time.c 30.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
20
 * measurement at boot time.
L
Linus Torvalds 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
35
#include <linux/export.h>
L
Linus Torvalds 已提交
36 37 38 39 40 41 42 43 44
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
45
#include <linux/clockchips.h>
L
Linus Torvalds 已提交
46 47 48 49
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
50 51
#include <linux/percpu.h>
#include <linux/rtc.h>
52
#include <linux/jiffies.h>
53
#include <linux/posix-timers.h>
54
#include <linux/irq.h>
55
#include <linux/delay.h>
56
#include <linux/irq_work.h>
57
#include <linux/clk-provider.h>
58
#include <linux/suspend.h>
59
#include <linux/rtc.h>
60
#include <asm/trace.h>
L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68 69

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#include <asm/time.h>
#include <asm/prom.h>
70 71
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
72
#include <asm/smp.h>
73
#include <asm/vdso_datapage.h>
74
#include <asm/firmware.h>
M
Michael Neuling 已提交
75
#include <asm/cputime.h>
L
Linus Torvalds 已提交
76

77 78
/* powerpc clocksource/clockevent code */

79
#include <linux/clockchips.h>
80
#include <linux/timekeeper_internal.h>
81

82
static cycle_t rtc_read(struct clocksource *);
83 84 85 86 87 88 89 90
static struct clocksource clocksource_rtc = {
	.name         = "rtc",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = rtc_read,
};

91
static cycle_t timebase_read(struct clocksource *);
92 93 94 95 96 97 98 99
static struct clocksource clocksource_timebase = {
	.name         = "timebase",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = timebase_read,
};

100 101
#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
102 103 104

static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev);
105
static int decrementer_shutdown(struct clock_event_device *evt);
106

107
struct clock_event_device decrementer_clockevent = {
108 109 110 111 112 113 114 115
	.name			= "decrementer",
	.rating			= 200,
	.irq			= 0,
	.set_next_event		= decrementer_set_next_event,
	.set_state_shutdown	= decrementer_shutdown,
	.tick_resume		= decrementer_shutdown,
	.features		= CLOCK_EVT_FEAT_ONESHOT |
				  CLOCK_EVT_FEAT_C3STOP,
116
};
117
EXPORT_SYMBOL(decrementer_clockevent);
118

119 120
DEFINE_PER_CPU(u64, decrementers_next_tb);
static DEFINE_PER_CPU(struct clock_event_device, decrementers);
121

L
Linus Torvalds 已提交
122 123
#define XSEC_PER_SEC (1024*1024)

124 125 126 127 128 129 130
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
131 132 133 134
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
135
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
136

L
Linus Torvalds 已提交
137
DEFINE_SPINLOCK(rtc_lock);
138
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
139

140 141
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
142
static u64 boot_tb __read_mostly;
L
Linus Torvalds 已提交
143 144

extern struct timezone sys_tz;
145
static long timezone_offset;
L
Linus Torvalds 已提交
146

147
unsigned long ppc_proc_freq;
148
EXPORT_SYMBOL_GPL(ppc_proc_freq);
149
unsigned long ppc_tb_freq;
150
EXPORT_SYMBOL_GPL(ppc_tb_freq);
151

152
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
153 154
/*
 * Factors for converting from cputime_t (timebase ticks) to
155
 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
156 157 158
 * These are all stored as 0.64 fixed-point binary fractions.
 */
u64 __cputime_jiffies_factor;
159
EXPORT_SYMBOL(__cputime_jiffies_factor);
160 161
u64 __cputime_usec_factor;
EXPORT_SYMBOL(__cputime_usec_factor);
162
u64 __cputime_sec_factor;
163
EXPORT_SYMBOL(__cputime_sec_factor);
164
u64 __cputime_clockt_factor;
165
EXPORT_SYMBOL(__cputime_clockt_factor);
M
Michael Neuling 已提交
166 167
DEFINE_PER_CPU(unsigned long, cputime_last_delta);
DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
168

169 170
cputime_t cputime_one_jiffy;

171
#ifdef CONFIG_PPC_SPLPAR
172
void (*dtl_consumer)(struct dtl_entry *, u64);
173 174 175 176 177 178 179
#endif

