RIR_RANGES) {
		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
			ch_addr);
		return -EINVAL;
	}
	rir_way = RIR_WAY(reg);
	if (pvt->is_close_pg)
		idx = (ch_addr >> 6);
	else
		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
	idx %= 1 << rir_way;

	pci_read_config_dword(pvt->pci_tad[base_ch],
			      rir_offset[n_rir][idx],
			      &reg);
	*rank = RIR_RNK_TGT(reg);

1211 1212 1213 1214 1215 1216
	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
		 n_rir,
		 ch_addr,
		 limit,
		 rir_way,
		 idx);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

	return 0;
}

/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
 *	sbridge_put_all_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
{
	int i;

1233
	edac_dbg(0, "\n");
1234 1235 1236 1237
	for (i = 0; i < sbridge_dev->n_devs; i++) {
		struct pci_dev *pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
1238 1239 1240
		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
			 pdev->bus->number,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
		pci_dev_put(pdev);
	}
}

static void sbridge_put_all_devices(void)
{
	struct sbridge_dev *sbridge_dev, *tmp;

	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
		sbridge_put_devices(sbridge_dev);
		free_sbridge_dev(sbridge_dev);
	}
}

static int sbridge_get_onedevice(struct pci_dev **prev,
				 u8 *num_mc,
				 const struct pci_id_table *table,
				 const unsigned devno)
{
	struct sbridge_dev *sbridge_dev;
	const struct pci_id_descr *dev_descr = &table->descr[devno];

	struct pci_dev *pdev = NULL;
	u8 bus = 0;

	sbridge_printk(KERN_INFO,
		"Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
		dev_descr->dev, dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
			      dev_descr->dev_id, *prev);

	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
		}

		if (dev_descr->optional)
			return 0;

		if (devno == 0)
			return -ENODEV;

		sbridge_printk(KERN_INFO,
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;

	sbridge_dev = get_sbridge_dev(bus);
	if (!sbridge_dev) {
		sbridge_dev = alloc_sbridge_dev(bus, table);
		if (!sbridge_dev) {
			pci_dev_put(pdev);
			return -ENOMEM;
		}
		(*num_mc)++;
	}

	if (sbridge_dev->pdev[devno]) {
		sbridge_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%d.%d PCI ID %04x:%04x\n",
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		pci_dev_put(pdev);
		return -ENODEV;
	}

	sbridge_dev->pdev[devno] = pdev;

	/* Sanity check */
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
		sbridge_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			bus, dev_descr->dev, dev_descr->func);
		return -ENODEV;
	}

	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		sbridge_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%d.%d PCI ID %04x:%04x\n",
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		return -ENODEV;
	}

1340 1341 1342
	edac_dbg(0, "Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
		 bus, dev_descr->dev, dev_descr->func,
		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355

	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

	*prev = pdev;

	return 0;
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
/*
 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
 *			     device/functions we want to reference for this driver.
 *			     Need to 'get' device 16 func 1 and func 2.
 * @num_mc: pointer to the memory controllers count, to be incremented in case
 * 	    of success.
 * @table: model specific table
 *
 * returns 0 in case of success or error code
 */
static int sbridge_get_all_devices(u8 *num_mc,
				   const struct pci_id_table *table)
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
{
	int i, rc;
	struct pci_dev *pdev = NULL;

	while (table && table->descr) {
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
				rc = sbridge_get_onedevice(&pdev, num_mc,
							   table, i);
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					sbridge_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
		table++;
	}

	return 0;
}

A
Aristeu Rozanski 已提交
1394 1395
static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	int i, func, slot;

