huge_memory.c 64.5 KB
Newer Older
1 2 3 4 5 6 7
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 */

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11 12 13 14 15 16
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33

34 35 36 37
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
38
/*
39 40 41 42 43 44
 * By default transparent hugepage support is disabled in order that avoid
 * to risk increase the memory footprint of applications without a guaranteed
 * benefit. When transparent hugepage support is enabled, is for all mappings,
 * and khugepaged scans all mappings.
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
45
 */
46
unsigned long transparent_hugepage_flags __read_mostly =
47
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
48
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 50 51 52
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
53
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 55
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
56

57
static struct shrinker deferred_split_shrinker;
58

59
static atomic_t huge_zero_refcount;
60
struct page *huge_zero_page __read_mostly;
61

62
static struct page *get_huge_zero_page(void)
63 64 65 66
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67
		return READ_ONCE(huge_zero_page);
68 69

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70
			HPAGE_PMD_ORDER);
71 72
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73
		return NULL;
74 75
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
76
	preempt_disable();
77
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78
		preempt_enable();
79
		__free_pages(zero_page, compound_order(zero_page));
80 81 82 83 84 85
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
86
	return READ_ONCE(huge_zero_page);
87 88
}

89
static void put_huge_zero_page(void)
90
{
91 92 93 94 95
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 97
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

118 119
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
120
{
121 122 123
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
124

125 126 127
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
128
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
129 130
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
131
		__free_pages(zero_page, compound_order(zero_page));
132
		return HPAGE_PMD_NR;
133 134 135
	}

	return 0;
136 137
}

138
static struct shrinker huge_zero_page_shrinker = {
139 140
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
141 142 143
	.seeks = DEFAULT_SEEKS,
};

144
#ifdef CONFIG_SYSFS
A
Andrea Arcangeli 已提交
145

146
static ssize_t triple_flag_store(struct kobject *kobj,
147 148 149
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag enabled,
150
				 enum transparent_hugepage_flag deferred,
151 152
				 enum transparent_hugepage_flag req_madv)
{
153 154 155 156 157 158 159 160
	if (!memcmp("defer", buf,
		    min(sizeof("defer")-1, count))) {
		if (enabled == deferred)
			return -EINVAL;
		clear_bit(enabled, &transparent_hugepage_flags);
		clear_bit(req_madv, &transparent_hugepage_flags);
		set_bit(deferred, &transparent_hugepage_flags);
	} else if (!memcmp("always", buf,
161
		    min(sizeof("always")-1, count))) {
162
		clear_bit(deferred, &transparent_hugepage_flags);
163
		clear_bit(req_madv, &transparent_hugepage_flags);
164
		set_bit(enabled, &transparent_hugepage_flags);
165 166 167
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(enabled, &transparent_hugepage_flags);
168
		clear_bit(deferred, &transparent_hugepage_flags);
169 170 171 172 173
		set_bit(req_madv, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(enabled, &transparent_hugepage_flags);
		clear_bit(req_madv, &transparent_hugepage_flags);
174
		clear_bit(deferred, &transparent_hugepage_flags);
175 176 177 178 179 180 181 182 183
	} else
		return -EINVAL;

	return count;
}

static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
184 185 186 187 188 189
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
190
}
191

192 193 194 195
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
A
Andrea Arcangeli 已提交
196 197
	ssize_t ret;

198 199
	ret = triple_flag_store(kobj, attr, buf, count,
				TRANSPARENT_HUGEPAGE_FLAG,
A
Andrea Arcangeli 已提交
200 201 202 203
				TRANSPARENT_HUGEPAGE_FLAG,
				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);

	if (ret > 0) {
204
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
205 206 207 208 209
		if (err)
			ret = err;
	}

	return ret;
210 211 212 213
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

214
ssize_t single_hugepage_flag_show(struct kobject *kobj,
215 216 217
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
218 219
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
220
}
221

222
ssize_t single_hugepage_flag_store(struct kobject *kobj,
223 224 225 226
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
227 228 229 230 231 232 233 234 235 236
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
237
		set_bit(flag, &transparent_hugepage_flags);
238
	else
239 240 241 242 243 244 245 246 247 248 249 250 251
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

/*
 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 * memory just to allocate one more hugepage.
 */
static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
252 253 254 255 256 257 258 259 260
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] defer madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [defer] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [madvise] never\n");
	else
		return sprintf(buf, "always defer madvise [never]\n");

261 262 263 264 265
}
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
266 267 268
	return triple_flag_store(kobj, attr, buf, count,
				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
269 270 271 272 273
				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

274 275 276
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
277
	return single_hugepage_flag_show(kobj, attr, buf,
278 279 280 281 282
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
283
	return single_hugepage_flag_store(kobj, attr, buf, count,
284 285 286 287
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
288 289 290 291 292 293 294 295 296

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

297 298 299 300
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
301
	return single_hugepage_flag_show(kobj, attr, buf,
302 303 304 305 306 307
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
308
	return single_hugepage_flag_store(kobj, attr, buf, count,
309 310 311 312 313 314 315 316 317
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
318
	&use_zero_page_attr.attr,
319
	&hpage_pmd_size_attr.attr,
320
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
321 322
	&shmem_enabled_attr.attr,
#endif
323 324 325 326 327 328 329 330
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

static struct attribute_group hugepage_attr_group = {
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
331 332
};

S
Shaohua Li 已提交
333
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
334 335 336
{
	int err;

S
Shaohua Li 已提交
337 338
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
339
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
340
		return -ENOMEM;
A
Andrea Arcangeli 已提交
341 342
	}

S
Shaohua Li 已提交
343
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
344
	if (err) {
345
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
346
		goto delete_obj;
A
Andrea Arcangeli 已提交
347 348
	}

S
Shaohua Li 已提交
349
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
350
	if (err) {
351
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
352
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
353
	}
S
Shaohua Li 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

391 392 393 394 395 396 397 398 399 400
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
401 402
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
403
		goto err_sysfs;
A
Andrea Arcangeli 已提交
404

405
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
406
	if (err)
407
		goto err_slab;
A
Andrea Arcangeli 已提交
408

409 410 411
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
412 413 414
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
415

416 417 418 419 420
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
421
	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
422
		transparent_hugepage_flags = 0;
423 424
		return 0;
	}
425

426
	err = start_stop_khugepaged();
427 428
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
429

S
Shaohua Li 已提交
430
	return 0;
431
err_khugepaged:
432 433
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
434 435
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
436
	khugepaged_destroy();
437
err_slab:
S
Shaohua Li 已提交
438
	hugepage_exit_sysfs(hugepage_kobj);
439
err_sysfs:
A
Andrea Arcangeli 已提交
440
	return err;
441
}
442
subsys_initcall(hugepage_init);
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
470
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
471 472 473 474
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

475
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
476 477 478 479 480 481
{
	if (likely(vma->vm_flags & VM_WRITE))
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
static inline struct list_head *page_deferred_list(struct page *page)
{
	/*
	 * ->lru in the tail pages is occupied by compound_head.
	 * Let's use ->mapping + ->index in the second tail page as list_head.
	 */
	return (struct list_head *)&page[2].mapping;
}

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
		loff_t off, unsigned long flags, unsigned long size)
{
	unsigned long addr;
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
	unsigned long len_pad;

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
					      off >> PAGE_SHIFT, flags);
	if (IS_ERR_VALUE(addr))
		return 0;

	addr += (off - addr) & (size - 1);
	return addr;
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (addr)
		goto out;
	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
	if (addr)
		return addr;

 out:
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

J
Jan Kara 已提交
545
static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
K
Kirill A. Shutemov 已提交
546
		gfp_t gfp)
547
{
J
Jan Kara 已提交
548
	struct vm_area_struct *vma = vmf->vma;
549
	struct mem_cgroup *memcg;
550
	pgtable_t pgtable;
J
Jan Kara 已提交
551
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
552

553
	VM_BUG_ON_PAGE(!PageCompound(page), page);
554

K
Kirill A. Shutemov 已提交
555
	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
556 557 558 559
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
560

K
Kirill A. Shutemov 已提交
561
	pgtable = pte_alloc_one(vma->vm_mm, haddr);
562
	if (unlikely(!pgtable)) {
563
		mem_cgroup_cancel_charge(page, memcg, true);
564
		put_page(page);
565
		return VM_FAULT_OOM;
566
	}
567 568

	clear_huge_page(page, haddr, HPAGE_PMD_NR);
569 570 571 572 573
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
574 575
	__SetPageUptodate(page);

J
Jan Kara 已提交
576 577 578
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
		spin_unlock(vmf->ptl);
579
		mem_cgroup_cancel_charge(page, memcg, true);
580
		put_page(page);
K
Kirill A. Shutemov 已提交
581
		pte_free(vma->vm_mm, pgtable);
582 583
	} else {
		pmd_t entry;
584 585 586 587 588

		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
			int ret;

J
Jan Kara 已提交
589
			spin_unlock(vmf->ptl);
590
			mem_cgroup_cancel_charge(page, memcg, true);
591
			put_page(page);
K
Kirill A. Shutemov 已提交
592
			pte_free(vma->vm_mm, pgtable);
J
Jan Kara 已提交
593
			ret = handle_userfault(vmf, VM_UFFD_MISSING);
594 595 596 597
			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			return ret;
		}

598 599
		entry = mk_huge_pmd(page, vma->vm_page_prot);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
600
		page_add_new_anon_rmap(page, vma, haddr, true);
601
		mem_cgroup_commit_charge(page, memcg, false, true);
602
		lru_cache_add_active_or_unevictable(page, vma);
J
Jan Kara 已提交
603 604
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
605 606
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
		atomic_long_inc(&vma->vm_mm->nr_ptes);
J
Jan Kara 已提交
607
		spin_unlock(vmf->ptl);
608
		count_vm_event(THP_FAULT_ALLOC);
609 610
	}

611
	return 0;
612 613
}

614
/*
615 616
 * If THP defrag is set to always then directly reclaim/compact as necessary
 * If set to defer then do only background reclaim/compact and defer to khugepaged
617
 * If set to madvise and the VMA is flagged then directly reclaim/compact
618
 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
619 620 621
 */
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
{
622 623 624 625 626 627 628 629 630 631 632 633 634
	bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);

	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
				&transparent_hugepage_flags) && vma_madvised)
		return GFP_TRANSHUGE;
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
						&transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
						&transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);

	return GFP_TRANSHUGE_LIGHT;
635 636
}

637
/* Caller must hold page table lock. */
638
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
639
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
640
		struct page *zero_page)
641 642
{
	pmd_t entry;
A
Andrew Morton 已提交
643 644
	if (!pmd_none(*pmd))
		return false;
645
	entry = mk_pmd(zero_page, vma->vm_page_prot);
646
	entry = pmd_mkhuge(entry);
647 648
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
649
	set_pmd_at(mm, haddr, pmd, entry);
650
	atomic_long_inc(&mm->nr_ptes);
A
Andrew Morton 已提交
651
	return true;
652 653
}

J
Jan Kara 已提交
654
int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
655
{
J
Jan Kara 已提交
656
	struct vm_area_struct *vma = vmf->vma;
657
	gfp_t gfp;
658
	struct page *page;
J
Jan Kara 已提交
659
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
660

661
	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
662
		return VM_FAULT_FALLBACK;
663 664
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
665
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
666
		return VM_FAULT_OOM;
J
Jan Kara 已提交
667
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
668
			!mm_forbids_zeropage(vma->vm_mm) &&
669 670 671 672
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
673
		int ret;
K
Kirill A. Shutemov 已提交
674
		pgtable = pte_alloc_one(vma->vm_mm, haddr);
675
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
676
			return VM_FAULT_OOM;
677
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
678
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
679
			pte_free(vma->vm_mm, pgtable);
680
			count_vm_event(THP_FAULT_FALLBACK);
681
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
682
		}
J
Jan Kara 已提交
683
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
684 685
		ret = 0;
		set = false;
J
Jan Kara 已提交
686
		if (pmd_none(*vmf->pmd)) {
687
			if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
688 689
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
690 691
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
692
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
693 694
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
695 696 697
				set = true;
			}
		} else
J
Jan Kara 已提交
698
			spin_unlock(vmf->ptl);
699
		if (!set)
K
Kirill A. Shutemov 已提交
700
			pte_free(vma->vm_mm, pgtable);
701
		return ret;
702
	}
703
	gfp = alloc_hugepage_direct_gfpmask(vma);
704
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
705 706
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
707
		return VM_FAULT_FALLBACK;
708
	}
709
	prep_transhuge_page(page);
J
Jan Kara 已提交
710
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
711 712
}

713
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
714
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
M
Matthew Wilcox 已提交
715 716 717 718 719 720
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
721 722 723
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
724 725 726
	if (write) {
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
727
	}
728 729
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
M
Matthew Wilcox 已提交
730 731 732 733
	spin_unlock(ptl);
}

int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
734
			pmd_t *pmd, pfn_t pfn, bool write)
M
Matthew Wilcox 已提交
735 736 737 738 739 740 741 742 743 744 745
{
	pgprot_t pgprot = vma->vm_page_prot;
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
746
	BUG_ON(!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
747 748 749

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
750 751 752

	track_pfn_insert(vma, &pgprot, pfn);

753 754
	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
755
}
756
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
M
Matthew Wilcox 已提交
757

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd)
{
	pmd_t _pmd;

	/*
	 * We should set the dirty bit only for FOLL_WRITE but for now
	 * the dirty bit in the pmd is meaningless.  And if the dirty
	 * bit will become meaningful and we'll only set it with
	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
	 * set the young bit, instead of the current set_pmd_at.
	 */
	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
				pmd, _pmd,  1))
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd, int flags)
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

	if (flags & FOLL_WRITE && !pmd_write(*pmd))
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
		touch_pmd(vma, addr, pmd);

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

815 816 817 818
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
819
	spinlock_t *dst_ptl, *src_ptl;
820 821
	struct page *src_page;
	pmd_t pmd;
822
	pgtable_t pgtable = NULL;
823
	int ret = -ENOMEM;
824

825 826 827 828 829 830 831
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

	pgtable = pte_alloc_one(dst_mm, addr);
	if (unlikely(!pgtable))
		goto out;
832

833 834 835
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
836 837 838

	ret = -EAGAIN;
	pmd = *src_pmd;
839
	if (unlikely(!pmd_trans_huge(pmd))) {
840 841 842
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
843
	/*
844
	 * When page table lock is held, the huge zero pmd should not be
845 846 847 848
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
849
		struct page *zero_page;
850 851 852 853 854
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
855
		zero_page = mm_get_huge_zero_page(dst_mm);
856
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
857
				zero_page);
858 859 860
		ret = 0;
		goto out_unlock;
	}
861

862 863 864 865 866 867 868
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
	atomic_long_inc(&dst_mm->nr_ptes);
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
869 870 871 872 873 874 875

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
876 877
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
878 879 880 881
out:
	return ret;
}

J
Jan Kara 已提交
882
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
883 884 885 886
{
	pmd_t entry;
	unsigned long haddr;

J
Jan Kara 已提交
887 888
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
889 890 891
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
J
Jan Kara 已提交
892 893 894 895
	haddr = vmf->address & HPAGE_PMD_MASK;
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry,
				vmf->flags & FAULT_FLAG_WRITE))
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
896 897

unlock:
J
Jan Kara 已提交
898
	spin_unlock(vmf->ptl);
899 900
}

J
Jan Kara 已提交
901
static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
K
Kirill A. Shutemov 已提交
902
		struct page *page)
903
{
J
Jan Kara 已提交
904 905
	struct vm_area_struct *vma = vmf->vma;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
906
	struct mem_cgroup *memcg;
907 908 909 910
	pgtable_t pgtable;
	pmd_t _pmd;
	int ret = 0, i;
	struct page **pages;
911 912
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
913 914 915 916 917 918 919 920 921

	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
			GFP_KERNEL);
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
922
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
K
Kirill A. Shutemov 已提交
923
					       __GFP_OTHER_NODE, vma,
J
Jan Kara 已提交
924
					       vmf->address, page_to_nid(page));
A
Andrea Arcangeli 已提交
925
		if (unlikely(!pages[i] ||
K
Kirill A. Shutemov 已提交
926 927
			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
				     GFP_KERNEL, &memcg, false))) {
A
Andrea Arcangeli 已提交
928
			if (pages[i])
929
				put_page(pages[i]);
A
Andrea Arcangeli 已提交
930
			while (--i >= 0) {
931 932
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
933 934
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
A
Andrea Arcangeli 已提交
935 936
				put_page(pages[i]);
			}
937 938 939 940
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
941
		set_page_private(pages[i], (unsigned long)memcg);
942 943 944 945
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
946
				   haddr + PAGE_SIZE * i, vma);
947 948 949 950
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

951 952
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
953
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
954

J
Jan Kara 已提交
955 956
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
957
		goto out_free_pages;
958
	VM_BUG_ON_PAGE(!PageHead(page), page);
959

J
Jan Kara 已提交
960
	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
961 962
	/* leave pmd empty until pte is filled */

J
Jan Kara 已提交
963
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
K
Kirill A. Shutemov 已提交
964
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
965 966

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
K
Kirill A. Shutemov 已提交
967
		pte_t entry;
968 969
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
970 971
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
J
Jan Kara 已提交
972
		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
973
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
974
		lru_cache_add_active_or_unevictable(pages[i], vma);
J
Jan Kara 已提交
975 976 977 978
		vmf->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*vmf->pte));
		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
		pte_unmap(vmf->pte);
979 980 981 982
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
J
Jan Kara 已提交
983
	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
984
	page_remove_rmap(page, true);
J
Jan Kara 已提交
985
	spin_unlock(vmf->ptl);
986

K
Kirill A. Shutemov 已提交
987
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
988

989 990 991 992 993 994 995
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
J
Jan Kara 已提交
996
	spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
997
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
998
	for (i = 0; i < HPAGE_PMD_NR; i++) {
999 1000
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
1001
		mem_cgroup_cancel_charge(pages[i], memcg, false);
1002
		put_page(pages[i]);
A
Andrea Arcangeli 已提交
1003
	}
1004 1005 1006 1007
	kfree(pages);
	goto out;
}

J
Jan Kara 已提交
1008
int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1009
{
J
Jan Kara 已提交
1010
	struct vm_area_struct *vma = vmf->vma;
1011
	struct page *page = NULL, *new_page;
1012
	struct mem_cgroup *memcg;
J
Jan Kara 已提交
1013
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1014 1015
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1016
	gfp_t huge_gfp;			/* for allocation and charge */
K
Kirill A. Shutemov 已提交
1017
	int ret = 0;
1018

J
Jan Kara 已提交
1019
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1020
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1021 1022
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
J
Jan Kara 已提交
1023 1024
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1025 1026 1027
		goto out_unlock;

	page = pmd_page(orig_pmd);
1028
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1029 1030
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
1031
	 * part.
1032
	 */
1033
	if (page_trans_huge_mapcount(page, NULL) == 1) {
1034 1035 1036
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1037 1038
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1039 1040 1041
		ret |= VM_FAULT_WRITE;
		goto out_unlock;
	}
1042
	get_page(page);
J
Jan Kara 已提交
1043
	spin_unlock(vmf->ptl);
1044
alloc:
1045
	if (transparent_hugepage_enabled(vma) &&
1046
	    !transparent_hugepage_debug_cow()) {
1047
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1048
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1049
	} else
1050 1051
		new_page = NULL;

1052 1053 1054
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
1055
		if (!page) {
J
Jan Kara 已提交
1056
			split_huge_pmd(vma, vmf->pmd, vmf->address);
1057
			ret |= VM_FAULT_FALLBACK;
1058
		} else {
J
Jan Kara 已提交
1059
			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1060
			if (ret & VM_FAULT_OOM) {
J
Jan Kara 已提交
1061
				split_huge_pmd(vma, vmf->pmd, vmf->address);
1062 1063
				ret |= VM_FAULT_FALLBACK;
			}
1064
			put_page(page);
1065
		}
1066
		count_vm_event(THP_FAULT_FALLBACK);
1067 1068 1069
		goto out;
	}

K
Kirill A. Shutemov 已提交
1070 1071
	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
					huge_gfp, &memcg, true))) {
A
Andrea Arcangeli 已提交
1072
		put_page(new_page);
J
Jan Kara 已提交
1073
		split_huge_pmd(vma, vmf->pmd, vmf->address);
K
Kirill A. Shutemov 已提交
1074
		if (page)
1075
			put_page(page);
1076
		ret |= VM_FAULT_FALLBACK;
1077
		count_vm_event(THP_FAULT_FALLBACK);
A
Andrea Arcangeli 已提交
1078 1079 1080
		goto out;
	}

1081 1082
	count_vm_event(THP_FAULT_ALLOC);

1083
	if (!page)
1084 1085 1086
		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
	else
		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1087 1088
	__SetPageUptodate(new_page);

1089 1090
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1091
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1092

J
Jan Kara 已提交
1093
	spin_lock(vmf->ptl);
1094
	if (page)
1095
		put_page(page);
J
Jan Kara 已提交
1096 1097
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
1098
		mem_cgroup_cancel_charge(new_page, memcg, true);
1099
		put_page(new_page);
1100
		goto out_mn;
A
Andrea Arcangeli 已提交
1101
	} else {
1102
		pmd_t entry;
1103 1104
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1105
		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1106
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1107
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1108
		lru_cache_add_active_or_unevictable(new_page, vma);
J
Jan Kara 已提交
1109 1110
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1111
		if (!page) {
K
Kirill A. Shutemov 已提交
1112
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1113
		} else {
1114
			VM_BUG_ON_PAGE(!PageHead(page), page);
1115
			page_remove_rmap(page, true);
1116 1117
			put_page(page);
		}
1118 1119
		ret |= VM_FAULT_WRITE;
	}
J
Jan Kara 已提交
1120
	spin_unlock(vmf->ptl);
1121
out_mn:
K
Kirill A. Shutemov 已提交
1122
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1123 1124
out:
	return ret;
1125
out_unlock:
J
Jan Kara 已提交
1126
	spin_unlock(vmf->ptl);
1127
	return ret;
1128 1129
}

1130
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1131 1132 1133 1134
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1135
	struct mm_struct *mm = vma->vm_mm;
1136 1137
	struct page *page = NULL;

1138
	assert_spin_locked(pmd_lockptr(mm, pmd));
1139 1140 1141 1142

	if (flags & FOLL_WRITE && !pmd_write(*pmd))
		goto out;

1143 1144 1145 1146
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1147
	/* Full NUMA hinting faults to serialise migration in fault paths */
1148
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1149 1150
		goto out;

1151
	page = pmd_page(*pmd);
1152
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1153 1154
	if (flags & FOLL_TOUCH)
		touch_pmd(vma, addr, pmd);
E
Eric B Munson 已提交
1155
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1156 1157 1158 1159
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1160 1161
		 * For anon THP:
		 *
1162 1163 1164 1165 1166 1167 1168
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1169 1170 1171 1172 1173 1174
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1175
		 */
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1187
	}
1188
skip_mlock:
1189
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1190
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1191
	if (flags & FOLL_GET)
1192
		get_page(page);
1193 1194 1195 1196 1197

out:
	return page;
}

1198
/* NUMA hinting page fault entry point for trans huge pmds */
J
Jan Kara 已提交
1199
int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1200
{
J
Jan Kara 已提交
1201
	struct vm_area_struct *vma = vmf->vma;
1202
	struct anon_vma *anon_vma = NULL;
1203
	struct page *page;
J
Jan Kara 已提交
1204
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1205
	int page_nid = -1, this_nid = numa_node_id();
1206
	int target_nid, last_cpupid = -1;
1207 1208
	bool page_locked;
	bool migrated = false;
1209
	bool was_writable;
1210
	int flags = 0;
1211

J
Jan Kara 已提交
1212 1213
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1214 1215
		goto out_unlock;

1216 1217 1218 1219 1220
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1221 1222 1223
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
		spin_unlock(vmf->ptl);
1224
		wait_on_page_locked(page);
1225 1226 1227
		goto out;
	}

1228
	page = pmd_page(pmd);
1229
	BUG_ON(is_huge_zero_page(page));
1230
	page_nid = page_to_nid(page);
1231
	last_cpupid = page_cpupid_last(page);
1232
	count_vm_numa_event(NUMA_HINT_FAULTS);
1233
	if (page_nid == this_nid) {
1234
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1235 1236
		flags |= TNF_FAULT_LOCAL;
	}
1237

1238
	/* See similar comment in do_numa_page for explanation */
1239
	if (!pmd_write(pmd))
1240 1241
		flags |= TNF_NO_GROUP;

1242 1243 1244 1245
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1246 1247 1248 1249
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
	if (target_nid == -1) {
		/* If the page was locked, there are no parallel migrations */
1250
		if (page_locked)
1251
			goto clear_pmdnuma;
1252
	}
1253

1254
	/* Migration could have started since the pmd_trans_migrating check */
1255
	if (!page_locked) {
J
Jan Kara 已提交
1256
		spin_unlock(vmf->ptl);
1257
		wait_on_page_locked(page);
1258
		page_nid = -1;
1259 1260 1261
		goto out;
	}

1262 1263 1264 1265
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1266
	get_page(page);
J
Jan Kara 已提交
1267
	spin_unlock(vmf->ptl);
1268
	anon_vma = page_lock_anon_vma_read(page);
1269

P
Peter Zijlstra 已提交
1270
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1271 1272
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1273 1274
		unlock_page(page);
		put_page(page);
1275
		page_nid = -1;
1276
		goto out_unlock;
1277
	}
1278

1279 1280 1281 1282 1283 1284 1285
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
		page_nid = -1;
		goto clear_pmdnuma;
	}

1286 1287
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1288
	 * and access rights restored.
1289
	 */
J
Jan Kara 已提交
1290
	spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
1291
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1292
				vmf->pmd, pmd, vmf->address, page, target_nid);
1293 1294
	if (migrated) {
		flags |= TNF_MIGRATED;
1295
		page_nid = target_nid;
1296 1297
	} else
		flags |= TNF_MIGRATE_FAIL;
1298

1299
	goto out;
1300
clear_pmdnuma:
1301
	BUG_ON(!PageLocked(page));
1302
	was_writable = pmd_write(pmd);
1303
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1304
	pmd = pmd_mkyoung(pmd);
1305 1306
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1307 1308
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1309
	unlock_page(page);
1310
out_unlock:
J
Jan Kara 已提交
1311
	spin_unlock(vmf->ptl);
1312 1313 1314 1315 1316

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1317
	if (page_nid != -1)
J
Jan Kara 已提交
1318 1319
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
				vmf->flags);
1320

1321 1322 1323
	return 0;
}

1324 1325 1326 1327 1328
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1329 1330 1331 1332 1333 1334
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1335
	bool ret = false;
1336

1337 1338
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1339 1340
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1341
		goto out_unlocked;
1342 1343

	orig_pmd = *pmd;
1344
	if (is_huge_zero_pmd(orig_pmd))
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		goto out;

	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1365
		split_huge_page(page);
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
		put_page(page);
		unlock_page(page);
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (PageActive(page))
		deactivate_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
1387
	ret = true;
1388 1389 1390 1391 1392 1393
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1394 1395 1396 1397 1398 1399 1400 1401 1402
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
	atomic_long_dec(&mm->nr_ptes);
}

1403
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1404
		 pmd_t *pmd, unsigned long addr)
1405
{
1406
	pmd_t orig_pmd;
1407
	spinlock_t *ptl;
1408

1409 1410
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1411 1412
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1426
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1427 1428 1429 1430
	} else if (is_huge_zero_pmd(orig_pmd)) {
		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
		atomic_long_dec(&tlb->mm->nr_ptes);
		spin_unlock(ptl);
1431
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1432 1433
	} else {
		struct page *page = pmd_page(orig_pmd);
1434
		page_remove_rmap(page, true);
1435 1436
		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
		VM_BUG_ON_PAGE(!PageHead(page), page);
1437 1438 1439 1440 1441 1442 1443
		if (PageAnon(page)) {
			pgtable_t pgtable;
			pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
			pte_free(tlb->mm, pgtable);
			atomic_long_dec(&tlb->mm->nr_ptes);
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1444 1445
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1446 1447
			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
		}
1448
		spin_unlock(ptl);
1449
		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1450
	}
1451
	return 1;
1452 1453
}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1469
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1470
		  unsigned long new_addr, unsigned long old_end,
1471
		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1472
{
1473
	spinlock_t *old_ptl, *new_ptl;
1474 1475
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1476
	bool force_flush = false;
1477 1478 1479

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1480
	    old_end - old_addr < HPAGE_PMD_SIZE)
1481
		return false;
1482 1483 1484 1485 1486 1487 1488

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1489
		return false;
1490 1491
	}

1492 1493 1494 1495
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1496 1497
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1498 1499 1500
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1501
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1502 1503
		if (pmd_present(pmd) && pmd_dirty(pmd))
			force_flush = true;
1504
		VM_BUG_ON(!pmd_none(*new_pmd));
1505

1506
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1507
			pgtable_t pgtable;
1508 1509 1510
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1511 1512 1513
		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1514 1515 1516 1517
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
		else
			*need_flush = true;
1518
		spin_unlock(old_ptl);
1519
		return true;
1520
	}
1521
	return false;
1522 1523
}

1524 1525 1526 1527 1528 1529
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1530
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1531
		unsigned long addr, pgprot_t newprot, int prot_numa)
1532 1533
{
	struct mm_struct *mm = vma->vm_mm;
1534
	spinlock_t *ptl;
1535 1536
	int ret = 0;

1537 1538
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
1539
		pmd_t entry;
1540
		bool preserve_write = prot_numa && pmd_write(*pmd);
1541
		ret = 1;
1542 1543 1544 1545 1546 1547 1548 1549

		/*
		 * Avoid trapping faults against the zero page. The read-only
		 * data is likely to be read-cached on the local CPU and
		 * local/remote hits to the zero page are not interesting.
		 */
		if (prot_numa && is_huge_zero_pmd(*pmd)) {
			spin_unlock(ptl);
1550
			return ret;
1551 1552
		}

1553
		if (!prot_numa || !pmd_protnone(*pmd)) {
1554
			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1555
			entry = pmd_modify(entry, newprot);
1556 1557
			if (preserve_write)
				entry = pmd_mkwrite(entry);
1558 1559
			ret = HPAGE_PMD_NR;
			set_pmd_at(mm, addr, pmd, entry);
1560 1561
			BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
					pmd_write(entry));
1562
		}
1563
		spin_unlock(ptl);
1564 1565 1566 1567 1568 1569
	}

	return ret;
}

/*
1570
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1571
 *
1572 1573
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1574
 */
1575
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1576
{
1577 1578
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1579
	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1580 1581 1582
		return ptl;
	spin_unlock(ptl);
	return NULL;
1583 1584
}

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

	/* leave pmd empty until pte is filled */
	pmdp_huge_clear_flush_notify(vma, haddr, pmd);

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1613
		unsigned long haddr, bool freeze)
1614 1615 1616 1617 1618
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
	pmd_t _pmd;
1619
	bool young, write, dirty, soft_dirty;
1620
	unsigned long addr;
1621 1622 1623 1624 1625
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1626
	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1627 1628 1629

	count_vm_event(THP_SPLIT_PMD);

1630 1631
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1632 1633 1634 1635 1636 1637
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
1638 1639 1640 1641 1642 1643 1644 1645
		if (vma_is_dax(vma))
			return;
		page = pmd_page(_pmd);
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1646 1647 1648 1649 1650 1651 1652
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

	page = pmd_page(*pmd);
	VM_BUG_ON_PAGE(!page_count(page), page);
1653
	page_ref_add(page, HPAGE_PMD_NR - 1);
1654 1655
	write = pmd_write(*pmd);
	young = pmd_young(*pmd);
1656
	dirty = pmd_dirty(*pmd);
1657
	soft_dirty = pmd_soft_dirty(*pmd);
1658

1659
	pmdp_huge_split_prepare(vma, haddr, pmd);
1660 1661 1662
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

1663
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1664 1665 1666 1667 1668 1669
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
1670 1671 1672 1673
		if (freeze) {
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
1674 1675
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
1676
		} else {
1677
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1678
			entry = maybe_mkwrite(entry, vma);
1679 1680 1681 1682
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
1683 1684
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
1685
		}
1686 1687
		if (dirty)
			SetPageDirty(page + i);
1688
		pte = pte_offset_map(&_pmd, addr);
1689
		BUG_ON(!pte_none(*pte));
1690
		set_pte_at(mm, addr, pte, entry);
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
1706
		__dec_node_page_state(page, NR_ANON_THPS);
1707 1708 1709 1710 1711 1712 1713 1714
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * and pmd_trans_splitting must remain set at all times on the pmd
	 * until the split is complete for this pmd), then we flush the SMP TLB
	 * and finally we write the non-huge version of the pmd entry with
	 * pmd_populate.
	 */
	pmdp_invalidate(vma, haddr, pmd);
1737
	pmd_populate(mm, pmd, pgtable);
1738 1739

	if (freeze) {
1740
		for (i = 0; i < HPAGE_PMD_NR; i++) {
1741 1742 1743 1744
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
1745 1746 1747
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1748
		unsigned long address, bool freeze, struct page *page)
1749 1750 1751 1752 1753 1754 1755
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PMD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
	ptl = pmd_lock(mm, pmd);
1756 1757 1758 1759 1760 1761 1762 1763 1764

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

1765
	if (pmd_trans_huge(*pmd)) {
1766
		page = pmd_page(*pmd);
1767
		if (PageMlocked(page))
1768
			clear_page_mlock(page);
1769
	} else if (!pmd_devmap(*pmd))
1770
		goto out;
1771
	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
1772
out:
1773 1774 1775 1776
	spin_unlock(ptl);
	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
}

1777 1778
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
1779
{
1780 1781
	pgd_t *pgd;
	pud_t *pud;
1782 1783
	pmd_t *pmd;

1784
	pgd = pgd_offset(vma->vm_mm, address);
1785 1786 1787 1788 1789 1790 1791 1792
	if (!pgd_present(*pgd))
		return;

	pud = pud_offset(pgd, address);
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
1793

1794
	__split_huge_pmd(vma, pmd, address, freeze, page);
1795 1796
}

1797
void vma_adjust_trans_huge(struct vm_area_struct *vma,
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1810
		split_huge_pmd_address(vma, start, false, NULL);
1811 1812 1813 1814 1815 1816 1817 1818 1819

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1820
		split_huge_pmd_address(vma, end, false, NULL);
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1834
			split_huge_pmd_address(next, nstart, false, NULL);
1835 1836
	}
}
1837

1838
static void freeze_page(struct page *page)
1839
{
1840 1841
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
		TTU_RMAP_LOCKED;
1842
	int i, ret;
1843 1844 1845

	VM_BUG_ON_PAGE(!PageHead(page), page);

1846 1847 1848
	if (PageAnon(page))
		ttu_flags |= TTU_MIGRATION;

1849 1850 1851 1852 1853 1854
	/* We only need TTU_SPLIT_HUGE_PMD once */
	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
		/* Cut short if the page is unmapped */
		if (page_count(page) == 1)
			return;
1855

1856
		ret = try_to_unmap(page + i, ttu_flags);
1857
	}
1858
	VM_BUG_ON_PAGE(ret, page + i - 1);
1859 1860
}

1861
static void unfreeze_page(struct page *page)
1862
{
1863
	int i;
1864

1865 1866
	for (i = 0; i < HPAGE_PMD_NR; i++)
		remove_migration_ptes(page + i, page + i, true);
1867 1868
}

1869
static void __split_huge_page_tail(struct page *head, int tail,
1870 1871 1872 1873
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

1874
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1875
	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1876 1877

	/*
1878
	 * tail_page->_refcount is zero and not changing from under us. But
1879
	 * get_page_unless_zero() may be running from under us on the
1880 1881
	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
	 * atomic_add(), we would then run atomic_set() concurrently with
1882 1883 1884 1885
	 * get_page_unless_zero(), and atomic_set() is implemented in C not
	 * using locked ops. spin_unlock on x86 sometime uses locked ops
	 * because of PPro errata 66, 92, so unless somebody can guarantee
	 * atomic_set() here would be safe on all archs (and not only on x86),
1886
	 * it's safer to use atomic_inc()/atomic_add().
1887
	 */
1888 1889 1890 1891 1892 1893
	if (PageAnon(head)) {
		page_ref_inc(page_tail);
	} else {
		/* Additional pin to radix tree */
		page_ref_add(page_tail, 2);
	}
1894 1895 1896 1897 1898 1899 1900 1901 1902

	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
			 (1L << PG_locked) |
1903 1904
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

	/*
	 * After clearing PageTail the gup refcount can be released.
	 * Page flags also must be visible before we make the page non-compound.
	 */
	smp_wmb();

	clear_compound_head(page_tail);

	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	/* ->mapping in first tail page is compound_mapcount */
1920
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1921 1922 1923 1924 1925 1926 1927 1928
			page_tail);
	page_tail->mapping = head->mapping;

	page_tail->index = head->index + tail;
	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
	lru_add_page_tail(head, page_tail, lruvec, list);
}

1929 1930
static void __split_huge_page(struct page *page, struct list_head *list,
		unsigned long flags)
1931 1932 1933 1934
{
	struct page *head = compound_head(page);
	struct zone *zone = page_zone(head);
	struct lruvec *lruvec;
1935
	pgoff_t end = -1;
1936
	int i;
1937

M
Mel Gorman 已提交
1938
	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1939 1940 1941 1942

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

1943 1944 1945 1946
	if (!PageAnon(page))
		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);

	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1947
		__split_huge_page_tail(head, i, lruvec, list);
1948 1949 1950 1951
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
			__ClearPageDirty(head + i);
			__delete_from_page_cache(head + i, NULL);
1952 1953
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
1954 1955 1956
			put_page(head + i);
		}
	}
1957 1958

	ClearPageCompound(head);
1959 1960 1961 1962 1963 1964 1965 1966 1967
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
		page_ref_inc(head);
	} else {
		/* Additional pin to radix tree */
		page_ref_add(head, 2);
		spin_unlock(&head->mapping->tree_lock);
	}

1968
	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1969

1970
	unfreeze_page(head);
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

1989 1990
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
1991
	int i, compound, ret;
1992 1993 1994 1995 1996 1997

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
1998
	compound = compound_mapcount(page);
1999
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2000 2001
		return compound;
	ret = compound;
2002 2003
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2004 2005 2006
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2007 2008 2009 2010 2011
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2092
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2093 2094 2095
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2096
	bool mlocked;
2097
	unsigned long flags;
2098 2099 2100 2101 2102 2103

	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
	VM_BUG_ON_PAGE(!PageCompound(page), page);

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
		extra_pins = 0;
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		/* Addidional pins from radix tree */
		extra_pins = HPAGE_PMD_NR;
		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2134 2135 2136 2137 2138 2139
	}

	/*
	 * Racy check if we can split the page, before freeze_page() will
	 * split PMDs
	 */
2140
	if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2141 2142 2143 2144
		ret = -EBUSY;
		goto out_unlock;
	}

2145
	mlocked = PageMlocked(page);
2146
	freeze_page(head);
2147 2148
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2149 2150 2151 2152
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2153
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2154
	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

	if (mapping) {
		void **pslot;

		spin_lock(&mapping->tree_lock);
		pslot = radix_tree_lookup_slot(&mapping->page_tree,
				page_index(head));
		/*
		 * Check if the head page is present in radix tree.
		 * We assume all tail are present too, if head is there.
		 */
		if (radix_tree_deref_slot_protected(pslot,
					&mapping->tree_lock) != head)
			goto fail;
	}

2171
	/* Prevent deferred_split_scan() touching ->_refcount */
2172
	spin_lock(&pgdata->split_queue_lock);
2173 2174
	count = page_count(head);
	mapcount = total_mapcount(head);
2175
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2176
		if (!list_empty(page_deferred_list(head))) {
2177
			pgdata->split_queue_len--;
2178 2179
			list_del(page_deferred_list(head));
		}
2180
		if (mapping)
2181
			__dec_node_page_state(page, NR_SHMEM_THPS);
2182 2183
		spin_unlock(&pgdata->split_queue_lock);
		__split_huge_page(page, list, flags);
2184 2185
		ret = 0;
	} else {
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
		spin_unlock(&pgdata->split_queue_lock);
fail:		if (mapping)
			spin_unlock(&mapping->tree_lock);
2197
		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2198
		unfreeze_page(head);
2199 2200 2201 2202
		ret = -EBUSY;
	}

out_unlock:
2203 2204 2205 2206 2207 2208
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2209 2210 2211 2212
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2213 2214 2215

void free_transhuge_page(struct page *page)
{
2216
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2217 2218
	unsigned long flags;

2219
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2220
	if (!list_empty(page_deferred_list(page))) {
2221
		pgdata->split_queue_len--;
2222 2223
		list_del(page_deferred_list(page));
	}
2224
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2225 2226 2227 2228 2229
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2230
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2231 2232 2233 2234
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2235
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2236
	if (list_empty(page_deferred_list(page))) {
2237
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2238 2239
		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
		pgdata->split_queue_len++;
2240
	}
2241
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2242 2243 2244 2245 2246
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2247
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2248
	return ACCESS_ONCE(pgdata->split_queue_len);
2249 2250 2251 2252 2253
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2254
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2255 2256 2257 2258 2259
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2260
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2261
	/* Take pin on all head pages to avoid freeing them under us */
2262
	list_for_each_safe(pos, next, &pgdata->split_queue) {
2263 2264
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2265 2266 2267 2268
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2269
			list_del_init(page_deferred_list(page));
2270
			pgdata->split_queue_len--;
2271
		}
2272 2273
		if (!--sc->nr_to_scan)
			break;
2274
	}
2275
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
		lock_page(page);
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
		put_page(page);
	}

2287 2288 2289
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
	list_splice_tail(&list, &pgdata->split_queue);
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2290

2291 2292 2293 2294 2295 2296 2297
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
	if (!split && list_empty(&pgdata->split_queue))
		return SHRINK_STOP;
	return split;
2298 2299 2300 2301 2302 2303
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2304
	.flags = SHRINKER_NUMA_AWARE,
2305
};
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2331
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2344
	pr_info("%lu of %lu THP split\n", split, total);
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
	void *ret;

2355
	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2356 2357 2358 2359 2360 2361 2362
			&split_huge_pages_fops);
	if (!ret)
		pr_warn("Failed to create split_huge_pages in debugfs");
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif