sb_edac.c 61.0 KB
Newer Older
1 2 3 4 5 6 7 8 9
/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
 *
 * This driver supports the memory controllers found on the Intel
 * processor family Sandy Bridge.
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
 * Copyright (c) 2011 by:
10
 *	 Mauro Carvalho Chehab
11 12 13 14 15 16 17 18 19 20 21 22
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include <linux/smp.h>
#include <linux/bitmap.h>
23
#include <linux/math64.h>
24
#include <asm/processor.h>
25
#include <asm/mce.h>
26 27 28 29 30 31 32 33 34 35 36

#include "edac_core.h"

/* Static vars */
static LIST_HEAD(sbridge_edac_list);
static DEFINE_MUTEX(sbridge_edac_lock);
static int probed;

/*
 * Alter this version for the module when modifications are made
 */
37
#define SBRIDGE_REVISION    " Ver: 1.1.0 "
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
#define EDAC_MOD_STR      "sbridge_edac"

/*
 * Debug macros
 */
#define sbridge_printk(level, fmt, arg...)			\
	edac_printk(level, "sbridge", fmt, ##arg)

#define sbridge_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)

/*
 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
 */
#define GET_BITFIELD(v, lo, hi)	\
53
	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
54 55

/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56
static const u32 sbridge_dram_rule[] = {
57 58 59 60
	0x80, 0x88, 0x90, 0x98, 0xa0,
	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
};

61 62 63 64 65 66
static const u32 ibridge_dram_rule[] = {
	0x60, 0x68, 0x70, 0x78, 0x80,
	0x88, 0x90, 0x98, 0xa0,	0xa8,
	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
};
67 68 69 70 71

#define SAD_LIMIT(reg)		((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
#define DRAM_ATTR(reg)		GET_BITFIELD(reg, 2,  3)
#define INTERLEAVE_MODE(reg)	GET_BITFIELD(reg, 1,  1)
#define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
72
#define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

static char *get_dram_attr(u32 reg)
{
	switch(DRAM_ATTR(reg)) {
		case 0:
			return "DRAM";
		case 1:
			return "MMCFG";
		case 2:
			return "NXM";
		default:
			return "unknown";
	}
}

88
static const u32 sbridge_interleave_list[] = {
89 90 91 92
	0x84, 0x8c, 0x94, 0x9c, 0xa4,
	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
};

93 94 95 96 97 98 99
static const u32 ibridge_interleave_list[] = {
	0x64, 0x6c, 0x74, 0x7c, 0x84,
	0x8c, 0x94, 0x9c, 0xa4, 0xac,
	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
};

A
Aristeu Rozanski 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
struct interleave_pkg {
	unsigned char start;
	unsigned char end;
};

static const struct interleave_pkg sbridge_interleave_pkg[] = {
	{ 0, 2 },
	{ 3, 5 },
	{ 8, 10 },
	{ 11, 13 },
	{ 16, 18 },
	{ 19, 21 },
	{ 24, 26 },
	{ 27, 29 },
};

116 117 118 119 120 121 122 123 124 125 126
static const struct interleave_pkg ibridge_interleave_pkg[] = {
	{ 0, 3 },
	{ 4, 7 },
	{ 8, 11 },
	{ 12, 15 },
	{ 16, 19 },
	{ 20, 23 },
	{ 24, 27 },
	{ 28, 31 },
};

A
Aristeu Rozanski 已提交
127 128
static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
			  int interleave)
129
{
A
Aristeu Rozanski 已提交
130 131
	return GET_BITFIELD(reg, table[interleave].start,
			    table[interleave].end);
132 133 134 135 136 137
}

/* Devices 12 Function 7 */

#define TOLM		0x80
#define	TOHM		0x84
138 139
#define HASWELL_TOHM_0	0xd4
#define HASWELL_TOHM_1	0xd8
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

#define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
#define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)

/* Device 13 Function 6 */

#define SAD_TARGET	0xf0

#define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)

#define SAD_CONTROL	0xf4

/* Device 14 function 0 */

static const u32 tad_dram_rule[] = {
	0x40, 0x44, 0x48, 0x4c,
	0x50, 0x54, 0x58, 0x5c,
	0x60, 0x64, 0x68, 0x6c,
};
#define MAX_TAD	ARRAY_SIZE(tad_dram_rule)

#define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
#define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
#define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
#define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
#define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
#define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
#define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)

/* Device 15, function 0 */

#define MCMTR			0x7c

#define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
#define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
#define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)

/* Device 15, function 1 */

#define RASENABLES		0xac
#define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)

/* Device 15, functions 2-5 */

static const int mtr_regs[] = {
	0x80, 0x84, 0x88,
};

#define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
#define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
#define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
#define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
#define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)

static const u32 tad_ch_nilv_offset[] = {
	0x90, 0x94, 0x98, 0x9c,
	0xa0, 0xa4, 0xa8, 0xac,
	0xb0, 0xb4, 0xb8, 0xbc,
};
#define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
#define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)

static const u32 rir_way_limit[] = {
	0x108, 0x10c, 0x110, 0x114, 0x118,
};
#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)

#define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
#define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)

#define MAX_RIR_WAY	8

static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
};

#define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
#define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)

/* Device 16, functions 2-7 */

/*
 * FIXME: Implement the error count reads directly
 */

static const u32 correrrcnt[] = {
	0x104, 0x108, 0x10c, 0x110,
};

#define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
#define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
#define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)

static const u32 correrrthrsld[] = {
	0x11c, 0x120, 0x124, 0x128,
};

#define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
#define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)


/* Device 17, function 0 */

248
#define SB_RANK_CFG_A		0x0328
249

250
#define IB_RANK_CFG_A		0x0320
251 252 253 254 255

/*
 * sbridge structs
 */

256 257 258
#define NUM_CHANNELS		4
#define MAX_DIMMS		3	/* Max DIMMS per channel */
#define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
259

260 261 262
enum type {
	SANDY_BRIDGE,
	IVY_BRIDGE,
263
	HASWELL,
264 265
};

A
Aristeu Rozanski 已提交
266
struct sbridge_pvt;
267
struct sbridge_info {
268
	enum type	type;
269 270 271 272
	u32		mcmtr;
	u32		rankcfgr;
	u64		(*get_tolm)(struct sbridge_pvt *pvt);
	u64		(*get_tohm)(struct sbridge_pvt *pvt);
273
	u64		(*rir_limit)(u32 reg);
274
	const u32	*dram_rule;
275
	const u32	*interleave_list;
A
Aristeu Rozanski 已提交
276
	const struct interleave_pkg *interleave_pkg;
277
	u8		max_sad;
278
	u8		max_interleave;
279
	u8		(*get_node_id)(struct sbridge_pvt *pvt);
280
	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
281
	struct pci_dev	*pci_vtd;
282 283 284 285 286 287 288 289
};

struct sbridge_channel {
	u32		ranks;
	u32		dimms;
};

struct pci_id_descr {
290
	int			dev_id;
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	int			optional;
};

struct pci_id_table {
	const struct pci_id_descr	*descr;
	int				n_devs;
};

struct sbridge_dev {
	struct list_head	list;
	u8			bus, mc;
	u8			node_id, source_id;
	struct pci_dev		**pdev;
	int			n_devs;
	struct mem_ctl_info	*mci;
};

struct sbridge_pvt {
	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
310 311 312
	struct pci_dev		*pci_sad0, *pci_sad1;
	struct pci_dev		*pci_ha0, *pci_ha1;
	struct pci_dev		*pci_br0, *pci_br1;
313
	struct pci_dev		*pci_ha1_ta;
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
	struct pci_dev		*pci_tad[NUM_CHANNELS];

	struct sbridge_dev	*sbridge_dev;

	struct sbridge_info	info;
	struct sbridge_channel	channel[NUM_CHANNELS];