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
		slot = PCI_SLOT(pdev->devfn);
		func = PCI_FUNC(pdev->devfn);
		switch (slot) {
		case 12:
			switch (func) {
			case 6:
				pvt->pci_sad0 = pdev;
				break;
			case 7:
				pvt->pci_sad1 = pdev;
				break;
			default:
				goto error;
			}
			break;
		case 13:
			switch (func) {
			case 6:
A
Aristeu Rozanski 已提交
1423
				pvt->pci_br0 = pdev;
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
				break;
			default:
				goto error;
			}
			break;
		case 14:
			switch (func) {
			case 0:
				pvt->pci_ha0 = pdev;
				break;
			default:
				goto error;
			}
			break;
		case 15:
			switch (func) {
			case 0:
				pvt->pci_ta = pdev;
				break;
			case 1:
				pvt->pci_ras = pdev;
				break;
			case 2:
			case 3:
			case 4:
			case 5:
				pvt->pci_tad[func - 2] = pdev;
				break;
			default:
				goto error;
			}
			break;
		case 17:
			switch (func) {
			case 0:
				pvt->pci_ddrio = pdev;
				break;
			default:
				goto error;
			}
			break;
		default:
			goto error;
		}

1469 1470 1471 1472
		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
1473 1474 1475 1476
	}

	/* Check if everything were registered */
	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1477
	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
		goto enodev;

	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->pci_tad[i])
			goto enodev;
	}
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;

error:
	sbridge_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
}

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev, *tmp;
	int i, func, slot;
	bool mode_2ha = false;

	tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
			     PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, NULL);
	if (tmp) {
		mode_2ha = true;
		pci_dev_put(tmp);
	}

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
		slot = PCI_SLOT(pdev->devfn);
		func = PCI_FUNC(pdev->devfn);

		switch (slot) {
		case 14:
			if (func == 0) {
				pvt->pci_ha0 = pdev;
				break;
			}
			goto error;
		case 15:
			switch (func) {
			case 0:
				pvt->pci_ta = pdev;
				break;
			case 1:
				pvt->pci_ras = pdev;
				break;
			case 4:
			case 5:
				/* if we have 2 HAs active, channels 2 and 3
				 * are in other device */
				if (mode_2ha)
					break;
				/* fall through */
			case 2:
			case 3:
				pvt->pci_tad[func - 2] = pdev;
				break;
			default:
				goto error;
			}
			break;
		case 17:
			if (func == 4) {
				pvt->pci_ddrio = pdev;
				break;
			} else if (func == 0) {
				if (!mode_2ha)
					pvt->pci_ddrio = pdev;
				break;
			}
			goto error;
		case 22:
			switch (func) {
			case 0:
				pvt->pci_sad0 = pdev;
				break;
			case 1:
				pvt->pci_br0 = pdev;
				break;
			case 2:
				pvt->pci_br1 = pdev;
				break;
			default:
				goto error;
			}
			break;
		case 28:
			if (func == 0) {
				pvt->pci_ha1 = pdev;
				break;
			}
			goto error;
		case 29:
			/* we shouldn't have this device if we have just one
			 * HA present */
			WARN_ON(!mode_2ha);
			if (func == 2 || func == 3) {
				pvt->pci_tad[func] = pdev;
				break;
			}
			goto error;
		default:
			goto error;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
	    !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
	    !pvt->pci_ta)
		goto enodev;

	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->pci_tad[i])
			goto enodev;
	}
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;

error:
	sbridge_printk(KERN_ERR,
		       "Device %d, function %d is out of the expected range\n",
		       slot, func);
	return -EINVAL;
}

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
/****************************************************************************
			Error check routines
 ****************************************************************************/

/*
 * While Sandy Bridge has error count registers, SMI BIOS read values from
 * and resets the counters. So, they are not reliable for the OS to read
 * from them. So, we have no option but to just trust on whatever MCE is
 * telling us about the errors.
 */
static void sbridge_mce_output_error(struct mem_ctl_info *mci,
				    const struct mce *m)
{
	struct mem_ctl_info *new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
1637
	enum hw_event_mc_err_type tp_event;
1638
	char *type, *optype, msg[256];
1639 1640 1641
	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
	bool overflow = GET_BITFIELD(m->status, 62, 62);
	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1642
	bool recoverable;
1643 1644 1645 1646 1647 1648 1649
	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
	u32 mscod = GET_BITFIELD(m->status, 16, 31);
	u32 errcode = GET_BITFIELD(m->status, 0, 15);
	u32 channel = GET_BITFIELD(m->status, 0, 3);
	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
	long channel_mask, first_channel;
	u8  rank, socket;
1650
	int rc, dimm;
1651
	char *area_type = NULL;
1652

