time.c 30.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
20
 * measurement at boot time.
L
Linus Torvalds 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
35
#include <linux/export.h>
L
Linus Torvalds 已提交
36 37 38 39 40 41 42 43 44
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
45
#include <linux/clockchips.h>
L
Linus Torvalds 已提交
46 47 48 49
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
50 51
#include <linux/percpu.h>
#include <linux/rtc.h>
52
#include <linux/jiffies.h>
53
#include <linux/posix-timers.h>
54
#include <linux/irq.h>
55
#include <linux/delay.h>
56
#include <linux/irq_work.h>
57
#include <linux/clk-provider.h>
58
#include <linux/suspend.h>
59
#include <linux/rtc.h>
60
#include <linux/cputime.h>
61
#include <asm/trace.h>
L
Linus Torvalds 已提交
62 63 64 65 66 67

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
68
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
69 70
#include <asm/time.h>
#include <asm/prom.h>
71 72
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
73
#include <asm/smp.h>
74
#include <asm/vdso_datapage.h>
75
#include <asm/firmware.h>
76
#include <asm/asm-prototypes.h>
L
Linus Torvalds 已提交
77

78 79
/* powerpc clocksource/clockevent code */

80
#include <linux/clockchips.h>
81
#include <linux/timekeeper_internal.h>
82

83
static u64 rtc_read(struct clocksource *);
84 85 86 87 88 89 90 91
static struct clocksource clocksource_rtc = {
	.name         = "rtc",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = rtc_read,
};

92
static u64 timebase_read(struct clocksource *);
93 94 95 96 97 98 99 100
static struct clocksource clocksource_timebase = {
	.name         = "timebase",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = timebase_read,
};

101 102
#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
103 104 105

static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev);
106
static int decrementer_shutdown(struct clock_event_device *evt);
107

108
struct clock_event_device decrementer_clockevent = {
109 110 111 112 113 114 115 116
	.name			= "decrementer",
	.rating			= 200,
	.irq			= 0,
	.set_next_event		= decrementer_set_next_event,
	.set_state_shutdown	= decrementer_shutdown,
	.tick_resume		= decrementer_shutdown,
	.features		= CLOCK_EVT_FEAT_ONESHOT |
				  CLOCK_EVT_FEAT_C3STOP,
117
};
118
EXPORT_SYMBOL(decrementer_clockevent);
119

120 121
DEFINE_PER_CPU(u64, decrementers_next_tb);
static DEFINE_PER_CPU(struct clock_event_device, decrementers);
122

L
Linus Torvalds 已提交
123 124
#define XSEC_PER_SEC (1024*1024)

125 126 127 128 129 130 131
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
132 133 134 135
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
136
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
137

L
Linus Torvalds 已提交
138
DEFINE_SPINLOCK(rtc_lock);
139
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
140

141 142
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
143
static u64 boot_tb __read_mostly;
L
Linus Torvalds 已提交
144 145

extern struct timezone sys_tz;
146
static long timezone_offset;
L
Linus Torvalds 已提交
147

148
unsigned long ppc_proc_freq;
149
EXPORT_SYMBOL_GPL(ppc_proc_freq);
150
unsigned long ppc_tb_freq;
151
EXPORT_SYMBOL_GPL(ppc_tb_freq);
152

153
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
154
/*
155 156
 * Factor for converting from cputime_t (timebase ticks) to
 * microseconds. This is stored as 0.64 fixed-point binary fraction.
157
 */
158 159
u64 __cputime_usec_factor;
EXPORT_SYMBOL(__cputime_usec_factor);
160

161
#ifdef CONFIG_PPC_SPLPAR
162
void (*dtl_consumer)(struct dtl_entry *, u64);
163 164 165 166 167 168 169
#endif

#ifdef CONFIG_PPC64
#define get_accounting(tsk)	(&get_paca()->accounting)
#else
#define get_accounting(tsk)	(&task_thread_info(tsk)->accounting)
#endif
170

171 172 173 174
static void calc_cputime_factors(void)
{
	struct div_result res;

175 176
	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
	__cputime_usec_factor = res.result_low;
177 178 179
}

/*
180 181
 * Read the SPURR on systems that have it, otherwise the PURR,
 * or if that doesn't exist return the timebase value passed in.
182
 */
183
static unsigned long read_spurr(unsigned long tb)
184
{
185 186
	if (cpu_has_feature(CPU_FTR_SPURR))
		return mfspr(SPRN_SPURR);
187 188
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
189
	return tb;
190 191
}

192 193
#ifdef CONFIG_PPC_SPLPAR

194
/*
195 196
 * Scan the dispatch trace log and count up the stolen time.
 * Should be called with interrupts disabled.
197
 */
198
static u64 scan_dispatch_log(u64 stop_tb)
199
{
200
	u64 i = local_paca->dtl_ridx;
201 202 203 204 205 206 207
	struct dtl_entry *dtl = local_paca->dtl_curr;
	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
	struct lppaca *vpa = local_paca->lppaca_ptr;
	u64 tb_delta;
	u64 stolen = 0;
	u64 dtb;

208 209 210
	if (!dtl)
		return 0;

211
	if (i == be64_to_cpu(vpa->dtl_idx))
212
		return 0;
213 214 215 216
	while (i < be64_to_cpu(vpa->dtl_idx)) {
		dtb = be64_to_cpu(dtl->timebase);
		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
			be32_to_cpu(dtl->ready_to_enqueue_time);
217
		barrier();
218
		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
219
			/* buffer has overflowed */
220
			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
221 222 223 224 225
			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
			continue;
		}
		if (dtb > stop_tb)
			break;
226 227
		if (dtl_consumer)
			dtl_consumer(dtl, i);
228 229 230 231 232 233 234 235 236
		stolen += tb_delta;
		++i;
		++dtl;
		if (dtl == dtl_end)
			dtl = local_paca->dispatch_log;
	}
	local_paca->dtl_ridx = i;
	local_paca->dtl_curr = dtl;
	return stolen;
237 238
}

239 240 241 242 243 244 245
/*
 * Accumulate stolen time by scanning the dispatch trace log.
 * Called on entry from user mode.
 */
void accumulate_stolen_time(void)
{
	u64 sst, ust;
246
	u8 save_soft_enabled = local_paca->soft_enabled;
247
	struct cpu_accounting_data *acct = &local_paca->accounting;
248 249 250 251 252 253 254 255 256

	/* We are called early in the exception entry, before
	 * soft/hard_enabled are sync'ed to the expected state
	 * for the exception. We are hard disabled but the PACA
	 * needs to reflect that so various debug stuff doesn't
	 * complain
	 */
	local_paca->soft_enabled = 0;

257 258
	sst = scan_dispatch_log(acct->starttime_user);
	ust = scan_dispatch_log(acct->starttime);
259 260
	acct->stime -= sst;
	acct->utime -= ust;
261
	acct->steal_time += ust + sst;
262 263

	local_paca->soft_enabled = save_soft_enabled;
264 265 266 267
}

static inline u64 calculate_stolen_time(u64 stop_tb)
{
268 269
	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
		return scan_dispatch_log(stop_tb);
270

271
	return 0;
272 273
}

274 275 276 277 278 279 280 281
#else /* CONFIG_PPC_SPLPAR */
static inline u64 calculate_stolen_time(u64 stop_tb)
{
	return 0;
}

#endif /* CONFIG_PPC_SPLPAR */

282 283 284 285
/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
286
static unsigned long vtime_delta(struct task_struct *tsk,
287 288
				 unsigned long *stime_scaled,
				 unsigned long *steal_time)
289
{
290
	unsigned long now, nowscaled, deltascaled;
291 292
	unsigned long stime;
	unsigned long utime, utime_scaled;
293
	struct cpu_accounting_data *acct = get_accounting(tsk);
294

295 296
	WARN_ON_ONCE(!irqs_disabled());

297
	now = mftb();
298
	nowscaled = read_spurr(now);
299
	stime = now - acct->starttime;
300 301 302
	acct->starttime = now;
	deltascaled = nowscaled - acct->startspurr;
	acct->startspurr = nowscaled;
303

304
	*steal_time = calculate_stolen_time(now);
305

306
	utime = acct->utime - acct->utime_sspurr;
307
	acct->utime_sspurr = acct->utime;
308 309 310 311 312 313 314 315 316 317 318

	/*
	 * Because we don't read the SPURR on every kernel entry/exit,
	 * deltascaled includes both user and system SPURR ticks.
	 * Apportion these ticks to system SPURR ticks and user
	 * SPURR ticks in the same ratio as the system time (delta)
	 * and user time (udelta) values obtained from the timebase
	 * over the same interval.  The system ticks get accounted here;
	 * the user ticks get saved up in paca->user_time_scaled to be
	 * used by account_process_tick.
	 */
319 320 321 322 323 324
	*stime_scaled = stime;
	utime_scaled = utime;
	if (deltascaled != stime + utime) {
		if (utime) {
			*stime_scaled = deltascaled * stime / (stime + utime);
			utime_scaled = deltascaled - *stime_scaled;
325
		} else {
326
			*stime_scaled = deltascaled;
327 328
		}
	}
329
	acct->utime_scaled += utime_scaled;
330

331
	return stime;
332 333
}

334
void vtime_account_system(struct task_struct *tsk)
335
{
336 337 338 339 340 341 342
	unsigned long stime, stime_scaled, steal_time;
	struct cpu_accounting_data *acct = get_accounting(tsk);

	stime = vtime_delta(tsk, &stime_scaled, &steal_time);

	stime -= min(stime, steal_time);
	acct->steal_time += steal_time;
343

344 345 346 347 348 349 350 351 352 353 354 355 356
	if ((tsk->flags & PF_VCPU) && !irq_count()) {
		acct->gtime += stime;
		acct->utime_scaled += stime_scaled;
	} else {
		if (hardirq_count())
			acct->hardirq_time += stime;
		else if (in_serving_softirq())
			acct->softirq_time += stime;
		else
			acct->stime += stime;

		acct->stime_scaled += stime_scaled;
	}
357
}
358
EXPORT_SYMBOL_GPL(vtime_account_system);
359

360
void vtime_account_idle(struct task_struct *tsk)
361
{
362 363
	unsigned long stime, stime_scaled, steal_time;
	struct cpu_accounting_data *acct = get_accounting(tsk);
364

365 366
	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
	acct->idle_time += stime + steal_time;
367 368 369
}

/*
370
 * Account the whole cputime accumulated in the paca
371
 * Must be called with interrupts disabled.
372 373
 * Assumes that vtime_account_system/idle() has been called
 * recently (i.e. since the last entry from usermode) so that
374
 * get_paca()->user_time_scaled is up to date.
375
 */
376
void vtime_flush(struct task_struct *tsk)
377
{
378
	struct cpu_accounting_data *acct = get_accounting(tsk);
379

380
	if (acct->utime)
381
		account_user_time(tsk, cputime_to_nsecs(acct->utime));
382 383

	if (acct->utime_scaled)
384
		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
385 386

	if (acct->gtime)
387
		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
388 389

	if (acct->steal_time)
390
		account_steal_time(cputime_to_nsecs(acct->steal_time));
391 392

	if (acct->idle_time)
393
		account_idle_time(cputime_to_nsecs(acct->idle_time));
394 395

	if (acct->stime)
396 397
		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
					  CPUTIME_SYSTEM);
398
	if (acct->stime_scaled)
399
		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
400 401

	if (acct->hardirq_time)
402 403
		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
					  CPUTIME_IRQ);
404
	if (acct->softirq_time)
405 406
		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
					  CPUTIME_SOFTIRQ);
407

408 409
	acct->utime = 0;
	acct->utime_scaled = 0;
410
	acct->utime_sspurr = 0;
411 412 413 414 415 416 417
	acct->gtime = 0;
	acct->steal_time = 0;
	acct->idle_time = 0;
	acct->stime = 0;
	acct->stime_scaled = 0;
	acct->hardirq_time = 0;
	acct->softirq_time = 0;
418 419
}

420 421 422 423 424 425 426 427 428 429 430
#ifdef CONFIG_PPC32
/*
 * Called from the context switch with interrupts disabled, to charge all
 * accumulated times to the current process, and to prepare accounting on
 * the next process.
 */
void arch_vtime_task_switch(struct task_struct *prev)
{
	struct cpu_accounting_data *acct = get_accounting(current);

	acct->starttime = get_accounting(prev)->starttime;
431
	acct->startspurr = get_accounting(prev)->startspurr;
432 433 434
}
#endif /* CONFIG_PPC32 */

435
#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
436 437 438
#define calc_cputime_factors()
#endif

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
			HMT_low();
		HMT_medium();
	}
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

L
Linus Torvalds 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

480
#ifdef CONFIG_IRQ_WORK
481

482 483 484 485
/*
 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 */
#ifdef CONFIG_PPC64
486
static inline unsigned long test_irq_work_pending(void)
487
{
488 489 490 491
	unsigned long x;

	asm volatile("lbz %0,%1(13)"
		: "=r" (x)
492
		: "i" (offsetof(struct paca_struct, irq_work_pending)));
493 494 495
	return x;
}

496
static inline void set_irq_work_pending_flag(void)
497 498 499
{
	asm volatile("stb %0,%1(13)" : :
		"r" (1),
500
		"i" (offsetof(struct paca_struct, irq_work_pending)));
501 502
}

503
static inline void clear_irq_work_pending(void)
504 505 506
{
	asm volatile("stb %0,%1(13)" : :
		"r" (0),
507
		"i" (offsetof(struct paca_struct, irq_work_pending)));
508 509
}

510 511
#else /* 32-bit */

512
DEFINE_PER_CPU(u8, irq_work_pending);
513

514 515 516
#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
517

518 519
#endif /* 32 vs 64 bit */

520
void arch_irq_work_raise(void)
521 522
{
	preempt_disable();
523
	set_irq_work_pending_flag();
524 525 526 527
	set_dec(1);
	preempt_enable();
}

528
#else  /* CONFIG_IRQ_WORK */
529

530 531
#define test_irq_work_pending()	0
#define clear_irq_work_pending()
532

533
#endif /* CONFIG_IRQ_WORK */
534

535
static void __timer_interrupt(void)
536 537
{
	struct pt_regs *regs = get_irq_regs();
538 539
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
540 541 542 543 544 545 546 547 548 549 550 551 552 553
	u64 now;

	trace_timer_interrupt_entry(regs);

	if (test_irq_work_pending()) {
		clear_irq_work_pending();
		irq_work_run();
	}

	now = get_tb_or_rtc();
	if (now >= *next_tb) {
		*next_tb = ~(u64)0;
		if (evt->event_handler)
			evt->event_handler(evt);
554
		__this_cpu_inc(irq_stat.timer_irqs_event);
555 556
	} else {
		now = *next_tb - now;
557 558
		if (now <= decrementer_max)
			set_dec(now);
559 560 561
		/* We may have raced with new irq work */
		if (test_irq_work_pending())
			set_dec(1);
562
		__this_cpu_inc(irq_stat.timer_irqs_others);
563 564 565 566 567
	}

#ifdef CONFIG_PPC64
	/* collect purr register values often, for accurate calculations */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
568
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
569 570 571 572 573 574 575
		cu->current_tb = mfspr(SPRN_PURR);
	}
#endif

	trace_timer_interrupt_exit(regs);
}

L
Linus Torvalds 已提交
576 577 578 579
/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
580
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
581
{
582
	struct pt_regs *old_regs;
583
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
584

585 586 587
	/* Ensure a positive value is written to the decrementer, or else
	 * some CPUs will continue to take decrementer exceptions.
	 */
588
	set_dec(decrementer_max);
589 590

	/* Some implementations of hotplug will get timer interrupts while
591 592 593 594
	 * offline, just ignore these and we also need to set
	 * decrementers_next_tb as MAX to make sure __check_irq_replay
	 * don't replay timer interrupt when return, otherwise we'll trap
	 * here infinitely :(
595
	 */
596 597
	if (!cpu_online(smp_processor_id())) {
		*next_tb = ~(u64)0;
598
		return;
599
	}
600

601 602 603 604 605
	/* Conditionally hard-enable interrupts now that the DEC has been
	 * bumped to its maximum value
	 */
	may_hard_irq_enable();

606

P
Paul Bolle 已提交
607
#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
608 609 610
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
611

612
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
613 614
	irq_enter();

615
	__timer_interrupt();
L
Linus Torvalds 已提交
616
	irq_exit();
617
	set_irq_regs(old_regs);
L
Linus Torvalds 已提交
618
}
A
Al Viro 已提交
619
EXPORT_SYMBOL(timer_interrupt);
L
Linus Torvalds 已提交
620

621 622 623 624 625 626 627 628 629
/*
 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 * left pending on exit from a KVM guest.  We don't need to do anything
 * to clear them, as they are edge-triggered.
 */
void hdec_interrupt(struct pt_regs *regs)
{
}

630
#ifdef CONFIG_SUSPEND
631
static void generic_suspend_disable_irqs(void)
632 633 634 635 636
{
	/* Disable the decrementer, so that it doesn't interfere
	 * with suspending.
	 */

637
	set_dec(decrementer_max);
638
	local_irq_disable();
639
	set_dec(decrementer_max);
640 641
}

642
static void generic_suspend_enable_irqs(void)
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
{
	local_irq_enable();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_disable_irqs(void)
{
	if (ppc_md.suspend_disable_irqs)
		ppc_md.suspend_disable_irqs();
	generic_suspend_disable_irqs();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_enable_irqs(void)
{
	generic_suspend_enable_irqs();
	if (ppc_md.suspend_enable_irqs)
		ppc_md.suspend_enable_irqs();
}
#endif

664 665 666 667 668 669
unsigned long long tb_to_ns(unsigned long long ticks)
{
	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
}
EXPORT_SYMBOL_GPL(tb_to_ns);

L
Linus Torvalds 已提交
670 671 672 673 674 675 676 677 678
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
unsigned long long sched_clock(void)
{
679 680
	if (__USE_RTC())
		return get_rtc();
681
	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
L
Linus Torvalds 已提交
682 683
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

#ifdef CONFIG_PPC_PSERIES

/*
 * Running clock - attempts to give a view of time passing for a virtualised
 * kernels.
 * Uses the VTB register if available otherwise a next best guess.
 */
unsigned long long running_clock(void)
{
	/*
	 * Don't read the VTB as a host since KVM does not switch in host
	 * timebase into the VTB when it takes a guest off the CPU, reading the
	 * VTB would result in reading 'last switched out' guest VTB.
	 *
	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
	 * would be unsafe to rely only on the #ifdef above.
	 */
	if (firmware_has_feature(FW_FEATURE_LPAR) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;

	/*
	 * This is a next best approximation without a VTB.
	 * On a host which is running bare metal there should never be any stolen
	 * time and on a host which doesn't do any virtualisation TB *should* equal
	 * VTB so it makes no difference anyway.
	 */
712
	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
713 714 715
}
#endif

716
static int __init get_freq(char *name, int cells, unsigned long *val)
717 718
{
	struct device_node *cpu;
719
	const __be32 *fp;
720
	int found = 0;
721

722
	/* The cpu node should have timebase and clock frequency properties */
723 724
	cpu = of_find_node_by_type(NULL, "cpu");

725
	if (cpu) {
726
		fp = of_get_property(cpu, name, NULL);
727
		if (fp) {
728
			found = 1;
729
			*val = of_read_ulong(fp, cells);
730
		}
731 732

		of_node_put(cpu);
733
	}
734 735 736 737

	return found;
}

738
static void start_cpu_decrementer(void)
739 740 741 742 743 744 745 746 747 748
{
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
}

749 750 751 752 753 754 755
void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

756 757
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
758
	}
759

760 761 762 763 764 765 766
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
767 768 769
	}
}

770
int update_persistent_clock(struct timespec now)
771 772 773
{
	struct rtc_time tm;

774
	if (!ppc_md.set_rtc_time)
775
		return -ENODEV;
776 777 778 779 780 781 782 783

	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
	tm.tm_year -= 1900;
	tm.tm_mon -= 1;

	return ppc_md.set_rtc_time(&tm);
}

784
static void __read_persistent_clock(struct timespec *ts)
785 786 787 788
{
	struct rtc_time tm;
	static int first = 1;

789
	ts->tv_nsec = 0;
790 791 792 793 794 795 796
	/* XXX this is a litle fragile but will work okay in the short term */
	if (first) {
		first = 0;
		if (ppc_md.time_init)
			timezone_offset = ppc_md.time_init();

		/* get_boot_time() isn't guaranteed to be safe to call late */
797 798 799 800 801 802 803 804
		if (ppc_md.get_boot_time) {
			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
			return;
		}
	}
	if (!ppc_md.get_rtc_time) {
		ts->tv_sec = 0;
		return;
805
	}
806
	ppc_md.get_rtc_time(&tm);
807

808 809
	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
			    tm.tm_hour, tm.tm_min, tm.tm_sec);
810 811
}

812 813 814 815 816 817 818 819 820 821 822 823
void read_persistent_clock(struct timespec *ts)
{
	__read_persistent_clock(ts);

	/* Sanitize it in case real time clock is set below EPOCH */
	if (ts->tv_sec < 0) {
		ts->tv_sec = 0;
		ts->tv_nsec = 0;
	}
		
}

824
/* clocksource code */
825
static u64 rtc_read(struct clocksource *cs)
826
{
827
	return (u64)get_rtc();
828 829
}

830
static u64 timebase_read(struct clocksource *cs)
831
{
832
	return (u64)get_tb();
833 834
}

835
void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
836
			 struct clocksource *clock, u32 mult, u64 cycle_last)
837
{
J
John Stultz 已提交
838
	u64 new_tb_to_xs, new_stamp_xsec;
839
	u32 frac_sec;
840 841 842 843 844 845 846 847

	if (clock != &clocksource_timebase)
		return;

	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

848 849
	/* 19342813113834067 ~= 2^(20+64) / 1e9 */
	new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
J
John Stultz 已提交
850
	new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
J
John Stultz 已提交
851
	do_div(new_stamp_xsec, 1000000000);
J
John Stultz 已提交
852
	new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
J
John Stultz 已提交
853

854 855 856 857
	BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
	/* this is tv_nsec / 1e9 as a 0.32 fraction */
	frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;

J
John Stultz 已提交
858 859 860 861 862 863 864 865 866 867 868
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
	 * We expect the caller to have done the first increment of
	 * vdso_data->tb_update_count already.
	 */
869
	vdso_data->tb_orig_stamp = cycle_last;
J
John Stultz 已提交
870 871
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
872 873
	vdso_data->wtom_clock_sec = wtm->tv_sec;
	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
J
John Stultz 已提交
874
	vdso_data->stamp_xtime = *wall_time;
875
	vdso_data->stamp_sec_fraction = frac_sec;
J
John Stultz 已提交
876 877
	smp_wmb();
	++(vdso_data->tb_update_count);
878 879 880 881 882 883 884 885
}

void update_vsyscall_tz(void)
{
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
}

886
static void __init clocksource_init(void)
887 888 889 890 891 892 893 894
{
	struct clocksource *clock;

	if (__USE_RTC())
		clock = &clocksource_rtc;
	else
		clock = &clocksource_timebase;

895
	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
896 897 898 899 900 901 902 903 904
		printk(KERN_ERR "clocksource: %s is already registered\n",
		       clock->name);
		return;
	}

	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
	       clock->name, clock->mult, clock->shift);
}

905 906 907
static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev)
{
908
	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
909
	set_dec(evt);
910 911 912 913 914

	/* We may have raced with new irq work */
	if (test_irq_work_pending())
		set_dec(1);

915 916 917
	return 0;
}

918
static int decrementer_shutdown(struct clock_event_device *dev)
919
{
920
	decrementer_set_next_event(decrementer_max, dev);
921
	return 0;
922 923
}

924 925 926
/* Interrupt handler for the timer broadcast IPI */
void tick_broadcast_ipi_handler(void)
{
927
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
928 929 930

	*next_tb = get_tb_or_rtc();
	__timer_interrupt();
931 932
}

933 934
static void register_decrementer_clockevent(int cpu)
{
935
	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
936 937

	*dec = decrementer_clockevent;
938
	dec->cpumask = cpumask_of(cpu);
939

940 941
	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
		    dec->name, dec->mult, dec->shift, cpu);
942 943 944 945

	clockevents_register_device(dec);
}

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
static void enable_large_decrementer(void)
{
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return;

	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
		return;

	/*
	 * If we're running as the hypervisor we need to enable the LD manually
	 * otherwise firmware should have done it for us.
	 */
	if (cpu_has_feature(CPU_FTR_HVMODE))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
}

static void __init set_decrementer_max(void)
{
	struct device_node *cpu;
	u32 bits = 32;

	/* Prior to ISAv3 the decrementer is always 32 bit */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return;

	cpu = of_find_node_by_type(NULL, "cpu");

	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
		if (bits > 64 || bits < 32) {
			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
			bits = 32;
		}

		/* calculate the signed maximum given this many bits */
		decrementer_max = (1ul << (bits - 1)) - 1;
	}

	of_node_put(cpu);

	pr_info("time_init: %u bit decrementer (max: %llx)\n",
		bits, decrementer_max);
}

989
static void __init init_decrementer_clockevent(void)
990 991 992
{
	int cpu = smp_processor_id();

993 994
	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);

995
	decrementer_clockevent.max_delta_ns =
996
		clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
997 998
	decrementer_clockevent.min_delta_ns =
		clockevent_delta2ns(2, &decrementer_clockevent);
999 1000 1001 1002 1003 1004

	register_decrementer_clockevent(cpu);
}

void secondary_cpu_time_init(void)
{
1005 1006 1007
	/* Enable and test the large decrementer for this cpu */
	enable_large_decrementer();

1008 1009 1010 1011 1012
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

1013 1014 1015 1016 1017
	/* FIME: Should make unrelatred change to move snapshot_timebase
	 * call here ! */
	register_decrementer_clockevent(smp_processor_id());
}

1018
/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
1019 1020 1021
void __init time_init(void)
{
	struct div_result res;
1022
	u64 scale;
1023 1024
	unsigned shift;

1025 1026 1027 1028 1029 1030
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
1031
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1032
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1033
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1034 1035
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
	}
1036 1037

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1038
	tb_ticks_per_sec = ppc_tb_freq;
1039
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1040
	calc_cputime_factors();
1041

L
Linus Torvalds 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;
1060
	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1061
	boot_tb = get_tb_or_rtc();
L
Linus Torvalds 已提交
1062

1063
	/* If platform provided a timezone (pmac), we correct the time */
1064
	if (timezone_offset) {
1065 1066
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
1067
	}
1068

1069 1070
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
L
Linus Torvalds 已提交
1071

1072 1073 1074 1075
	/* initialise and enable the large decrementer (if we have one) */
	set_decrementer_max();
	enable_large_decrementer();

1076 1077 1078 1079 1080
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

1081 1082
	/* Register the clocksource */
	clocksource_init();
1083

1084
	init_decrementer_clockevent();
1085
	tick_setup_hrtimer_broadcast();
1086 1087 1088 1089

#ifdef CONFIG_COMMON_CLK
	of_clk_init(NULL);
#endif
L
Linus Torvalds 已提交
1090 1091 1092 1093 1094 1095 1096
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
1097 1098
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
1136
	 * No-one uses the day of the week.
L
Linus Torvalds 已提交
1137
	 */
1138
	tm->tm_wday = -1;
L
Linus Torvalds 已提交
1139
}
1140
EXPORT_SYMBOL(to_tm);
L
Linus Torvalds 已提交
1141 1142 1143 1144 1145

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
1146 1147
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
1148
{
1149 1150 1151
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
1152 1153 1154 1155 1156 1157

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

1158 1159 1160 1161 1162
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
1163

1164 1165 1166 1167 1168
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1169

1170 1171
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1172 1173

}
1174

1175 1176 1177 1178 1179 1180 1181 1182 1183
/* We don't need to calibrate delay, we use the CPU timebase for that */
void calibrate_delay(void)
{
	/* Some generic code (such as spinlock debug) use loops_per_jiffy
	 * as the number of __delay(1) in a jiffy, so make it so
	 */
	loops_per_jiffy = tb_ticks_per_jiffy;
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
{
	ppc_md.get_rtc_time(tm);
	return rtc_valid_tm(tm);
}

static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
{
	if (!ppc_md.set_rtc_time)
		return -EOPNOTSUPP;

	if (ppc_md.set_rtc_time(tm) < 0)
		return -EOPNOTSUPP;

	return 0;
}

static const struct rtc_class_ops rtc_generic_ops = {
	.read_time = rtc_generic_get_time,
	.set_time = rtc_generic_set_time,
};

1207 1208 1209 1210 1211 1212 1213
static int __init rtc_init(void)
{
	struct platform_device *pdev;

	if (!ppc_md.get_rtc_time)
		return -ENODEV;

1214 1215 1216
	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
					     &rtc_generic_ops,
					     sizeof(rtc_generic_ops));
1217

1218
	return PTR_ERR_OR_ZERO(pdev);
1219 1220
}

1221
device_initcall(rtc_init);
1222
#endif