time.c 33.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
20
 * measurement at boot time.
L
Linus Torvalds 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
35
#include <linux/export.h>
L
Linus Torvalds 已提交
36
#include <linux/sched.h>
37
#include <linux/sched/clock.h>
L
Linus Torvalds 已提交
38 39 40 41 42 43 44 45
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
46
#include <linux/clockchips.h>
L
Linus Torvalds 已提交
47 48 49 50
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
51 52
#include <linux/percpu.h>
#include <linux/rtc.h>
53
#include <linux/jiffies.h>
54
#include <linux/posix-timers.h>
55
#include <linux/irq.h>
56
#include <linux/delay.h>
57
#include <linux/irq_work.h>
58
#include <linux/clk-provider.h>
59
#include <linux/suspend.h>
60
#include <linux/rtc.h>
61
#include <linux/sched/cputime.h>
62
#include <linux/processor.h>
63
#include <asm/trace.h>
L
Linus Torvalds 已提交
64 65 66 67 68

#include <asm/io.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
69
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
70 71
#include <asm/time.h>
#include <asm/prom.h>
72 73
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
74
#include <asm/smp.h>
75
#include <asm/vdso_datapage.h>
76
#include <asm/firmware.h>
77
#include <asm/asm-prototypes.h>
L
Linus Torvalds 已提交
78

79 80
/* powerpc clocksource/clockevent code */

81
#include <linux/clockchips.h>
82
#include <linux/timekeeper_internal.h>
83

84
static u64 rtc_read(struct clocksource *);
85 86 87 88 89 90 91 92
static struct clocksource clocksource_rtc = {
	.name         = "rtc",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = rtc_read,
};

93
static u64 timebase_read(struct clocksource *);
94 95 96 97 98 99 100 101
static struct clocksource clocksource_timebase = {
	.name         = "timebase",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = timebase_read,
};

102 103
#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
104 105 106

static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev);
107
static int decrementer_shutdown(struct clock_event_device *evt);
108

109
struct clock_event_device decrementer_clockevent = {
110 111 112 113 114 115 116 117
	.name			= "decrementer",
	.rating			= 200,
	.irq			= 0,
	.set_next_event		= decrementer_set_next_event,
	.set_state_shutdown	= decrementer_shutdown,
	.tick_resume		= decrementer_shutdown,
	.features		= CLOCK_EVT_FEAT_ONESHOT |
				  CLOCK_EVT_FEAT_C3STOP,
118
};
119
EXPORT_SYMBOL(decrementer_clockevent);
120

121 122
DEFINE_PER_CPU(u64, decrementers_next_tb);
static DEFINE_PER_CPU(struct clock_event_device, decrementers);
123

L
Linus Torvalds 已提交
124 125
#define XSEC_PER_SEC (1024*1024)

126 127 128 129 130 131 132
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
133 134 135 136
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
137
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
138

L
Linus Torvalds 已提交
139
DEFINE_SPINLOCK(rtc_lock);
140
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
141

142 143
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
144
static u64 boot_tb __read_mostly;
L
Linus Torvalds 已提交
145 146

extern struct timezone sys_tz;
147
static long timezone_offset;
L
Linus Torvalds 已提交
148

149
unsigned long ppc_proc_freq;
150
EXPORT_SYMBOL_GPL(ppc_proc_freq);
151
unsigned long ppc_tb_freq;
152
EXPORT_SYMBOL_GPL(ppc_tb_freq);
153

154
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
155
/*
156 157
 * Factor for converting from cputime_t (timebase ticks) to
 * microseconds. This is stored as 0.64 fixed-point binary fraction.
158
 */
159 160
u64 __cputime_usec_factor;
EXPORT_SYMBOL(__cputime_usec_factor);
161

162
#ifdef CONFIG_PPC_SPLPAR
163
void (*dtl_consumer)(struct dtl_entry *, u64);
164 165 166 167 168 169 170
#endif

#ifdef CONFIG_PPC64
#define get_accounting(tsk)	(&get_paca()->accounting)
#else
#define get_accounting(tsk)	(&task_thread_info(tsk)->accounting)
#endif
171

172 173 174 175
static void calc_cputime_factors(void)
{
	struct div_result res;

176 177
	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
	__cputime_usec_factor = res.result_low;
178 179 180
}

/*
181 182
 * Read the SPURR on systems that have it, otherwise the PURR,
 * or if that doesn't exist return the timebase value passed in.
183
 */
184
static unsigned long read_spurr(unsigned long tb)
185
{
186 187
	if (cpu_has_feature(CPU_FTR_SPURR))
		return mfspr(SPRN_SPURR);
188 189
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
190
	return tb;
191 192
}

193 194
#ifdef CONFIG_PPC_SPLPAR

195
/*
196 197
 * Scan the dispatch trace log and count up the stolen time.
 * Should be called with interrupts disabled.
198
 */
199
static u64 scan_dispatch_log(u64 stop_tb)
200
{
201
	u64 i = local_paca->dtl_ridx;
202 203 204 205 206 207 208
	struct dtl_entry *dtl = local_paca->dtl_curr;
	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
	struct lppaca *vpa = local_paca->lppaca_ptr;
	u64 tb_delta;
	u64 stolen = 0;
	u64 dtb;

209 210 211
	if (!dtl)
		return 0;

212
	if (i == be64_to_cpu(vpa->dtl_idx))
213
		return 0;
214 215 216 217
	while (i < be64_to_cpu(vpa->dtl_idx)) {
		dtb = be64_to_cpu(dtl->timebase);
		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
			be32_to_cpu(dtl->ready_to_enqueue_time);
218
		barrier();
219
		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
220
			/* buffer has overflowed */
221
			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
222 223 224 225 226
			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
			continue;
		}
		if (dtb > stop_tb)
			break;
227 228
		if (dtl_consumer)
			dtl_consumer(dtl, i);
229 230 231 232 233 234 235 236 237
		stolen += tb_delta;
		++i;
		++dtl;
		if (dtl == dtl_end)
			dtl = local_paca->dispatch_log;
	}
	local_paca->dtl_ridx = i;
	local_paca->dtl_curr = dtl;
	return stolen;
238 239
}

240 241 242 243 244 245 246
/*
 * Accumulate stolen time by scanning the dispatch trace log.
 * Called on entry from user mode.
 */
void accumulate_stolen_time(void)
{
	u64 sst, ust;
247
	unsigned long save_irq_soft_mask = irq_soft_mask_return();
248
	struct cpu_accounting_data *acct = &local_paca->accounting;
249 250 251 252 253 254 255

	/* We are called early in the exception entry, before
	 * soft/hard_enabled are sync'ed to the expected state
	 * for the exception. We are hard disabled but the PACA
	 * needs to reflect that so various debug stuff doesn't
	 * complain
	 */
256
	irq_soft_mask_set(IRQS_DISABLED);
257

258 259
	sst = scan_dispatch_log(acct->starttime_user);
	ust = scan_dispatch_log(acct->starttime);
260 261
	acct->stime -= sst;
	acct->utime -= ust;
262
	acct->steal_time += ust + sst;
263

264
	irq_soft_mask_set(save_irq_soft_mask);
265 266 267 268
}

static inline u64 calculate_stolen_time(u64 stop_tb)
{
269 270 271
	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
		return 0;

272 273
	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
		return scan_dispatch_log(stop_tb);
274

275
	return 0;
276 277
}

278 279 280 281 282 283 284 285
#else /* CONFIG_PPC_SPLPAR */
static inline u64 calculate_stolen_time(u64 stop_tb)
{
	return 0;
}

#endif /* CONFIG_PPC_SPLPAR */

286 287 288 289
/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
290
static unsigned long vtime_delta(struct task_struct *tsk,
291 292
				 unsigned long *stime_scaled,
				 unsigned long *steal_time)
293
{
294
	unsigned long now, nowscaled, deltascaled;
295 296
	unsigned long stime;
	unsigned long utime, utime_scaled;
297
	struct cpu_accounting_data *acct = get_accounting(tsk);
298

299 300
	WARN_ON_ONCE(!irqs_disabled());

301
	now = mftb();
302
	nowscaled = read_spurr(now);
303
	stime = now - acct->starttime;
304 305 306
	acct->starttime = now;
	deltascaled = nowscaled - acct->startspurr;
	acct->startspurr = nowscaled;
307

308
	*steal_time = calculate_stolen_time(now);
309

310
	utime = acct->utime - acct->utime_sspurr;
311
	acct->utime_sspurr = acct->utime;
312 313 314 315 316 317 318 319 320 321 322

	/*
	 * Because we don't read the SPURR on every kernel entry/exit,
	 * deltascaled includes both user and system SPURR ticks.
	 * Apportion these ticks to system SPURR ticks and user
	 * SPURR ticks in the same ratio as the system time (delta)
	 * and user time (udelta) values obtained from the timebase
	 * over the same interval.  The system ticks get accounted here;
	 * the user ticks get saved up in paca->user_time_scaled to be
	 * used by account_process_tick.
	 */
323 324 325 326 327 328
	*stime_scaled = stime;
	utime_scaled = utime;
	if (deltascaled != stime + utime) {
		if (utime) {
			*stime_scaled = deltascaled * stime / (stime + utime);
			utime_scaled = deltascaled - *stime_scaled;
329
		} else {
330
			*stime_scaled = deltascaled;
331 332
		}
	}
333
	acct->utime_scaled += utime_scaled;
334

335
	return stime;
336 337
}

338
void vtime_account_system(struct task_struct *tsk)
339
{
340 341 342 343 344 345 346
	unsigned long stime, stime_scaled, steal_time;
	struct cpu_accounting_data *acct = get_accounting(tsk);

	stime = vtime_delta(tsk, &stime_scaled, &steal_time);

	stime -= min(stime, steal_time);
	acct->steal_time += steal_time;
347

348 349 350 351 352 353 354 355 356 357 358 359 360
	if ((tsk->flags & PF_VCPU) && !irq_count()) {
		acct->gtime += stime;
		acct->utime_scaled += stime_scaled;
	} else {
		if (hardirq_count())
			acct->hardirq_time += stime;
		else if (in_serving_softirq())
			acct->softirq_time += stime;
		else
			acct->stime += stime;

		acct->stime_scaled += stime_scaled;
	}
361
}
362
EXPORT_SYMBOL_GPL(vtime_account_system);
363

364
void vtime_account_idle(struct task_struct *tsk)
365
{
366 367
	unsigned long stime, stime_scaled, steal_time;
	struct cpu_accounting_data *acct = get_accounting(tsk);
368

369 370
	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
	acct->idle_time += stime + steal_time;
371 372 373
}

/*
374
 * Account the whole cputime accumulated in the paca
375
 * Must be called with interrupts disabled.
376 377
 * Assumes that vtime_account_system/idle() has been called
 * recently (i.e. since the last entry from usermode) so that
378
 * get_paca()->user_time_scaled is up to date.
379
 */
380
void vtime_flush(struct task_struct *tsk)
381
{
382
	struct cpu_accounting_data *acct = get_accounting(tsk);
383

384
	if (acct->utime)
385
		account_user_time(tsk, cputime_to_nsecs(acct->utime));
386 387

	if (acct->utime_scaled)
388
		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
389 390

	if (acct->gtime)
391
		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
392 393

	if (acct->steal_time)
394
		account_steal_time(cputime_to_nsecs(acct->steal_time));
395 396

	if (acct->idle_time)
397
		account_idle_time(cputime_to_nsecs(acct->idle_time));
398 399

	if (acct->stime)
400 401
		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
					  CPUTIME_SYSTEM);
402
	if (acct->stime_scaled)
403
		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
404 405

	if (acct->hardirq_time)
406 407
		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
					  CPUTIME_IRQ);
408
	if (acct->softirq_time)
409 410
		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
					  CPUTIME_SOFTIRQ);
411

412 413
	acct->utime = 0;
	acct->utime_scaled = 0;
414
	acct->utime_sspurr = 0;
415 416 417 418 419 420 421
	acct->gtime = 0;
	acct->steal_time = 0;
	acct->idle_time = 0;
	acct->stime = 0;
	acct->stime_scaled = 0;
	acct->hardirq_time = 0;
	acct->softirq_time = 0;
422 423
}

424 425 426 427 428 429 430 431 432 433 434
#ifdef CONFIG_PPC32
/*
 * Called from the context switch with interrupts disabled, to charge all
 * accumulated times to the current process, and to prepare accounting on
 * the next process.
 */
void arch_vtime_task_switch(struct task_struct *prev)
{
	struct cpu_accounting_data *acct = get_accounting(current);

	acct->starttime = get_accounting(prev)->starttime;
435
	acct->startspurr = get_accounting(prev)->startspurr;
436 437 438
}
#endif /* CONFIG_PPC32 */

439
#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
440 441 442
#define calc_cputime_factors()
#endif

443 444 445 446 447
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

448
	spin_begin();
449 450 451 452 453 454 455
	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
456
			spin_cpu_relax();
457 458 459 460
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
461
			spin_cpu_relax();
462
	}
463
	spin_end();
464 465 466 467 468 469 470 471 472
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

L
Linus Torvalds 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

486
#ifdef CONFIG_IRQ_WORK
487

488 489 490 491
/*
 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 */
#ifdef CONFIG_PPC64
492
static inline unsigned long test_irq_work_pending(void)
493
{
494 495 496 497
	unsigned long x;

	asm volatile("lbz %0,%1(13)"
		: "=r" (x)
498
		: "i" (offsetof(struct paca_struct, irq_work_pending)));
499 500 501
	return x;
}

502
static inline void set_irq_work_pending_flag(void)
503 504 505
{
	asm volatile("stb %0,%1(13)" : :
		"r" (1),
506
		"i" (offsetof(struct paca_struct, irq_work_pending)));
507 508
}

509
static inline void clear_irq_work_pending(void)
510 511 512
{
	asm volatile("stb %0,%1(13)" : :
		"r" (0),
513
		"i" (offsetof(struct paca_struct, irq_work_pending)));
514 515
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
void arch_irq_work_raise(void)
{
	preempt_disable();
	set_irq_work_pending_flag();
	/*
	 * Non-nmi code running with interrupts disabled will replay
	 * irq_happened before it re-enables interrupts, so setthe
	 * decrementer there instead of causing a hardware exception
	 * which would immediately hit the masked interrupt handler
	 * and have the net effect of setting the decrementer in
	 * irq_happened.
	 *
	 * NMI interrupts can not check this when they return, so the
	 * decrementer hardware exception is raised, which will fire
	 * when interrupts are next enabled.
	 *
	 * BookE does not support this yet, it must audit all NMI
	 * interrupt handlers to ensure they call nmi_enter() so this
	 * check would be correct.
	 */
	if (IS_ENABLED(CONFIG_BOOKE) || !irqs_disabled() || in_nmi()) {
		set_dec(1);
	} else {
		hard_irq_disable();
		local_paca->irq_happened |= PACA_IRQ_DEC;
	}
	preempt_enable();
}

545 546
#else /* 32-bit */

547
DEFINE_PER_CPU(u8, irq_work_pending);
548

549 550 551
#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
552

553
void arch_irq_work_raise(void)
554 555
{
	preempt_disable();
556
	set_irq_work_pending_flag();
557 558 559 560
	set_dec(1);
	preempt_enable();
}

561 562
#endif /* 32 vs 64 bit */

563
#else  /* CONFIG_IRQ_WORK */
564

565 566
#define test_irq_work_pending()	0
#define clear_irq_work_pending()
567

568
#endif /* CONFIG_IRQ_WORK */
569

570
static void __timer_interrupt(void)
571 572
{
	struct pt_regs *regs = get_irq_regs();
573 574
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
575 576 577 578 579 580 581 582 583 584 585 586 587 588
	u64 now;

	trace_timer_interrupt_entry(regs);

	if (test_irq_work_pending()) {
		clear_irq_work_pending();
		irq_work_run();
	}

	now = get_tb_or_rtc();
	if (now >= *next_tb) {
		*next_tb = ~(u64)0;
		if (evt->event_handler)
			evt->event_handler(evt);
589
		__this_cpu_inc(irq_stat.timer_irqs_event);
590 591
	} else {
		now = *next_tb - now;
592 593
		if (now <= decrementer_max)
			set_dec(now);
594 595 596
		/* We may have raced with new irq work */
		if (test_irq_work_pending())
			set_dec(1);
597
		__this_cpu_inc(irq_stat.timer_irqs_others);
598 599 600 601 602
	}

#ifdef CONFIG_PPC64
	/* collect purr register values often, for accurate calculations */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
603
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
604 605 606 607 608 609 610
		cu->current_tb = mfspr(SPRN_PURR);
	}
#endif

	trace_timer_interrupt_exit(regs);
}

L
Linus Torvalds 已提交
611 612 613 614
/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
615
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
616
{
617
	struct pt_regs *old_regs;
618
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
619

620 621 622
	/* Ensure a positive value is written to the decrementer, or else
	 * some CPUs will continue to take decrementer exceptions.
	 */
623
	set_dec(decrementer_max);
624 625

	/* Some implementations of hotplug will get timer interrupts while
626 627 628 629
	 * offline, just ignore these and we also need to set
	 * decrementers_next_tb as MAX to make sure __check_irq_replay
	 * don't replay timer interrupt when return, otherwise we'll trap
	 * here infinitely :(
630
	 */
631 632
	if (!cpu_online(smp_processor_id())) {
		*next_tb = ~(u64)0;
633
		return;
634
	}
635

636 637 638 639 640
	/* Conditionally hard-enable interrupts now that the DEC has been
	 * bumped to its maximum value
	 */
	may_hard_irq_enable();

641

P
Paul Bolle 已提交
642
#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
643 644 645
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
646

647
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
648 649
	irq_enter();

650
	__timer_interrupt();
L
Linus Torvalds 已提交
651
	irq_exit();
652
	set_irq_regs(old_regs);
L
Linus Torvalds 已提交
653
}
A
Al Viro 已提交
654
EXPORT_SYMBOL(timer_interrupt);
L
Linus Torvalds 已提交
655

656 657 658 659 660 661 662 663 664
/*
 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 * left pending on exit from a KVM guest.  We don't need to do anything
 * to clear them, as they are edge-triggered.
 */
void hdec_interrupt(struct pt_regs *regs)
{
}

665
#ifdef CONFIG_SUSPEND
666
static void generic_suspend_disable_irqs(void)
667 668 669 670 671
{
	/* Disable the decrementer, so that it doesn't interfere
	 * with suspending.
	 */

672
	set_dec(decrementer_max);
673
	local_irq_disable();
674
	set_dec(decrementer_max);
675 676
}

677
static void generic_suspend_enable_irqs(void)
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
{
	local_irq_enable();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_disable_irqs(void)
{
	if (ppc_md.suspend_disable_irqs)
		ppc_md.suspend_disable_irqs();
	generic_suspend_disable_irqs();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_enable_irqs(void)
{
	generic_suspend_enable_irqs();
	if (ppc_md.suspend_enable_irqs)
		ppc_md.suspend_enable_irqs();
}
#endif

699 700 701 702 703 704
unsigned long long tb_to_ns(unsigned long long ticks)
{
	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
}
EXPORT_SYMBOL_GPL(tb_to_ns);

L
Linus Torvalds 已提交
705 706 707 708 709 710 711
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
712
notrace unsigned long long sched_clock(void)
L
Linus Torvalds 已提交
713
{
714 715
	if (__USE_RTC())
		return get_rtc();
716
	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
L
Linus Torvalds 已提交
717 718
}

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746

#ifdef CONFIG_PPC_PSERIES

/*
 * Running clock - attempts to give a view of time passing for a virtualised
 * kernels.
 * Uses the VTB register if available otherwise a next best guess.
 */
unsigned long long running_clock(void)
{
	/*
	 * Don't read the VTB as a host since KVM does not switch in host
	 * timebase into the VTB when it takes a guest off the CPU, reading the
	 * VTB would result in reading 'last switched out' guest VTB.
	 *
	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
	 * would be unsafe to rely only on the #ifdef above.
	 */
	if (firmware_has_feature(FW_FEATURE_LPAR) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;

	/*
	 * This is a next best approximation without a VTB.
	 * On a host which is running bare metal there should never be any stolen
	 * time and on a host which doesn't do any virtualisation TB *should* equal
	 * VTB so it makes no difference anyway.
	 */
747
	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
748 749 750
}
#endif

751
static int __init get_freq(char *name, int cells, unsigned long *val)
752 753
{
	struct device_node *cpu;
754
	const __be32 *fp;
755
	int found = 0;
756

757
	/* The cpu node should have timebase and clock frequency properties */
758 759
	cpu = of_find_node_by_type(NULL, "cpu");

760
	if (cpu) {
761
		fp = of_get_property(cpu, name, NULL);
762
		if (fp) {
763
			found = 1;
764
			*val = of_read_ulong(fp, cells);
765
		}
766 767

		of_node_put(cpu);
768
	}
769 770 771 772

	return found;
}

773
static void start_cpu_decrementer(void)
774 775
{
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
776 777
	unsigned int tcr;

778 779 780
	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

781 782 783 784 785 786 787 788 789
	tcr = mfspr(SPRN_TCR);
	/*
	 * The watchdog may have already been enabled by u-boot. So leave
	 * TRC[WP] (Watchdog Period) alone.
	 */
	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
	tcr |= TCR_DIE;		/* Enable decrementer */
	mtspr(SPRN_TCR, tcr);
#endif
790 791
}

792 793 794 795 796 797 798
void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

799 800
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
801
	}
802

803 804 805 806 807 808 809
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
810 811 812
	}
}

813
int update_persistent_clock(struct timespec now)
814 815 816
{
	struct rtc_time tm;

817
	if (!ppc_md.set_rtc_time)
818
		return -ENODEV;
819 820 821 822 823 824 825 826

	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
	tm.tm_year -= 1900;
	tm.tm_mon -= 1;

	return ppc_md.set_rtc_time(&tm);
}

827
static void __read_persistent_clock(struct timespec *ts)
828 829 830 831
{
	struct rtc_time tm;
	static int first = 1;

832
	ts->tv_nsec = 0;
833 834 835 836 837 838 839
	/* XXX this is a litle fragile but will work okay in the short term */
	if (first) {
		first = 0;
		if (ppc_md.time_init)
			timezone_offset = ppc_md.time_init();

		/* get_boot_time() isn't guaranteed to be safe to call late */
840 841 842 843 844 845 846 847
		if (ppc_md.get_boot_time) {
			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
			return;
		}
	}
	if (!ppc_md.get_rtc_time) {
		ts->tv_sec = 0;
		return;
848
	}
849
	ppc_md.get_rtc_time(&tm);
850

851 852
	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
			    tm.tm_hour, tm.tm_min, tm.tm_sec);
853 854
}

855 856 857 858 859 860 861 862 863 864 865 866
void read_persistent_clock(struct timespec *ts)
{
	__read_persistent_clock(ts);

	/* Sanitize it in case real time clock is set below EPOCH */
	if (ts->tv_sec < 0) {
		ts->tv_sec = 0;
		ts->tv_nsec = 0;
	}
		
}

867
/* clocksource code */
868
static notrace u64 rtc_read(struct clocksource *cs)
869
{
870
	return (u64)get_rtc();
871 872
}

873
static notrace u64 timebase_read(struct clocksource *cs)
874
{
875
	return (u64)get_tb();
876 877
}

878 879

void update_vsyscall(struct timekeeper *tk)
880
{
881 882 883 884 885
	struct timespec xt;
	struct clocksource *clock = tk->tkr_mono.clock;
	u32 mult = tk->tkr_mono.mult;
	u32 shift = tk->tkr_mono.shift;
	u64 cycle_last = tk->tkr_mono.cycle_last;
J
John Stultz 已提交
886
	u64 new_tb_to_xs, new_stamp_xsec;
887
	u64 frac_sec;
888 889 890 891

	if (clock != &clocksource_timebase)
		return;

892 893 894
	xt.tv_sec = tk->xtime_sec;
	xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);

895 896 897 898
	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
	/*
	 * This computes ((2^20 / 1e9) * mult) >> shift as a
	 * 0.64 fixed-point fraction.
	 * The computation in the else clause below won't overflow
	 * (as long as the timebase frequency is >= 1.049 MHz)
	 * but loses precision because we lose the low bits of the constant
	 * in the shift.  Note that 19342813113834067 ~= 2^(20+64) / 1e9.
	 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
	 * over a second.  (Shift values are usually 22, 23 or 24.)
	 * For high frequency clocks such as the 512MHz timebase clock
	 * on POWER[6789], the mult value is small (e.g. 32768000)
	 * and so we can shift the constant by 16 initially
	 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
	 * remaining shifts after the multiplication, which gives a
	 * more accurate result (e.g. with mult = 32768000, shift = 24,
	 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
	 */
	if (mult <= 62500000 && clock->shift >= 16)
		new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
	else
		new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);

	/*
	 * Compute the fractional second in units of 2^-32 seconds.
	 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
	 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
	 * it in units of 2^-32 seconds.
	 * We assume shift <= 32 because clocks_calc_mult_shift()
	 * generates shift values in the range 0 - 32.
	 */
	frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
	do_div(frac_sec, NSEC_PER_SEC);
J
John Stultz 已提交
931

932 933 934 935 936 937
	/*
	 * Work out new stamp_xsec value for any legacy users of systemcfg.
	 * stamp_xsec is in units of 2^-20 seconds.
	 */
	new_stamp_xsec = frac_sec >> 12;
	new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
938

J
John Stultz 已提交
939 940 941 942 943 944 945 946 947
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
	 */
948
	vdso_data->tb_orig_stamp = cycle_last;
J
John Stultz 已提交
949 950
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
951 952 953
	vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
	vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
	vdso_data->stamp_xtime = xt;
954
	vdso_data->stamp_sec_fraction = frac_sec;
J
John Stultz 已提交
955 956
	smp_wmb();
	++(vdso_data->tb_update_count);
957 958 959 960 961 962 963 964
}

void update_vsyscall_tz(void)
{
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
}

965
static void __init clocksource_init(void)
966 967 968 969 970 971 972 973
{
	struct clocksource *clock;

	if (__USE_RTC())
		clock = &clocksource_rtc;
	else
		clock = &clocksource_timebase;

974
	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
975 976 977 978 979 980 981 982 983
		printk(KERN_ERR "clocksource: %s is already registered\n",
		       clock->name);
		return;
	}

	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
	       clock->name, clock->mult, clock->shift);
}

984 985 986
static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev)
{
987
	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
988
	set_dec(evt);
989 990 991 992 993

	/* We may have raced with new irq work */
	if (test_irq_work_pending())
		set_dec(1);

994 995 996
	return 0;
}

997
static int decrementer_shutdown(struct clock_event_device *dev)
998
{
999
	decrementer_set_next_event(decrementer_max, dev);
1000
	return 0;
1001 1002
}

1003 1004 1005
/* Interrupt handler for the timer broadcast IPI */
void tick_broadcast_ipi_handler(void)
{
1006
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
1007 1008 1009

	*next_tb = get_tb_or_rtc();
	__timer_interrupt();
1010 1011
}

1012 1013
static void register_decrementer_clockevent(int cpu)
{
1014
	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
1015 1016

	*dec = decrementer_clockevent;
1017
	dec->cpumask = cpumask_of(cpu);
1018

1019 1020
	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
		    dec->name, dec->mult, dec->shift, cpu);
1021 1022 1023 1024

	clockevents_register_device(dec);
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
static void enable_large_decrementer(void)
{
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return;

	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
		return;

	/*
	 * If we're running as the hypervisor we need to enable the LD manually
	 * otherwise firmware should have done it for us.
	 */
	if (cpu_has_feature(CPU_FTR_HVMODE))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
}

static void __init set_decrementer_max(void)
{
	struct device_node *cpu;
	u32 bits = 32;

	/* Prior to ISAv3 the decrementer is always 32 bit */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return;

	cpu = of_find_node_by_type(NULL, "cpu");

	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
		if (bits > 64 || bits < 32) {
			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
			bits = 32;
		}

		/* calculate the signed maximum given this many bits */
		decrementer_max = (1ul << (bits - 1)) - 1;
	}

	of_node_put(cpu);

	pr_info("time_init: %u bit decrementer (max: %llx)\n",
		bits, decrementer_max);
}

1068
static void __init init_decrementer_clockevent(void)
1069 1070 1071
{
	int cpu = smp_processor_id();

1072 1073
	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);

1074
	decrementer_clockevent.max_delta_ns =
1075
		clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
1076
	decrementer_clockevent.max_delta_ticks = decrementer_max;
1077 1078
	decrementer_clockevent.min_delta_ns =
		clockevent_delta2ns(2, &decrementer_clockevent);
1079
	decrementer_clockevent.min_delta_ticks = 2;
1080 1081 1082 1083 1084 1085

	register_decrementer_clockevent(cpu);
}

void secondary_cpu_time_init(void)
{
1086 1087 1088
	/* Enable and test the large decrementer for this cpu */
	enable_large_decrementer();

1089 1090 1091 1092 1093
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

1094 1095 1096 1097 1098
	/* FIME: Should make unrelatred change to move snapshot_timebase
	 * call here ! */
	register_decrementer_clockevent(smp_processor_id());
}

1099
/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
1100 1101 1102
void __init time_init(void)
{
	struct div_result res;
1103
	u64 scale;
1104 1105
	unsigned shift;

1106 1107 1108 1109 1110 1111
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
1112
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1113
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1114
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1115 1116
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
	}
1117 1118

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1119
	tb_ticks_per_sec = ppc_tb_freq;
1120
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1121
	calc_cputime_factors();
1122

L
Linus Torvalds 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;
1141
	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1142
	boot_tb = get_tb_or_rtc();
L
Linus Torvalds 已提交
1143

1144
	/* If platform provided a timezone (pmac), we correct the time */
1145
	if (timezone_offset) {
1146 1147
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
1148
	}
1149

1150 1151
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
L
Linus Torvalds 已提交
1152

1153 1154 1155 1156
	/* initialise and enable the large decrementer (if we have one) */
	set_decrementer_max();
	enable_large_decrementer();

1157 1158 1159 1160 1161
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

1162 1163
	/* Register the clocksource */
	clocksource_init();
1164

1165
	init_decrementer_clockevent();
1166
	tick_setup_hrtimer_broadcast();
1167 1168 1169 1170

#ifdef CONFIG_COMMON_CLK
	of_clk_init(NULL);
#endif
L
Linus Torvalds 已提交
1171 1172 1173 1174 1175 1176 1177
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
1178 1179
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
1217
	 * No-one uses the day of the week.
L
Linus Torvalds 已提交
1218
	 */
1219
	tm->tm_wday = -1;
L
Linus Torvalds 已提交
1220
}
1221
EXPORT_SYMBOL(to_tm);
L
Linus Torvalds 已提交
1222 1223 1224 1225 1226

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
1227 1228
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
1229
{
1230 1231 1232
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
1233 1234 1235 1236 1237 1238

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

1239 1240 1241 1242 1243
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
1244

1245 1246 1247 1248 1249
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1250

1251 1252
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1253 1254

}
1255

1256 1257 1258 1259 1260 1261 1262 1263 1264
/* We don't need to calibrate delay, we use the CPU timebase for that */
void calibrate_delay(void)
{
	/* Some generic code (such as spinlock debug) use loops_per_jiffy
	 * as the number of __delay(1) in a jiffy, so make it so
	 */
	loops_per_jiffy = tb_ticks_per_jiffy;
}

1265 1266 1267 1268
#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
{
	ppc_md.get_rtc_time(tm);
1269
	return 0;
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
}

static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
{
	if (!ppc_md.set_rtc_time)
		return -EOPNOTSUPP;

	if (ppc_md.set_rtc_time(tm) < 0)
		return -EOPNOTSUPP;

	return 0;
}

static const struct rtc_class_ops rtc_generic_ops = {
	.read_time = rtc_generic_get_time,
	.set_time = rtc_generic_set_time,
};

1288 1289 1290 1291 1292 1293 1294
static int __init rtc_init(void)
{
	struct platform_device *pdev;

	if (!ppc_md.get_rtc_time)
		return -ENODEV;

1295 1296 1297
	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
					     &rtc_generic_ops,
					     sizeof(rtc_generic_ops));
1298

1299
	return PTR_ERR_OR_ZERO(pdev);
1300 1301
}

1302
device_initcall(rtc_init);
1303
#endif