huge_memory.c 82.8 KB
Newer Older
1 2 3 4 5 6 7
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 */

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11
#include <linux/mm.h>
#include <linux/sched.h>
12
#include <linux/sched/coredump.h>
13
#include <linux/sched/numa_balancing.h>
14 15 16 17 18
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
19
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
20
#include <linux/mm_inline.h>
21
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
22
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
23
#include <linux/khugepaged.h>
24
#include <linux/freezer.h>
25
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
26
#include <linux/mman.h>
27
#include <linux/memremap.h>
R
Ralf Baechle 已提交
28
#include <linux/pagemap.h>
29
#include <linux/debugfs.h>
30
#include <linux/migrate.h>
31
#include <linux/hashtable.h>
32
#include <linux/userfaultfd_k.h>
33
#include <linux/page_idle.h>
34
#include <linux/shmem_fs.h>
35
#include <linux/oom.h>
36
#include <linux/page_owner.h>
37

38 39 40 41
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
42
/*
43 44 45 46
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
47 48
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
49
 */
50
unsigned long transparent_hugepage_flags __read_mostly =
51
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
52
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 54 55 56
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
57
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 59
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
60

61
static struct shrinker deferred_split_shrinker;
62

63
static atomic_t huge_zero_refcount;
64
struct page *huge_zero_page __read_mostly;
65

66 67 68 69 70 71 72 73 74 75
bool transparent_hugepage_enabled(struct vm_area_struct *vma)
{
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
	if (vma_is_shmem(vma) && shmem_huge_enabled(vma))
		return __transparent_hugepage_enabled(vma);

	return false;
}

76
static struct page *get_huge_zero_page(void)
77 78 79 80
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
81
		return READ_ONCE(huge_zero_page);
82 83

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
84
			HPAGE_PMD_ORDER);
85 86
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
87
		return NULL;
88 89
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
90
	preempt_disable();
91
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
92
		preempt_enable();
93
		__free_pages(zero_page, compound_order(zero_page));
94 95 96 97 98 99
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
100
	return READ_ONCE(huge_zero_page);
101 102
}

103
static void put_huge_zero_page(void)
104
{
105 106 107 108 109
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
110 111
}

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

132 133
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
134
{
135 136 137
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
138

139 140 141
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
142
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
143 144
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
145
		__free_pages(zero_page, compound_order(zero_page));
146
		return HPAGE_PMD_NR;
147 148 149
	}

	return 0;
150 151
}

152
static struct shrinker huge_zero_page_shrinker = {
153 154
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
155 156 157
	.seeks = DEFAULT_SEEKS,
};

158 159 160 161
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
162 163 164 165 166 167
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
168
}
169

170 171 172 173
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
174
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
175

176 177 178 179 180 181 182 183 184 185 186 187 188 189
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
190 191

	if (ret > 0) {
192
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
193 194 195 196
		if (err)
			ret = err;
	}
	return ret;
197 198 199 200
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

201
ssize_t single_hugepage_flag_show(struct kobject *kobj,
202 203 204
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
205 206
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
207
}
208

209
ssize_t single_hugepage_flag_store(struct kobject *kobj,
210 211 212 213
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
214 215 216 217 218 219 220 221 222 223
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
224
		set_bit(flag, &transparent_hugepage_flags);
225
	else
226 227 228 229 230 231 232 233
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
234
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
235
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
236
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
237 238 239 240 241 242
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
243
}
244

245 246 247 248
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
249 250 251 252 253 254 255 256 257 258 259 260
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("defer+madvise", buf,
		    min(sizeof("defer+madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 262 263 264 265 266
	} else if (!memcmp("defer", buf,
		    min(sizeof("defer")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
283 284 285 286
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

287 288 289
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
290
	return single_hugepage_flag_show(kobj, attr, buf,
291 292 293 294 295
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
296
	return single_hugepage_flag_store(kobj, attr, buf, count,
297 298 299 300
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
301 302 303 304 305 306 307 308 309

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

310 311 312 313
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
314
	return single_hugepage_flag_show(kobj, attr, buf,
315 316 317 318 319 320
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
321
	return single_hugepage_flag_store(kobj, attr, buf, count,
322 323 324 325 326 327 328 329 330
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
331
	&use_zero_page_attr.attr,
332
	&hpage_pmd_size_attr.attr,
333
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
334 335
	&shmem_enabled_attr.attr,
#endif
336 337 338 339 340 341
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

342
static const struct attribute_group hugepage_attr_group = {
343
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
344 345
};

S
Shaohua Li 已提交
346
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
347 348 349
{
	int err;

S
Shaohua Li 已提交
350 351
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
352
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
353
		return -ENOMEM;
A
Andrea Arcangeli 已提交
354 355
	}

S
Shaohua Li 已提交
356
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
357
	if (err) {
358
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
359
		goto delete_obj;
A
Andrea Arcangeli 已提交
360 361
	}

S
Shaohua Li 已提交
362
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
363
	if (err) {
364
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
365
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
366
	}
S
Shaohua Li 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

404 405 406 407 408 409 410 411 412 413
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
414 415
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
416
		goto err_sysfs;
A
Andrea Arcangeli 已提交
417

418
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
419
	if (err)
420
		goto err_slab;
A
Andrea Arcangeli 已提交
421

422 423 424
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
425 426 427
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
428

429 430 431 432 433
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
434
	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
435
		transparent_hugepage_flags = 0;
436 437
		return 0;
	}
438

439
	err = start_stop_khugepaged();
440 441
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
442

S
Shaohua Li 已提交
443
	return 0;
444
err_khugepaged:
445 446
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
447 448
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
449
	khugepaged_destroy();
450
err_slab:
S
Shaohua Li 已提交
451
	hugepage_exit_sysfs(hugepage_kobj);
452
err_sysfs:
A
Andrea Arcangeli 已提交
453
	return err;
454
}
455
subsys_initcall(hugepage_init);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
483
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
484 485 486 487
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

488
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
489
{
490
	if (likely(vma->vm_flags & VM_WRITE))
491 492 493 494
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

495 496
static inline struct list_head *page_deferred_list(struct page *page)
{
M
Matthew Wilcox 已提交
497 498
	/* ->lru in the tail pages is occupied by compound_head. */
	return &page[2].deferred_list;
499 500 501 502 503 504 505 506 507 508 509 510 511
}

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
		loff_t off, unsigned long flags, unsigned long size)
{
	unsigned long addr;
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
	unsigned long len_pad;

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
					      off >> PAGE_SHIFT, flags);
	if (IS_ERR_VALUE(addr))
		return 0;

	addr += (off - addr) & (size - 1);
	return addr;
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (addr)
		goto out;
	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
	if (addr)
		return addr;

 out:
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

555 556
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
557
{
J
Jan Kara 已提交
558
	struct vm_area_struct *vma = vmf->vma;
559
	struct mem_cgroup *memcg;
560
	pgtable_t pgtable;
J
Jan Kara 已提交
561
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
562
	vm_fault_t ret = 0;
563

564
	VM_BUG_ON_PAGE(!PageCompound(page), page);
565

566
	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
567 568 569 570
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
571

K
Kirill A. Shutemov 已提交
572
	pgtable = pte_alloc_one(vma->vm_mm, haddr);
573
	if (unlikely(!pgtable)) {
574 575
		ret = VM_FAULT_OOM;
		goto release;
576
	}
577

578
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
579 580 581 582 583
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
584 585
	__SetPageUptodate(page);

J
Jan Kara 已提交
586 587
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
588
		goto unlock_release;
589 590
	} else {
		pmd_t entry;
591

592 593 594 595
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

596 597
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
598
			vm_fault_t ret2;
599

J
Jan Kara 已提交
600
			spin_unlock(vmf->ptl);
601
			mem_cgroup_cancel_charge(page, memcg, true);
602
			put_page(page);
K
Kirill A. Shutemov 已提交
603
			pte_free(vma->vm_mm, pgtable);
604 605 606
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
607 608
		}

609
		entry = mk_huge_pmd(page, vma->vm_page_prot);
610
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
611
		page_add_new_anon_rmap(page, vma, haddr, true);
612
		mem_cgroup_commit_charge(page, memcg, false, true);
613
		lru_cache_add_active_or_unevictable(page, vma);
J
Jan Kara 已提交
614 615
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
616
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
617
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
618
		spin_unlock(vmf->ptl);
619
		count_vm_event(THP_FAULT_ALLOC);
620 621
	}

622
	return 0;
623 624 625 626 627 628 629 630 631
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	mem_cgroup_cancel_charge(page, memcg, true);
	put_page(page);
	return ret;

632 633
}

634
/*
635 636 637 638 639 640 641
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
642 643 644
 */
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
{
645
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
646

647
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
648
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
649 650 651 652 653 654 655 656
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     __GFP_KSWAPD_RECLAIM);
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     0);
657
	return GFP_TRANSHUGE_LIGHT;
658 659
}

660
/* Caller must hold page table lock. */
661
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
662
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
663
		struct page *zero_page)
664 665
{
	pmd_t entry;
A
Andrew Morton 已提交
666 667
	if (!pmd_none(*pmd))
		return false;
668
	entry = mk_pmd(zero_page, vma->vm_page_prot);
669
	entry = pmd_mkhuge(entry);
670 671
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
672
	set_pmd_at(mm, haddr, pmd, entry);
673
	mm_inc_nr_ptes(mm);
A
Andrew Morton 已提交
674
	return true;
675 676
}

677
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
678
{
J
Jan Kara 已提交
679
	struct vm_area_struct *vma = vmf->vma;
680
	gfp_t gfp;
681
	struct page *page;
J
Jan Kara 已提交
682
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
683

684
	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
685
		return VM_FAULT_FALLBACK;
686 687
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
688
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
689
		return VM_FAULT_OOM;
J
Jan Kara 已提交
690
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
691
			!mm_forbids_zeropage(vma->vm_mm) &&
692 693 694 695
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
696
		vm_fault_t ret;
K
Kirill A. Shutemov 已提交
697
		pgtable = pte_alloc_one(vma->vm_mm, haddr);
698
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
699
			return VM_FAULT_OOM;
700
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
701
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
702
			pte_free(vma->vm_mm, pgtable);
703
			count_vm_event(THP_FAULT_FALLBACK);
704
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
705
		}
J
Jan Kara 已提交
706
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
707 708
		ret = 0;
		set = false;
J
Jan Kara 已提交
709
		if (pmd_none(*vmf->pmd)) {
710 711 712 713
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
714 715
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
716 717
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
718
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
719 720
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
721 722 723
				set = true;
			}
		} else
J
Jan Kara 已提交
724
			spin_unlock(vmf->ptl);
725
		if (!set)
K
Kirill A. Shutemov 已提交
726
			pte_free(vma->vm_mm, pgtable);
727
		return ret;
728
	}
729
	gfp = alloc_hugepage_direct_gfpmask(vma);
730
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
731 732
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
733
		return VM_FAULT_FALLBACK;
734
	}
735
	prep_transhuge_page(page);
J
Jan Kara 已提交
736
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
737 738
}

739
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
740 741
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
742 743 744 745 746 747
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

763 764 765
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
766
	if (write) {
767 768
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
769
	}
770 771 772

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
773
		mm_inc_nr_ptes(mm);
774
		pgtable = NULL;
775 776
	}

777 778
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
779 780

out_unlock:
M
Matthew Wilcox 已提交
781
	spin_unlock(ptl);
782 783
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
784 785
}

786
vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
M
Matthew Wilcox 已提交
787
{
788 789
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
M
Matthew Wilcox 已提交
790
	pgprot_t pgprot = vma->vm_page_prot;
791
	pgtable_t pgtable = NULL;
792

M
Matthew Wilcox 已提交
793 794 795 796 797
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
798 799
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
800 801 802 803 804 805
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
806

807 808 809 810 811 812
	if (arch_needs_pgtable_deposit()) {
		pgtable = pte_alloc_one(vma->vm_mm, addr);
		if (!pgtable)
			return VM_FAULT_OOM;
	}

813 814
	track_pfn_insert(vma, &pgprot, pfn);

815
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
816
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
817
}
818
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
M
Matthew Wilcox 已提交
819

820
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
821
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
822
{
823
	if (likely(vma->vm_flags & VM_WRITE))
824 825 826 827 828 829 830 831 832 833 834 835
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
836 837 838 839 840 841 842 843 844 845 846 847 848 849
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

850 851 852 853
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
854 855
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
856 857 858
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
859 860

out_unlock:
861 862 863
	spin_unlock(ptl);
}

864
vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
865
{
866 867
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;
868
	pgprot_t pgprot = vma->vm_page_prot;
869

870 871 872 873 874
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
875 876
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
877 878 879 880 881 882 883 884 885
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

886
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
887 888 889 890 891
	return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

892
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
893
		pmd_t *pmd, int flags)
894 895 896
{
	pmd_t _pmd;

897 898 899
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
900
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
901
				pmd, _pmd, flags & FOLL_WRITE))
902 903 904 905 906 907 908 909 910 911 912 913 914
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd, int flags)
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

915 916 917 918 919 920
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

921
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
922 923 924 925 926 927 928 929
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
930
		touch_pmd(vma, addr, pmd, flags);
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

950 951 952 953
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
954
	spinlock_t *dst_ptl, *src_ptl;
955 956
	struct page *src_page;
	pmd_t pmd;
957
	pgtable_t pgtable = NULL;
958
	int ret = -ENOMEM;
959

960 961 962 963 964 965 966
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

	pgtable = pte_alloc_one(dst_mm, addr);
	if (unlikely(!pgtable))
		goto out;
967

968 969 970
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
971 972 973

	ret = -EAGAIN;
	pmd = *src_pmd;
974 975 976 977 978 979 980 981 982

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
983 984
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
985 986
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
987
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
988
		mm_inc_nr_ptes(dst_mm);
989
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
990 991 992 993 994 995
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

996
	if (unlikely(!pmd_trans_huge(pmd))) {
997 998 999
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1000
	/*
1001
	 * When page table lock is held, the huge zero pmd should not be
1002 1003 1004 1005
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1006
		struct page *zero_page;
1007 1008 1009 1010 1011
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1012
		zero_page = mm_get_huge_zero_page(dst_mm);
1013
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1014
				zero_page);
1015 1016 1017
		ret = 0;
		goto out_unlock;
	}
1018

1019 1020 1021 1022 1023
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1024
	mm_inc_nr_ptes(dst_mm);
1025
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1026 1027 1028 1029 1030 1031 1032

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1033 1034
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1035 1036 1037 1038
out:
	return ret;
}

1039 1040
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1041
		pud_t *pud, int flags)
1042 1043 1044
{
	pud_t _pud;

1045 1046 1047
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1048
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1049
				pud, _pud, flags & FOLL_WRITE))
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, int flags)
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1063
	if (flags & FOLL_WRITE && !pud_write(*pud))
1064 1065 1066 1067 1068 1069 1070 1071
		return NULL;

	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1072
		touch_pud(vma, addr, pud, flags);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1151
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1152 1153 1154
{
	pmd_t entry;
	unsigned long haddr;
1155
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1156

J
Jan Kara 已提交
1157 1158
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1159 1160 1161
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1162 1163
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1164
	haddr = vmf->address & HPAGE_PMD_MASK;
1165
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1166
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1167 1168

unlock:
J
Jan Kara 已提交
1169
	spin_unlock(vmf->ptl);
1170 1171
}

1172 1173
static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
			pmd_t orig_pmd, struct page *page)
1174
{
J
Jan Kara 已提交
1175 1176
	struct vm_area_struct *vma = vmf->vma;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1177
	struct mem_cgroup *memcg;
1178 1179
	pgtable_t pgtable;
	pmd_t _pmd;
1180 1181
	int i;
	vm_fault_t ret = 0;
1182
	struct page **pages;
1183 1184
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1185

1186 1187
	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
			      GFP_KERNEL);
1188 1189 1190 1191 1192 1193
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
M
Michal Hocko 已提交
1194
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
J
Jan Kara 已提交
1195
					       vmf->address, page_to_nid(page));
A
Andrea Arcangeli 已提交
1196
		if (unlikely(!pages[i] ||
1197
			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
K
Kirill A. Shutemov 已提交
1198
				     GFP_KERNEL, &memcg, false))) {
A
Andrea Arcangeli 已提交
1199
			if (pages[i])
1200
				put_page(pages[i]);
A
Andrea Arcangeli 已提交
1201
			while (--i >= 0) {
1202 1203
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
1204 1205
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
A
Andrea Arcangeli 已提交
1206 1207
				put_page(pages[i]);
			}
1208 1209 1210 1211
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
1212
		set_page_private(pages[i], (unsigned long)memcg);
1213 1214 1215 1216
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
1217
				   haddr + PAGE_SIZE * i, vma);
1218 1219 1220 1221
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