1653 1654 1655 1656 1657
	if (pvt->info.type == IVY_BRIDGE)
		recoverable = true;
	else
		recoverable = GET_BITFIELD(m->status, 56, 56);

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	if (uncorrected_error) {
		if (ripv) {
			type = "FATAL";
			tp_event = HW_EVENT_ERR_FATAL;
		} else {
			type = "NON_FATAL";
			tp_event = HW_EVENT_ERR_UNCORRECTED;
		}
	} else {
		type = "CORRECTED";
		tp_event = HW_EVENT_ERR_CORRECTED;
	}
1670 1671

	/*
D
David Mackey 已提交
1672
	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	 * memory errors should fit in this mask:
	 *	000f 0000 1mmm cccc (binary)
	 * where:
	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
	 *	    won't be shown
	 *	mmm = error type
	 *	cccc = channel
	 * If the mask doesn't match, report an error to the parsing logic
	 */
	if (! ((errcode & 0xef80) == 0x80)) {
		optype = "Can't parse: it is not a mem";
	} else {
		switch (optypenum) {
		case 0:
1687
			optype = "generic undef request error";
1688 1689
			break;
		case 1:
1690
			optype = "memory read error";
1691 1692
			break;
		case 2:
1693
			optype = "memory write error";
1694 1695
			break;
		case 3:
1696
			optype = "addr/cmd error";
1697 1698
			break;
		case 4:
1699
			optype = "memory scrubbing error";
1700 1701 1702 1703 1704 1705 1706
			break;
		default:
			optype = "reserved";
			break;
		}
	}

1707 1708 1709 1710
	/* Only decode errors with an valid address (ADDRV) */
	if (!GET_BITFIELD(m->status, 58, 58))
		return;

1711
	rc = get_memory_error_data(mci, m->addr, &socket,
1712
				   &channel_mask, &rank, &area_type, msg);
1713
	if (rc < 0)
1714
		goto err_parsing;
1715 1716
	new_mci = get_mci_for_node_id(socket);
	if (!new_mci) {
1717 1718
		strcpy(msg, "Error: socket got corrupted!");
		goto err_parsing;
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);

	if (rank < 4)
		dimm = 0;
	else if (rank < 8)
		dimm = 1;
	else
		dimm = 2;


	/*
1734 1735 1736 1737
	 * FIXME: On some memory configurations (mirror, lockstep), the
	 * Memory Controller can't point the error to a single DIMM. The
	 * EDAC core should be handling the channel mask, in order to point
	 * to the group of dimm's where the error may be happening.
1738
	 */
1739
	snprintf(msg, sizeof(msg),
1740
		 "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
1741 1742 1743 1744 1745 1746 1747
		 overflow ? " OVERFLOW" : "",
		 (uncorrected_error && recoverable) ? " recoverable" : "",
		 area_type,
		 mscod, errcode,
		 socket,
		 channel_mask,
		 rank);
1748

1749
	edac_dbg(0, "%s\n", msg);
1750

1751 1752
	/* FIXME: need support for channel mask */

1753
	/* Call the helper to output message */
1754
	edac_mc_handle_error(tp_event, mci, core_err_cnt,
1755 1756
			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
			     channel, dimm, -1,
1757
			     optype, msg);
1758 1759
	return;
err_parsing:
1760
	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
1761
			     -1, -1, -1,
1762
			     msg, "");
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824

}

/*
 *	sbridge_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void sbridge_check_error(struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
	struct mce *m;

	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
	 * loosing an error.
	 */
	smp_rmb();
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
	if (!count)
		return;

	m = pvt->mce_outentry;
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;

		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}

	/*
	 * MCE second step: parse errors and display
	 */
	for (i = 0; i < count; i++)
		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
}

/*
 * sbridge_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by sbridge_check_error.
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
 */
1825 1826
static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
				   void *data)
1827
{
1828 1829 1830
	struct mce *mce = (struct mce *)data;
	struct mem_ctl_info *mci;
	struct sbridge_pvt *pvt;
1831
	char *type;
1832

1833 1834 1835
	if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
		return NOTIFY_DONE;

1836 1837 1838 1839
	mci = get_mci_for_node_id(mce->socketid);
	if (!mci)
		return NOTIFY_BAD;
	pvt = mci->pvt_info;
1840 1841 1842 1843 1844 1845 1846 1847