#ifdef CONFIG_PPC64
#define get_accounting(tsk)	(&get_paca()->accounting)
#else
#define get_accounting(tsk)	(&task_thread_info(tsk)->accounting)
#endif
180

181 182 183 184 185 186
static void calc_cputime_factors(void)
{
	struct div_result res;

	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
	__cputime_jiffies_factor = res.result_low;
187 188
	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
	__cputime_usec_factor = res.result_low;
189 190 191 192 193 194 195
	div128_by_32(1, 0, tb_ticks_per_sec, &res);
	__cputime_sec_factor = res.result_low;
	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
	__cputime_clockt_factor = res.result_low;
}

/*
196 197
 * Read the SPURR on systems that have it, otherwise the PURR,
 * or if that doesn't exist return the timebase value passed in.
198
 */
199
static unsigned long read_spurr(unsigned long tb)
200
{
201 202
	if (cpu_has_feature(CPU_FTR_SPURR))
		return mfspr(SPRN_SPURR);
203 204
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
205
	return tb;
206 207
}

208 209
#ifdef CONFIG_PPC_SPLPAR

210
/*
211 212
 * Scan the dispatch trace log and count up the stolen time.
 * Should be called with interrupts disabled.
213
 */
214
static u64 scan_dispatch_log(u64 stop_tb)
215
{
216
	u64 i = local_paca->dtl_ridx;
217 218 219 220 221 222 223
	struct dtl_entry *dtl = local_paca->dtl_curr;
	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
	struct lppaca *vpa = local_paca->lppaca_ptr;
	u64 tb_delta;
	u64 stolen = 0;
	u64 dtb;

224 225 226
	if (!dtl)
		return 0;

227
	if (i == be64_to_cpu(vpa->dtl_idx))
228
		return 0;
229 230 231 232
	while (i < be64_to_cpu(vpa->dtl_idx)) {
		dtb = be64_to_cpu(dtl->timebase);
		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
			be32_to_cpu(dtl->ready_to_enqueue_time);
233
		barrier();
234
		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
235
			/* buffer has overflowed */
236
			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
237 238 239 240 241
			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
			continue;
		}
		if (dtb > stop_tb)
			break;
242 243
		if (dtl_consumer)
			dtl_consumer(dtl, i);
244 245 246 247 248 249 250 251 252
		stolen += tb_delta;
		++i;
		++dtl;
		if (dtl == dtl_end)
			dtl = local_paca->dispatch_log;
	}
	local_paca->dtl_ridx = i;
	local_paca->dtl_curr = dtl;
	return stolen;
253 254
}

255 256 257 258 259 260 261
/*
 * Accumulate stolen time by scanning the dispatch trace log.
 * Called on entry from user mode.
 */
void accumulate_stolen_time(void)
{
	u64 sst, ust;
262
	u8 save_soft_enabled = local_paca->soft_enabled;
263
	struct cpu_accounting_data *acct = &local_paca->accounting;
264 265 266 267 268 269 270 271 272

	/* We are called early in the exception entry, before
	 * soft/hard_enabled are sync'ed to the expected state
	 * for the exception. We are hard disabled but the PACA
	 * needs to reflect that so various debug stuff doesn't
	 * complain
	 */
	local_paca->soft_enabled = 0;

273 274 275 276
	sst = scan_dispatch_log(acct->starttime_user);
	ust = scan_dispatch_log(acct->starttime);
	acct->system_time -= sst;
	acct->user_time -= ust;
277 278 279
	local_paca->stolen_time += ust + sst;

	local_paca->soft_enabled = save_soft_enabled;
280 281 282 283 284 285
}

static inline u64 calculate_stolen_time(u64 stop_tb)
{
	u64 stolen = 0;

286
	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
287
		stolen = scan_dispatch_log(stop_tb);
288
		get_paca()->accounting.system_time -= stolen;
289 290 291 292 293
	}

	stolen += get_paca()->stolen_time;
	get_paca()->stolen_time = 0;
	return stolen;
294 295
}

296 297 298 299 300 301 302 303
#else /* CONFIG_PPC_SPLPAR */
static inline u64 calculate_stolen_time(u64 stop_tb)
{
	return 0;
}

