i915_gem.c 103.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37

38
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
39 40
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 42 43 44 45
static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
							  bool write);
static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
								  uint64_t offset,
								  uint64_t size);
46
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
47 48 49
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
50 51
static void i915_gem_clear_fence_reg(struct drm_device *dev,
				     struct drm_i915_fence_reg *reg);
52 53
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
54
				struct drm_i915_gem_pwrite *args,
55 56
				struct drm_file *file);
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
57

58 59 60 61
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
				    int nr_to_scan,
				    gfp_t gfp_mask);

62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

78 79
static int
i915_gem_wait_for_error(struct drm_device *dev)
80 81 82 83 84 85 86 87 88 89 90 91 92
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

93 94 95 96 97 98 99 100 101 102 103
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
104 105
}

106
int i915_mutex_lock_interruptible(struct drm_device *dev)
107 108 109
{
	int ret;

110
	ret = i915_gem_wait_for_error(dev);
111 112 113 114 115 116 117
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

118
	WARN_ON(i915_verify_lists(dev));
119 120
	return 0;
}
121

122
static inline bool
123
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
124
{
125
	return obj->gtt_space && !obj->active && obj->pin_count == 0;
126 127
}

128 129 130 131
void i915_gem_do_init(struct drm_device *dev,
		      unsigned long start,
		      unsigned long mappable_end,
		      unsigned long end)
132 133 134
{
	drm_i915_private_t *dev_priv = dev->dev_private;

135
	drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
136

137 138 139
	dev_priv->mm.gtt_start = start;
	dev_priv->mm.gtt_mappable_end = mappable_end;
	dev_priv->mm.gtt_end = end;
140
	dev_priv->mm.gtt_total = end - start;
141
	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
142 143 144

	/* Take over this portion of the GTT */
	intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
J
Jesse Barnes 已提交
145
}
146

J
Jesse Barnes 已提交
147 148
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
149
		    struct drm_file *file)
J
Jesse Barnes 已提交
150 151
{
	struct drm_i915_gem_init *args = data;
152 153 154 155

	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
156 157

	mutex_lock(&dev->struct_mutex);
158
	i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
159 160
	mutex_unlock(&dev->struct_mutex);

161
	return 0;
162 163
}

164 165
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
166
			    struct drm_file *file)
167
{
168
	struct drm_i915_private *dev_priv = dev->dev_private;
169
	struct drm_i915_gem_get_aperture *args = data;
170 171
	struct drm_i915_gem_object *obj;
	size_t pinned;
172 173 174 175

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

176
	pinned = 0;
177
	mutex_lock(&dev->struct_mutex);
178 179
	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
		pinned += obj->gtt_space->size;
180
	mutex_unlock(&dev->struct_mutex);
181

182 183 184
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size -pinned;

185 186 187
	return 0;
}

188 189 190 191 192
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
193
{
194
	struct drm_i915_gem_object *obj;
195 196
	int ret;
	u32 handle;
197

198
	size = roundup(size, PAGE_SIZE);
199 200

	/* Allocate the new object */
201
	obj = i915_gem_alloc_object(dev, size);
202 203 204
	if (obj == NULL)
		return -ENOMEM;

205
	ret = drm_gem_handle_create(file, &obj->base, &handle);
206
	if (ret) {
207 208
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
209
		kfree(obj);
210
		return ret;
211
	}
212

213
	/* drop reference from allocate - handle holds it now */
214
	drm_gem_object_unreference(&obj->base);
215 216
	trace_i915_gem_object_create(obj);

217
	*handle_p = handle;
218 219 220
	return 0;
}

221 222 223 224 225 226
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
227
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

252
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
253
{
254
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
255 256

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
257
		obj->tiling_mode != I915_TILING_NONE;
258 259
}

260
static inline void
261 262 263 264 265 266 267 268
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

269 270
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
271 272 273

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

274 275
	kunmap(src_page);
	kunmap(dst_page);
276 277
}

278
static inline void
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

298 299
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

323 324
	kunmap(cpu_page);
	kunmap(gpu_page);
325 326
}

327 328 329 330 331 332
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
333 334
i915_gem_shmem_pread_fast(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
335
			  struct drm_i915_gem_pread *args,
336
			  struct drm_file *file)
337
{
338
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
339
	ssize_t remain;
340
	loff_t offset;
341 342 343 344 345 346 347 348 349
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	offset = args->offset;

	while (remain > 0) {
350 351 352 353
		struct page *page;
		char *vaddr;
		int ret;

354 355 356 357 358 359 360 361 362 363
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

364 365 366 367 368 369 370 371 372 373 374 375 376 377
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page);
		ret = __copy_to_user_inatomic(user_data,
					      vaddr + page_offset,
					      page_length);
		kunmap_atomic(vaddr);

		mark_page_accessed(page);
		page_cache_release(page);
		if (ret)
378
			return -EFAULT;
379 380 381 382 383 384

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

385
	return 0;
386 387 388 389 390 391 392 393 394
}

/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
395 396
i915_gem_shmem_pread_slow(struct drm_device *dev,
			  struct drm_i915_gem_object *obj,
397
			  struct drm_i915_gem_pread *args,
398
			  struct drm_file *file)
399
{
400
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
401 402 403 404 405
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
406 407
	int shmem_page_offset;
	int data_page_index, data_page_offset;
408 409 410
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
411
	int do_bit17_swizzling;
412 413 414 415 416 417 418 419 420 421 422

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

423
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
424 425 426
	if (user_pages == NULL)
		return -ENOMEM;

427
	mutex_unlock(&dev->struct_mutex);
428 429
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
430
				      num_pages, 1, 0, user_pages, NULL);
431
	up_read(&mm->mmap_sem);
432
	mutex_lock(&dev->struct_mutex);
433 434
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
435
		goto out;
436 437
	}

438 439 440
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
441
	if (ret)
442
		goto out;
443

444
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
445 446 447 448

	offset = args->offset;

	while (remain > 0) {
449 450
		struct page *page;

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

468 469 470 471 472
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

473
		if (do_bit17_swizzling) {
474
			slow_shmem_bit17_copy(page,
475
					      shmem_page_offset,
476 477 478 479 480 481 482
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
483
					page,
484 485
					shmem_page_offset,
					page_length);
486
		}
487

488 489 490
		mark_page_accessed(page);
		page_cache_release(page);

491 492 493 494 495
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

496
out:
497 498
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
499
		mark_page_accessed(user_pages[i]);
500 501
		page_cache_release(user_pages[i]);
	}
502
	drm_free_large(user_pages);
503 504 505 506

	return ret;
}

507 508 509 510 511 512 513
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
514
		     struct drm_file *file)
515 516
{
	struct drm_i915_gem_pread *args = data;
517
	struct drm_i915_gem_object *obj;
518
	int ret = 0;
519

520 521 522 523 524 525 526 527 528 529 530 531 532
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret)
		return -EFAULT;

533
	ret = i915_mutex_lock_interruptible(dev);
534
	if (ret)
535
		return ret;
536

537
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538
	if (&obj->base == NULL) {
539 540
		ret = -ENOENT;
		goto unlock;
541
	}
542

543
	/* Bounds check source.  */
544 545
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
546
		ret = -EINVAL;
547
		goto out;
C
Chris Wilson 已提交
548 549
	}

C
Chris Wilson 已提交
550 551
	trace_i915_gem_object_pread(obj, args->offset, args->size);

552 553 554 555
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
556
		goto out;
557 558 559

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
560
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
561
	if (ret == -EFAULT)
562
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
563

564
out:
565
	drm_gem_object_unreference(&obj->base);
566
unlock:
567
	mutex_unlock(&dev->struct_mutex);
568
	return ret;
569 570
}

571 572
/* This is the fast write path which cannot handle
 * page faults in the source data
573
 */
574 575 576 577 578 579

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
580 581
{
	char *vaddr_atomic;
582
	unsigned long unwritten;
583

P
Peter Zijlstra 已提交
584
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
585 586
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
587
	io_mapping_unmap_atomic(vaddr_atomic);
588
	return unwritten;
589 590 591 592 593 594
}

/* Here's the write path which can sleep for
 * page faults
 */

595
static inline void
596 597 598 599
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
600
{
601 602
	char __iomem *dst_vaddr;
	char *src_vaddr;
603

604 605 606 607 608 609 610 611 612
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
613 614
}

615 616 617 618
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
619
static int
620 621
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
622
			 struct drm_i915_gem_pwrite *args,
623
			 struct drm_file *file)
624
{
625
	drm_i915_private_t *dev_priv = dev->dev_private;
626
	ssize_t remain;
627
	loff_t offset, page_base;
628
	char __user *user_data;
629
	int page_offset, page_length;
630 631 632 633

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

634
	offset = obj->gtt_offset + args->offset;
635 636 637 638

	while (remain > 0) {
		/* Operation in this page
		 *
639 640 641
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
642
		 */
643 644 645 646 647 648 649
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
650 651
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
652
		 */
653 654 655 656
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))

			return -EFAULT;
657

658 659 660
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
661 662
	}

663
	return 0;
664 665
}

666 667 668 669 670 671 672
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
673
static int
674 675
i915_gem_gtt_pwrite_slow(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
676
			 struct drm_i915_gem_pwrite *args,
677
			 struct drm_file *file)
678
{
679 680 681 682 683 684 685 686
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
687
	int ret;
688 689 690 691 692 693 694 695 696 697 698 699
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