	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller. A memory error
	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
	 * bit 12 has an special meaning.
	 */
	if ((mce->status & 0xefff) >> 7 != 1)
1848
		return NOTIFY_DONE;
1849

1850 1851 1852 1853 1854
	if (mce->mcgstatus & MCG_STATUS_MCIP)
		type = "Exception";
	else
		type = "Event";

1855 1856
	printk("sbridge: HANDLING MCE MEMORY ERROR\n");

1857 1858
	printk("CPU %d: Machine Check %s: %Lx Bank %d: %016Lx\n",
	       mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status);
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	printk("TSC %llx ", mce->tsc);
	printk("ADDR %llx ", mce->addr);
	printk("MISC %llx ", mce->misc);

	printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
		mce->cpuvendor, mce->cpuid, mce->time,
		mce->socketid, mce->apicid);

	/* Only handle if it is the right mc controller */
	if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
1869
		return NOTIFY_DONE;
1870 1871 1872 1873 1874

	smp_rmb();
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
		smp_wmb();
		pvt->mce_overrun++;
1875
		return NOTIFY_DONE;
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
	}

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
	smp_wmb();
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;

	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		sbridge_check_error(mci);

	/* Advice mcelog that the error were handled */
1888
	return NOTIFY_STOP;
1889 1890
}

1891 1892 1893 1894
static struct notifier_block sbridge_mce_dec = {
	.notifier_call      = sbridge_mce_check_error,
};

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
/****************************************************************************
			EDAC register/unregister logic
 ****************************************************************************/

static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
{
	struct mem_ctl_info *mci = sbridge_dev->mci;
	struct sbridge_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
1905
		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
1906 1907 1908 1909 1910 1911 1912

		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

1913 1914
	edac_dbg(0, "MC: mci = %p, dev = %p\n",
		 mci, &sbridge_dev->pdev[0]->dev);
1915 1916

	/* Remove MC sysfs nodes */
1917
	edac_mc_del_mc(mci->pdev);
1918

1919
	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
1920 1921 1922 1923 1924
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
}

1925
static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
1926 1927
{
	struct mem_ctl_info *mci;
1928
	struct edac_mc_layer layers[2];
1929
	struct sbridge_pvt *pvt;
1930
	struct pci_dev *pdev = sbridge_dev->pdev[0];
1931
	int rc;
1932 1933

	/* Check the number of active and not disabled channels */
1934
	rc = check_if_ecc_is_active(sbridge_dev->bus);
1935 1936 1937 1938
	if (unlikely(rc < 0))
		return rc;

	/* allocate a new MC control structure */
1939 1940 1941 1942 1943 1944
	layers[0].type = EDAC_MC_LAYER_CHANNEL;
	layers[0].size = NUM_CHANNELS;
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
	layers[1].size = MAX_DIMMS;
	layers[1].is_virt_csrow = true;
1945
	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
1946 1947
			    sizeof(*pvt));

1948 1949 1950
	if (unlikely(!mci))
		return -ENOMEM;

1951
	edac_dbg(0, "MC: mci = %p, dev = %p\n",
1952
		 mci, &pdev->dev);
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965

	pvt = mci->pvt_info;
	memset(pvt, 0, sizeof(*pvt));

	/* Associate sbridge_dev and mci for future usage */
	pvt->sbridge_dev = sbridge_dev;
	sbridge_dev->mci = mci;

	mci->mtype_cap = MEM_FLAG_DDR3;
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "sbridge_edac.c";
	mci->mod_ver = SBRIDGE_REVISION;
1966
	mci->dev_name = pci_name(pdev);
1967 1968 1969 1970 1971
	mci->ctl_page_to_phys = NULL;

	/* Set the function pointer to an actual operation function */
	mci->edac_check = sbridge_check_error;

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	pvt->info.type = type;
	if (type == IVY_BRIDGE) {
		pvt->info.rankcfgr = IB_RANK_CFG_A;
		pvt->info.get_tolm = ibridge_get_tolm;
		pvt->info.get_tohm = ibridge_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);

		/* Store pci devices at mci for faster access */
		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
	} else {
		pvt->info.rankcfgr = SB_RANK_CFG_A;
		pvt->info.get_tolm = sbridge_get_tolm;
		pvt->info.get_tohm = sbridge_get_tohm;
		pvt->info.dram_rule = sbridge_dram_rule;
		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
		pvt->info.interleave_list = sbridge_interleave_list;
		pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
		pvt->info.interleave_pkg = sbridge_interleave_pkg;
		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);

		/* Store pci devices at mci for faster access */
		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
	}

2005 2006 2007 2008 2009 2010

	/* Get dimm basic config and the memory layout */
	get_dimm_config(mci);
	get_memory_layout(mci);

	/* record ptr to the generic device */
2011
	mci->pdev = &pdev->dev;
2012 2013 2014

	/* add this new MC control structure to EDAC's list of MCs */
	if (unlikely(edac_mc_add_mc(mci))) {
2015
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
		rc = -EINVAL;
		goto fail0;
	}

	return 0;

fail0:
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
	return rc;
}

/*
 *	sbridge_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */

2037
static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2038 2039 2040 2041
{
	int rc;
	u8 mc, num_mc = 0;
	struct sbridge_dev *sbridge_dev;
2042
	enum type type;
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055

	/* get the pci devices we want to reserve for our use */
	mutex_lock(&sbridge_edac_lock);

	/*
	 * All memory controllers are allocated at the first pass.
	 */
	if (unlikely(probed >= 1)) {
		mutex_unlock(&sbridge_edac_lock);
		return -ENODEV;
	}
	probed++;

2056 2057 2058 2059 2060 2061 2062
	if (pdev->device == PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA) {
		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
		type = IVY_BRIDGE;
	} else {
		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
		type = SANDY_BRIDGE;
	}
2063 2064 2065 2066 2067
	if (unlikely(rc < 0))
		goto fail0;
	mc = 0;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
2068 2069
		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
			 mc, mc + 1, num_mc);
2070
		sbridge_dev->mc = mc++;
2071
		rc = sbridge_register_mci(sbridge_dev, type);
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
		if (unlikely(rc < 0))
			goto fail1;
	}

	sbridge_printk(KERN_INFO, "Driver loaded.\n");

	mutex_unlock(&sbridge_edac_lock);
	return 0;

fail1:
	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	sbridge_put_all_devices();
fail0:
	mutex_unlock(&sbridge_edac_lock);
	return rc;
}

/*
 *	sbridge_remove	destructor for one instance of device
 *
 */
2095
static void sbridge_remove(struct pci_dev *pdev)
2096 2097 2098
{
	struct sbridge_dev *sbridge_dev;

2099
	edac_dbg(0, "\n");
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135

	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */

	mutex_lock(&sbridge_edac_lock);

	if (unlikely(!probed)) {
		mutex_unlock(&sbridge_edac_lock);
		return;
	}

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	/* Release PCI resources */
	sbridge_put_all_devices();

	probed--;

	mutex_unlock(&sbridge_edac_lock);
}

MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);

/*
 *	sbridge_driver	pci_driver structure for this module
 *
 */
static struct pci_driver sbridge_driver = {
	.name     = "sbridge_edac",
	.probe    = sbridge_probe,
2136
	.remove   = sbridge_remove,
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
	.id_table = sbridge_pci_tbl,
};

/*
 *	sbridge_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init sbridge_init(void)
{
	int pci_rc;

2148
	edac_dbg(2, "\n");
2149 2150 2151 2152 2153

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

	pci_rc = pci_register_driver(&sbridge_driver);
2154 2155
	if (pci_rc >= 0) {
		mce_register_decode_chain(&sbridge_mce_dec);
2156 2157
		if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
2158
		return 0;
2159
	}
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172

	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
}

/*
 *	sbridge_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit sbridge_exit(void)
{
2173
	edac_dbg(2, "\n");
2174
	pci_unregister_driver(&sbridge_driver);
2175
	mce_unregister_decode_chain(&sbridge_mce_dec);
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
}

module_init(sbridge_init);
module_exit(sbridge_exit);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2187
MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
2188
		   SBRIDGE_REVISION);