1222 1223
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1224
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1225

J
Jan Kara 已提交
1226 1227
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1228
		goto out_free_pages;
1229
	VM_BUG_ON_PAGE(!PageHead(page), page);
1230

1231 1232 1233 1234 1235 1236
	/*
	 * Leave pmd empty until pte is filled note we must notify here as
	 * concurrent CPU thread might write to new page before the call to
	 * mmu_notifier_invalidate_range_end() happens which can lead to a
	 * device seeing memory write in different order than CPU.
	 *
1237
	 * See Documentation/vm/mmu_notifier.rst
1238
	 */
J
Jan Kara 已提交
1239
	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1240

J
Jan Kara 已提交
1241
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
K
Kirill A. Shutemov 已提交
1242
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1243 1244

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
K
Kirill A. Shutemov 已提交
1245
		pte_t entry;
1246 1247
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1248 1249
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
J
Jan Kara 已提交
1250
		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1251
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1252
		lru_cache_add_active_or_unevictable(pages[i], vma);
J
Jan Kara 已提交
1253 1254 1255 1256
		vmf->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*vmf->pte));
		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
		pte_unmap(vmf->pte);
1257 1258 1259 1260
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
J
Jan Kara 已提交
1261
	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1262
	page_remove_rmap(page, true);
J
Jan Kara 已提交
1263
	spin_unlock(vmf->ptl);
1264

1265 1266 1267 1268 1269 1270
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
						mmun_end);
1271

1272 1273 1274 1275 1276 1277 1278
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
J
Jan Kara 已提交
1279
	spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
1280
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
1281
	for (i = 0; i < HPAGE_PMD_NR; i++) {
1282 1283
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
1284
		mem_cgroup_cancel_charge(pages[i], memcg, false);
1285
		put_page(pages[i]);
A
Andrea Arcangeli 已提交
1286
	}
1287 1288 1289 1290
	kfree(pages);
	goto out;
}

1291
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1292
{
J
Jan Kara 已提交
1293
	struct vm_area_struct *vma = vmf->vma;
1294
	struct page *page = NULL, *new_page;
1295
	struct mem_cgroup *memcg;
J
Jan Kara 已提交
1296
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1297 1298
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1299
	gfp_t huge_gfp;			/* for allocation and charge */
1300
	vm_fault_t ret = 0;
1301

J
Jan Kara 已提交
1302
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1303
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1304 1305
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
J
Jan Kara 已提交
1306 1307
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1308 1309 1310
		goto out_unlock;

	page = pmd_page(orig_pmd);
1311
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1312 1313
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
1314
	 * part.
1315
	 */
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
			unlock_page(page);
			put_page(page);
			goto out_unlock;
		}
		put_page(page);
	}
	if (reuse_swap_page(page, NULL)) {
1329 1330
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1331
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1332 1333
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1334
		ret |= VM_FAULT_WRITE;
1335
		unlock_page(page);
1336 1337
		goto out_unlock;
	}
1338
	unlock_page(page);
1339
	get_page(page);
J
Jan Kara 已提交
1340
	spin_unlock(vmf->ptl);
1341
alloc:
1342
	if (__transparent_hugepage_enabled(vma) &&
1343
	    !transparent_hugepage_debug_cow()) {
1344
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1345
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1346
	} else
1347 1348
		new_page = NULL;

1349 1350 1351
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
1352
		if (!page) {
J
Jan Kara 已提交
1353
			split_huge_pmd(vma, vmf->pmd, vmf->address);
1354
			ret |= VM_FAULT_FALLBACK;
1355
		} else {
J
Jan Kara 已提交
1356
			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1357
			if (ret & VM_FAULT_OOM) {
J
Jan Kara 已提交
1358
				split_huge_pmd(vma, vmf->pmd, vmf->address);
1359 1360
				ret |= VM_FAULT_FALLBACK;
			}
1361
			put_page(page);
1362
		}
1363
		count_vm_event(THP_FAULT_FALLBACK);
1364 1365 1366
		goto out;
	}

1367
	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1368
					huge_gfp, &memcg, true))) {
A
Andrea Arcangeli 已提交
1369
		put_page(new_page);
J
Jan Kara 已提交
1370
		split_huge_pmd(vma, vmf->pmd, vmf->address);
K
Kirill A. Shutemov 已提交
1371
		if (page)
1372
			put_page(page);
1373
		ret |= VM_FAULT_FALLBACK;
1374
		count_vm_event(THP_FAULT_FALLBACK);
A
Andrea Arcangeli 已提交
1375 1376 1377
		goto out;
	}

1378 1379
	count_vm_event(THP_FAULT_ALLOC);

1380
	if (!page)
1381
		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1382
	else
1383 1384
		copy_user_huge_page(new_page, page, vmf->address,
				    vma, HPAGE_PMD_NR);
1385 1386
	__SetPageUptodate(new_page);

1387 1388
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1389
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1390