700
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
701 702 703
	if (user_pages == NULL)
		return -ENOMEM;

704
	mutex_unlock(&dev->struct_mutex);
705 706 707 708
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
709
	mutex_lock(&dev->struct_mutex);
710 711 712 713
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
714

715 716 717 718 719
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin_pages;

	ret = i915_gem_object_put_fence(obj);
720
	if (ret)
721
		goto out_unpin_pages;
722

723
	offset = obj->gtt_offset + args->offset;
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

745 746 747 748 749
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
750 751 752 753 754 755 756 757 758

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
759
	drm_free_large(user_pages);
760 761 762 763

	return ret;
}

764 765 766 767
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
768
static int
769 770
i915_gem_shmem_pwrite_fast(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
771
			   struct drm_i915_gem_pwrite *args,
772
			   struct drm_file *file)
773
{
774
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
775
	ssize_t remain;
776
	loff_t offset;
777 778 779 780 781
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
782

783
	offset = args->offset;
784
	obj->dirty = 1;
785 786

	while (remain > 0) {
787 788 789 790
		struct page *page;
		char *vaddr;
		int ret;

791 792 793 794 795 796 797 798 799 800
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page, KM_USER0);
		ret = __copy_from_user_inatomic(vaddr + page_offset,
						user_data,
						page_length);
		kunmap_atomic(vaddr, KM_USER0);

		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
821
			return -EFAULT;
822 823 824 825 826 827

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

828
	return 0;
829 830 831 832 833 834 835 836 837 838
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
839 840
i915_gem_shmem_pwrite_slow(struct drm_device *dev,
			   struct drm_i915_gem_object *obj,
841
			   struct drm_i915_gem_pwrite *args,
842
			   struct drm_file *file)
843
{
844
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
845 846 847 848 849
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
850
	int shmem_page_offset;
851 852 853 854
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
855
	int do_bit17_swizzling;
856 857 858 859 860 861 862 863 864 865 866

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

867
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
868 869 870
	if (user_pages == NULL)
		return -ENOMEM;

871
	mutex_unlock(&dev->struct_mutex);
872 873 874 875
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
876
	mutex_lock(&dev->struct_mutex);
877 878
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
879
		goto out;
880 881
	}

882
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
883
	if (ret)
884
		goto out;
885

886
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
887

888
	offset = args->offset;
889
	obj->dirty = 1;
890

891
	while (remain > 0) {
892 893
		struct page *page;

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

911 912 913 914 915 916 917
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}

918
		if (do_bit17_swizzling) {
919
			slow_shmem_bit17_copy(page,
920 921 922
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
923 924 925
					      page_length,
					      0);
		} else {
926
			slow_shmem_copy(page,
927 928 929 930
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
931
		}
932

933 934 935 936
		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

937 938 939
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
940 941
	}

942
out:
943 944
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
945
	drm_free_large(user_pages);
946

947
	return ret;
948 949 950 951 952 953 954 955 956
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
957
		      struct drm_file *file)
958 959
{
	struct drm_i915_gem_pwrite *args = data;
960
	struct drm_i915_gem_object *obj;
961 962 963 964 965 966 967 968 969 970 971 972 973 974
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret)
		return -EFAULT;
975

976
	ret = i915_mutex_lock_interruptible(dev);
977
	if (ret)
978
		return ret;
979

980
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
981
	if (&obj->base == NULL) {
982 983
		ret = -ENOENT;
		goto unlock;
984
	}
985

986
	/* Bounds check destination. */
987 988
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
989
		ret = -EINVAL;
990
		goto out;
C
Chris Wilson 已提交
991 992
	}

C
Chris Wilson 已提交
993 994
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

995 996 997 998 999 1000
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1001
	if (obj->phys_obj)
1002
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
1003
	else if (obj->gtt_space &&
1004
		 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1005
		ret = i915_gem_object_pin(obj, 0, true);
1006 1007 1008
		if (ret)
			goto out;

1009 1010 1011 1012 1013
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			goto out_unpin;

		ret = i915_gem_object_put_fence(obj);
1014 1015 1016 1017 1018 1019 1020 1021 1022
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
1023
	} else {
1024 1025
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
1026
			goto out;
1027

1028 1029 1030 1031 1032 1033
		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
	}
1034

1035
out:
1036
	drm_gem_object_unreference(&obj->base);
1037
unlock:
1038
	mutex_unlock(&dev->struct_mutex);
1039 1040 1041 1042
	return ret;
}

/**
1043 1044
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1045 1046 1047
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1048
			  struct drm_file *file)
1049 1050
{
	struct drm_i915_gem_set_domain *args = data;
1051
	struct drm_i915_gem_object *obj;
1052 1053
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1054 1055 1056 1057 1058
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1059
	/* Only handle setting domains to types used by the CPU. */
1060
	if (write_domain & I915_GEM_GPU_DOMAINS)
1061 1062
		return -EINVAL;

1063
	if (read_domains & I915_GEM_GPU_DOMAINS)
1064 1065 1066 1067 1068 1069 1070 1071
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1072
	ret = i915_mutex_lock_interruptible(dev);
1073
	if (ret)
1074
		return ret;
1075

1076
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1077
	if (&obj->base == NULL) {
1078 1079
		ret = -ENOENT;
		goto unlock;
1080
	}
1081

1082 1083
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1084 1085 1086 1087 1088 1089 1090

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1091
	} else {
1092
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1093 1094
	}

1095
	drm_gem_object_unreference(&obj->base);
1096
unlock:
1097 1098 1099 1100 1101 1102 1103 1104 1105
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1106
			 struct drm_file *file)
1107 1108
{
	struct drm_i915_gem_sw_finish *args = data;
1109
	struct drm_i915_gem_object *obj;
1110 1111 1112 1113 1114
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1115
	ret = i915_mutex_lock_interruptible(dev);
1116
	if (ret)
1117
		return ret;
1118

1119
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1120
	if (&obj->base == NULL) {
1121 1122
		ret = -ENOENT;
		goto unlock;
1123 1124 1125
	}

	/* Pinned buffers may be scanout, so flush the cache */
1126
	if (obj->pin_count)
1127 1128
		i915_gem_object_flush_cpu_write_domain(obj);

1129
	drm_gem_object_unreference(&obj->base);
1130
unlock:
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1144
		    struct drm_file *file)
1145
{
1146
	struct drm_i915_private *dev_priv = dev->dev_private;
1147 1148 1149 1150 1151 1152 1153
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1154
	obj = drm_gem_object_lookup(dev, file, args->handle);
1155
	if (obj == NULL)
1156
		return -ENOENT;
1157

1158 1159 1160 1161 1162
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		drm_gem_object_unreference_unlocked(obj);
		return -E2BIG;
	}

1163 1164 1165 1166 1167
	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1168
	drm_gem_object_unreference_unlocked(obj);
1169 1170 1171 1172 1173 1174 1175 1176
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1195 1196
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1197
	drm_i915_private_t *dev_priv = dev->dev_private;
1198 1199 1200
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1201
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1202 1203 1204 1205 1206

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1207 1208 1209
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1210

C
Chris Wilson 已提交
1211 1212
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1213
	/* Now bind it into the GTT if needed */
1214 1215 1216 1217
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1218
	}
1219
	if (!obj->gtt_space) {
1220
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1221 1222
		if (ret)
			goto unlock;
1223 1224
	}

1225 1226 1227 1228
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unlock;

1229 1230 1231
	if (obj->tiling_mode == I915_TILING_NONE)
		ret = i915_gem_object_put_fence(obj);
	else
1232
		ret = i915_gem_object_get_fence(obj, NULL);
1233 1234
	if (ret)
		goto unlock;
1235

1236 1237
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1238

1239 1240
	obj->fault_mappable = true;

1241
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1242 1243 1244 1245
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1246
unlock:
1247
	mutex_unlock(&dev->struct_mutex);
1248
out:
1249
	switch (ret) {
1250
	case -EIO:
1251
	case -EAGAIN:
1252 1253 1254 1255 1256 1257 1258
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1259
		set_need_resched();
1260 1261
	case 0:
	case -ERESTARTSYS:
1262
	case -EINTR:
1263
		return VM_FAULT_NOPAGE;
1264 1265 1266
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1267
		return VM_FAULT_SIGBUS;
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
1283
i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1284
{
1285
	struct drm_device *dev = obj->base.dev;
1286 1287
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;
1288
	struct drm_local_map *map;
1289 1290 1291
	int ret = 0;

	/* Set the object up for mmap'ing */
1292
	list = &obj->base.map_list;
1293
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1294 1295 1296 1297 1298
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
1299
	map->size = obj->base.size;
1300 1301 1302 1303
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1304 1305
						    obj->base.size / PAGE_SIZE,
						    0, 0);
1306
	if (!list->file_offset_node) {
1307 1308
		DRM_ERROR("failed to allocate offset for bo %d\n",
			  obj->base.name);
1309
		ret = -ENOSPC;
1310 1311 1312 1313
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1314 1315
						  obj->base.size / PAGE_SIZE,
						  0);
1316 1317 1318 1319 1320 1321
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1322 1323
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1324 1325 1326 1327 1328 1329 1330 1331 1332
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1333
	kfree(list->map);
C
Chris Wilson 已提交
1334
	list->map = NULL;
1335 1336 1337 1338

	return ret;
}

1339 1340 1341 1342
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1343
 * Preserve the reservation of the mmapping with the DRM core code, but
1344 1345 1346 1347 1348 1349 1350 1351 1352
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1353
void
1354
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1355
{
1356 1357
	if (!obj->fault_mappable)
		return;
1358