#endif /* CONFIG_PPC_SPLPAR */

304 305 306 307
/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
308 309 310
static unsigned long vtime_delta(struct task_struct *tsk,
				 unsigned long *sys_scaled,
				 unsigned long *stolen)
311
{
312 313 314
	unsigned long now, nowscaled, deltascaled;
	unsigned long udelta, delta, user_scaled;
	struct cpu_accounting_data *acct = get_accounting(tsk);
315

316 317
	WARN_ON_ONCE(!irqs_disabled());

318
	now = mftb();
319
	nowscaled = read_spurr(now);
320 321 322 323
	acct->system_time += now - acct->starttime;
	acct->starttime = now;
	deltascaled = nowscaled - acct->startspurr;
	acct->startspurr = nowscaled;
324

325
	*stolen = calculate_stolen_time(now);
326

327 328 329 330
	delta = acct->system_time;
	acct->system_time = 0;
	udelta = acct->user_time - acct->utime_sspurr;
	acct->utime_sspurr = acct->user_time;
331 332 333 334 335 336 337 338 339 340 341

	/*
	 * Because we don't read the SPURR on every kernel entry/exit,
	 * deltascaled includes both user and system SPURR ticks.
	 * Apportion these ticks to system SPURR ticks and user
	 * SPURR ticks in the same ratio as the system time (delta)
	 * and user time (udelta) values obtained from the timebase
	 * over the same interval.  The system ticks get accounted here;
	 * the user ticks get saved up in paca->user_time_scaled to be
	 * used by account_process_tick.
	 */
342
	*sys_scaled = delta;
343 344 345
	user_scaled = udelta;
	if (deltascaled != delta + udelta) {
		if (udelta) {
346 347
			*sys_scaled = deltascaled * delta / (delta + udelta);
			user_scaled = deltascaled - *sys_scaled;
348
		} else {
349
			*sys_scaled = deltascaled;
350 351
		}
	}
352
	acct->user_time_scaled += user_scaled;
353

354 355 356
	return delta;
}

357
void vtime_account_system(struct task_struct *tsk)
358
{
359
	unsigned long delta, sys_scaled, stolen;
360 361 362 363 364 365

	delta = vtime_delta(tsk, &sys_scaled, &stolen);
	account_system_time(tsk, 0, delta, sys_scaled);
	if (stolen)
		account_steal_time(stolen);
}
366
EXPORT_SYMBOL_GPL(vtime_account_system);
367

368
void vtime_account_idle(struct task_struct *tsk)
369
{
370
	unsigned long delta, sys_scaled, stolen;
371 372 373

	delta = vtime_delta(tsk, &sys_scaled, &stolen);
	account_idle_time(delta + stolen);
374 375 376
}

/*
377 378 379
 * Transfer the user time accumulated in the paca
 * by the exception entry and exit code to the generic
 * process user time records.
380
 * Must be called with interrupts disabled.
381 382
 * Assumes that vtime_account_system/idle() has been called
 * recently (i.e. since the last entry from usermode) so that
383
 * get_paca()->user_time_scaled is up to date.
384
 */
385
void vtime_account_user(struct task_struct *tsk)
386
{
387
	cputime_t utime, utimescaled;
388
	struct cpu_accounting_data *acct = get_accounting(tsk);
389

390 391 392 393 394
	utime = acct->user_time;
	utimescaled = acct->user_time_scaled;
	acct->user_time = 0;
	acct->user_time_scaled = 0;
	acct->utime_sspurr = 0;
395
	account_user_time(tsk, utime, utimescaled);
396 397
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
#ifdef CONFIG_PPC32
/*
 * Called from the context switch with interrupts disabled, to charge all
 * accumulated times to the current process, and to prepare accounting on
 * the next process.
 */
void arch_vtime_task_switch(struct task_struct *prev)
{
	struct cpu_accounting_data *acct = get_accounting(current);

	acct->starttime = get_accounting(prev)->starttime;
	acct->system_time = 0;
	acct->user_time = 0;
}
#endif /* CONFIG_PPC32 */

414
#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
415 416 417
#define calc_cputime_factors()
#endif

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
			HMT_low();
		HMT_medium();
	}
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