J
Jan Kara 已提交
1391
	spin_lock(vmf->ptl);
1392
	if (page)
1393
		put_page(page);
J
Jan Kara 已提交
1394 1395
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
1396
		mem_cgroup_cancel_charge(new_page, memcg, true);
1397
		put_page(new_page);
1398
		goto out_mn;
A
Andrea Arcangeli 已提交
1399
	} else {
1400
		pmd_t entry;
1401
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1402
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1403
		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1404
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1405
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1406
		lru_cache_add_active_or_unevictable(new_page, vma);
J
Jan Kara 已提交
1407 1408
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1409
		if (!page) {
K
Kirill A. Shutemov 已提交
1410
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1411
		} else {
1412
			VM_BUG_ON_PAGE(!PageHead(page), page);
1413
			page_remove_rmap(page, true);
1414 1415
			put_page(page);
		}
1416 1417
		ret |= VM_FAULT_WRITE;
	}
J
Jan Kara 已提交
1418
	spin_unlock(vmf->ptl);
1419
out_mn:
1420 1421 1422 1423 1424 1425
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
					       mmun_end);
1426 1427
out:
	return ret;
1428
out_unlock:
J
Jan Kara 已提交
1429
	spin_unlock(vmf->ptl);
1430
	return ret;
1431 1432
}

1433 1434 1435 1436 1437 1438
/*
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1439
	return pmd_write(pmd) ||
1440 1441 1442
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
}

1443
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1444 1445 1446 1447
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1448
	struct mm_struct *mm = vma->vm_mm;
1449 1450
	struct page *page = NULL;

1451
	assert_spin_locked(pmd_lockptr(mm, pmd));
1452

1453
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1454 1455
		goto out;

1456 1457 1458 1459
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1460
	/* Full NUMA hinting faults to serialise migration in fault paths */
1461
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1462 1463
		goto out;

1464
	page = pmd_page(*pmd);
1465
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1466
	if (flags & FOLL_TOUCH)
1467
		touch_pmd(vma, addr, pmd, flags);
E
Eric B Munson 已提交
1468
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1469 1470 1471 1472
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1473 1474
		 * For anon THP:
		 *
1475 1476 1477 1478 1479 1480 1481
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1482 1483 1484 1485 1486 1487
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1488
		 */
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1500
	}
1501
skip_mlock:
1502
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1503
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1504
	if (flags & FOLL_GET)
1505
		get_page(page);
1506 1507 1508 1509 1510

out:
	return page;
}

1511
/* NUMA hinting page fault entry point for trans huge pmds */
1512
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1513
{
J
Jan Kara 已提交
1514
	struct vm_area_struct *vma = vmf->vma;
1515
	struct anon_vma *anon_vma = NULL;
1516
	struct page *page;
J
Jan Kara 已提交
1517
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1518
	int page_nid = -1, this_nid = numa_node_id();
1519
	int target_nid, last_cpupid = -1;
1520 1521
	bool page_locked;
	bool migrated = false;
1522
	bool was_writable;
1523
	int flags = 0;
1524

J
Jan Kara 已提交
1525 1526
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1527 1528
		goto out_unlock;

1529 1530 1531 1532 1533
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1534 1535
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1536 1537
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1538
		spin_unlock(vmf->ptl);
1539
		wait_on_page_locked(page);
1540
		put_page(page);
1541 1542 1543
		goto out;
	}

1544
	page = pmd_page(pmd);
1545
	BUG_ON(is_huge_zero_page(page));
1546
	page_nid = page_to_nid(page);
1547
	last_cpupid = page_cpupid_last(page);
1548
	count_vm_numa_event(NUMA_HINT_FAULTS);
1549
	if (page_nid == this_nid) {
1550
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1551 1552
		flags |= TNF_FAULT_LOCAL;
	}
1553

1554
	/* See similar comment in do_numa_page for explanation */
1555
	if (!pmd_savedwrite(pmd))
1556 1557
		flags |= TNF_NO_GROUP;

1558 1559 1560 1561
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1562 1563 1564 1565
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
	if (target_nid == -1) {
		/* If the page was locked, there are no parallel migrations */
1566
		if (page_locked)
1567
			goto clear_pmdnuma;
1568
	}
1569

1570
	/* Migration could have started since the pmd_trans_migrating check */
1571
	if (!page_locked) {
1572 1573 1574
		page_nid = -1;
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1575
		spin_unlock(vmf->ptl);
1576
		wait_on_page_locked(page);
1577
		put_page(page);
1578 1579 1580
		goto out;
	}

1581 1582 1583 1584
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1585
	get_page(page);
J
Jan Kara 已提交
1586
	spin_unlock(vmf->ptl);
1587
	anon_vma = page_lock_anon_vma_read(page);
1588

P
Peter Zijlstra 已提交
1589
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1590 1591
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1592 1593
		unlock_page(page);
		put_page(page);
1594
		page_nid = -1;
1595
		goto out_unlock;
1596
	}
1597

1598 1599 1600 1601 1602 1603 1604
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
		page_nid = -1;
		goto clear_pmdnuma;
	}

1605 1606 1607 1608 1609 1610
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1611 1612 1613 1614
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1615 1616
	 */
	if (mm_tlb_flush_pending(vma->vm_mm))
1617
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1618

1619 1620
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1621
	 * and access rights restored.
1622
	 */
J
Jan Kara 已提交
1623
	spin_unlock(vmf->ptl);
1624

K
Kirill A. Shutemov 已提交
1625
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1626
				vmf->pmd, pmd, vmf->address, page, target_nid);
1627 1628
	if (migrated) {
		flags |= TNF_MIGRATED;
1629
		page_nid = target_nid;
1630 1631
	} else
		flags |= TNF_MIGRATE_FAIL;
1632