1359 1360 1361
	unmap_mapping_range(obj->base.dev->dev_mapping,
			    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
			    obj->base.size, 1);
1362

1363
	obj->fault_mappable = false;
1364 1365
}

1366
static void
1367
i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1368
{
1369
	struct drm_device *dev = obj->base.dev;
1370
	struct drm_gem_mm *mm = dev->mm_private;
1371
	struct drm_map_list *list = &obj->base.map_list;
1372 1373

	drm_ht_remove_item(&mm->offset_hash, &list->hash);
C
Chris Wilson 已提交
1374 1375 1376
	drm_mm_put_block(list->file_offset_node);
	kfree(list->map);
	list->map = NULL;
1377 1378
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
static uint32_t
i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	uint32_t size;

	if (INTEL_INFO(dev)->gen >= 4 ||
	    obj->tiling_mode == I915_TILING_NONE)
		return obj->base.size;

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
		size = 1024*1024;
	else
		size = 512*1024;

	while (size < obj->base.size)
		size <<= 1;

	return size;
}

1401 1402 1403 1404 1405
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1406
 * potential fence register mapping.
1407 1408
 */
static uint32_t
1409
i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1410
{
1411
	struct drm_device *dev = obj->base.dev;
1412 1413 1414 1415 1416

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1417
	if (INTEL_INFO(dev)->gen >= 4 ||
1418
	    obj->tiling_mode == I915_TILING_NONE)
1419 1420
		return 4096;

1421 1422 1423 1424
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1425
	return i915_gem_get_gtt_size(obj);
1426 1427
}

1428 1429 1430 1431 1432 1433 1434 1435
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1436
uint32_t
1437
i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1438
{
1439
	struct drm_device *dev = obj->base.dev;
1440 1441 1442 1443 1444 1445
	int tile_height;

	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1446
	    obj->tiling_mode == I915_TILING_NONE)
1447 1448 1449 1450 1451 1452 1453 1454
		return 4096;

	/*
	 * Older chips need unfenced tiled buffers to be aligned to the left
	 * edge of an even tile row (where tile rows are counted as if the bo is
	 * placed in a fenced gtt region).
	 */
	if (IS_GEN2(dev) ||
1455
	    (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1456 1457 1458 1459
		tile_height = 32;
	else
		tile_height = 8;

1460
	return tile_height * obj->stride * 2;
1461 1462
}

1463
int
1464 1465 1466 1467
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1468
{
1469
	struct drm_i915_private *dev_priv = dev->dev_private;
1470
	struct drm_i915_gem_object *obj;
1471 1472 1473 1474 1475
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1476
	ret = i915_mutex_lock_interruptible(dev);
1477
	if (ret)
1478
		return ret;
1479

1480
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1481
	if (&obj->base == NULL) {
1482 1483 1484
		ret = -ENOENT;
		goto unlock;
	}
1485

1486
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1487 1488 1489 1490
		ret = -E2BIG;
		goto unlock;
	}

1491
	if (obj->madv != I915_MADV_WILLNEED) {
1492
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1493 1494
		ret = -EINVAL;
		goto out;
1495 1496
	}

1497
	if (!obj->base.map_list.map) {
1498
		ret = i915_gem_create_mmap_offset(obj);
1499 1500
		if (ret)
			goto out;
1501 1502
	}

1503
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1504

1505
out:
1506
	drm_gem_object_unreference(&obj->base);
1507
unlock:
1508
	mutex_unlock(&dev->struct_mutex);
1509
	return ret;
1510 1511
}

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}


1540
static int
1541
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1552 1553 1554 1555
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1556 1557
		return -ENOMEM;

1558
	inode = obj->base.filp->f_path.dentry->d_inode;
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER |
					   __GFP_COLD |
					   __GFP_RECLAIMABLE |
					   gfpmask);
		if (IS_ERR(page))
			goto err_pages;

1569
		obj->pages[i] = page;
1570 1571
	}

1572
	if (obj->tiling_mode != I915_TILING_NONE)
1573 1574 1575 1576 1577 1578
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1579
		page_cache_release(obj->pages[i]);
1580

1581 1582
	drm_free_large(obj->pages);
	obj->pages = NULL;
1583 1584 1585
	return PTR_ERR(page);
}

1586
static void
1587
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1588
{
1589
	int page_count = obj->base.size / PAGE_SIZE;
1590 1591
	int i;

1592
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1593

1594
	if (obj->tiling_mode != I915_TILING_NONE)
1595 1596
		i915_gem_object_save_bit_17_swizzle(obj);

1597 1598
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1599 1600

	for (i = 0; i < page_count; i++) {
1601 1602
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1603

1604 1605
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1606

1607
		page_cache_release(obj->pages[i]);
1608
	}
1609
	obj->dirty = 0;
1610

1611 1612
	drm_free_large(obj->pages);
	obj->pages = NULL;
1613 1614
}

1615
void
1616
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1617 1618
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1619
{
1620
	struct drm_device *dev = obj->base.dev;
1621
	struct drm_i915_private *dev_priv = dev->dev_private;
1622

1623
	BUG_ON(ring == NULL);
1624
	obj->ring = ring;
1625 1626

	/* Add a reference if we're newly entering the active list. */
1627 1628 1629
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1630
	}
1631

1632
	/* Move from whatever list we were on to the tail of execution. */
1633 1634
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1635

1636
	obj->last_rendering_seqno = seqno;
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	if (obj->fenced_gpu_access) {
		struct drm_i915_fence_reg *reg;

		BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);

		obj->last_fenced_seqno = seqno;
		obj->last_fenced_ring = ring;

		reg = &dev_priv->fence_regs[obj->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1655 1656
}

1657
static void
1658
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1659
{
1660
	struct drm_device *dev = obj->base.dev;
1661 1662
	drm_i915_private_t *dev_priv = dev->dev_private;

1663 1664
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (obj->pin_count != 0)
		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
	else
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1688
	obj->pending_gpu_write = false;
1689 1690 1691
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1692
}
1693

1694 1695
/* Immediately discard the backing storage */
static void
1696
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1697
{
C
Chris Wilson 已提交
1698
	struct inode *inode;
1699

1700 1701 1702 1703 1704 1705
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
1706
	inode = obj->base.filp->f_path.dentry->d_inode;
1707 1708 1709
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1710

1711
	obj->madv = __I915_MADV_PURGED;
1712 1713 1714
}

static inline int
1715
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1716
{
1717
	return obj->madv == I915_MADV_DONTNEED;
1718 1719
}

1720
static void
C
Chris Wilson 已提交
1721 1722
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
			       uint32_t flush_domains)
1723
{
1724
	struct drm_i915_gem_object *obj, *next;
1725

1726
	list_for_each_entry_safe(obj, next,
1727
				 &ring->gpu_write_list,
1728
				 gpu_write_list) {
1729 1730
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1731

1732 1733
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1734
			i915_gem_object_move_to_active(obj, ring,
C
Chris Wilson 已提交
1735
						       i915_gem_next_request_seqno(ring));
1736 1737

			trace_i915_gem_object_change_domain(obj,
1738
							    obj->base.read_domains,
1739 1740 1741 1742
							    old_write_domain);
		}
	}
}
1743

1744
int
C
Chris Wilson 已提交
1745
i915_add_request(struct intel_ring_buffer *ring,
1746
		 struct drm_file *file,
C
Chris Wilson 已提交
1747
		 struct drm_i915_gem_request *request)
1748
{
C
Chris Wilson 已提交
1749
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1750 1751
	uint32_t seqno;
	int was_empty;
1752 1753 1754
	int ret;

	BUG_ON(request == NULL);
1755

1756 1757 1758
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1759

C
Chris Wilson 已提交
1760
	trace_i915_gem_request_add(ring, seqno);
1761 1762

	request->seqno = seqno;
1763
	request->ring = ring;
1764
	request->emitted_jiffies = jiffies;
1765 1766 1767
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

C
Chris Wilson 已提交
1768 1769 1770
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1771
		spin_lock(&file_priv->mm.lock);
1772
		request->file_priv = file_priv;
1773
		list_add_tail(&request->client_list,
1774
			      &file_priv->mm.request_list);
1775
		spin_unlock(&file_priv->mm.lock);
1776
	}
1777

C
Chris Wilson 已提交
1778 1779
	ring->outstanding_lazy_request = false;

B
Ben Gamari 已提交
1780
	if (!dev_priv->mm.suspended) {
1781 1782
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1783
		if (was_empty)
1784 1785
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1786
	}
1787
	return 0;
1788 1789
}

1790 1791
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1792
{
1793
	struct drm_i915_file_private *file_priv = request->file_priv;
1794

1795 1796
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1797

1798
	spin_lock(&file_priv->mm.lock);
1799 1800 1801 1802
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1803
	spin_unlock(&file_priv->mm.lock);
1804 1805
}

1806 1807
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1808
{
1809 1810
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1811

1812 1813 1814
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1815

1816
		list_del(&request->list);
1817
		i915_gem_request_remove_from_client(request);
1818 1819
		kfree(request);
	}
1820

1821
	while (!list_empty(&ring->active_list)) {
1822
		struct drm_i915_gem_object *obj;
1823

1824 1825 1826
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1827

1828 1829 1830
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1831 1832 1833
	}
}

1834 1835 1836 1837 1838 1839 1840
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1841 1842 1843 1844 1845 1846 1847 1848
		struct drm_i915_gem_object *obj = reg->obj;

		if (!obj)
			continue;

		if (obj->tiling_mode)
			i915_gem_release_mmap(obj);

1849 1850 1851 1852 1853
		reg->obj->fence_reg = I915_FENCE_REG_NONE;
		reg->obj->fenced_gpu_access = false;
		reg->obj->last_fenced_seqno = 0;
		reg->obj->last_fenced_ring = NULL;
		i915_gem_clear_fence_reg(dev, reg);
1854 1855 1856
	}
}

1857
void i915_gem_reset(struct drm_device *dev)
1858
{
1859
	struct drm_i915_private *dev_priv = dev->dev_private;
1860
	struct drm_i915_gem_object *obj;
1861
	int i;
1862

1863 1864
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1865 1866 1867 1868 1869 1870

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1871 1872 1873
		obj= list_first_entry(&dev_priv->mm.flushing_list,
				      struct drm_i915_gem_object,
				      mm_list);
1874

1875 1876 1877
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1878 1879 1880 1881 1882
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1883
	list_for_each_entry(obj,
1884
			    &dev_priv->mm.inactive_list,
1885
			    mm_list)
1886
	{
1887
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1888
	}
1889 1890

	/* The fence registers are invalidated so clear them out */
1891
	i915_gem_reset_fences(dev);
1892 1893 1894 1895 1896
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1897
static void
C
Chris Wilson 已提交
1898
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1899 1900
{
	uint32_t seqno;
1901
	int i;
1902

C
Chris Wilson 已提交
1903
	if (list_empty(&ring->request_list))
1904 1905
		return;

C
Chris Wilson 已提交
1906
	WARN_ON(i915_verify_lists(ring->dev));
1907

1908
	seqno = ring->get_seqno(ring);
1909

1910
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1911 1912 1913
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1914
	while (!list_empty(&ring->request_list)) {
1915 1916
		struct drm_i915_gem_request *request;

1917
		request = list_first_entry(&ring->request_list,
1918 1919 1920
					   struct drm_i915_gem_request,
					   list);

1921
		if (!i915_seqno_passed(seqno, request->seqno))
1922 1923
			break;

C
Chris Wilson 已提交
1924
		trace_i915_gem_request_retire(ring, request->seqno);
1925 1926

		list_del(&request->list);
1927
		i915_gem_request_remove_from_client(request);
1928 1929
		kfree(request);
	}
1930

1931 1932 1933 1934
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1935
		struct drm_i915_gem_object *obj;
1936

1937 1938 1939
		obj= list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);
1940

1941
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1942
			break;
1943

1944
		if (obj->base.write_domain != 0)
1945 1946 1947
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1948
	}
1949

C
Chris Wilson 已提交
1950 1951
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1952
		ring->irq_put(ring);
C
Chris Wilson 已提交
1953
		ring->trace_irq_seqno = 0;
1954
	}
1955

C
Chris Wilson 已提交
1956
	WARN_ON(i915_verify_lists(ring->dev));
1957 1958
}

1959 1960 1961 1962
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1963
	int i;
1964

1965
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1966
	    struct drm_i915_gem_object *obj, *next;
1967 1968 1969 1970 1971 1972

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
1973
	    list_for_each_entry_safe(obj, next,
1974
				     &dev_priv->mm.deferred_free_list,
1975
				     mm_list)
1976
		    i915_gem_free_object_tail(obj);
1977 1978
	}

1979
	for (i = 0; i < I915_NUM_RINGS; i++)
C
Chris Wilson 已提交
1980
		i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1981 1982
}

1983
static void
1984 1985 1986 1987
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1988 1989
	bool idle;
	int i;
1990 1991 1992 1993 1994

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1995 1996 1997 1998 1999 2000
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

2001
	i915_gem_retire_requests(dev);
2002

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct intel_ring_buffer *ring = &dev_priv->ring[i];

		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

C
Chris Wilson 已提交
2014 2015
			ret = i915_gem_flush_ring(ring,
						  0, I915_GEM_GPU_DOMAINS);
2016 2017
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
C
Chris Wilson 已提交
2018
			    i915_add_request(ring, NULL, request))
2019 2020 2021 2022 2023 2024 2025
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
2026
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2027

2028 2029 2030
	mutex_unlock(&dev->struct_mutex);
}

C
Chris Wilson 已提交
2031 2032 2033 2034
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
2035
int
C
Chris Wilson 已提交
2036
i915_wait_request(struct intel_ring_buffer *ring,
2037
		  uint32_t seqno)
2038
{
C
Chris Wilson 已提交
2039
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2040
	u32 ier;
2041 2042 2043 2044
	int ret = 0;

	BUG_ON(seqno == 0);

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		return recovery_complete ? -EIO : -EAGAIN;
	}
2057

2058
	if (seqno == ring->outstanding_lazy_request) {
2059 2060 2061 2062
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
2063
			return -ENOMEM;
2064

C
Chris Wilson 已提交
2065
		ret = i915_add_request(ring, NULL, request);
2066 2067 2068 2069 2070 2071
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
2072
	}
2073

2074
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
C
Chris Wilson 已提交
2075
		if (HAS_PCH_SPLIT(ring->dev))
2076 2077 2078
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
2079 2080 2081
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
C
Chris Wilson 已提交
2082 2083
			i915_driver_irq_preinstall(ring->dev);
			i915_driver_irq_postinstall(ring->dev);
2084 2085
		}

C
Chris Wilson 已提交
2086
		trace_i915_gem_request_wait_begin(ring, seqno);
C
Chris Wilson 已提交
2087

2088
		ring->waiting_seqno = seqno;
2089
		if (ring->irq_get(ring)) {
2090
			if (dev_priv->mm.interruptible)
2091 2092 2093 2094 2095 2096 2097 2098 2099
				ret = wait_event_interruptible(ring->irq_queue,
							       i915_seqno_passed(ring->get_seqno(ring), seqno)
							       || atomic_read(&dev_priv->mm.wedged));
			else
				wait_event(ring->irq_queue,
					   i915_seqno_passed(ring->get_seqno(ring), seqno)
					   || atomic_read(&dev_priv->mm.wedged));

			ring->irq_put(ring);
2100 2101 2102 2103
		} else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
						      seqno) ||
				    atomic_read(&dev_priv->mm.wedged), 3000))
			ret = -EBUSY;
2104
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
2105

C
Chris Wilson 已提交
2106
		trace_i915_gem_request_wait_end(ring, seqno);
2107
	}
2108
	if (atomic_read(&dev_priv->mm.wedged))
2109
		ret = -EAGAIN;
2110 2111

	if (ret && ret != -ERESTARTSYS)
2112
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2113
			  __func__, ret, seqno, ring->get_seqno(ring),
2114
			  dev_priv->next_seqno);
2115 2116 2117 2118 2119 2120 2121

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
C
Chris Wilson 已提交
2122
		i915_gem_retire_requests_ring(ring);
2123 2124 2125 2126 2127 2128 2129 2130

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
2131
int
2132
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2133 2134 2135
{
	int ret;

2136 2137
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2138
	 */
2139
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2140 2141 2142 2143

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
2144
	if (obj->active) {
2145
		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2146
		if (ret)
2147 2148 2149 2150 2151 2152 2153 2154 2155
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2156
int
2157
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2158 2159 2160
{
	int ret = 0;

2161
	if (obj->gtt_space == NULL)
2162 2163
		return 0;

2164
	if (obj->pin_count != 0) {
2165 2166 2167 2168
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2169 2170 2171
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2172 2173 2174 2175 2176 2177
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2178
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2179
	if (ret == -ERESTARTSYS)
2180
		return ret;
2181 2182 2183 2184
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2185 2186
	if (ret) {
		i915_gem_clflush_object(obj);
2187
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2188
	}
2189

2190
	/* release the fence reg _after_ flushing */
2191 2192 2193
	ret = i915_gem_object_put_fence(obj);
	if (ret == -ERESTARTSYS)
		return ret;
2194

C
Chris Wilson 已提交
2195 2196
	trace_i915_gem_object_unbind(obj);

2197
	i915_gem_gtt_unbind_object(obj);
2198
	i915_gem_object_put_pages_gtt(obj);
2199

2200
	list_del_init(&obj->gtt_list);
2201
	list_del_init(&obj->mm_list);
2202
	/* Avoid an unnecessary call to unbind on rebind. */
2203
	obj->map_and_fenceable = true;
2204

2205 2206 2207
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2208

2209
	if (i915_gem_object_is_purgeable(obj))
2210 2211
		i915_gem_object_truncate(obj);

2212
	return ret;
2213 2214
}

2215
int
C
Chris Wilson 已提交
2216
i915_gem_flush_ring(struct intel_ring_buffer *ring,
2217 2218 2219
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2220 2221
	int ret;

C
Chris Wilson 已提交
2222 2223
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2224 2225 2226 2227
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

C
Chris Wilson 已提交
2228
	i915_gem_process_flushing_list(ring, flush_domains);
2229
	return 0;
2230 2231
}

C
Chris Wilson 已提交
2232
static int i915_ring_idle(struct intel_ring_buffer *ring)
2233
{
2234 2235
	int ret;

2236
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2237 2238
		return 0;

2239
	if (!list_empty(&ring->gpu_write_list)) {
C
Chris Wilson 已提交
2240
		ret = i915_gem_flush_ring(ring,
2241
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2242 2243 2244 2245
		if (ret)
			return ret;
	}

2246
	return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2247 2248
}

2249
int
2250 2251 2252 2253
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2254
	int ret, i;
2255

2256
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2257
		       list_empty(&dev_priv->mm.active_list));
2258 2259 2260 2261
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2262
	for (i = 0; i < I915_NUM_RINGS; i++) {
C
Chris Wilson 已提交
2263
		ret = i915_ring_idle(&dev_priv->ring[i]);
2264 2265 2266
		if (ret)
			return ret;
	}
2267

2268
	return 0;
2269 2270
}

2271 2272
static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
				       struct intel_ring_buffer *pipelined)
2273
{
2274
	struct drm_device *dev = obj->base.dev;
2275
	drm_i915_private_t *dev_priv = dev->dev_private;
2276 2277
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2278 2279
	uint64_t val;

2280
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2281
			 0xfffff000) << 32;
2282 2283
	val |= obj->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj->stride / 128) - 1) <<
2284 2285
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

2286
	if (obj->tiling_mode == I915_TILING_Y)
2287 2288 2289
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);

	return 0;
2306 2307
}

2308 2309
static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2310
{
2311
	struct drm_device *dev = obj->base.dev;
2312
	drm_i915_private_t *dev_priv = dev->dev_private;
2313 2314
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2315 2316
	uint64_t val;

2317
	val = (uint64_t)((obj->gtt_offset + size - 4096) &
2318
		    0xfffff000) << 32;
2319 2320 2321
	val |= obj->gtt_offset & 0xfffff000;
	val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj->tiling_mode == I915_TILING_Y)
2322 2323 2324
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 6);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
		intel_ring_emit(pipelined, (u32)val);
		intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
		intel_ring_emit(pipelined, (u32)(val >> 32));
		intel_ring_advance(pipelined);
	} else
		I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);

	return 0;
2341 2342
}

2343 2344
static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2345
{
2346
	struct drm_device *dev = obj->base.dev;
2347
	drm_i915_private_t *dev_priv = dev->dev_private;
2348
	u32 size = obj->gtt_space->size;
2349
	u32 fence_reg, val, pitch_val;
2350
	int tile_width;
2351

2352 2353 2354 2355 2356 2357
	if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		 obj->gtt_offset, obj->map_and_fenceable, size))
		return -EINVAL;
2358

2359
	if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2360
		tile_width = 128;
2361
	else
2362 2363 2364
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
2365
	pitch_val = obj->stride / tile_width;
2366
	pitch_val = ffs(pitch_val) - 1;
2367

2368 2369
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2370
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2371
	val |= I915_FENCE_SIZE_BITS(size);
2372 2373 2374
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2375
	fence_reg = obj->fence_reg;
2376 2377
	if (fence_reg < 8)
		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2378
	else
2379
		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394

	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, fence_reg);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(fence_reg, val);

	return 0;
2395 2396
}

2397 2398
static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
				struct intel_ring_buffer *pipelined)
2399
{
2400
	struct drm_device *dev = obj->base.dev;
2401
	drm_i915_private_t *dev_priv = dev->dev_private;
2402 2403
	u32 size = obj->gtt_space->size;
	int regnum = obj->fence_reg;
2404 2405 2406
	uint32_t val;
	uint32_t pitch_val;

2407 2408 2409 2410 2411 2412
	if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		 (size & -size) != size ||
		 (obj->gtt_offset & (size - 1)),
		 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		 obj->gtt_offset, size))
		return -EINVAL;
2413

2414
	pitch_val = obj->stride / 128;
2415 2416
	pitch_val = ffs(pitch_val) - 1;

2417 2418
	val = obj->gtt_offset;
	if (obj->tiling_mode == I915_TILING_Y)
2419
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2420
	val |= I830_FENCE_SIZE_BITS(size);
2421 2422 2423
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
	if (pipelined) {
		int ret = intel_ring_begin(pipelined, 4);
		if (ret)
			return ret;

		intel_ring_emit(pipelined, MI_NOOP);
		intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
		intel_ring_emit(pipelined, val);
		intel_ring_advance(pipelined);
	} else
		I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);

	return 0;
2438 2439
}

2440 2441 2442 2443 2444 2445 2446
static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
{
	return i915_seqno_passed(ring->get_seqno(ring), seqno);
}

static int
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2447
			    struct intel_ring_buffer *pipelined)
2448 2449 2450 2451
{
	int ret;

	if (obj->fenced_gpu_access) {
2452
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
2453
			ret = i915_gem_flush_ring(obj->last_fenced_ring,
2454 2455 2456 2457
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2458 2459 2460 2461 2462 2463 2464

		obj->fenced_gpu_access = false;
	}

	if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
		if (!ring_passed_seqno(obj->last_fenced_ring,
				       obj->last_fenced_seqno)) {
C
Chris Wilson 已提交
2465
			ret = i915_wait_request(obj->last_fenced_ring,
2466
						obj->last_fenced_seqno);
2467 2468 2469 2470 2471 2472 2473 2474
			if (ret)
				return ret;
		}

		obj->last_fenced_seqno = 0;
		obj->last_fenced_ring = NULL;
	}

2475 2476 2477 2478 2479 2480
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

2492
	ret = i915_gem_object_flush_fence(obj, NULL);
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	if (ret)
		return ret;

	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		i915_gem_clear_fence_reg(obj->base.dev,
					 &dev_priv->fence_regs[obj->fence_reg]);

		obj->fence_reg = I915_FENCE_REG_NONE;
	}

	return 0;
}

static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device *dev,
		    struct intel_ring_buffer *pipelined)
2510 2511
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2512 2513
	struct drm_i915_fence_reg *reg, *first, *avail;
	int i;
2514 2515

	/* First try to find a free reg */
2516
	avail = NULL;
2517 2518 2519
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2520
			return reg;
2521

2522
		if (!reg->obj->pin_count)
2523
			avail = reg;
2524 2525
	}

2526 2527
	if (avail == NULL)
		return NULL;
2528 2529

	/* None available, try to steal one or wait for a user to finish */
2530 2531 2532
	avail = first = NULL;
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
		if (reg->obj->pin_count)
2533 2534
			continue;

2535 2536 2537 2538 2539 2540 2541 2542 2543
		if (first == NULL)
			first = reg;

		if (!pipelined ||
		    !reg->obj->last_fenced_ring ||
		    reg->obj->last_fenced_ring == pipelined) {
			avail = reg;
			break;
		}
2544 2545
	}

2546 2547
	if (avail == NULL)
		avail = first;
2548

2549
	return avail;
2550 2551
}

2552
/**
2553
 * i915_gem_object_get_fence - set up a fence reg for an object
2554
 * @obj: object to map through a fence reg
2555 2556
 * @pipelined: ring on which to queue the change, or NULL for CPU access
 * @interruptible: must we wait uninterruptibly for the register to retire?
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2567
int
2568
i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2569
			  struct intel_ring_buffer *pipelined)
2570
{
2571
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2572
	struct drm_i915_private *dev_priv = dev->dev_private;
2573
	struct drm_i915_fence_reg *reg;
2574
	int ret;
2575

2576 2577 2578
	/* XXX disable pipelining. There are bugs. Shocking. */
	pipelined = NULL;

2579
	/* Just update our place in the LRU if our fence is getting reused. */
2580 2581
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2582
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2583

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
		if (obj->tiling_changed) {
			ret = i915_gem_object_flush_fence(obj, pipelined);
			if (ret)
				return ret;

			if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
				pipelined = NULL;

			if (pipelined) {
				reg->setup_seqno =
					i915_gem_next_request_seqno(pipelined);
				obj->last_fenced_seqno = reg->setup_seqno;
				obj->last_fenced_ring = pipelined;
			}

			goto update;
		}
2601 2602 2603 2604 2605

		if (!pipelined) {
			if (reg->setup_seqno) {
				if (!ring_passed_seqno(obj->last_fenced_ring,
						       reg->setup_seqno)) {
C
Chris Wilson 已提交
2606
					ret = i915_wait_request(obj->last_fenced_ring,
2607
								reg->setup_seqno);
2608 2609 2610 2611 2612 2613 2614 2615
					if (ret)
						return ret;
				}

				reg->setup_seqno = 0;
			}
		} else if (obj->last_fenced_ring &&
			   obj->last_fenced_ring != pipelined) {
2616
			ret = i915_gem_object_flush_fence(obj, pipelined);
2617 2618 2619 2620
			if (ret)
				return ret;
		}

2621 2622 2623
		return 0;
	}

2624 2625 2626
	reg = i915_find_fence_reg(dev, pipelined);
	if (reg == NULL)
		return -ENOSPC;
2627

2628
	ret = i915_gem_object_flush_fence(obj, pipelined);
2629
	if (ret)
2630
		return ret;
2631

2632 2633 2634 2635 2636 2637 2638 2639
	if (reg->obj) {
		struct drm_i915_gem_object *old = reg->obj;

		drm_gem_object_reference(&old->base);

		if (old->tiling_mode)
			i915_gem_release_mmap(old);

2640
		ret = i915_gem_object_flush_fence(old, pipelined);
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
		if (ret) {
			drm_gem_object_unreference(&old->base);
			return ret;
		}

		if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
			pipelined = NULL;

		old->fence_reg = I915_FENCE_REG_NONE;
		old->last_fenced_ring = pipelined;
		old->last_fenced_seqno =
C
Chris Wilson 已提交
2652
			pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2653 2654 2655 2656

		drm_gem_object_unreference(&old->base);
	} else if (obj->last_fenced_seqno == 0)
		pipelined = NULL;
2657

2658
	reg->obj = obj;
2659 2660 2661
	list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	obj->fence_reg = reg - dev_priv->fence_regs;
	obj->last_fenced_ring = pipelined;
2662

2663
	reg->setup_seqno =
C
Chris Wilson 已提交
2664
		pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2665 2666 2667 2668
	obj->last_fenced_seqno = reg->setup_seqno;

update:
	obj->tiling_changed = false;
2669 2670
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2671
		ret = sandybridge_write_fence_reg(obj, pipelined);
2672 2673 2674
		break;
	case 5:
	case 4:
2675
		ret = i965_write_fence_reg(obj, pipelined);
2676 2677
		break;
	case 3:
2678
		ret = i915_write_fence_reg(obj, pipelined);
2679 2680
		break;
	case 2:
2681
		ret = i830_write_fence_reg(obj, pipelined);
2682 2683
		break;
	}
2684

2685
	return ret;
2686 2687 2688 2689 2690 2691 2692
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
2693
 * data structures in dev_priv and obj.
2694 2695
 */
static void
2696 2697
i915_gem_clear_fence_reg(struct drm_device *dev,
			 struct drm_i915_fence_reg *reg)
2698
{
J
Jesse Barnes 已提交
2699
	drm_i915_private_t *dev_priv = dev->dev_private;
2700
	uint32_t fence_reg = reg - dev_priv->fence_regs;
2701

2702 2703
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2704
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2705 2706 2707
		break;
	case 5:
	case 4:
2708
		I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2709 2710
		break;
	case 3:
2711 2712
		if (fence_reg >= 8)
			fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2713
		else
2714
	case 2:
2715
			fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2716 2717

		I915_WRITE(fence_reg, 0);
2718
		break;
2719
	}
2720

2721
	list_del_init(&reg->lru_list);
2722 2723
	reg->obj = NULL;
	reg->setup_seqno = 0;
2724 2725
}

2726 2727 2728 2729
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2730
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2731
			    unsigned alignment,
2732
			    bool map_and_fenceable)
2733
{
2734
	struct drm_device *dev = obj->base.dev;
2735 2736
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2737
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2738
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2739
	bool mappable, fenceable;
2740
	int ret;
2741

2742
	if (obj->madv != I915_MADV_WILLNEED) {
2743 2744 2745 2746
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2747 2748 2749
	fence_size = i915_gem_get_gtt_size(obj);
	fence_alignment = i915_gem_get_gtt_alignment(obj);
	unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2750

2751
	if (alignment == 0)
2752 2753
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2754
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2755 2756 2757 2758
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2759
	size = map_and_fenceable ? fence_size : obj->base.size;
2760

2761 2762 2763
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2764
	if (obj->base.size >
2765
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2766 2767 2768 2769
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2770
 search_free:
2771
	if (map_and_fenceable)
2772 2773
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2774
						    size, alignment, 0,
2775 2776 2777 2778
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2779
						size, alignment, 0);
2780 2781

	if (free_space != NULL) {
2782
		if (map_and_fenceable)
2783
			obj->gtt_space =
2784
				drm_mm_get_block_range_generic(free_space,
2785
							       size, alignment, 0,
2786 2787 2788
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2789
			obj->gtt_space =
2790
				drm_mm_get_block(free_space, size, alignment);
2791
	}
2792
	if (obj->gtt_space == NULL) {
2793 2794 2795
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2796 2797
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2798
		if (ret)
2799
			return ret;
2800

2801 2802 2803
		goto search_free;
	}

2804
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2805
	if (ret) {
2806 2807
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2808 2809

		if (ret == -ENOMEM) {
2810 2811
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2812 2813
			if (ret) {
				/* now try to shrink everyone else */
2814 2815 2816
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2817 2818
				}

2819
				return -ENOMEM;
2820 2821 2822 2823 2824
			}

			goto search_free;
		}

2825 2826 2827
		return ret;
	}

2828 2829
	ret = i915_gem_gtt_bind_object(obj);
	if (ret) {
2830
		i915_gem_object_put_pages_gtt(obj);
2831 2832
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2833

2834
		if (i915_gem_evict_everything(dev, false))
2835 2836 2837
			return ret;

		goto search_free;
2838 2839
	}

2840
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2841
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2842

2843 2844 2845 2846
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2847 2848
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2849

2850
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2851

2852
	fenceable =
2853 2854
		obj->gtt_space->size == fence_size &&
		(obj->gtt_space->start & (fence_alignment -1)) == 0;
2855

2856
	mappable =
2857
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2858

2859
	obj->map_and_fenceable = mappable && fenceable;
2860

C
Chris Wilson 已提交
2861
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2862 2863 2864 2865
	return 0;
}

void
2866
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2867 2868 2869 2870 2871
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2872
	if (obj->pages == NULL)
2873 2874
		return;

C
Chris Wilson 已提交
2875
	trace_i915_gem_object_clflush(obj);
2876

2877
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2878 2879
}

2880
/** Flushes any GPU write domain for the object if it's dirty. */
2881
static int
2882
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2883
{
2884
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2885
		return 0;
2886 2887

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2888
	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2889 2890 2891 2892
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2893
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2894
{
C
Chris Wilson 已提交
2895 2896
	uint32_t old_write_domain;

2897
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2898 2899
		return;

2900
	/* No actual flushing is required for the GTT write domain.  Writes
2901 2902
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2903 2904 2905 2906
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2907
	 */
2908 2909
	wmb();

2910 2911
	i915_gem_release_mmap(obj);

2912 2913
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2914 2915

	trace_i915_gem_object_change_domain(obj,
2916
					    obj->base.read_domains,
C
Chris Wilson 已提交
2917
					    old_write_domain);
2918 2919 2920 2921
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2922
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2923
{
C
Chris Wilson 已提交
2924
	uint32_t old_write_domain;
2925

2926
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2927 2928 2929
		return;

	i915_gem_clflush_object(obj);
2930
	intel_gtt_chipset_flush();
2931 2932
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2933 2934

	trace_i915_gem_object_change_domain(obj,
2935
					    obj->base.read_domains,
C
Chris Wilson 已提交
2936
					    old_write_domain);
2937 2938
}

2939 2940 2941 2942 2943 2944
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2945
int
2946
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2947
{
C
Chris Wilson 已提交
2948
	uint32_t old_write_domain, old_read_domains;
2949
	int ret;
2950

2951
	/* Not valid to be called on unbound objects. */
2952
	if (obj->gtt_space == NULL)
2953 2954
		return -EINVAL;

2955 2956 2957
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

2958 2959 2960 2961
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2962
	if (obj->pending_gpu_write || write) {
2963
		ret = i915_gem_object_wait_rendering(obj);
2964 2965 2966
		if (ret)
			return ret;
	}
2967

2968
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2969

2970 2971
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2972

2973 2974 2975
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2976 2977
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2978
	if (write) {
2979 2980 2981
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2982 2983
	}

C
Chris Wilson 已提交
2984 2985 2986 2987
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2988 2989 2990
	return 0;
}

2991 2992 2993 2994 2995
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2996
i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
2997
				     struct intel_ring_buffer *pipelined)
2998
{
2999
	uint32_t old_read_domains;
3000 3001 3002
	int ret;

	/* Not valid to be called on unbound objects. */
3003
	if (obj->gtt_space == NULL)
3004 3005
		return -EINVAL;

3006 3007 3008 3009
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3010

3011
	/* Currently, we are always called from an non-interruptible context. */
3012
	if (pipelined != obj->ring) {
3013
		ret = i915_gem_object_wait_rendering(obj);
3014
		if (ret)
3015 3016 3017
			return ret;
	}

3018 3019
	i915_gem_object_flush_cpu_write_domain(obj);

3020 3021
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3022 3023 3024

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3025
					    obj->base.write_domain);
3026 3027 3028 3029

	return 0;
}

3030
int
3031
i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
3032
{
3033 3034
	int ret;

3035 3036 3037
	if (!obj->active)
		return 0;

3038
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3039
		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3040 3041 3042
		if (ret)
			return ret;
	}
3043

3044
	return i915_gem_object_wait_rendering(obj);
3045 3046
}

3047 3048 3049 3050 3051 3052 3053
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3054
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3055
{
C
Chris Wilson 已提交
3056
	uint32_t old_write_domain, old_read_domains;
3057 3058
	int ret;

3059 3060 3061
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3062 3063 3064 3065
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3066
	ret = i915_gem_object_wait_rendering(obj);
3067
	if (ret)
3068
		return ret;
3069

3070
	i915_gem_object_flush_gtt_write_domain(obj);
3071

3072 3073
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
3074
	 */
3075
	i915_gem_object_set_to_full_cpu_read_domain(obj);
3076

3077 3078
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3079

3080
	/* Flush the CPU cache if it's still invalid. */
3081
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3082 3083
		i915_gem_clflush_object(obj);

3084
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3085 3086 3087 3088 3089
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3090
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3091 3092 3093 3094 3095

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3096 3097
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3098
	}
3099

C
Chris Wilson 已提交
3100 3101 3102 3103
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3104 3105 3106
	return 0;
}

3107
/**
3108
 * Moves the object from a partially CPU read to a full one.
3109
 *
3110 3111
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3112
 */
3113
static void
3114
i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3115
{
3116
	if (!obj->page_cpu_valid)
3117 3118 3119 3120
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
3121
	if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3122 3123
		int i;

3124 3125
		for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
			if (obj->page_cpu_valid[i])
3126
				continue;
3127
			drm_clflush_pages(obj->pages + i, 1);
3128 3129 3130 3131 3132 3133
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3134 3135
	kfree(obj->page_cpu_valid);
	obj->page_cpu_valid = NULL;
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
3151
i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3152 3153
					  uint64_t offset, uint64_t size)
{
C
Chris Wilson 已提交
3154
	uint32_t old_read_domains;
3155
	int i, ret;
3156

3157
	if (offset == 0 && size == obj->base.size)
3158
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3159

3160 3161 3162 3163
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3164
	ret = i915_gem_object_wait_rendering(obj);
3165
	if (ret)
3166
		return ret;
3167

3168 3169 3170
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
3171 3172
	if (obj->page_cpu_valid == NULL &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3173
		return 0;
3174

3175 3176 3177
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3178 3179 3180 3181
	if (obj->page_cpu_valid == NULL) {
		obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
					      GFP_KERNEL);
		if (obj->page_cpu_valid == NULL)
3182
			return -ENOMEM;
3183 3184
	} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3185 3186 3187 3188

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3189 3190
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3191
		if (obj->page_cpu_valid[i])
3192 3193
			continue;

3194
		drm_clflush_pages(obj->pages + i, 1);
3195

3196
		obj->page_cpu_valid[i] = 1;
3197 3198
	}

3199 3200 3201
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3202
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3203

3204 3205
	old_read_domains = obj->base.read_domains;
	obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3206

C
Chris Wilson 已提交
3207 3208
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3209
					    obj->base.write_domain);
C
Chris Wilson 已提交
3210

3211 3212 3213 3214 3215 3216
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3217 3218 3219 3220
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3221 3222 3223
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3224
static int
3225
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3226
{
3227 3228
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3229
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3230 3231 3232 3233
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3234

3235 3236 3237
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3238
	spin_lock(&file_priv->mm.lock);
3239
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3240 3241
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3242

3243 3244
		ring = request->ring;
		seqno = request->seqno;
3245
	}
3246
	spin_unlock(&file_priv->mm.lock);
3247

3248 3249
	if (seqno == 0)
		return 0;
3250

3251
	ret = 0;
3252
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3253 3254 3255 3256 3257
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3258 3259 3260 3261 3262
		if (ring->irq_get(ring)) {
			ret = wait_event_interruptible(ring->irq_queue,
						       i915_seqno_passed(ring->get_seqno(ring), seqno)
						       || atomic_read(&dev_priv->mm.wedged));
			ring->irq_put(ring);
3263

3264 3265 3266
			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
				ret = -EIO;
		}
3267 3268
	}

3269 3270
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3271 3272 3273 3274

	return ret;
}

3275
int
3276 3277
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3278
		    bool map_and_fenceable)
3279
{
3280
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
3281
	struct drm_i915_private *dev_priv = dev->dev_private;
3282 3283
	int ret;

3284
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3285
	WARN_ON(i915_verify_lists(dev));
3286

3287 3288 3289 3290
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3291
			     "bo is already pinned with incorrect alignment:"
3292 3293
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3294
			     obj->gtt_offset, alignment,
3295
			     map_and_fenceable,
3296
			     obj->map_and_fenceable);
3297 3298 3299 3300 3301 3302
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3303
	if (obj->gtt_space == NULL) {
3304
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3305
						  map_and_fenceable);
3306
		if (ret)
3307
			return ret;
3308
	}
J
Jesse Barnes 已提交
3309

3310 3311 3312
	if (obj->pin_count++ == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
C
Chris Wilson 已提交
3313
				       &dev_priv->mm.pinned_list);
3314
	}
3315
	obj->pin_mappable |= map_and_fenceable;
3316

3317
	WARN_ON(i915_verify_lists(dev));
3318 3319 3320 3321
	return 0;
}

void
3322
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3323
{
3324
	struct drm_device *dev = obj->base.dev;
3325 3326
	drm_i915_private_t *dev_priv = dev->dev_private;

3327
	WARN_ON(i915_verify_lists(dev));
3328 3329
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3330

3331 3332 3333
	if (--obj->pin_count == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
3334
				       &dev_priv->mm.inactive_list);
3335
		obj->pin_mappable = false;
3336
	}
3337
	WARN_ON(i915_verify_lists(dev));
3338 3339 3340 3341
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3342
		   struct drm_file *file)
3343 3344
{
	struct drm_i915_gem_pin *args = data;
3345
	struct drm_i915_gem_object *obj;
3346 3347
	int ret;

3348 3349 3350
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3351

3352
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3353
	if (&obj->base == NULL) {
3354 3355
		ret = -ENOENT;
		goto unlock;
3356 3357
	}

3358
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3359
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3360 3361
		ret = -EINVAL;
		goto out;
3362 3363
	}

3364
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3365 3366
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3367 3368
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3369 3370
	}

3371 3372 3373
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3374
		ret = i915_gem_object_pin(obj, args->alignment, true);
3375 3376
		if (ret)
			goto out;
3377 3378 3379 3380 3381
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3382
	i915_gem_object_flush_cpu_write_domain(obj);
3383
	args->offset = obj->gtt_offset;
3384
out:
3385
	drm_gem_object_unreference(&obj->base);
3386
unlock:
3387
	mutex_unlock(&dev->struct_mutex);
3388
	return ret;
3389 3390 3391 3392
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3393
		     struct drm_file *file)
3394 3395
{
	struct drm_i915_gem_pin *args = data;
3396
	struct drm_i915_gem_object *obj;
3397
	int ret;
3398

3399 3400 3401
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3402

3403
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3404
	if (&obj->base == NULL) {
3405 3406
		ret = -ENOENT;
		goto unlock;
3407
	}
3408

3409
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3410 3411
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3412 3413
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3414
	}
3415 3416 3417
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3418 3419
		i915_gem_object_unpin(obj);
	}
3420

3421
out:
3422
	drm_gem_object_unreference(&obj->base);
3423
unlock:
3424
	mutex_unlock(&dev->struct_mutex);
3425
	return ret;
3426 3427 3428 3429
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3430
		    struct drm_file *file)
3431 3432
{
	struct drm_i915_gem_busy *args = data;
3433
	struct drm_i915_gem_object *obj;
3434 3435
	int ret;

3436
	ret = i915_mutex_lock_interruptible(dev);
3437
	if (ret)
3438
		return ret;
3439

3440
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3441
	if (&obj->base == NULL) {
3442 3443
		ret = -ENOENT;
		goto unlock;
3444
	}
3445

3446 3447 3448 3449
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3450
	 */
3451
	args->busy = obj->active;
3452 3453 3454 3455 3456 3457
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3458
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3459
			ret = i915_gem_flush_ring(obj->ring,
3460
						  0, obj->base.write_domain);
3461 3462 3463 3464
		} else if (obj->ring->outstanding_lazy_request ==
			   obj->last_rendering_seqno) {
			struct drm_i915_gem_request *request;

3465 3466 3467
			/* This ring is not being cleared by active usage,
			 * so emit a request to do so.
			 */
3468 3469
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (request)
C
Chris Wilson 已提交
3470
				ret = i915_add_request(obj->ring, NULL,request);
3471
			else
3472 3473
				ret = -ENOMEM;
		}
3474 3475 3476 3477 3478 3479

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
C
Chris Wilson 已提交
3480
		i915_gem_retire_requests_ring(obj->ring);
3481

3482
		args->busy = obj->active;
3483
	}
3484

3485
	drm_gem_object_unreference(&obj->base);
3486
unlock:
3487
	mutex_unlock(&dev->struct_mutex);
3488
	return ret;
3489 3490 3491 3492 3493 3494 3495 3496 3497
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

3498 3499 3500 3501 3502
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3503
	struct drm_i915_gem_object *obj;
3504
	int ret;
3505 3506 3507 3508 3509 3510 3511 3512 3513

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3514 3515 3516 3517
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3518
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3519
	if (&obj->base == NULL) {
3520 3521
		ret = -ENOENT;
		goto unlock;
3522 3523
	}

3524
	if (obj->pin_count) {
3525 3526
		ret = -EINVAL;
		goto out;
3527 3528
	}

3529 3530
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3531

3532
	/* if the object is no longer bound, discard its backing storage */
3533 3534
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3535 3536
		i915_gem_object_truncate(obj);

3537
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3538

3539
out:
3540
	drm_gem_object_unreference(&obj->base);
3541
unlock:
3542
	mutex_unlock(&dev->struct_mutex);
3543
	return ret;
3544 3545
}

3546 3547
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3548
{
3549
	struct drm_i915_private *dev_priv = dev->dev_private;
3550
	struct drm_i915_gem_object *obj;
3551

3552 3553 3554
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3555

3556 3557 3558 3559
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3560

3561 3562
	i915_gem_info_add_obj(dev_priv, size);

3563 3564
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3565

3566
	obj->agp_type = AGP_USER_MEMORY;
3567
	obj->base.driver_private = NULL;
3568
	obj->fence_reg = I915_FENCE_REG_NONE;
3569
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3570
	INIT_LIST_HEAD(&obj->gtt_list);
3571
	INIT_LIST_HEAD(&obj->ring_list);
3572
	INIT_LIST_HEAD(&obj->exec_list);
3573 3574
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3575 3576
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3577

3578
	return obj;
3579 3580 3581 3582 3583
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3584

3585 3586 3587
	return 0;
}

3588
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3589
{
3590
	struct drm_device *dev = obj->base.dev;
3591 3592
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3593

3594 3595
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
3596
		list_move(&obj->mm_list,
3597 3598 3599
			  &dev_priv->mm.deferred_free_list);
		return;
	}
3600

3601
	if (obj->base.map_list.map)
3602
		i915_gem_free_mmap_offset(obj);
3603

3604 3605
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3606

3607 3608 3609
	kfree(obj->page_cpu_valid);
	kfree(obj->bit_17);
	kfree(obj);
C
Chris Wilson 已提交
3610 3611

	trace_i915_gem_object_destroy(obj);
3612 3613
}

3614
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3615
{
3616 3617
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
	struct drm_device *dev = obj->base.dev;
3618

3619
	while (obj->pin_count > 0)
3620 3621
		i915_gem_object_unpin(obj);

3622
	if (obj->phys_obj)
3623 3624 3625 3626 3627
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

3628 3629 3630 3631 3632
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3633

3634
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3635

3636
	if (dev_priv->mm.suspended) {
3637 3638
		mutex_unlock(&dev->struct_mutex);
		return 0;
3639 3640
	}

3641
	ret = i915_gpu_idle(dev);
3642 3643
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3644
		return ret;
3645
	}
3646

3647 3648
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3649
		ret = i915_gem_evict_inactive(dev, false);
3650 3651 3652 3653 3654 3655
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

3656 3657
	i915_gem_reset_fences(dev);

3658 3659 3660 3661 3662
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3663
	del_timer_sync(&dev_priv->hangcheck_timer);
3664 3665

	i915_kernel_lost_context(dev);
3666
	i915_gem_cleanup_ringbuffer(dev);
3667

3668 3669
	mutex_unlock(&dev->struct_mutex);

3670 3671 3672
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3673 3674 3675
	return 0;
}

3676 3677 3678 3679 3680
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3681

3682
	ret = intel_init_render_ring_buffer(dev);
3683
	if (ret)
3684
		return ret;
3685 3686

	if (HAS_BSD(dev)) {
3687
		ret = intel_init_bsd_ring_buffer(dev);
3688 3689
		if (ret)
			goto cleanup_render_ring;
3690
	}
3691

3692 3693 3694 3695 3696 3697
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3698 3699
	dev_priv->next_seqno = 1;

3700 3701
	return 0;

3702
cleanup_bsd_ring:
3703
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3704
cleanup_render_ring:
3705
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3706 3707 3708 3709 3710 3711 3712
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3713
	int i;
3714

3715 3716
	for (i = 0; i < I915_NUM_RINGS; i++)
		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3717 3718
}

3719 3720 3721 3722 3723
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3724
	int ret, i;
3725

J
Jesse Barnes 已提交
3726 3727 3728
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3729
	if (atomic_read(&dev_priv->mm.wedged)) {
3730
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3731
		atomic_set(&dev_priv->mm.wedged, 0);
3732 3733 3734
	}

	mutex_lock(&dev->struct_mutex);
3735 3736 3737
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
3738 3739
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3740
		return ret;
3741
	}
3742

3743
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3744 3745
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3746 3747 3748 3749
	for (i = 0; i < I915_NUM_RINGS; i++) {
		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
	}
3750
	mutex_unlock(&dev->struct_mutex);
3751

3752 3753 3754
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3755

3756
	return 0;
3757 3758 3759 3760 3761 3762 3763 3764

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3765 3766 3767 3768 3769 3770
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3771 3772 3773
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3774
	drm_irq_uninstall(dev);
3775
	return i915_gem_idle(dev);
3776 3777 3778 3779 3780 3781 3782
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3783 3784 3785
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3786 3787 3788
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3789 3790
}

3791 3792 3793 3794 3795 3796 3797 3798
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3799 3800 3801
void
i915_gem_load(struct drm_device *dev)
{
3802
	int i;
3803 3804
	drm_i915_private_t *dev_priv = dev->dev_private;

3805
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3806 3807
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
3808
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3809
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3810
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
D
Daniel Vetter 已提交
3811
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3812 3813
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3814 3815
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3816 3817
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3818
	init_completion(&dev_priv->error_completion);
3819

3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

3830 3831
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3832
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3833 3834
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3835

3836
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3837 3838 3839 3840
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3841
	/* Initialize fence registers to zero */
3842 3843 3844 3845 3846 3847 3848
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
3849 3850
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
3851 3852
		break;
	case 3:
3853 3854 3855
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
3856 3857 3858 3859
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
3860
	}
3861
	i915_gem_detect_bit_6_swizzle(dev);
3862
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3863

3864 3865
	dev_priv->mm.interruptible = true;

3866 3867 3868
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3869
}
3870 3871 3872 3873 3874

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3875 3876
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3877 3878 3879 3880 3881 3882 3883 3884
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3885
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3886 3887 3888 3889 3890
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3891
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3904
	kfree(phys_obj);
3905 3906 3907
	return ret;
}

3908
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3933
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3934 3935 3936 3937
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3938
				 struct drm_i915_gem_object *obj)
3939
{
3940
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3941
	char *vaddr;
3942 3943 3944
	int i;
	int page_count;

3945
	if (!obj->phys_obj)
3946
		return;
3947
	vaddr = obj->phys_obj->handle->vaddr;
3948

3949
	page_count = obj->base.size / PAGE_SIZE;
3950
	for (i = 0; i < page_count; i++) {
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
		struct page *page = read_cache_page_gfp(mapping, i,
							GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
3964
	}
3965
	intel_gtt_chipset_flush();
3966

3967 3968
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
3969 3970 3971 3972
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
3973
			    struct drm_i915_gem_object *obj,
3974 3975
			    int id,
			    int align)
3976
{
3977
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3978 3979 3980 3981 3982 3983 3984 3985
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

3986 3987
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
3988 3989 3990 3991 3992 3993 3994
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
3995
						obj->base.size, align);
3996
		if (ret) {
3997 3998
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
3999
			return ret;
4000 4001 4002 4003
		}
	}

	/* bind to the object */
4004 4005
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
4006

4007
	page_count = obj->base.size / PAGE_SIZE;
4008 4009

	for (i = 0; i < page_count; i++) {
4010 4011 4012 4013 4014 4015 4016
		struct page *page;
		char *dst, *src;

		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);
4017

4018
		src = kmap_atomic(page);
4019
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4020
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4021
		kunmap_atomic(src);
4022

4023 4024 4025
		mark_page_accessed(page);
		page_cache_release(page);
	}
4026

4027 4028 4029 4030
	return 0;
}

static int
4031 4032
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4033 4034 4035
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4036
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4037
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4038

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4052

4053
	intel_gtt_chipset_flush();
4054 4055
	return 0;
}
4056

4057
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4058
{
4059
	struct drm_i915_file_private *file_priv = file->driver_priv;
4060 4061 4062 4063 4064

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4065
	spin_lock(&file_priv->mm.lock);
4066 4067 4068 4069 4070 4071 4072 4073 4074
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4075
	spin_unlock(&file_priv->mm.lock);
4076
}
4077

4078 4079 4080 4081 4082 4083 4084
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4085
		      list_empty(&dev_priv->mm.active_list);
4086 4087 4088 4089

	return !lists_empty;
}

4090
static int
4091 4092 4093
i915_gem_inactive_shrink(struct shrinker *shrinker,
			 int nr_to_scan,
			 gfp_t gfp_mask)
4094
{
4095 4096 4097 4098 4099 4100 4101 4102 4103
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4104
		return 0;
4105 4106 4107

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4108 4109 4110 4111 4112 4113 4114
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4115 4116
	}

4117
rescan:
4118
	/* first scan for clean buffers */
4119
	i915_gem_retire_requests(dev);
4120

4121 4122 4123 4124
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4125 4126
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4127
				break;
4128 4129 4130 4131
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4132 4133 4134 4135
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4136 4137
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4138
			nr_to_scan--;
4139
		else
4140 4141 4142 4143
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4144 4145 4146 4147 4148 4149
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4150
		if (i915_gpu_idle(dev) == 0)
4151 4152
			goto rescan;
	}
4153 4154
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4155
}