	/* Memory type detection */
	bool			is_mirrored, is_lockstep, is_close_pg;

	/* Fifo double buffers */
	struct mce		mce_entry[MCE_LOG_LEN];
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;

	/* Memory description */
	u64			tolm, tohm;
};

338 339
#define PCI_DESCR(device_id, opt)	\
	.dev_id = (device_id),		\
340
	.optional = opt
341 342 343

static const struct pci_id_descr pci_dev_descr_sbridge[] = {
		/* Processor Home Agent */
344
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)	},
345 346

		/* Memory controller */
347 348 349 350 351 352 353
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)	},
354 355

		/* System Address Decoder */
356 357
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)	},
358 359

		/* Broadcast Registers */
360
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)		},
361 362 363 364 365 366 367 368
};

#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
	{0,}			/* 0 terminated list. */
};

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
/* This changes depending if 1HA or 2HA:
 * 1HA:
 *	0x0eb8 (17.0) is DDRIO0
 * 2HA:
 *	0x0ebc (17.4) is DDRIO0
 */
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc

/* pci ids */
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b

static const struct pci_id_descr pci_dev_descr_ibridge[] = {
		/* Processor Home Agent */
397
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)		},
398 399

		/* Memory controller */
400 401 402 403 404 405
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)		},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)		},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)	},
406 407

		/* System Address Decoder */
408
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)			},
409 410

		/* Broadcast Registers */
411 412
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)			},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)			},
413 414

		/* Optional, mode 2HA */
415
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)		},
416
#if 0
417 418
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1)	},
419
#endif
420 421
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)	},
422

423 424
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)	},
425 426 427 428 429 430 431
};

static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
	{0,}			/* 0 terminated list. */
};

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
/* Haswell support */
/* EN processor:
 *	- 1 IMC
 *	- 3 DDR3 channels, 2 DPC per channel
 * EP processor:
 *	- 1 or 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EP 4S processor:
 *	- 2 IMC
 *	- 4 DDR4 channels, 3 DPC per channel
 * EX processor:
 *	- 2 IMC
 *	- each IMC interfaces with a SMI 2 channel
 *	- each SMI channel interfaces with a scalable memory buffer
 *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
 */
#define HASWELL_DDRCRCLKCONTROLS 0xa10
#define HASWELL_HASYSDEFEATURE2 0x84
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
static const struct pci_id_descr pci_dev_descr_haswell[] = {
	/* first item must be the HA */
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)		},

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)	},

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)		},

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)		},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)	},

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)		},

	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)		},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)	},
	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)	},
};

static const struct pci_id_table pci_dev_descr_haswell_table[] = {
	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
	{0,}			/* 0 terminated list. */
};

499 500 501
/*
 *	pci_device_id	table for which devices we are looking for
 */
502
static const struct pci_device_id sbridge_pci_tbl[] = {
503
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
504
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
505
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
506 507 508 509 510
	{0,}			/* 0 terminated list. */
};


/****************************************************************************
D
David Mackey 已提交
511
			Ancillary status routines
512 513
 ****************************************************************************/

514
static inline int numrank(enum type type, u32 mtr)
515 516
{
	int ranks = (1 << RANK_CNT_BITS(mtr));
517 518 519 520
	int max = 4;

	if (type == HASWELL)
		max = 8;
521

522 523 524
	if (ranks > max) {
		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
525 526 527 528 529 530 531 532 533 534 535
		return -EINVAL;
	}

	return ranks;
}

static inline int numrow(u32 mtr)
{
	int rows = (RANK_WIDTH_BITS(mtr) + 12);

	if (rows < 13 || rows > 18) {
536 537
		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
538 539 540 541 542 543 544 545 546 547 548
		return -EINVAL;
	}

	return 1 << rows;
}

static inline int numcol(u32 mtr)
{
	int cols = (COL_WIDTH_BITS(mtr) + 10);

	if (cols > 12) {
549 550
		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
		return -EINVAL;
	}

	return 1 << cols;
}

static struct sbridge_dev *get_sbridge_dev(u8 bus)
{
	struct sbridge_dev *sbridge_dev;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
		if (sbridge_dev->bus == bus)
			return sbridge_dev;
	}

	return NULL;
}

static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
					   const struct pci_id_table *table)
{
	struct sbridge_dev *sbridge_dev;

	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
	if (!sbridge_dev)
		return NULL;

	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
				   GFP_KERNEL);
	if (!sbridge_dev->pdev) {
		kfree(sbridge_dev);
		return NULL;
	}

	sbridge_dev->bus = bus;
	sbridge_dev->n_devs = table->n_devs;
	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);

	return sbridge_dev;
}

static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
{
	list_del(&sbridge_dev->list);
	kfree(sbridge_dev->pdev);
	kfree(sbridge_dev);
}

A
Aristeu Rozanski 已提交
599 600 601 602 603 604 605 606 607
static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	/* Address range is 32:28 */
	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
	return GET_TOLM(reg);
}

A
Aristeu Rozanski 已提交
608 609 610 611 612 613 614 615
static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
	return GET_TOHM(reg);
}

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);

	return GET_TOLM(reg);
}

static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);

	return GET_TOHM(reg);
}

634 635 636 637 638
static u64 rir_limit(u32 reg)
{
	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
}

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
{
	u32 reg;
	enum mem_type mtype;

	if (pvt->pci_ddrio) {
		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
				      &reg);
		if (GET_BITFIELD(reg, 11, 11))
			/* FIXME: Can also be LRDIMM */
			mtype = MEM_RDDR3;
		else
			mtype = MEM_DDR3;
	} else
		mtype = MEM_UNKNOWN;

	return mtype;
}

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
{
	u32 reg;
	bool registered = false;
	enum mem_type mtype = MEM_UNKNOWN;

	if (!pvt->pci_ddrio)
		goto out;

	pci_read_config_dword(pvt->pci_ddrio,
			      HASWELL_DDRCRCLKCONTROLS, &reg);
	/* Is_Rdimm */
	if (GET_BITFIELD(reg, 16, 16))
		registered = true;

	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
	if (GET_BITFIELD(reg, 14, 14)) {
		if (registered)
			mtype = MEM_RDDR4;
		else
			mtype = MEM_DDR4;
	} else {
		if (registered)
			mtype = MEM_RDDR3;
		else
			mtype = MEM_DDR3;
	}

out:
	return mtype;
}

690 691 692 693 694 695 696
static u8 get_node_id(struct sbridge_pvt *pvt)
{
	u32 reg;
	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
	return GET_BITFIELD(reg, 0, 2);
}

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
	return GET_BITFIELD(reg, 0, 3);
}

static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
{
	u32 reg;

	pci_read_config_dword(pvt->info.pci_vtd, TOLM, &reg);
	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x1ffffff;
}

static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
{
	u64 rc;
	u32 reg;

	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
	rc = GET_BITFIELD(reg, 26, 31);
	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
	rc = ((reg << 6) | rc) << 26;

	return rc | 0x1ffffff;
}

static u64 haswell_rir_limit(u32 reg)
{
	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
}

731 732 733
static inline u8 sad_pkg_socket(u8 pkg)
{
	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
734
	return ((pkg >> 3) << 2) | (pkg & 0x3);
735 736 737 738 739 740 741
}

static inline u8 sad_pkg_ha(u8 pkg)
{
	return (pkg >> 2) & 0x1;
}

742 743 744
/****************************************************************************
			Memory check routines
 ****************************************************************************/
745
static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
746
{
747
	struct pci_dev *pdev = NULL;
748

749 750 751 752 753
	do {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
		if (pdev && pdev->bus->number == bus)
			break;
	} while (pdev);
754

755
	return pdev;
756 757 758
}

/**
759
 * check_if_ecc_is_active() - Checks if ECC is active
760 761 762 763
 * @bus:	Device bus
 * @type:	Memory controller type
 * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
 *	    disabled
764
 */
765
static int check_if_ecc_is_active(const u8 bus, enum type type)
766 767
{
	struct pci_dev *pdev = NULL;
768
	u32 mcmtr, id;
769

770 771
	if (type == IVY_BRIDGE)
		id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
772 773
	else if (type == HASWELL)
		id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
774 775 776 777
	else
		id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;

	pdev = get_pdev_same_bus(bus, id);
778 779
	if (!pdev) {
		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
780 781
					"%04x:%04x! on bus %02d\n",
					PCI_VENDOR_ID_INTEL, id, bus);
782 783 784 785 786 787 788 789 790 791 792
		return -ENODEV;
	}

	pci_read_config_dword(pdev, MCMTR, &mcmtr);
	if (!IS_ECC_ENABLED(mcmtr)) {
		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
		return -ENODEV;
	}
	return 0;
}

793
static int get_dimm_config(struct mem_ctl_info *mci)
794 795
{
	struct sbridge_pvt *pvt = mci->pvt_info;
796
	struct dimm_info *dimm;
797 798
	unsigned i, j, banks, ranks, rows, cols, npages;
	u64 size;
799 800
	u32 reg;
	enum edac_type mode;
801
	enum mem_type mtype;
802

803 804 805 806 807
	if (pvt->info.type == HASWELL)
		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
	else
		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);

808 809
	pvt->sbridge_dev->source_id = SOURCE_ID(reg);

810
	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
811 812 813 814
	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
		 pvt->sbridge_dev->mc,
		 pvt->sbridge_dev->node_id,
		 pvt->sbridge_dev->source_id);
815 816 817

	pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
	if (IS_MIRROR_ENABLED(reg)) {
818
		edac_dbg(0, "Memory mirror is enabled\n");
819 820
		pvt->is_mirrored = true;
	} else {
821
		edac_dbg(0, "Memory mirror is disabled\n");
822 823 824 825 826
		pvt->is_mirrored = false;
	}

	pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
	if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
827
		edac_dbg(0, "Lockstep is enabled\n");
828 829 830
		mode = EDAC_S8ECD8ED;
		pvt->is_lockstep = true;
	} else {
831
		edac_dbg(0, "Lockstep is disabled\n");
832 833 834 835
		mode = EDAC_S4ECD4ED;
		pvt->is_lockstep = false;
	}
	if (IS_CLOSE_PG(pvt->info.mcmtr)) {
836
		edac_dbg(0, "address map is on closed page mode\n");
837 838
		pvt->is_close_pg = true;
	} else {
839
		edac_dbg(0, "address map is on open page mode\n");
840 841 842
		pvt->is_close_pg = false;
	}

843
	mtype = pvt->info.get_memory_type(pvt);
844
	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
845 846
		edac_dbg(0, "Memory is registered\n");
	else if (mtype == MEM_UNKNOWN)
847
		edac_dbg(0, "Cannot determine memory type\n");
848 849
	else
		edac_dbg(0, "Memory is unregistered\n");
850

851 852 853 854
	if (mtype == MEM_DDR4 || MEM_RDDR4)
		banks = 16;
	else
		banks = 8;
855 856 857 858 859

	for (i = 0; i < NUM_CHANNELS; i++) {
		u32 mtr;

		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
860 861
			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
				       i, j, 0);
862 863
			pci_read_config_dword(pvt->pci_tad[i],
					      mtr_regs[j], &mtr);
864
			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
865 866 867
			if (IS_DIMM_PRESENT(mtr)) {
				pvt->channel[i].dimms++;

868
				ranks = numrank(pvt->info.type, mtr);
869 870 871
				rows = numrow(mtr);
				cols = numcol(mtr);

872
				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
873 874
				npages = MiB_TO_PAGES(size);

875
				edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
876 877 878
					 pvt->sbridge_dev->mc, i, j,
					 size, npages,
					 banks, ranks, rows, cols);
879

880
				dimm->nr_pages = npages;
881
				dimm->grain = 32;
882 883 884 885 886 887 888 889 890 891 892
				switch (banks) {
				case 16:
					dimm->dtype = DEV_X16;
					break;
				case 8:
					dimm->dtype = DEV_X8;
					break;
				case 4:
					dimm->dtype = DEV_X4;
					break;
				}
893 894 895
				dimm->mtype = mtype;
				dimm->edac_mode = mode;
				snprintf(dimm->label, sizeof(dimm->label),
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
					 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
					 pvt->sbridge_dev->source_id, i, j);
			}
		}
	}

	return 0;
}

static void get_memory_layout(const struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	int i, j, k, n_sads, n_tads, sad_interl;
	u32 reg;
	u64 limit, prv = 0;
	u64 tmp_mb;
912
	u32 mb, kb;
913 914 915 916 917 918
	u32 rir_way;

	/*
	 * Step 1) Get TOLM/TOHM ranges
	 */

A
Aristeu Rozanski 已提交
919
	pvt->tolm = pvt->info.get_tolm(pvt);
920 921
	tmp_mb = (1 + pvt->tolm) >> 20;

922
	mb = div_u64_rem(tmp_mb, 1000, &kb);
923
	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm);
924 925

	/* Address range is already 45:25 */
A
Aristeu Rozanski 已提交
926
	pvt->tohm = pvt->info.get_tohm(pvt);
927 928
	tmp_mb = (1 + pvt->tohm) >> 20;

929
	mb = div_u64_rem(tmp_mb, 1000, &kb);
930
	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tohm);
931 932 933 934 935 936 937 938

	/*
	 * Step 2) Get SAD range and SAD Interleave list
	 * TAD registers contain the interleave wayness. However, it
	 * seems simpler to just discover it indirectly, with the
	 * algorithm bellow.
	 */
	prv = 0;
939
	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
940
		/* SAD_LIMIT Address range is 45:26 */
941
		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
942 943 944 945 946 947 948 949 950 951
				      &reg);
		limit = SAD_LIMIT(reg);

		if (!DRAM_RULE_ENABLE(reg))
			continue;

		if (limit <= prv)
			break;

		tmp_mb = (limit + 1) >> 20;
952
		mb = div_u64_rem(tmp_mb, 1000, &kb);
953 954 955 956 957 958 959
		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
			 n_sads,
			 get_dram_attr(reg),
			 mb, kb,
			 ((u64)tmp_mb) << 20L,
			 INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
			 reg);
960 961
		prv = limit;

962
		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
963
				      &reg);
A
Aristeu Rozanski 已提交
964
		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
965
		for (j = 0; j < 8; j++) {
A
Aristeu Rozanski 已提交
966 967
			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
			if (j > 0 && sad_interl == pkg)
968 969
				break;

970
			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
A
Aristeu Rozanski 已提交
971
				 n_sads, j, pkg);
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
		}
	}

	/*
	 * Step 3) Get TAD range
	 */
	prv = 0;
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
				      &reg);
		limit = TAD_LIMIT(reg);
		if (limit <= prv)
			break;
		tmp_mb = (limit + 1) >> 20;

987
		mb = div_u64_rem(tmp_mb, 1000, &kb);
988 989 990 991 992 993 994 995 996 997
		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
			 n_tads, mb, kb,
			 ((u64)tmp_mb) << 20L,
			 (u32)TAD_SOCK(reg),
			 (u32)TAD_CH(reg),
			 (u32)TAD_TGT0(reg),
			 (u32)TAD_TGT1(reg),
			 (u32)TAD_TGT2(reg),
			 (u32)TAD_TGT3(reg),
			 reg);
998
		prv = limit;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	}

	/*
	 * Step 4) Get TAD offsets, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < n_tads; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      tad_ch_nilv_offset[j],
					      &reg);
			tmp_mb = TAD_OFFSET(reg) >> 20;
1012
			mb = div_u64_rem(tmp_mb, 1000, &kb);
1013 1014 1015 1016 1017
			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
				 i, j,
				 mb, kb,
				 ((u64)tmp_mb) << 20L,
				 reg);
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
		}
	}

	/*
	 * Step 6) Get RIR Wayness/Limit, per each channel
	 */
	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->channel[i].dimms)
			continue;
		for (j = 0; j < MAX_RIR_RANGES; j++) {
			pci_read_config_dword(pvt->pci_tad[i],
					      rir_way_limit[j],
					      &reg);

			if (!IS_RIR_VALID(reg))
				continue;

1035
			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1036
			rir_way = 1 << RIR_WAY(reg);
1037
			mb = div_u64_rem(tmp_mb, 1000, &kb);
1038 1039 1040 1041 1042 1043
			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
				 i, j,
				 mb, kb,
				 ((u64)tmp_mb) << 20L,
				 rir_way,
				 reg);
1044 1045 1046 1047 1048 1049 1050

			for (k = 0; k < rir_way; k++) {
				pci_read_config_dword(pvt->pci_tad[i],
						      rir_offset[j][k],
						      &reg);
				tmp_mb = RIR_OFFSET(reg) << 6;

1051
				mb = div_u64_rem(tmp_mb, 1000, &kb);
1052 1053 1054 1055 1056 1057
				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
					 i, j, k,
					 mb, kb,
					 ((u64)tmp_mb) << 20L,
					 (u32)RIR_RNK_TGT(reg),
					 reg);
1058 1059 1060 1061 1062
			}
		}
	}
}

1063
static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
{
	struct sbridge_dev *sbridge_dev;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
		if (sbridge_dev->node_id == node_id)
			return sbridge_dev->mci;
	}
	return NULL;
}

static int get_memory_error_data(struct mem_ctl_info *mci,
				 u64 addr,
				 u8 *socket,
				 long *channel_mask,
				 u8 *rank,
1079
				 char **area_type, char *msg)
1080 1081 1082
{
	struct mem_ctl_info	*new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
1083
	struct pci_dev		*pci_ha;
1084
	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1085
	int			sad_interl, idx, base_ch;
1086
	int			interleave_mode, shiftup = 0;
1087
	unsigned		sad_interleave[pvt->info.max_interleave];
1088
	u32			reg, dram_rule;
1089
	u8			ch_way, sck_way, pkg, sad_ha = 0;
1090 1091
	u32			tad_offset;
	u32			rir_way;
1092
	u32			mb, kb;
1093
	u64			ch_addr, offset, limit = 0, prv = 0;
1094 1095 1096 1097 1098 1099 1100 1101 1102


	/*
	 * Step 0) Check if the address is at special memory ranges
	 * The check bellow is probably enough to fill all cases where
	 * the error is not inside a memory, except for the legacy
	 * range (e. g. VGA addresses). It is unlikely, however, that the
	 * memory controller would generate an error on that range.
	 */
1103
	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
		return -EINVAL;
	}
	if (addr >= (u64)pvt->tohm) {
		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
		return -EINVAL;
	}

	/*
	 * Step 1) Get socket
	 */
1115 1116
	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
				      &reg);

		if (!DRAM_RULE_ENABLE(reg))
			continue;

		limit = SAD_LIMIT(reg);
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory socket");
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
1131
	if (n_sads == pvt->info.max_sad) {
1132 1133 1134
		sprintf(msg, "Can't discover the memory socket");
		return -EINVAL;
	}
1135 1136 1137
	dram_rule = reg;
	*area_type = get_dram_attr(dram_rule);
	interleave_mode = INTERLEAVE_MODE(dram_rule);
1138

1139
	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1140
			      &reg);
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

	if (pvt->info.type == SANDY_BRIDGE) {
		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
		for (sad_way = 0; sad_way < 8; sad_way++) {
			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
			if (sad_way > 0 && sad_interl == pkg)
				break;
			sad_interleave[sad_way] = pkg;
			edac_dbg(0, "SAD interleave #%d: %d\n",
				 sad_way, sad_interleave[sad_way]);
		}
		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
			 pvt->sbridge_dev->mc,
			 n_sads,
			 addr,
			 limit,
			 sad_way + 7,
			 !interleave_mode ? "" : "XOR[18:16]");
		if (interleave_mode)
			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
		else
			idx = (addr >> 6) & 7;
		switch (sad_way) {
		case 1:
			idx = 0;
1166
			break;
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
		case 2:
			idx = idx & 1;
			break;
		case 4:
			idx = idx & 3;
			break;
		case 8:
			break;
		default:
			sprintf(msg, "Can't discover socket interleave");
			return -EINVAL;
		}
		*socket = sad_interleave[idx];
		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
			 idx, sad_way, *socket);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	} else if (pvt->info.type == HASWELL) {
		int bits, a7mode = A7MODE(dram_rule);

		if (a7mode) {
			/* A7 mode swaps P9 with P6 */
			bits = GET_BITFIELD(addr, 7, 8) << 1;
			bits |= GET_BITFIELD(addr, 9, 9);
		} else
			bits = GET_BITFIELD(addr, 7, 9);

		if (interleave_mode) {
			/* interleave mode will XOR {8,7,6} with {18,17,16} */
			idx = GET_BITFIELD(addr, 16, 18);
			idx ^= bits;
		} else
			idx = bits;

		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
		*socket = sad_pkg_socket(pkg);
		sad_ha = sad_pkg_ha(pkg);

		if (a7mode) {
			/* MCChanShiftUpEnable */
			pci_read_config_dword(pvt->pci_ha0,
					      HASWELL_HASYSDEFEATURE2, &reg);
			shiftup = GET_BITFIELD(reg, 22, 22);
		}

		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
			 idx, *socket, sad_ha, shiftup);
1212 1213
	} else {
		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1214
		idx = (addr >> 6) & 7;
1215 1216 1217 1218 1219
		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
		*socket = sad_pkg_socket(pkg);
		sad_ha = sad_pkg_ha(pkg);
		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
			 idx, *socket, sad_ha);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	}

	/*
	 * Move to the proper node structure, in order to access the
	 * right PCI registers
	 */
	new_mci = get_mci_for_node_id(*socket);
	if (!new_mci) {
		sprintf(msg, "Struct for socket #%u wasn't initialized",
			*socket);
		return -EINVAL;
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	/*
	 * Step 2) Get memory channel
	 */
	prv = 0;
1239 1240 1241 1242 1243 1244 1245 1246
	if (pvt->info.type == SANDY_BRIDGE)
		pci_ha = pvt->pci_ha0;
	else {
		if (sad_ha)
			pci_ha = pvt->pci_ha1;
		else
			pci_ha = pvt->pci_ha0;
	}
1247
	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1248
		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
1249 1250 1251 1252 1253 1254 1255 1256 1257
		limit = TAD_LIMIT(reg);
		if (limit <= prv) {
			sprintf(msg, "Can't discover the memory channel");
			return -EINVAL;
		}
		if  (addr <= limit)
			break;
		prv = limit;
	}
1258 1259 1260 1261 1262
	if (n_tads == MAX_TAD) {
		sprintf(msg, "Can't discover the memory channel");
		return -EINVAL;
	}

1263 1264 1265 1266 1267 1268
	ch_way = TAD_CH(reg) + 1;
	sck_way = TAD_SOCK(reg) + 1;

	if (ch_way == 3)
		idx = addr >> 6;
	else
1269
		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	idx = idx % ch_way;

	/*
	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
	 */
	switch (idx) {
	case 0:
		base_ch = TAD_TGT0(reg);
		break;
	case 1:
		base_ch = TAD_TGT1(reg);
		break;
	case 2:
		base_ch = TAD_TGT2(reg);
		break;
	case 3:
		base_ch = TAD_TGT3(reg);
		break;
	default:
		sprintf(msg, "Can't discover the TAD target");
		return -EINVAL;
	}
	*channel_mask = 1 << base_ch;

1294 1295 1296 1297
	pci_read_config_dword(pvt->pci_tad[base_ch],
				tad_ch_nilv_offset[n_tads],
				&tad_offset);

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	if (pvt->is_mirrored) {
		*channel_mask |= 1 << ((base_ch + 2) % 4);
		switch(ch_way) {
		case 2:
		case 4:
			sck_xch = 1 << sck_way * (ch_way >> 1);
			break;
		default:
			sprintf(msg, "Invalid mirror set. Can't decode addr");
			return -EINVAL;
		}
	} else
		sck_xch = (1 << sck_way) * ch_way;

	if (pvt->is_lockstep)
		*channel_mask |= 1 << ((base_ch + 1) % 4);

	offset = TAD_OFFSET(tad_offset);

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
		 n_tads,
		 addr,
		 limit,
		 (u32)TAD_SOCK(reg),
		 ch_way,
		 offset,
		 idx,
		 base_ch,
		 *channel_mask);
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340

	/* Calculate channel address */
	/* Remove the TAD offset */

	if (offset > addr) {
		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
			offset, addr);
		return -EINVAL;
	}
	addr -= offset;
	/* Store the low bits [0:6] of the addr */
	ch_addr = addr & 0x7f;
	/* Remove socket wayness and remove 6 bits */
	addr >>= 6;
1341
	addr = div_u64(addr, sck_xch);
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
#if 0
	/* Divide by channel way */
	addr = addr / ch_way;
#endif
	/* Recover the last 6 bits */
	ch_addr |= addr << 6;

	/*
	 * Step 3) Decode rank
	 */
	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
		pci_read_config_dword(pvt->pci_tad[base_ch],
				      rir_way_limit[n_rir],
				      &reg);

		if (!IS_RIR_VALID(reg))
			continue;

1360
		limit = pvt->info.rir_limit(reg);
1361
		mb = div_u64_rem(limit >> 20, 1000, &kb);
1362 1363 1364 1365 1366
		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
			 n_rir,
			 mb, kb,
			 limit,
			 1 << RIR_WAY(reg));
1367 1368 1369 1370 1371 1372 1373 1374 1375
		if  (ch_addr <= limit)
			break;
	}
	if (n_rir == MAX_RIR_RANGES) {
		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
			ch_addr);
		return -EINVAL;
	}
	rir_way = RIR_WAY(reg);
1376

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	if (pvt->is_close_pg)
		idx = (ch_addr >> 6);
	else
		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
	idx %= 1 << rir_way;

	pci_read_config_dword(pvt->pci_tad[base_ch],
			      rir_offset[n_rir][idx],
			      &reg);
	*rank = RIR_RNK_TGT(reg);

1388 1389 1390 1391 1392 1393
	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
		 n_rir,
		 ch_addr,
		 limit,
		 rir_way,
		 idx);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

	return 0;
}

/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
 *	sbridge_put_all_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
{
	int i;

1410
	edac_dbg(0, "\n");
1411 1412 1413 1414
	for (i = 0; i < sbridge_dev->n_devs; i++) {
		struct pci_dev *pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
1415 1416 1417
		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
			 pdev->bus->number,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
		pci_dev_put(pdev);
	}
}

static void sbridge_put_all_devices(void)
{
	struct sbridge_dev *sbridge_dev, *tmp;

	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
		sbridge_put_devices(sbridge_dev);
		free_sbridge_dev(sbridge_dev);
	}
}

static int sbridge_get_onedevice(struct pci_dev **prev,
				 u8 *num_mc,
				 const struct pci_id_table *table,
				 const unsigned devno)
{
	struct sbridge_dev *sbridge_dev;
	const struct pci_id_descr *dev_descr = &table->descr[devno];
	struct pci_dev *pdev = NULL;
	u8 bus = 0;

1442
	sbridge_printk(KERN_DEBUG,
1443
		"Seeking for: PCI ID %04x:%04x\n",
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
			      dev_descr->dev_id, *prev);

	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
		}

		if (dev_descr->optional)
			return 0;

1458
		/* if the HA wasn't found */
1459 1460 1461 1462
		if (devno == 0)
			return -ENODEV;

		sbridge_printk(KERN_INFO,
1463
			"Device not found: %04x:%04x\n",
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);

		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;

	sbridge_dev = get_sbridge_dev(bus);
	if (!sbridge_dev) {
		sbridge_dev = alloc_sbridge_dev(bus, table);
		if (!sbridge_dev) {
			pci_dev_put(pdev);
			return -ENOMEM;
		}
		(*num_mc)++;
	}

	if (sbridge_dev->pdev[devno]) {
		sbridge_printk(KERN_ERR,
1483
			"Duplicated device for %04x:%04x\n",
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		pci_dev_put(pdev);
		return -ENODEV;
	}

	sbridge_dev->pdev[devno] = pdev;

	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		sbridge_printk(KERN_ERR,
1494
			"Couldn't enable %04x:%04x\n",
1495 1496 1497 1498
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
		return -ENODEV;
	}

1499
	edac_dbg(0, "Detected %04x:%04x\n",
1500
		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

	*prev = pdev;

	return 0;
}

1514 1515
/*
 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
1516
 *			     devices we want to reference for this driver.
1517
 * @num_mc: pointer to the memory controllers count, to be incremented in case
1518
 *	    of success.
1519 1520 1521 1522 1523 1524
 * @table: model specific table
 *
 * returns 0 in case of success or error code
 */
static int sbridge_get_all_devices(u8 *num_mc,
				   const struct pci_id_table *table)
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
{
	int i, rc;
	struct pci_dev *pdev = NULL;

	while (table && table->descr) {
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
				rc = sbridge_get_onedevice(&pdev, num_mc,
							   table, i);
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					sbridge_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
		table++;
	}

	return 0;
}

A
Aristeu Rozanski 已提交
1551 1552
static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
1553 1554 1555
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1556
	int i;
1557 1558 1559 1560 1561

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;
1562 1563 1564 1565

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
			pvt->pci_sad0 = pdev;
1566
			break;
1567 1568
		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
			pvt->pci_sad1 = pdev;
1569
			break;
1570 1571
		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
			pvt->pci_br0 = pdev;
1572
			break;
1573 1574
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
			pvt->pci_ha0 = pdev;
1575
			break;
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
			pvt->pci_ta = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
		{
			int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
			pvt->pci_tad[id] = pdev;
		}
			break;
		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
			pvt->pci_ddrio = pdev;
1593 1594 1595 1596 1597
			break;
		default:
			goto error;
		}

1598 1599
		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
			 pdev->vendor, pdev->device,
1600 1601
			 sbridge_dev->bus,
			 pdev);
1602 1603 1604 1605
	}

	/* Check if everything were registered */
	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1606
	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
		goto enodev;

	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->pci_tad[i])
			goto enodev;
	}
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;

error:
1620 1621
	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
		       PCI_VENDOR_ID_INTEL, pdev->device);
1622 1623 1624
	return -EINVAL;
}

1625 1626 1627 1628 1629
static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev, *tmp;
1630
	int i;
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	bool mode_2ha = false;

	tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
			     PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, NULL);
	if (tmp) {
		mode_2ha = true;
		pci_dev_put(tmp);
	}

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
			pvt->pci_ha0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
			pvt->pci_ta = pdev;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
			/* if we have 2 HAs active, channels 2 and 3
			 * are in other device */
			if (mode_2ha)
1659
				break;
1660 1661 1662 1663 1664 1665 1666
			/* fall through */
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
		{
			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
			pvt->pci_tad[id] = pdev;
		}
1667
			break;
1668 1669 1670 1671 1672
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
			pvt->pci_ddrio = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
			if (!mode_2ha)
1673 1674
				pvt->pci_ddrio = pdev;
			break;
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
			pvt->pci_br0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
			pvt->pci_br1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
			pvt->pci_ha1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
		{
			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 2;

1692 1693 1694
			/* we shouldn't have this device if we have just one
			 * HA present */
			WARN_ON(!mode_2ha);
1695 1696 1697
			pvt->pci_tad[id] = pdev;
		}
			break;
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
		default:
			goto error;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
	    !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
	    !pvt->pci_ta)
		goto enodev;

	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->pci_tad[i])
			goto enodev;
	}
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;

error:
	sbridge_printk(KERN_ERR,
1726 1727
		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
			pdev->device);
1728 1729 1730
	return -EINVAL;
}

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
				 struct sbridge_dev *sbridge_dev)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev, *tmp;
	int i;
	bool mode_2ha = false;

	tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
			     PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, NULL);
	if (tmp) {
		mode_2ha = true;
		pci_dev_put(tmp);
	}

	/* there's only one device per system; not tied to any bus */
	if (pvt->info.pci_vtd == NULL)
		/* result will be checked later */
		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
						   NULL);

	for (i = 0; i < sbridge_dev->n_devs; i++) {
		pdev = sbridge_dev->pdev[i];
		if (!pdev)
			continue;

		switch (pdev->device) {
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
			pvt->pci_sad0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
			pvt->pci_sad1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
			pvt->pci_ha0 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
			pvt->pci_ta = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
			pvt->pci_ras = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
			pvt->pci_tad[0] = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
			pvt->pci_tad[1] = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
			if (!mode_2ha)
				pvt->pci_tad[2] = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
			if (!mode_2ha)
				pvt->pci_tad[3] = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
			pvt->pci_ddrio = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
			pvt->pci_ha1 = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
			pvt->pci_ha1_ta = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
			if (mode_2ha)
				pvt->pci_tad[2] = pdev;
			break;
		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
			if (mode_2ha)
				pvt->pci_tad[3] = pdev;
			break;
		default:
			break;
		}

		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
			 sbridge_dev->bus,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev);
	}

	/* Check if everything were registered */
	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
		goto enodev;

	for (i = 0; i < NUM_CHANNELS; i++) {
		if (!pvt->pci_tad[i])
			goto enodev;
	}
	return 0;

enodev:
	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
	return -ENODEV;
}

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
/****************************************************************************
			Error check routines
 ****************************************************************************/

/*
 * While Sandy Bridge has error count registers, SMI BIOS read values from
 * and resets the counters. So, they are not reliable for the OS to read
 * from them. So, we have no option but to just trust on whatever MCE is
 * telling us about the errors.
 */
static void sbridge_mce_output_error(struct mem_ctl_info *mci,
				    const struct mce *m)
{
	struct mem_ctl_info *new_mci;
	struct sbridge_pvt *pvt = mci->pvt_info;
1846
	enum hw_event_mc_err_type tp_event;
1847
	char *type, *optype, msg[256];
1848 1849 1850
	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
	bool overflow = GET_BITFIELD(m->status, 62, 62);
	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1851
	bool recoverable;
1852 1853 1854 1855 1856 1857 1858
	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
	u32 mscod = GET_BITFIELD(m->status, 16, 31);
	u32 errcode = GET_BITFIELD(m->status, 0, 15);
	u32 channel = GET_BITFIELD(m->status, 0, 3);
	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
	long channel_mask, first_channel;
	u8  rank, socket;
1859
	int rc, dimm;
1860
	char *area_type = NULL;
1861

1862 1863 1864 1865 1866
	if (pvt->info.type == IVY_BRIDGE)
		recoverable = true;
	else
		recoverable = GET_BITFIELD(m->status, 56, 56);

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	if (uncorrected_error) {
		if (ripv) {
			type = "FATAL";
			tp_event = HW_EVENT_ERR_FATAL;
		} else {
			type = "NON_FATAL";
			tp_event = HW_EVENT_ERR_UNCORRECTED;
		}
	} else {
		type = "CORRECTED";
		tp_event = HW_EVENT_ERR_CORRECTED;
	}
1879 1880

	/*
D
David Mackey 已提交
1881
	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	 * memory errors should fit in this mask:
	 *	000f 0000 1mmm cccc (binary)
	 * where:
	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
	 *	    won't be shown
	 *	mmm = error type
	 *	cccc = channel
	 * If the mask doesn't match, report an error to the parsing logic
	 */
	if (! ((errcode & 0xef80) == 0x80)) {
		optype = "Can't parse: it is not a mem";
	} else {
		switch (optypenum) {
		case 0:
1896
			optype = "generic undef request error";
1897 1898
			break;
		case 1:
1899
			optype = "memory read error";
1900 1901
			break;
		case 2:
1902
			optype = "memory write error";
1903 1904
			break;
		case 3:
1905
			optype = "addr/cmd error";
1906 1907
			break;
		case 4:
1908
			optype = "memory scrubbing error";
1909 1910 1911 1912 1913 1914 1915
			break;
		default:
			optype = "reserved";
			break;
		}
	}

1916 1917 1918 1919
	/* Only decode errors with an valid address (ADDRV) */
	if (!GET_BITFIELD(m->status, 58, 58))
		return;

1920
	rc = get_memory_error_data(mci, m->addr, &socket,
1921
				   &channel_mask, &rank, &area_type, msg);
1922
	if (rc < 0)
1923
		goto err_parsing;
1924 1925
	new_mci = get_mci_for_node_id(socket);
	if (!new_mci) {
1926 1927
		strcpy(msg, "Error: socket got corrupted!");
		goto err_parsing;
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
	}
	mci = new_mci;
	pvt = mci->pvt_info;

	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);

	if (rank < 4)
		dimm = 0;
	else if (rank < 8)
		dimm = 1;
	else
		dimm = 2;


	/*
1943 1944 1945 1946
	 * FIXME: On some memory configurations (mirror, lockstep), the
	 * Memory Controller can't point the error to a single DIMM. The
	 * EDAC core should be handling the channel mask, in order to point
	 * to the group of dimm's where the error may be happening.
1947
	 */
1948 1949 1950
	if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
		channel = first_channel;

1951
	snprintf(msg, sizeof(msg),
1952
		 "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
1953 1954 1955 1956 1957 1958 1959
		 overflow ? " OVERFLOW" : "",
		 (uncorrected_error && recoverable) ? " recoverable" : "",
		 area_type,
		 mscod, errcode,
		 socket,
		 channel_mask,
		 rank);
1960

1961
	edac_dbg(0, "%s\n", msg);
1962

1963 1964
	/* FIXME: need support for channel mask */

1965 1966 1967
	if (channel == CHANNEL_UNSPECIFIED)
		channel = -1;

1968
	/* Call the helper to output message */
1969
	edac_mc_handle_error(tp_event, mci, core_err_cnt,
1970 1971
			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
			     channel, dimm, -1,
1972
			     optype, msg);
1973 1974
	return;
err_parsing:
1975
	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
1976
			     -1, -1, -1,
1977
			     msg, "");
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039

}

/*
 *	sbridge_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void sbridge_check_error(struct mem_ctl_info *mci)
{
	struct sbridge_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
	struct mce *m;

	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
	 * loosing an error.
	 */
	smp_rmb();
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
	if (!count)
		return;

	m = pvt->mce_outentry;
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;

		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}

	/*
	 * MCE second step: parse errors and display
	 */
	for (i = 0; i < count; i++)
		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
}

/*
 * sbridge_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by sbridge_check_error.
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
 */
2040 2041
static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
				   void *data)
2042
{
2043 2044 2045
	struct mce *mce = (struct mce *)data;
	struct mem_ctl_info *mci;
	struct sbridge_pvt *pvt;
2046
	char *type;
2047

2048 2049 2050
	if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
		return NOTIFY_DONE;

2051 2052 2053 2054
	mci = get_mci_for_node_id(mce->socketid);
	if (!mci)
		return NOTIFY_BAD;
	pvt = mci->pvt_info;
2055 2056 2057 2058 2059 2060 2061 2062

	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller. A memory error
	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
	 * bit 12 has an special meaning.
	 */
	if ((mce->status & 0xefff) >> 7 != 1)
2063
		return NOTIFY_DONE;
2064

2065 2066 2067 2068 2069
	if (mce->mcgstatus & MCG_STATUS_MCIP)
		type = "Exception";
	else
		type = "Event";

2070
	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
2071

2072 2073 2074 2075 2076 2077
	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
			  "Bank %d: %016Lx\n", mce->extcpu, type,
			  mce->mcgstatus, mce->bank, mce->status);
	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
2078

2079 2080 2081
	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
			  mce->time, mce->socketid, mce->apicid);
2082 2083 2084 2085 2086

	smp_rmb();
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
		smp_wmb();
		pvt->mce_overrun++;
2087
		return NOTIFY_DONE;
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
	}

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
	smp_wmb();
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;

	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		sbridge_check_error(mci);

	/* Advice mcelog that the error were handled */
2100
	return NOTIFY_STOP;
2101 2102
}

2103 2104 2105 2106
static struct notifier_block sbridge_mce_dec = {
	.notifier_call      = sbridge_mce_check_error,
};

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
/****************************************************************************
			EDAC register/unregister logic
 ****************************************************************************/

static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
{
	struct mem_ctl_info *mci = sbridge_dev->mci;
	struct sbridge_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
2117
		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
2118 2119 2120 2121 2122 2123 2124

		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

2125 2126
	edac_dbg(0, "MC: mci = %p, dev = %p\n",
		 mci, &sbridge_dev->pdev[0]->dev);
2127 2128

	/* Remove MC sysfs nodes */
2129
	edac_mc_del_mc(mci->pdev);
2130

2131
	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2132 2133 2134 2135 2136
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
}

2137
static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
2138 2139
{
	struct mem_ctl_info *mci;
2140
	struct edac_mc_layer layers[2];
2141
	struct sbridge_pvt *pvt;
2142
	struct pci_dev *pdev = sbridge_dev->pdev[0];
2143
	int rc;
2144 2145

	/* Check the number of active and not disabled channels */
2146
	rc = check_if_ecc_is_active(sbridge_dev->bus, type);
2147 2148 2149 2150
	if (unlikely(rc < 0))
		return rc;

	/* allocate a new MC control structure */
2151 2152 2153 2154 2155 2156
	layers[0].type = EDAC_MC_LAYER_CHANNEL;
	layers[0].size = NUM_CHANNELS;
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
	layers[1].size = MAX_DIMMS;
	layers[1].is_virt_csrow = true;
2157
	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
2158 2159
			    sizeof(*pvt));

2160 2161 2162
	if (unlikely(!mci))
		return -ENOMEM;

2163
	edac_dbg(0, "MC: mci = %p, dev = %p\n",
2164
		 mci, &pdev->dev);
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177

	pvt = mci->pvt_info;
	memset(pvt, 0, sizeof(*pvt));

	/* Associate sbridge_dev and mci for future usage */
	pvt->sbridge_dev = sbridge_dev;
	sbridge_dev->mci = mci;

	mci->mtype_cap = MEM_FLAG_DDR3;
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "sbridge_edac.c";
	mci->mod_ver = SBRIDGE_REVISION;
2178
	mci->dev_name = pci_name(pdev);
2179 2180 2181 2182 2183
	mci->ctl_page_to_phys = NULL;

	/* Set the function pointer to an actual operation function */
	mci->edac_check = sbridge_check_error;

2184
	pvt->info.type = type;
2185 2186
	switch (type) {
	case IVY_BRIDGE:
2187 2188 2189 2190
		pvt->info.rankcfgr = IB_RANK_CFG_A;
		pvt->info.get_tolm = ibridge_get_tolm;
		pvt->info.get_tohm = ibridge_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
2191
		pvt->info.get_memory_type = get_memory_type;
2192
		pvt->info.get_node_id = get_node_id;
2193
		pvt->info.rir_limit = rir_limit;
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);

		/* Store pci devices at mci for faster access */
		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
2204 2205
		break;
	case SANDY_BRIDGE:
2206 2207 2208 2209
		pvt->info.rankcfgr = SB_RANK_CFG_A;
		pvt->info.get_tolm = sbridge_get_tolm;
		pvt->info.get_tohm = sbridge_get_tohm;
		pvt->info.dram_rule = sbridge_dram_rule;
2210
		pvt->info.get_memory_type = get_memory_type;
2211
		pvt->info.get_node_id = get_node_id;
2212
		pvt->info.rir_limit = rir_limit;
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
		pvt->info.interleave_list = sbridge_interleave_list;
		pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
		pvt->info.interleave_pkg = sbridge_interleave_pkg;
		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);

		/* Store pci devices at mci for faster access */
		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
		break;
	case HASWELL:
		/* rankcfgr isn't used */
		pvt->info.get_tolm = haswell_get_tolm;
		pvt->info.get_tohm = haswell_get_tohm;
		pvt->info.dram_rule = ibridge_dram_rule;
		pvt->info.get_memory_type = haswell_get_memory_type;
		pvt->info.get_node_id = haswell_get_node_id;
		pvt->info.rir_limit = haswell_rir_limit;
		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
		pvt->info.interleave_list = ibridge_interleave_list;
		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
		pvt->info.interleave_pkg = ibridge_interleave_pkg;
		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
2237

2238 2239 2240 2241 2242 2243
		/* Store pci devices at mci for faster access */
		rc = haswell_mci_bind_devs(mci, sbridge_dev);
		if (unlikely(rc < 0))
			goto fail0;
		break;
	}
2244 2245 2246 2247 2248 2249

	/* Get dimm basic config and the memory layout */
	get_dimm_config(mci);
	get_memory_layout(mci);

	/* record ptr to the generic device */
2250
	mci->pdev = &pdev->dev;
2251 2252 2253

	/* add this new MC control structure to EDAC's list of MCs */
	if (unlikely(edac_mc_add_mc(mci))) {
2254
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		rc = -EINVAL;
		goto fail0;
	}

	return 0;

fail0:
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	sbridge_dev->mci = NULL;
	return rc;
}

/*
 *	sbridge_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */

2276
static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2277
{
2278
	int rc = -ENODEV;
2279 2280
	u8 mc, num_mc = 0;
	struct sbridge_dev *sbridge_dev;
2281
	enum type type = SANDY_BRIDGE;
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294

	/* get the pci devices we want to reserve for our use */
	mutex_lock(&sbridge_edac_lock);

	/*
	 * All memory controllers are allocated at the first pass.
	 */
	if (unlikely(probed >= 1)) {
		mutex_unlock(&sbridge_edac_lock);
		return -ENODEV;
	}
	probed++;

2295 2296
	switch (pdev->device) {
	case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2297 2298
		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
		type = IVY_BRIDGE;
2299 2300
		break;
	case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2301 2302
		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
		type = SANDY_BRIDGE;
2303 2304 2305 2306 2307
		break;
	case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table);
		type = HASWELL;
		break;
2308
	}
2309 2310 2311 2312 2313
	if (unlikely(rc < 0))
		goto fail0;
	mc = 0;

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
2314 2315
		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
			 mc, mc + 1, num_mc);
2316

2317
		sbridge_dev->mc = mc++;
2318
		rc = sbridge_register_mci(sbridge_dev, type);
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
		if (unlikely(rc < 0))
			goto fail1;
	}

	sbridge_printk(KERN_INFO, "Driver loaded.\n");

	mutex_unlock(&sbridge_edac_lock);
	return 0;

fail1:
	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	sbridge_put_all_devices();
fail0:
	mutex_unlock(&sbridge_edac_lock);
	return rc;
}

/*
 *	sbridge_remove	destructor for one instance of device
 *
 */
2342
static void sbridge_remove(struct pci_dev *pdev)
2343 2344 2345
{
	struct sbridge_dev *sbridge_dev;

2346
	edac_dbg(0, "\n");
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382

	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */

	mutex_lock(&sbridge_edac_lock);

	if (unlikely(!probed)) {
		mutex_unlock(&sbridge_edac_lock);
		return;
	}

	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
		sbridge_unregister_mci(sbridge_dev);

	/* Release PCI resources */
	sbridge_put_all_devices();

	probed--;

	mutex_unlock(&sbridge_edac_lock);
}

MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);

/*
 *	sbridge_driver	pci_driver structure for this module
 *
 */
static struct pci_driver sbridge_driver = {
	.name     = "sbridge_edac",
	.probe    = sbridge_probe,
2383
	.remove   = sbridge_remove,
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	.id_table = sbridge_pci_tbl,
};

/*
 *	sbridge_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init sbridge_init(void)
{
	int pci_rc;

2395
	edac_dbg(2, "\n");
2396 2397 2398 2399 2400

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

	pci_rc = pci_register_driver(&sbridge_driver);
2401 2402
	if (pci_rc >= 0) {
		mce_register_decode_chain(&sbridge_mce_dec);
2403 2404
		if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
2405
		return 0;
2406
	}
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419

	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
}

/*
 *	sbridge_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit sbridge_exit(void)
{
2420
	edac_dbg(2, "\n");
2421
	pci_unregister_driver(&sbridge_driver);
2422
	mce_unregister_decode_chain(&sbridge_mce_dec);
2423 2424 2425 2426 2427 2428 2429 2430 2431
}

module_init(sbridge_init);
module_exit(sbridge_exit);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");

MODULE_LICENSE("GPL");
2432
MODULE_AUTHOR("Mauro Carvalho Chehab");
2433
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2434
MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
2435
		   SBRIDGE_REVISION);