1633
	goto out;
1634
clear_pmdnuma:
1635
	BUG_ON(!PageLocked(page));
1636
	was_writable = pmd_savedwrite(pmd);
1637
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1638
	pmd = pmd_mkyoung(pmd);
1639 1640
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1641 1642
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1643
	unlock_page(page);
1644
out_unlock:
J
Jan Kara 已提交
1645
	spin_unlock(vmf->ptl);
1646 1647 1648 1649 1650

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1651
	if (page_nid != -1)
J
Jan Kara 已提交
1652
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1653
				flags);
1654

1655 1656 1657
	return 0;
}

1658 1659 1660 1661 1662
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1663 1664 1665 1666 1667 1668
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1669
	bool ret = false;
1670

1671 1672
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1673 1674
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1675
		goto out_unlocked;
1676 1677

	orig_pmd = *pmd;
1678
	if (is_huge_zero_pmd(orig_pmd))
1679 1680
		goto out;

1681 1682 1683 1684 1685 1686
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1705
		split_huge_page(page);
1706
		unlock_page(page);
1707
		put_page(page);
1708 1709 1710 1711 1712 1713 1714 1715
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1716
		pmdp_invalidate(vma, addr, pmd);
1717 1718 1719 1720 1721 1722
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1723 1724

	mark_page_lazyfree(page);
1725
	ret = true;
1726 1727 1728 1729 1730 1731
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1732 1733 1734 1735 1736 1737
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1738
	mm_dec_nr_ptes(mm);
1739 1740
}

1741
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1742
		 pmd_t *pmd, unsigned long addr)
1743
{
1744
	pmd_t orig_pmd;
1745
	spinlock_t *ptl;
1746

1747 1748
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1749 1750
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	if (vma_is_dax(vma)) {
1762 1763
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1764 1765
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1766
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1767
	} else if (is_huge_zero_pmd(orig_pmd)) {
1768
		zap_deposited_table(tlb->mm, pmd);
1769
		spin_unlock(ptl);
1770
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1771
	} else {
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1790
		if (PageAnon(page)) {
1791
			zap_deposited_table(tlb->mm, pmd);
1792 1793
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1794 1795
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1796
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1797
		}
1798

1799
		spin_unlock(ptl);
1800 1801
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1802
	}
1803
	return 1;
1804 1805
}

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1832
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1833
		  unsigned long new_addr, unsigned long old_end,
1834
		  pmd_t *old_pmd, pmd_t *new_pmd)
1835
{
1836
	spinlock_t *old_ptl, *new_ptl;
1837 1838
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1839
	bool force_flush = false;
1840 1841 1842

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1843
	    old_end - old_addr < HPAGE_PMD_SIZE)
1844
		return false;
1845 1846 1847 1848 1849 1850 1851

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1852
		return false;
1853 1854
	}

1855 1856 1857 1858
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1859 1860
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1861 1862 1863
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1864
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1865
		if (pmd_present(pmd))
1866
			force_flush = true;
1867
		VM_BUG_ON(!pmd_none(*new_pmd));
1868

1869
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1870
			pgtable_t pgtable;
1871 1872 1873
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1874 1875
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1876 1877
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1878 1879
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1880
		spin_unlock(old_ptl);
1881
		return true;
1882
	}
1883
	return false;
1884 1885
}

1886 1887 1888 1889 1890 1891
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1892
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1893
		unsigned long addr, pgprot_t newprot, int prot_numa)
1894 1895
{
	struct mm_struct *mm = vma->vm_mm;
1896
	spinlock_t *ptl;
1897 1898 1899
	pmd_t entry;
	bool preserve_write;
	int ret;
1900

1901
	ptl = __pmd_trans_huge_lock(pmd, vma);
1902 1903
	if (!ptl)
		return 0;
1904

1905 1906
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1907

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1921 1922
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1923 1924 1925 1926 1927 1928
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1929 1930 1931 1932 1933 1934 1935
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1936

1937 1938 1939
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	/*
	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
	 * which is also under down_read(mmap_sem):
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1961
	entry = pmdp_invalidate(vma, addr, pmd);
1962

1963 1964 1965 1966 1967 1968 1969 1970
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1971 1972 1973 1974
	return ret;
}

/*
1975
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1976
 *
1977 1978
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1979
 */
1980
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1981
{
1982 1983
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1984 1985
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1986 1987 1988
		return ptl;
	spin_unlock(ptl);
	return NULL;
1989 1990
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	pud_t orig_pud;
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
			tlb->fullmm);
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

2045
	count_vm_event(THP_SPLIT_PUD);
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PUD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
	ptl = pud_lock(mm, pud);
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
	__split_huge_pud_locked(vma, pud, haddr);

out:
	spin_unlock(ptl);
2065 2066 2067 2068 2069 2070
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
					       HPAGE_PUD_SIZE);
2071 2072 2073
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

2074 2075 2076 2077 2078 2079 2080 2081
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

2082 2083 2084 2085 2086 2087
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
2088
	 * See Documentation/vm/mmu_notifier.rst
2089 2090
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2109
		unsigned long haddr, bool freeze)
2110 2111 2112 2113
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2114
	pmd_t old_pmd, _pmd;
2115
	bool young, write, soft_dirty, pmd_migration = false;
2116
	unsigned long addr;
2117 2118 2119 2120 2121
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2122 2123
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2124 2125 2126

	count_vm_event(THP_SPLIT_PMD);

2127 2128
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2129 2130 2131 2132 2133 2134
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2135 2136 2137
		if (vma_is_dax(vma))
			return;
		page = pmd_page(_pmd);
2138 2139
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2140 2141 2142 2143
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2144
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2145 2146
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
2147 2148 2149 2150 2151 2152 2153 2154 2155
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2156 2157 2158
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2182
	if (unlikely(pmd_migration)) {
2183 2184
		swp_entry_t entry;

2185
		entry = pmd_to_swp_entry(old_pmd);
2186
		page = pfn_to_page(swp_offset(entry));
2187 2188 2189 2190
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
	} else {
2191
		page = pmd_page(old_pmd);
2192 2193 2194 2195 2196 2197
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
	}
2198
	VM_BUG_ON_PAGE(!page_count(page), page);
2199
	page_ref_add(page, HPAGE_PMD_NR - 1);
2200

2201 2202 2203 2204
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2205 2206 2207
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2208
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2209 2210 2211 2212 2213 2214
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2215
		if (freeze || pmd_migration) {
2216 2217 2218
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2219 2220
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2221
		} else {
2222
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2223
			entry = maybe_mkwrite(entry, vma);
2224 2225 2226 2227
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2228 2229
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2230
		}
2231
		pte = pte_offset_map(&_pmd, addr);
2232
		BUG_ON(!pte_none(*pte));
2233
		set_pte_at(mm, addr, pte, entry);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
2249
		__dec_node_page_state(page, NR_ANON_THPS);
2250 2251 2252 2253 2254 2255 2256 2257 2258
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2259 2260

	if (freeze) {
2261
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2262 2263 2264 2265
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2266 2267 2268
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2269
		unsigned long address, bool freeze, struct page *page)
2270 2271 2272 2273 2274 2275 2276
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PMD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
	ptl = pmd_lock(mm, pmd);
2277 2278 2279 2280 2281 2282 2283 2284 2285

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

2286
	if (pmd_trans_huge(*pmd)) {
2287
		page = pmd_page(*pmd);
2288
		if (PageMlocked(page))
2289
			clear_page_mlock(page);
2290
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2291
		goto out;
2292
	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2293
out:
2294
	spin_unlock(ptl);
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
					       HPAGE_PMD_SIZE);
2310 2311
}

2312 2313
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2314
{
2315
	pgd_t *pgd;
2316
	p4d_t *p4d;
2317
	pud_t *pud;
2318 2319
	pmd_t *pmd;

2320
	pgd = pgd_offset(vma->vm_mm, address);
2321 2322 2323
	if (!pgd_present(*pgd))
		return;

2324 2325 2326 2327 2328
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2329 2330 2331 2332
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2333

2334
	__split_huge_pmd(vma, pmd, address, freeze, page);
2335 2336
}

2337
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2350
		split_huge_pmd_address(vma, start, false, NULL);
2351 2352 2353 2354 2355 2356 2357 2358 2359

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2360
		split_huge_pmd_address(vma, end, false, NULL);
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2374
			split_huge_pmd_address(next, nstart, false, NULL);
2375 2376
	}
}
2377

2378
static void unmap_page(struct page *page)
2379
{
2380
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2381
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2382
	bool unmap_success;
2383 2384 2385

	VM_BUG_ON_PAGE(!PageHead(page), page);

2386
	if (PageAnon(page))
2387
		ttu_flags |= TTU_SPLIT_FREEZE;
2388

M
Minchan Kim 已提交
2389 2390
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2391 2392
}

2393
static void remap_page(struct page *page)
2394
{
2395
	int i;
2396 2397 2398 2399 2400 2401
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2402 2403
}

2404
static void __split_huge_page_tail(struct page *head, int tail,
2405 2406 2407 2408
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2409
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2410 2411

	/*
2412 2413 2414 2415
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
	 * for exmaple lock_page() which set PG_waiters.
2416 2417 2418 2419 2420
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2421
			 (1L << PG_swapcache) |
2422 2423 2424
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2425
			 (1L << PG_workingset) |
2426
			 (1L << PG_locked) |
2427 2428
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
2429

2430 2431 2432 2433 2434 2435
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2436
	/* Page flags must be visible before we make the page non-compound. */
2437 2438
	smp_wmb();

2439 2440 2441 2442 2443 2444
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2445 2446
	clear_compound_head(page_tail);

2447 2448 2449 2450
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2451 2452 2453 2454 2455 2456
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2457 2458 2459 2460 2461 2462

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2463 2464 2465
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2466
static void __split_huge_page(struct page *page, struct list_head *list,
2467
		pgoff_t end, unsigned long flags)
2468 2469 2470 2471
{
	struct page *head = compound_head(page);
	struct zone *zone = page_zone(head);
	struct lruvec *lruvec;
2472
	int i;
2473

M
Mel Gorman 已提交
2474
	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2475 2476 2477 2478

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2479
	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2480
		__split_huge_page_tail(head, i, lruvec, list);
2481 2482
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2483
			ClearPageDirty(head + i);
2484
			__delete_from_page_cache(head + i, NULL);
2485 2486
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2487 2488 2489
			put_page(head + i);
		}
	}
2490 2491

	ClearPageCompound(head);
2492 2493 2494

	split_page_owner(head, HPAGE_PMD_ORDER);

2495 2496
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
2497 2498 2499 2500 2501
		/* Additional pin to radix tree of swap cache */
		if (PageSwapCache(head))
			page_ref_add(head, 2);
		else
			page_ref_inc(head);
2502 2503 2504
	} else {
		/* Additional pin to radix tree */
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2505
		xa_unlock(&head->mapping->i_pages);
2506 2507
	}

2508
	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2509

2510
	remap_page(head);
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2529 2530
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
2531
	int i, compound, ret;
2532 2533 2534 2535 2536 2537

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2538
	compound = compound_mapcount(page);
2539
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2540 2541
		return compound;
	ret = compound;
2542 2543
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2544 2545 2546
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2547 2548 2549 2550 2551
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

	/* Additional pins from radix tree */
	if (PageAnon(page))
		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
	else
		extra_pins = HPAGE_PMD_NR;
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2647
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2648
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2649 2650 2651
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2652
	bool mlocked;
2653
	unsigned long flags;
2654
	pgoff_t end;
2655 2656 2657 2658 2659

	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageCompound(page), page);

2660 2661 2662
	if (PageWriteback(page))
		return -EBUSY;

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2677
		end = -1;
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2691 2692 2693 2694 2695 2696 2697 2698 2699

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2700 2701 2702
	}

	/*
2703
	 * Racy check if we can split the page, before unmap_page() will
2704 2705
	 * split PMDs
	 */
2706
	if (!can_split_huge_page(head, &extra_pins)) {
2707 2708 2709 2710
		ret = -EBUSY;
		goto out_unlock;
	}

2711
	mlocked = PageMlocked(page);
2712
	unmap_page(head);
2713 2714
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2715 2716 2717 2718
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2719
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2720
	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2721 2722 2723 2724

	if (mapping) {
		void **pslot;

M
Matthew Wilcox 已提交
2725 2726
		xa_lock(&mapping->i_pages);
		pslot = radix_tree_lookup_slot(&mapping->i_pages,
2727 2728 2729 2730 2731 2732
				page_index(head));
		/*
		 * Check if the head page is present in radix tree.
		 * We assume all tail are present too, if head is there.
		 */
		if (radix_tree_deref_slot_protected(pslot,
M
Matthew Wilcox 已提交
2733
					&mapping->i_pages.xa_lock) != head)
2734 2735 2736
			goto fail;
	}

2737
	/* Prevent deferred_split_scan() touching ->_refcount */
2738
	spin_lock(&ds_queue->split_queue_lock);
2739 2740
	count = page_count(head);
	mapcount = total_mapcount(head);
2741
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2742
		if (!list_empty(page_deferred_list(head))) {
2743
			ds_queue->split_queue_len--;
2744 2745
			list_del(page_deferred_list(head));
		}
2746
		if (mapping)
2747
			__dec_node_page_state(page, NR_SHMEM_THPS);
2748
		spin_unlock(&ds_queue->split_queue_lock);
2749
		__split_huge_page(page, list, end, flags);
2750 2751 2752 2753 2754 2755
		if (PageSwapCache(head)) {
			swp_entry_t entry = { .val = page_private(head) };

			ret = split_swap_cluster(entry);
		} else
			ret = 0;
2756
	} else {
2757 2758 2759 2760 2761 2762 2763 2764
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
2765
		spin_unlock(&ds_queue->split_queue_lock);
2766
fail:		if (mapping)
M
Matthew Wilcox 已提交
2767
			xa_unlock(&mapping->i_pages);
2768
		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2769
		remap_page(head);
2770 2771 2772 2773
		ret = -EBUSY;
	}

out_unlock:
2774 2775 2776 2777 2778 2779
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2780 2781 2782 2783
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2784 2785 2786

void free_transhuge_page(struct page *page)
{
2787
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2788
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2789 2790
	unsigned long flags;

2791
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2792
	if (!list_empty(page_deferred_list(page))) {
2793
		ds_queue->split_queue_len--;
2794 2795
		list_del(page_deferred_list(page));
	}
2796
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2797 2798 2799 2800 2801
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2802
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2803
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2804 2805 2806 2807
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2808
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2809
	if (list_empty(page_deferred_list(page))) {
2810
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2811 2812
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2813
	}
2814
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2815 2816 2817 2818 2819
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2820
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2821 2822
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
	return READ_ONCE(ds_queue->split_queue_len);
2823 2824 2825 2826 2827
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2828
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2829
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2830 2831 2832 2833 2834
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2835
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2836
	/* Take pin on all head pages to avoid freeing them under us */
2837
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2838 2839
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2840 2841 2842 2843
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2844
			list_del_init(page_deferred_list(page));
2845
			ds_queue->split_queue_len--;
2846
		}
2847 2848
		if (!--sc->nr_to_scan)
			break;
2849
	}
2850
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2851 2852 2853

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2854 2855
		if (!trylock_page(page))
			goto next;
2856 2857 2858 2859
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2860
next:
2861 2862 2863
		put_page(page);
	}

2864 2865 2866
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2867

2868 2869 2870 2871
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2872
	if (!split && list_empty(&ds_queue->split_queue))
2873 2874
		return SHRINK_STOP;
	return split;
2875 2876 2877 2878 2879 2880
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2881
	.flags = SHRINKER_NUMA_AWARE,
2882
};
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2908
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2921
	pr_info("%lu of %lu THP split\n", split, total);
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
	void *ret;

2932
	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2933 2934 2935 2936 2937 2938 2939
			&split_huge_pages_fops);
	if (!ret)
		pr_warn("Failed to create split_huge_pages in debugfs");
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
2950
	pmd_t pmdswp;
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
	pmdval = *pvmw->pmd;
	pmdp_invalidate(vma, address, pvmw->pmd);
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
2961 2962 2963 2964
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2984 2985
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
2986
	if (is_write_migration_entry(entry))
2987
		pmde = maybe_pmd_mkwrite(pmde, vma);
2988 2989

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2990 2991 2992 2993
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
2994
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2995
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2996 2997 2998 2999
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif