book3s_hv.c 54.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/delay.h>
27
#include <linux/export.h>
28 29 30
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
31 32
#include <linux/spinlock.h>
#include <linux/page-flags.h>
33
#include <linux/srcu.h>
34
#include <linux/miscdevice.h>
35 36 37 38 39 40 41 42 43 44 45 46

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
47
#include <asm/cputhreads.h>
48
#include <asm/page.h>
49
#include <asm/hvcall.h>
50
#include <asm/switch_to.h>
51
#include <asm/smp.h>
52 53 54
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
55
#include <linux/hugetlb.h>
56
#include <linux/module.h>
57

58 59
#include "book3s.h"

60 61 62 63
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

64 65 66
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)

67 68 69
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

70
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
71
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
72

73
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
{
	int me;
	int cpu = vcpu->cpu;
	wait_queue_head_t *wqp;

	wqp = kvm_arch_vcpu_wq(vcpu);
	if (waitqueue_active(wqp)) {
		wake_up_interruptible(wqp);
		++vcpu->stat.halt_wakeup;
	}

	me = get_cpu();

	/* CPU points to the first thread of the core */
	if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
		int real_cpu = cpu + vcpu->arch.ptid;
		if (paca[real_cpu].kvm_hstate.xics_phys)
			xics_wake_cpu(real_cpu);
		else if (cpu_online(cpu))
			smp_send_reschedule(cpu);
	}
	put_cpu();
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
 * updates to vc->stolen_tb are protected by the arch.tbacct_lock
 * of the vcpu that has taken responsibility for running the vcore
 * (i.e. vc->runner).  The stolen times are measured in units of
 * timebase ticks.  (Note that the != TB_NIL checks below are
 * purely defensive; they should never fail.)
 */

132
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
133
{
134 135
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

136 137 138
	spin_lock(&vcpu->arch.tbacct_lock);
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
	    vc->preempt_tb != TB_NIL) {
139
		vc->stolen_tb += mftb() - vc->preempt_tb;
140 141 142 143 144 145 146 147
		vc->preempt_tb = TB_NIL;
	}
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
	spin_unlock(&vcpu->arch.tbacct_lock);
148 149
}

150
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
151
{
152 153
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

154
	spin_lock(&vcpu->arch.tbacct_lock);
155 156
	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
		vc->preempt_tb = mftb();
157 158 159
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
	spin_unlock(&vcpu->arch.tbacct_lock);
160 161
}

162
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
163 164
{
	vcpu->arch.shregs.msr = msr;
165
	kvmppc_end_cede(vcpu);
166 167
}

168
void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
169 170 171 172
{
	vcpu->arch.pvr = pvr;
}

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
{
	unsigned long pcr = 0;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

	if (arch_compat) {
		if (!cpu_has_feature(CPU_FTR_ARCH_206))
			return -EINVAL;	/* 970 has no compat mode support */

		switch (arch_compat) {
		case PVR_ARCH_205:
			pcr = PCR_ARCH_205;
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
			break;
		default:
			return -EINVAL;
		}
	}

	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
	vc->pcr = pcr;
	spin_unlock(&vc->lock);

	return 0;
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
	       vcpu->arch.ctr, vcpu->arch.lr);
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
231
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
232 233 234
	       vcpu->arch.last_inst);
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
{
	int r;
	struct kvm_vcpu *v, *ret = NULL;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(r, v, kvm) {
		if (v->vcpu_id == id) {
			ret = v;
			break;
		}
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
253
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
254 255 256
	vpa->yield_count = 1;
}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
		u16 hword;
		u32 word;
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

289 290 291 292 293
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
294
	unsigned long len, nb;
295 296
	void *va;
	struct kvm_vcpu *tvcpu;
297 298 299
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
300 301 302 303 304

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

305 306 307 308 309
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
310
			return H_PARAMETER;
311 312

		/* convert logical addr to kernel addr and read length */
313 314
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
315
			return H_PARAMETER;
316 317
		if (subfunc == H_VPA_REG_VPA)
			len = ((struct reg_vpa *)va)->length.hword;
318
		else
319
			len = ((struct reg_vpa *)va)->length.word;
320
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
		if (len < sizeof(struct lppaca))
337
			break;
338 339 340 341 342 343
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
344
			break;
345 346 347 348 349
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
350
			break;
351 352 353 354 355 356 357 358 359

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
360
			break;
361 362 363 364 365 366 367 368 369 370

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
371
			break;
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
392
	}
393

394 395
	spin_unlock(&tvcpu->arch.vpa_update_lock);

396
	return err;
397 398
}

399
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
400
{
401
	struct kvm *kvm = vcpu->kvm;
402 403
	void *va;
	unsigned long nb;
404
	unsigned long gpa;
405

406 407 408 409 410 411 412 413 414 415 416 417 418 419
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
420
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
421 422 423 424 425
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
426
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
427 428 429 430 431 432 433 434 435
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
436
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
437
		va = NULL;
438 439
	}
	if (vpap->pinned_addr)
440 441 442
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
443
	vpap->pinned_addr = va;
444
	vpap->dirty = false;
445 446 447 448 449 450
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
451 452 453 454 455
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

456 457
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
458
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
459 460
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
461 462
	}
	if (vcpu->arch.dtl.update_pending) {
463
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
464 465 466 467
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
468
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
469 470 471
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;

	/*
	 * If we are the task running the vcore, then since we hold
	 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
	 * can't be updated, so we don't need the tbacct_lock.
	 * If the vcore is inactive, it can't become active (since we
	 * hold the vcore lock), so the vcpu load/put functions won't
	 * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
	 */
	if (vc->vcore_state != VCORE_INACTIVE &&
	    vc->runner->arch.run_task != current) {
		spin_lock(&vc->runner->arch.tbacct_lock);
		p = vc->stolen_tb;
		if (vc->preempt_tb != TB_NIL)
			p += now - vc->preempt_tb;
		spin_unlock(&vc->runner->arch.tbacct_lock);
	} else {
		p = vc->stolen_tb;
	}
	return p;
}

501 502 503 504 505
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
506 507 508
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
509 510 511

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
512 513 514 515 516 517 518 519
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
	spin_lock(&vcpu->arch.tbacct_lock);
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
	spin_unlock(&vcpu->arch.tbacct_lock);
520 521 522 523 524
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
	dt->processor_id = vc->pcpu + vcpu->arch.ptid;
525
	dt->timebase = now + vc->tb_offset;
526
	dt->enqueue_to_dispatch_time = stolen;
527 528 529 530 531 532 533 534 535
	dt->srr0 = kvmppc_get_pc(vcpu);
	dt->srr1 = vcpu->arch.shregs.msr;
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
	vpa->dtl_idx = ++vcpu->arch.dtl_index;
536
	vcpu->arch.dtl.dirty = true;
537 538
}

539 540 541 542 543
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
	struct kvm_vcpu *tvcpu;
544
	int idx, rc;
545 546

	switch (req) {
547
	case H_ENTER:
548
		idx = srcu_read_lock(&vcpu->kvm->srcu);
549 550 551 552
		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
					      kvmppc_get_gpr(vcpu, 5),
					      kvmppc_get_gpr(vcpu, 6),
					      kvmppc_get_gpr(vcpu, 7));
553
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
554
		break;
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
		if (vcpu->arch.ceded) {
			if (waitqueue_active(&vcpu->wq)) {
				wake_up_interruptible(&vcpu->wq);
				vcpu->stat.halt_wakeup++;
			}
		}
		break;
	case H_CONFER:
574 575 576 577 578 579 580 581 582
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		kvm_vcpu_yield_to(tvcpu);
583 584 585 586 587 588
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
589 590 591 592 593 594 595 596 597 598 599 600 601
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

		rc = kvmppc_rtas_hcall(vcpu);

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
602 603 604 605 606

	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
607 608
	case H_IPOLL:
	case H_XIRR_X:
609 610 611 612
		if (kvmppc_xics_enabled(vcpu)) {
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
		} /* fallthrough */
613 614 615 616 617 618 619 620
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

621 622
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
643 644 645 646 647 648 649 650 651 652 653
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		/*
		 * Deliver a machine check interrupt to the guest.
		 * We have to do this, even if the host has handled the
		 * machine check, because machine checks use SRR0/1 and
		 * the interrupt might have trashed guest state in them.
		 */
		kvmppc_book3s_queue_irqprio(vcpu,
					    BOOK3S_INTERRUPT_MACHINE_CHECK);
		r = RESUME_GUEST;
		break;
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

673 674 675 676
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

677 678 679 680 681 682 683 684 685
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
686 687 688 689 690
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
691 692
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
693
		r = RESUME_PAGE_FAULT;
694 695
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
696 697 698
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = 0;
		r = RESUME_PAGE_FAULT;
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
	 * We just generate a program interrupt to the guest, since
	 * we don't emulate any guest instructions at this stage.
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
		kvmppc_core_queue_program(vcpu, 0x80000);
		r = RESUME_GUEST;
		break;
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
714
		run->hw.hardware_exit_reason = vcpu->arch.trap;
715 716 717 718 719 720 721
		r = RESUME_HOST;
		break;
	}

	return r;
}

722 723
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
724 725 726 727
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
728
	sregs->pvr = vcpu->arch.pvr;
729 730 731 732 733 734 735 736
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

737 738
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
739 740 741
{
	int i, j;

742
	kvmppc_set_pvr_hv(vcpu, sregs->pvr);
743 744 745 746 747 748 749 750 751 752 753 754 755 756

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr)
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

	spin_lock(&vc->lock);
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
}

772 773
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
774
{
775 776
	int r = 0;
	long int i;
777

778
	switch (id) {
779
	case KVM_REG_PPC_HIOR:
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
807
		break;
808 809 810 811 812 813
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
831 832 833
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
834 835 836
	case KVM_REG_PPC_LPCR:
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
837 838 839
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
840 841 842
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
843
	default:
844
		r = -EINVAL;
845 846 847 848 849 850
		break;
	}

	return r;
}

851 852
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
853
{
854 855
	int r = 0;
	long int i;
856
	unsigned long addr, len;
857

858
	switch (id) {
859 860
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
861
		if (set_reg_val(id, *val))
862 863
			r = -EINVAL;
		break;
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
890 891 892 893 894 895
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
916 917
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
918 919 920 921
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
922 923 924 925 926
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
927 928 929
	case KVM_REG_PPC_LPCR:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val));
		break;
930 931 932
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
933 934 935
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
936
	default:
937
		r = -EINVAL;
938 939 940 941 942 943
		break;
	}

	return r;
}

944 945
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
946 947
{
	struct kvm_vcpu *vcpu;
948 949 950
	int err = -EINVAL;
	int core;
	struct kvmppc_vcore *vcore;
951

952 953 954 955 956
	core = id / threads_per_core;
	if (core >= KVM_MAX_VCORES)
		goto out;

	err = -ENOMEM;
957
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
958 959 960 961 962 963 964 965 966 967 968
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
969
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
970
	spin_lock_init(&vcpu->arch.vpa_update_lock);
971 972
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
973 974 975

	kvmppc_mmu_book3s_hv_init(vcpu);

976
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
977 978 979 980 981 982 983 984 985 986

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
	vcore = kvm->arch.vcores[core];
	if (!vcore) {
		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
		if (vcore) {
			INIT_LIST_HEAD(&vcore->runnable_threads);
			spin_lock_init(&vcore->lock);
987
			init_waitqueue_head(&vcore->wq);
988
			vcore->preempt_tb = TB_NIL;
989
			vcore->lpcr = kvm->arch.lpcr;
990 991
		}
		kvm->arch.vcores[core] = vcore;
992
		kvm->arch.online_vcores++;
993 994 995 996 997 998 999 1000 1001 1002 1003
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;

1004 1005 1006
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

1007 1008 1009
	return vcpu;

free_vcpu:
1010
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1011 1012 1013 1014
out:
	return ERR_PTR(err);
}

1015 1016 1017 1018 1019 1020 1021
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

1022
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1023
{
1024
	spin_lock(&vcpu->arch.vpa_update_lock);
1025 1026 1027
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1028
	spin_unlock(&vcpu->arch.vpa_update_lock);
1029
	kvm_vcpu_uninit(vcpu);
1030
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1031 1032
}

1033 1034 1035 1036 1037 1038
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

1039
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1040
{
1041
	unsigned long dec_nsec, now;
1042

1043 1044 1045 1046
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
1047
		kvmppc_core_prepare_to_enter(vcpu);
1048
		return;
1049
	}
1050 1051 1052 1053 1054
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
		      HRTIMER_MODE_REL);
	vcpu->arch.timer_running = 1;
1055 1056
}

1057
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1058
{
1059 1060 1061 1062 1063
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1064 1065
}

1066 1067
extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);

1068 1069
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
1070
{
1071 1072
	u64 now;

1073 1074
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
1075 1076 1077 1078 1079 1080 1081
	spin_lock(&vcpu->arch.tbacct_lock);
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
	spin_unlock(&vcpu->arch.tbacct_lock);
1082 1083 1084 1085
	--vc->n_runnable;
	list_del(&vcpu->arch.run_list);
}

1086 1087 1088 1089 1090 1091 1092 1093 1094
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
	long timeout = 1000;

	tpaca = &paca[cpu];

	/* Ensure the thread won't go into the kernel if it wakes */
	tpaca->kvm_hstate.hwthread_req = 1;
1095
	tpaca->kvm_hstate.kvm_vcpu = NULL;
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

	tpaca = &paca[cpu];
	tpaca->kvm_hstate.hwthread_req = 0;
	tpaca->kvm_hstate.kvm_vcpu = NULL;
}

1126 1127 1128 1129 1130 1131
static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
{
	int cpu;
	struct paca_struct *tpaca;
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

1132 1133 1134 1135
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
1136 1137 1138 1139
	cpu = vc->pcpu + vcpu->arch.ptid;
	tpaca = &paca[cpu];
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
	tpaca->kvm_hstate.kvm_vcore = vc;
1140 1141
	tpaca->kvm_hstate.napping = 0;
	vcpu->cpu = vc->pcpu;
1142
	smp_wmb();
1143
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1144 1145 1146
	if (vcpu->arch.ptid) {
		xics_wake_cpu(cpu);
		++vc->n_woken;
1147
	}
1148 1149
#endif
}
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
{
	int i;

	HMT_low();
	i = 0;
	while (vc->nap_count < vc->n_woken) {
		if (++i >= 1000000) {
			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
			       vc->nap_count, vc->n_woken);
			break;
		}
		cpu_relax();
	}
	HMT_medium();
}

/*
 * Check that we are on thread 0 and that any other threads in
1170 1171
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
	int thr = cpu_thread_in_core(cpu);

	if (thr)
		return 0;
	while (++thr < threads_per_core)
		if (cpu_online(cpu + thr))
			return 0;
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

	/* Grab all hw threads so they can't go into the kernel */
	for (thr = 1; thr < threads_per_core; ++thr) {
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
1194 1195 1196 1197 1198 1199 1200
	return 1;
}

/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
1201
static void kvmppc_run_core(struct kvmppc_vcore *vc)
1202
{
1203
	struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1204 1205
	long ret;
	u64 now;
1206
	int ptid, i, need_vpa_update;
1207
	int srcu_idx;
1208
	struct kvm_vcpu *vcpus_to_update[threads_per_core];
1209 1210

	/* don't start if any threads have a signal pending */
1211 1212
	need_vpa_update = 0;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1213
		if (signal_pending(vcpu->arch.run_task))
1214 1215 1216 1217 1218
			return;
		if (vcpu->arch.vpa.update_pending ||
		    vcpu->arch.slb_shadow.update_pending ||
		    vcpu->arch.dtl.update_pending)
			vcpus_to_update[need_vpa_update++] = vcpu;
1219 1220 1221 1222 1223 1224 1225 1226 1227
	}

	/*
	 * Initialize *vc, in particular vc->vcore_state, so we can
	 * drop the vcore lock if necessary.
	 */
	vc->n_woken = 0;
	vc->nap_count = 0;
	vc->entry_exit_count = 0;
1228
	vc->vcore_state = VCORE_STARTING;
1229 1230 1231 1232 1233 1234 1235 1236 1237
	vc->in_guest = 0;
	vc->napping_threads = 0;

	/*
	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
	 * which can't be called with any spinlocks held.
	 */
	if (need_vpa_update) {
		spin_unlock(&vc->lock);
1238 1239
		for (i = 0; i < need_vpa_update; ++i)
			kvmppc_update_vpas(vcpus_to_update[i]);
1240 1241
		spin_lock(&vc->lock);
	}
1242

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	/*
	 * Assign physical thread IDs, first to non-ceded vcpus
	 * and then to ceded ones.
	 */
	ptid = 0;
	vcpu0 = NULL;
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		if (!vcpu->arch.ceded) {
			if (!ptid)
				vcpu0 = vcpu;
			vcpu->arch.ptid = ptid++;
		}
	}
1256 1257
	if (!vcpu0)
		goto out;	/* nothing to run; should never happen */
1258 1259 1260 1261
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		if (vcpu->arch.ceded)
			vcpu->arch.ptid = ptid++;

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	/*
	 * Make sure we are running on thread 0, and that
	 * secondary threads are offline.
	 */
	if (threads_per_core > 1 && !on_primary_thread()) {
		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
			vcpu->arch.ret = -EBUSY;
		goto out;
	}

1272
	vc->pcpu = smp_processor_id();
1273
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1274
		kvmppc_start_thread(vcpu);
1275
		kvmppc_create_dtl_entry(vcpu, vc);
1276
	}
1277

1278
	vc->vcore_state = VCORE_RUNNING;
1279
	preempt_disable();
1280
	spin_unlock(&vc->lock);
1281

1282
	kvm_guest_enter();
1283 1284 1285

	srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);

1286
	__kvmppc_vcore_entry(NULL, vcpu0);
1287

1288
	spin_lock(&vc->lock);
1289 1290 1291 1292
	/* disable sending of IPIs on virtual external irqs */
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
		vcpu->cpu = -1;
	/* wait for secondary threads to finish writing their state to memory */
1293 1294
	if (vc->nap_count < vc->n_woken)
		kvmppc_wait_for_nap(vc);
1295 1296
	for (i = 0; i < threads_per_core; ++i)
		kvmppc_release_hwthread(vc->pcpu + i);
1297
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
1298
	vc->vcore_state = VCORE_EXITING;
1299 1300
	spin_unlock(&vc->lock);

1301 1302
	srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);

1303 1304
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
1305 1306 1307 1308 1309
	kvm_guest_exit();

	preempt_enable();
	kvm_resched(vcpu);

1310
	spin_lock(&vc->lock);
1311
	now = get_tb();
1312 1313 1314 1315 1316
	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);
1317 1318 1319

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
1320 1321
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);
1322

1323 1324
		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;
1325 1326 1327 1328 1329 1330 1331

		if (vcpu->arch.ceded) {
			if (ret != RESUME_GUEST)
				kvmppc_end_cede(vcpu);
			else
				kvmppc_set_timer(vcpu);
		}
1332
	}
1333 1334

 out:
1335
	vc->vcore_state = VCORE_INACTIVE;
1336 1337 1338 1339 1340 1341 1342 1343 1344
	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
				 arch.run_list) {
		if (vcpu->arch.ret != RESUME_GUEST) {
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
}

1345 1346 1347 1348 1349
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1350 1351 1352
{
	DEFINE_WAIT(wait);

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
		schedule();
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
	DEFINE_WAIT(wait);

	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
	vc->vcore_state = VCORE_SLEEPING;
	spin_unlock(&vc->lock);
1370
	schedule();
1371 1372 1373 1374
	finish_wait(&vc->wq, &wait);
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
}
1375

1376 1377 1378 1379 1380
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
	int n_ceded;
	struct kvmppc_vcore *vc;
	struct kvm_vcpu *v, *vn;
1381

1382 1383 1384
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
1385
	kvmppc_update_vpas(vcpu);
1386 1387 1388 1389 1390 1391

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
1392
	vcpu->arch.ceded = 0;
1393 1394
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
1395
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1396
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1397
	vcpu->arch.busy_preempt = TB_NIL;
1398 1399 1400
	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
	++vc->n_runnable;

1401 1402 1403 1404 1405
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
1406
	if (!signal_pending(current)) {
1407 1408 1409
		if (vc->vcore_state == VCORE_RUNNING &&
		    VCORE_EXIT_COUNT(vc) == 0) {
			vcpu->arch.ptid = vc->n_runnable - 1;
1410
			kvmppc_create_dtl_entry(vcpu, vc);
1411
			kvmppc_start_thread(vcpu);
1412 1413
		} else if (vc->vcore_state == VCORE_SLEEPING) {
			wake_up(&vc->wq);
1414 1415
		}

1416
	}
1417

1418 1419
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
1420
		if (vc->vcore_state != VCORE_INACTIVE) {
1421 1422 1423 1424 1425 1426 1427
			spin_unlock(&vc->lock);
			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
			spin_lock(&vc->lock);
			continue;
		}
		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
					 arch.run_list) {
1428
			kvmppc_core_prepare_to_enter(v);
1429 1430 1431 1432 1433 1434 1435 1436
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
1437 1438 1439 1440
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		vc->runner = vcpu;
		n_ceded = 0;
1441
		list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1442 1443
			if (!v->arch.pending_exceptions)
				n_ceded += v->arch.ceded;
1444 1445 1446
			else
				v->arch.ceded = 0;
		}
1447 1448 1449 1450
		if (n_ceded == vc->n_runnable)
			kvmppc_vcore_blocked(vc);
		else
			kvmppc_run_core(vc);
1451
		vc->runner = NULL;
1452
	}
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
		vc->vcore_state == VCORE_EXITING)) {
		spin_unlock(&vc->lock);
		kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
		spin_lock(&vc->lock);
	}

	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
		v = list_first_entry(&vc->runnable_threads,
				     struct kvm_vcpu, arch.run_list);
		wake_up(&v->arch.cpu_run);
1474 1475 1476 1477
	}

	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
1478 1479
}

1480
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
1481 1482
{
	int r;
1483
	int srcu_idx;
1484

1485 1486 1487 1488 1489
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

1490 1491
	kvmppc_core_prepare_to_enter(vcpu);

1492 1493 1494 1495 1496 1497
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

1498 1499 1500 1501 1502
	atomic_inc(&vcpu->kvm->arch.vcpus_running);
	/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
	smp_mb();

	/* On the first time here, set up HTAB and VRMA or RMA */
1503
	if (!vcpu->kvm->arch.rma_setup_done) {
1504
		r = kvmppc_hv_setup_htab_rma(vcpu);
1505
		if (r)
1506
			goto out;
1507
	}
1508 1509 1510 1511 1512

	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_vsx_to_thread(current);
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1513
	vcpu->arch.pgdir = current->mm->pgd;
1514
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1515

1516 1517 1518 1519 1520 1521
	do {
		r = kvmppc_run_vcpu(run, vcpu);

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
			r = kvmppc_pseries_do_hcall(vcpu);
1522
			kvmppc_core_prepare_to_enter(vcpu);
1523 1524 1525 1526 1527
		} else if (r == RESUME_PAGE_FAULT) {
			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1528 1529
		}
	} while (r == RESUME_GUEST);
1530 1531

 out:
1532
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1533
	atomic_dec(&vcpu->kvm->arch.vcpus_running);
1534 1535 1536
	return r;
}

1537

1538
/* Work out RMLS (real mode limit selector) field value for a given RMA size.
1539
   Assumes POWER7 or PPC970. */
1540 1541 1542 1543
static inline int lpcr_rmls(unsigned long rma_size)
{
	switch (rma_size) {
	case 32ul << 20:	/* 32 MB */
1544 1545 1546
		if (cpu_has_feature(CPU_FTR_ARCH_206))
			return 8;	/* only supported on POWER7 */
		return -1;
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	case 64ul << 20:	/* 64 MB */
		return 3;
	case 128ul << 20:	/* 128 MB */
		return 7;
	case 256ul << 20:	/* 256 MB */
		return 4;
	case 1ul << 30:		/* 1 GB */
		return 2;
	case 16ul << 30:	/* 16 GB */
		return 1;
	case 256ul << 30:	/* 256 GB */
		return 0;
	default:
		return -1;
	}
}

static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct page *page;
1567
	struct kvm_rma_info *ri = vma->vm_file->private_data;
1568

1569
	if (vmf->pgoff >= kvm_rma_pages)
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
		return VM_FAULT_SIGBUS;

	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
	get_page(page);
	vmf->page = page;
	return 0;
}

static const struct vm_operations_struct kvm_rma_vm_ops = {
	.fault = kvm_rma_fault,
};

static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
{
1584
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1585 1586 1587 1588 1589 1590
	vma->vm_ops = &kvm_rma_vm_ops;
	return 0;
}

static int kvm_rma_release(struct inode *inode, struct file *filp)
{
1591
	struct kvm_rma_info *ri = filp->private_data;
1592 1593 1594 1595 1596

	kvm_release_rma(ri);
	return 0;
}

1597
static const struct file_operations kvm_rma_fops = {
1598 1599 1600 1601
	.mmap           = kvm_rma_mmap,
	.release	= kvm_rma_release,
};

1602 1603
static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm,
				      struct kvm_allocate_rma *ret)
1604 1605
{
	long fd;
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	struct kvm_rma_info *ri;
	/*
	 * Only do this on PPC970 in HV mode
	 */
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_201))
		return -EINVAL;

	if (!kvm_rma_pages)
		return -EINVAL;
1616 1617 1618 1619 1620

	ri = kvm_alloc_rma();
	if (!ri)
		return -ENOMEM;

1621
	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
1622 1623 1624
	if (fd < 0)
		kvm_release_rma(ri);

1625
	ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
1626 1627 1628
	return fd;
}

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
				     int linux_psize)
{
	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];

	if (!def->shift)
		return;
	(*sps)->page_shift = def->shift;
	(*sps)->slb_enc = def->sllp;
	(*sps)->enc[0].page_shift = def->shift;
1639 1640 1641 1642 1643 1644 1645
	/*
	 * Only return base page encoding. We don't want to return
	 * all the supporting pte_enc, because our H_ENTER doesn't
	 * support MPSS yet. Once they do, we can start passing all
	 * support pte_enc here
	 */
	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
1646 1647 1648
	(*sps)++;
}

1649 1650
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
{
	struct kvm_ppc_one_seg_page_size *sps;

	info->flags = KVM_PPC_PAGE_SIZES_REAL;
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		info->flags |= KVM_PPC_1T_SEGMENTS;
	info->slb_size = mmu_slb_size;

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);

	return 0;
}

1668 1669 1670
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
1671 1672
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
1673 1674 1675 1676 1677 1678 1679 1680
{
	struct kvm_memory_slot *memslot;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
1681
	if (log->slot >= KVM_USER_MEM_SLOTS)
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
		goto out;

	memslot = id_to_memslot(kvm->memslots, log->slot);
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = kvm_dirty_bitmap_bytes(memslot);
	memset(memslot->dirty_bitmap, 0, n);

1692
	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	if (r)
		goto out;

	r = -EFAULT;
	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1706
static void unpin_slot(struct kvm_memory_slot *memslot)
1707
{
1708 1709 1710
	unsigned long *physp;
	unsigned long j, npages, pfn;
	struct page *page;
1711

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	physp = memslot->arch.slot_phys;
	npages = memslot->npages;
	if (!physp)
		return;
	for (j = 0; j < npages; j++) {
		if (!(physp[j] & KVMPPC_GOT_PAGE))
			continue;
		pfn = physp[j] >> PAGE_SHIFT;
		page = pfn_to_page(pfn);
		SetPageDirty(page);
		put_page(page);
	}
}

1726 1727
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
1728 1729 1730 1731
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
1732
	}
1733 1734 1735 1736 1737 1738 1739
	if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
		unpin_slot(free);
		vfree(free->arch.slot_phys);
		free->arch.slot_phys = NULL;
	}
}

1740 1741
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
1742 1743 1744 1745 1746
{
	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
	if (!slot->arch.rmap)
		return -ENOMEM;
	slot->arch.slot_phys = NULL;
1747

1748 1749
	return 0;
}
1750

1751 1752 1753
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
					struct kvm_userspace_memory_region *mem)
1754
{
1755
	unsigned long *phys;
1756

1757 1758 1759 1760 1761 1762 1763
	/* Allocate a slot_phys array if needed */
	phys = memslot->arch.slot_phys;
	if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
		phys = vzalloc(memslot->npages * sizeof(unsigned long));
		if (!phys)
			return -ENOMEM;
		memslot->arch.slot_phys = phys;
1764
	}
1765 1766

	return 0;
1767 1768
}

1769 1770 1771
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				const struct kvm_memory_slot *old)
1772
{
1773 1774 1775
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot;

1776
	if (npages && old->npages) {
1777 1778 1779 1780 1781 1782 1783 1784 1785
		/*
		 * If modifying a memslot, reset all the rmap dirty bits.
		 * If this is a new memslot, we don't need to do anything
		 * since the rmap array starts out as all zeroes,
		 * i.e. no pages are dirty.
		 */
		memslot = id_to_memslot(kvm->memslots, mem->slot);
		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
	}
1786 1787
}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

1814 1815 1816 1817 1818
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

1819
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1820 1821 1822
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
1823
	struct kvm_rma_info *ri = NULL;
1824 1825 1826
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
1827 1828
	unsigned long lpcr = 0, senc;
	unsigned long lpcr_mask = 0;
1829 1830 1831 1832
	unsigned long psize, porder;
	unsigned long rma_size;
	unsigned long rmls;
	unsigned long *physp;
1833
	unsigned long i, npages;
1834
	int srcu_idx;
1835 1836 1837 1838

	mutex_lock(&kvm->lock);
	if (kvm->arch.rma_setup_done)
		goto out;	/* another vcpu beat us to it */
1839

1840 1841 1842 1843 1844 1845 1846 1847 1848
	/* Allocate hashed page table (if not done already) and reset it */
	if (!kvm->arch.hpt_virt) {
		err = kvmppc_alloc_hpt(kvm, NULL);
		if (err) {
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
	}

1849
	/* Look up the memslot for guest physical address 0 */
1850
	srcu_idx = srcu_read_lock(&kvm->srcu);
1851
	memslot = gfn_to_memslot(kvm, 0);
1852

1853 1854 1855
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1856
		goto out_srcu;
1857 1858 1859 1860 1861 1862 1863 1864 1865

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);
1866
	porder = __ilog2(psize);
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879

	/* Is this one of our preallocated RMAs? */
	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
	    hva == vma->vm_start)
		ri = vma->vm_file->private_data;

	up_read(&current->mm->mmap_sem);

	if (!ri) {
		/* On POWER7, use VRMA; on PPC970, give up */
		err = -EPERM;
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			pr_err("KVM: CPU requires an RMO\n");
1880
			goto out_srcu;
1881 1882
		}

1883 1884 1885 1886
		/* We can handle 4k, 64k or 16M pages in the VRMA */
		err = -EINVAL;
		if (!(psize == 0x1000 || psize == 0x10000 ||
		      psize == 0x1000000))
1887
			goto out_srcu;
1888

1889
		/* Update VRMASD field in the LPCR */
1890
		senc = slb_pgsize_encoding(psize);
1891 1892
		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1893 1894 1895
		lpcr_mask = LPCR_VRMASD;
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
1896 1897

		/* Create HPTEs in the hash page table for the VRMA */
1898
		kvmppc_map_vrma(vcpu, memslot, porder);
1899 1900 1901

	} else {
		/* Set up to use an RMO region */
1902
		rma_size = kvm_rma_pages;
1903 1904 1905
		if (rma_size > memslot->npages)
			rma_size = memslot->npages;
		rma_size <<= PAGE_SHIFT;
1906
		rmls = lpcr_rmls(rma_size);
1907
		err = -EINVAL;
1908
		if ((long)rmls < 0) {
1909
			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1910
			goto out_srcu;
1911 1912 1913
		}
		atomic_inc(&ri->use_count);
		kvm->arch.rma = ri;
1914 1915 1916 1917

		/* Update LPCR and RMOR */
		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
			/* PPC970; insert RMLS value (split field) in HID4 */
1918 1919 1920
			lpcr_mask = (1ul << HID4_RMLS0_SH) |
				(3ul << HID4_RMLS2_SH) | HID4_RMOR;
			lpcr = ((rmls >> 2) << HID4_RMLS0_SH) |
1921 1922 1923 1924 1925 1926
				((rmls & 3) << HID4_RMLS2_SH);
			/* RMOR is also in HID4 */
			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
				<< HID4_RMOR_SH;
		} else {
			/* POWER7 */
1927 1928
			lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS;
			lpcr = rmls << LPCR_RMLS_SH;
1929
			kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
1930
		}
1931
		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1932 1933
			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);

1934
		/* Initialize phys addrs of pages in RMO */
1935
		npages = kvm_rma_pages;
1936
		porder = __ilog2(npages);
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
		physp = memslot->arch.slot_phys;
		if (physp) {
			if (npages > memslot->npages)
				npages = memslot->npages;
			spin_lock(&kvm->arch.slot_phys_lock);
			for (i = 0; i < npages; ++i)
				physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
					porder;
			spin_unlock(&kvm->arch.slot_phys_lock);
		}
1947 1948
	}

1949 1950
	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);

1951 1952 1953 1954
	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
	smp_wmb();
	kvm->arch.rma_setup_done = 1;
	err = 0;
1955 1956
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1957 1958 1959
 out:
	mutex_unlock(&kvm->lock);
	return err;
1960

1961 1962
 up_out:
	up_read(&current->mm->mmap_sem);
1963
	goto out_srcu;
1964 1965
}

1966
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
1967
{
1968
	unsigned long lpcr, lpid;
1969

1970 1971 1972
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
1973
	if ((long)lpid < 0)
1974 1975
		return -ENOMEM;
	kvm->arch.lpid = lpid;
1976

1977 1978 1979 1980 1981 1982 1983
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
	 */
	cpumask_setall(&kvm->arch.need_tlb_flush);

1984 1985
	kvm->arch.rma = NULL;

1986
	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1987

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
		/* PPC970; HID4 is effectively the LPCR */
		kvm->arch.host_lpid = 0;
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
			((lpid & 0xf) << HID4_LPID5_SH);
	} else {
		/* POWER7; init LPCR for virtual RMA mode */
		kvm->arch.host_lpid = mfspr(SPRN_LPID);
		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
		lpcr &= LPCR_PECE | LPCR_LPES;
		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
2001 2002 2003
			LPCR_VPM0 | LPCR_VPM1;
		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
			(VRMA_VSID << SLB_VSID_SHIFT_1T);
2004 2005
	}
	kvm->arch.lpcr = lpcr;
2006

2007
	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
2008
	spin_lock_init(&kvm->arch.slot_phys_lock);
2009 2010 2011 2012 2013 2014 2015

	/*
	 * Don't allow secondary CPU threads to come online
	 * while any KVM VMs exist.
	 */
	inhibit_secondary_onlining();

2016
	return 0;
2017 2018
}

2019 2020 2021 2022 2023 2024 2025 2026 2027
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

	for (i = 0; i < KVM_MAX_VCORES; ++i)
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

2028
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2029
{
2030 2031
	uninhibit_secondary_onlining();

2032
	kvmppc_free_vcores(kvm);
2033 2034 2035 2036 2037
	if (kvm->arch.rma) {
		kvm_release_rma(kvm->arch.rma);
		kvm->arch.rma = NULL;
	}

2038 2039 2040
	kvmppc_free_hpt(kvm);
}

2041 2042 2043
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
2044
{
2045
	return EMULATE_FAIL;
2046 2047
}

2048 2049
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
2050 2051 2052 2053
{
	return EMULATE_FAIL;
}

2054 2055
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
2056 2057 2058 2059
{
	return EMULATE_FAIL;
}

2060
static int kvmppc_core_check_processor_compat_hv(void)
2061
{
2062 2063 2064
	if (!cpu_has_feature(CPU_FTR_HVMODE))
		return -EIO;
	return 0;
2065 2066
}

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_ALLOCATE_RMA: {
		struct kvm_allocate_rma rma;
		struct kvm *kvm = filp->private_data;

		r = kvm_vm_ioctl_allocate_rma(kvm, &rma);
		if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma)))
			r = -EFAULT;
		break;
	}

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
		if (r)
			break;
		r = -EFAULT;
		if (put_user(htab_order, (u32 __user *)argp))
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

	default:
		r = -ENOTTY;
	}

	return r;
}

2119
static struct kvmppc_ops kvm_ops_hv = {
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva = kvm_unmap_hva_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
};

static int kvmppc_book3s_init_hv(void)
2154 2155
{
	int r;
2156 2157 2158 2159 2160
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
2161 2162
		return r;

2163 2164
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
2165

2166
	r = kvmppc_mmu_hv_init();
2167 2168 2169
	return r;
}

2170
static void kvmppc_book3s_exit_hv(void)
2171
{
2172
	kvmppc_hv_ops = NULL;
2173 2174
}

2175 2176
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
2177
MODULE_LICENSE("GPL");
2178 2179
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");