L
Linus Torvalds 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

459
#ifdef CONFIG_IRQ_WORK
460

461 462 463 464
/*
 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 */
#ifdef CONFIG_PPC64
465
static inline unsigned long test_irq_work_pending(void)
466
{
467 468 469 470
	unsigned long x;

	asm volatile("lbz %0,%1(13)"
		: "=r" (x)
471
		: "i" (offsetof(struct paca_struct, irq_work_pending)));
472 473 474
	return x;
}

475
static inline void set_irq_work_pending_flag(void)
476 477 478
{
	asm volatile("stb %0,%1(13)" : :
		"r" (1),
479
		"i" (offsetof(struct paca_struct, irq_work_pending)));
480 481
}

482
static inline void clear_irq_work_pending(void)
483 484 485
{
	asm volatile("stb %0,%1(13)" : :
		"r" (0),
486
		"i" (offsetof(struct paca_struct, irq_work_pending)));
487 488
}

489 490
#else /* 32-bit */

491
DEFINE_PER_CPU(u8, irq_work_pending);
492

493 494 495
#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
496

497 498
#endif /* 32 vs 64 bit */

499
void arch_irq_work_raise(void)
500 501
{
	preempt_disable();
502
	set_irq_work_pending_flag();
503 504 505 506
	set_dec(1);
	preempt_enable();
}

507
#else  /* CONFIG_IRQ_WORK */
508

509 510
#define test_irq_work_pending()	0
#define clear_irq_work_pending()
511

512
#endif /* CONFIG_IRQ_WORK */
513

514
static void __timer_interrupt(void)
515 516
{
	struct pt_regs *regs = get_irq_regs();
517 518
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
519 520 521 522 523 524 525 526 527 528 529 530 531 532
	u64 now;

	trace_timer_interrupt_entry(regs);

	if (test_irq_work_pending()) {
		clear_irq_work_pending();
		irq_work_run();
	}

	now = get_tb_or_rtc();
	if (now >= *next_tb) {
		*next_tb = ~(u64)0;
		if (evt->event_handler)
			evt->event_handler(evt);
533
		__this_cpu_inc(irq_stat.timer_irqs_event);
534 535
	} else {
		now = *next_tb - now;
536 537
		if (now <= decrementer_max)
			set_dec(now);
538 539 540
		/* We may have raced with new irq work */
		if (test_irq_work_pending())
			set_dec(1);
541
		__this_cpu_inc(irq_stat.timer_irqs_others);
542 543 544 545 546
	}

#ifdef CONFIG_PPC64
	/* collect purr register values often, for accurate calculations */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
547
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
548 549 550 551 552 553 554
		cu->current_tb = mfspr(SPRN_PURR);
	}
#endif

	trace_timer_interrupt_exit(regs);
}

L
Linus Torvalds 已提交
555 556 557 558
/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
559
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
560
{
561
	struct pt_regs *old_regs;
562
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
563

564 565 566
	/* Ensure a positive value is written to the decrementer, or else
	 * some CPUs will continue to take decrementer exceptions.
	 */
567
	set_dec(decrementer_max);
568 569

	/* Some implementations of hotplug will get timer interrupts while
570 571 572 573
	 * offline, just ignore these and we also need to set
	 * decrementers_next_tb as MAX to make sure __check_irq_replay
	 * don't replay timer interrupt when return, otherwise we'll trap
	 * here infinitely :(
574
	 */
575 576
	if (!cpu_online(smp_processor_id())) {
		*next_tb = ~(u64)0;
577
		return;
578
	}
579

580 581 582 583 584
	/* Conditionally hard-enable interrupts now that the DEC has been
	 * bumped to its maximum value
	 */
	may_hard_irq_enable();

585

P
Paul Bolle 已提交
586
#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
587 588 589
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
590

591
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
592 593
	irq_enter();

594
	__timer_interrupt();
L
Linus Torvalds 已提交
595
	irq_exit();
596
	set_irq_regs(old_regs);
L
Linus Torvalds 已提交
597 598
}

599 600 601 602 603 604 605 606 607
/*
 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 * left pending on exit from a KVM guest.  We don't need to do anything
 * to clear them, as they are edge-triggered.
 */
void hdec_interrupt(struct pt_regs *regs)
{
}

608
#ifdef CONFIG_SUSPEND
609
static void generic_suspend_disable_irqs(void)
610 611 612 613 614
{
	/* Disable the decrementer, so that it doesn't interfere
	 * with suspending.
	 */

615
	set_dec(decrementer_max);
616
	local_irq_disable();
617
	set_dec(decrementer_max);
618 619
}

620
static void generic_suspend_enable_irqs(void)
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
{
	local_irq_enable();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_disable_irqs(void)
{
	if (ppc_md.suspend_disable_irqs)
		ppc_md.suspend_disable_irqs();
	generic_suspend_disable_irqs();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_enable_irqs(void)
{
	generic_suspend_enable_irqs();
	if (ppc_md.suspend_enable_irqs)
		ppc_md.suspend_enable_irqs();
}
#endif

642 643 644 645 646 647
unsigned long long tb_to_ns(unsigned long long ticks)
{
	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
}
EXPORT_SYMBOL_GPL(tb_to_ns);

L
Linus Torvalds 已提交
648 649 650 651 652 653 654 655 656
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
unsigned long long sched_clock(void)
{
657 658
	if (__USE_RTC())
		return get_rtc();
659
	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
L
Linus Torvalds 已提交
660 661
}

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693

#ifdef CONFIG_PPC_PSERIES

/*
 * Running clock - attempts to give a view of time passing for a virtualised
 * kernels.
 * Uses the VTB register if available otherwise a next best guess.
 */
unsigned long long running_clock(void)
{
	/*
	 * Don't read the VTB as a host since KVM does not switch in host
	 * timebase into the VTB when it takes a guest off the CPU, reading the
	 * VTB would result in reading 'last switched out' guest VTB.
	 *
	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
	 * would be unsafe to rely only on the #ifdef above.
	 */
	if (firmware_has_feature(FW_FEATURE_LPAR) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;

	/*
	 * This is a next best approximation without a VTB.
	 * On a host which is running bare metal there should never be any stolen
	 * time and on a host which doesn't do any virtualisation TB *should* equal
	 * VTB so it makes no difference anyway.
	 */
	return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
}
#endif

694
static int __init get_freq(char *name, int cells, unsigned long *val)
695 696
{
	struct device_node *cpu;
697
	const __be32 *fp;
698
	int found = 0;
699

700
	/* The cpu node should have timebase and clock frequency properties */
701 702
	cpu = of_find_node_by_type(NULL, "cpu");

703
	if (cpu) {
704
		fp = of_get_property(cpu, name, NULL);
705
		if (fp) {
706
			found = 1;
707
			*val = of_read_ulong(fp, cells);
708
		}
709 710

		of_node_put(cpu);
711
	}
712 713 714 715

	return found;
}

716
static void start_cpu_decrementer(void)
717 718 719 720 721 722 723 724 725 726
{
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
}

727 728 729 730 731 732 733
void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

734 735
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
736
	}
737

738 739 740 741 742 743 744
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
745 746 747
	}
}

748
int update_persistent_clock(struct timespec now)
749 750 751
{
	struct rtc_time tm;

752
	if (!ppc_md.set_rtc_time)
753
		return -ENODEV;
754 755 756 757 758 759 760 761

	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
	tm.tm_year -= 1900;
	tm.tm_mon -= 1;

	return ppc_md.set_rtc_time(&tm);
}

762
static void __read_persistent_clock(struct timespec *ts)
763 764 765 766
{
	struct rtc_time tm;
	static int first = 1;

767
	ts->tv_nsec = 0;
768 769 770 771 772 773 774
	/* XXX this is a litle fragile but will work okay in the short term */
	if (first) {
		first = 0;
		if (ppc_md.time_init)
			timezone_offset = ppc_md.time_init();

		/* get_boot_time() isn't guaranteed to be safe to call late */
775 776 777 778 779 780 781 782
		if (ppc_md.get_boot_time) {
			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
			return;
		}
	}
	if (!ppc_md.get_rtc_time) {
		ts->tv_sec = 0;
		return;
783
	}
784
	ppc_md.get_rtc_time(&tm);
785

786 787
	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
			    tm.tm_hour, tm.tm_min, tm.tm_sec);
788 789
}

790 791 792 793 794 795 796 797 798 799 800 801
void read_persistent_clock(struct timespec *ts)
{
	__read_persistent_clock(ts);

	/* Sanitize it in case real time clock is set below EPOCH */
	if (ts->tv_sec < 0) {
		ts->tv_sec = 0;
		ts->tv_nsec = 0;
	}
		
}

802
/* clocksource code */
803
static cycle_t rtc_read(struct clocksource *cs)
804 805 806 807
{
	return (cycle_t)get_rtc();
}

808
static cycle_t timebase_read(struct clocksource *cs)
809 810 811 812
{
	return (cycle_t)get_tb();
}

813
void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
814
			 struct clocksource *clock, u32 mult, cycle_t cycle_last)
815
{
J
John Stultz 已提交
816
	u64 new_tb_to_xs, new_stamp_xsec;
817
	u32 frac_sec;
818 819 820 821 822 823 824 825

	if (clock != &clocksource_timebase)
		return;

	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

826 827
	/* 19342813113834067 ~= 2^(20+64) / 1e9 */
	new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
J
John Stultz 已提交
828
	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
J
John Stultz 已提交
829
	do_div(new_stamp_xsec, 1000000000);
J
John Stultz 已提交
830
	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
J
John Stultz 已提交
831

832 833 834 835
	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
	/* this is tv_nsec / 1e9 as a 0.32 fraction */
	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;

J
John Stultz 已提交
836 837 838 839 840 841 842 843 844 845 846
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
	 * We expect the caller to have done the first increment of
	 * vdso_data->tb_update_count already.
	 */
847
	vdso_data->tb_orig_stamp = cycle_last;
J
John Stultz 已提交
848 849
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
850 851
	vdso_data->wtom_clock_sec = wtm->tv_sec;
	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
J
John Stultz 已提交
852
	vdso_data->stamp_xtime = *wall_time;
853
	vdso_data->stamp_sec_fraction = frac_sec;
J
John Stultz 已提交
854 855
	smp_wmb();
	++(vdso_data->tb_update_count);
856 857 858 859 860 861 862 863
}

void update_vsyscall_tz(void)
{
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
}

864
static void __init clocksource_init(void)
865 866 867 868 869 870 871 872
{
	struct clocksource *clock;

	if (__USE_RTC())
		clock = &clocksource_rtc;
	else
		clock = &clocksource_timebase;

873
	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
874 875 876 877 878 879 880 881 882
		printk(KERN_ERR "clocksource: %s is already registered\n",
		       clock->name);
		return;
	}

	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
	       clock->name, clock->mult, clock->shift);
}

883 884 885
static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev)
{
886
	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
887
	set_dec(evt);
888 889 890 891 892

	/* We may have raced with new irq work */
	if (test_irq_work_pending())
		set_dec(1);

893 894 895
	return 0;
}

896
static int decrementer_shutdown(struct clock_event_device *dev)
897
{
898
	decrementer_set_next_event(decrementer_max, dev);
899
	return 0;
900 901
}

902 903 904
/* Interrupt handler for the timer broadcast IPI */
void tick_broadcast_ipi_handler(void)
{
905
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
906 907 908

	*next_tb = get_tb_or_rtc();
	__timer_interrupt();
909 910
}

911 912
static void register_decrementer_clockevent(int cpu)
{
913
	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
914 915

	*dec = decrementer_clockevent;
916
	dec->cpumask = cpumask_of(cpu);
917

918 919
	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
		    dec->name, dec->mult, dec->shift, cpu);
920 921 922 923

	clockevents_register_device(dec);
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
static void enable_large_decrementer(void)
{
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return;

	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
		return;

	/*
	 * If we're running as the hypervisor we need to enable the LD manually
	 * otherwise firmware should have done it for us.
	 */
	if (cpu_has_feature(CPU_FTR_HVMODE))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
}

static void __init set_decrementer_max(void)
{
	struct device_node *cpu;
	u32 bits = 32;

	/* Prior to ISAv3 the decrementer is always 32 bit */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return;

	cpu = of_find_node_by_type(NULL, "cpu");

	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
		if (bits > 64 || bits < 32) {
			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
			bits = 32;
		}

		/* calculate the signed maximum given this many bits */
		decrementer_max = (1ul << (bits - 1)) - 1;
	}

	of_node_put(cpu);

	pr_info("time_init: %u bit decrementer (max: %llx)\n",
		bits, decrementer_max);
}

967
static void __init init_decrementer_clockevent(void)
968 969 970
{
	int cpu = smp_processor_id();

971 972
	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);

973
	decrementer_clockevent.max_delta_ns =
974
		clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
975 976
	decrementer_clockevent.min_delta_ns =
		clockevent_delta2ns(2, &decrementer_clockevent);
977 978 979 980 981 982

	register_decrementer_clockevent(cpu);
}

void secondary_cpu_time_init(void)
{
983 984 985
	/* Enable and test the large decrementer for this cpu */
	enable_large_decrementer();

986 987 988 989 990
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

991 992 993 994 995
	/* FIME: Should make unrelatred change to move snapshot_timebase
	 * call here ! */
	register_decrementer_clockevent(smp_processor_id());
}

996
/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
997 998 999
void __init time_init(void)
{
	struct div_result res;
1000
	u64 scale;
1001 1002
	unsigned shift;

1003 1004 1005 1006 1007 1008
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
1009
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1010
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1011
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1012 1013
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
	}
1014 1015

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1016
	tb_ticks_per_sec = ppc_tb_freq;
1017
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1018
	calc_cputime_factors();
1019
	setup_cputime_one_jiffy();
1020

L
Linus Torvalds 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;
1039
	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1040
	boot_tb = get_tb_or_rtc();
L
Linus Torvalds 已提交
1041

1042
	/* If platform provided a timezone (pmac), we correct the time */
1043
	if (timezone_offset) {
1044 1045
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
1046
	}
1047

1048 1049
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
L
Linus Torvalds 已提交
1050

1051 1052 1053 1054
	/* initialise and enable the large decrementer (if we have one) */
	set_decrementer_max();
	enable_large_decrementer();

1055 1056 1057 1058 1059
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

1060 1061
	/* Register the clocksource */
	clocksource_init();
1062

1063
	init_decrementer_clockevent();
1064
	tick_setup_hrtimer_broadcast();
1065 1066 1067 1068

#ifdef CONFIG_COMMON_CLK
	of_clk_init(NULL);
#endif
L
Linus Torvalds 已提交
1069 1070 1071 1072 1073 1074 1075
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
1076 1077
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
1115
	 * No-one uses the day of the week.
L
Linus Torvalds 已提交
1116
	 */
1117
	tm->tm_wday = -1;
L
Linus Torvalds 已提交
1118
}
1119
EXPORT_SYMBOL(to_tm);
L
Linus Torvalds 已提交
1120 1121 1122 1123 1124

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
1125 1126
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
1127
{
1128 1129 1130
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
1131 1132 1133 1134 1135 1136

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

1137 1138 1139 1140 1141
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
1142

1143 1144 1145 1146 1147
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1148

1149 1150
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1151 1152

}
1153

1154 1155 1156 1157 1158 1159 1160 1161 1162
/* We don't need to calibrate delay, we use the CPU timebase for that */
void calibrate_delay(void)
{
	/* Some generic code (such as spinlock debug) use loops_per_jiffy
	 * as the number of __delay(1) in a jiffy, so make it so
	 */
	loops_per_jiffy = tb_ticks_per_jiffy;
}

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
{
	ppc_md.get_rtc_time(tm);
	return rtc_valid_tm(tm);
}

static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
{
	if (!ppc_md.set_rtc_time)
		return -EOPNOTSUPP;

	if (ppc_md.set_rtc_time(tm) < 0)
		return -EOPNOTSUPP;

	return 0;
}

static const struct rtc_class_ops rtc_generic_ops = {
	.read_time = rtc_generic_get_time,
	.set_time = rtc_generic_set_time,
};

1186 1187 1188 1189 1190 1191 1192
static int __init rtc_init(void)
{
	struct platform_device *pdev;

	if (!ppc_md.get_rtc_time)
		return -ENODEV;

1193 1194 1195
	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
					     &rtc_generic_ops,
					     sizeof(rtc_generic_ops));
1196

1197
	return PTR_ERR_OR_ZERO(pdev);
1198 1199
}

1200
device_initcall(rtc_init);
1201
#endif