huge_memory.c 80.9 KB
Newer Older
1 2 3 4 5 6 7
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 */

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11
#include <linux/mm.h>
#include <linux/sched.h>
12
#include <linux/sched/coredump.h>
13
#include <linux/sched/numa_balancing.h>
14 15 16 17 18
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
19
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
20
#include <linux/mm_inline.h>
21
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
22
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
23
#include <linux/khugepaged.h>
24
#include <linux/freezer.h>
25
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
26
#include <linux/mman.h>
27
#include <linux/memremap.h>
R
Ralf Baechle 已提交
28
#include <linux/pagemap.h>
29
#include <linux/debugfs.h>
30
#include <linux/migrate.h>
31
#include <linux/hashtable.h>
32
#include <linux/userfaultfd_k.h>
33
#include <linux/page_idle.h>
34
#include <linux/shmem_fs.h>
35
#include <linux/oom.h>
36

37 38 39 40
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
41
/*
42 43 44 45
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 47
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
48
 */
49
unsigned long transparent_hugepage_flags __read_mostly =
50
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
51
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 53 54 55
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
59

60
static struct shrinker deferred_split_shrinker;
61

62
static atomic_t huge_zero_refcount;
63
struct page *huge_zero_page __read_mostly;
64

65
static struct page *get_huge_zero_page(void)
66 67 68 69
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70
		return READ_ONCE(huge_zero_page);
71 72

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73
			HPAGE_PMD_ORDER);
74 75
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76
		return NULL;
77 78
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
79
	preempt_disable();
80
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81
		preempt_enable();
82
		__free_pages(zero_page, compound_order(zero_page));
83 84 85 86 87 88
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
89
	return READ_ONCE(huge_zero_page);
90 91
}

92
static void put_huge_zero_page(void)
93
{
94 95 96 97 98
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
99 100
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

121 122
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
123
{
124 125 126
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
127

128 129 130
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
131
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 133
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
134
		__free_pages(zero_page, compound_order(zero_page));
135
		return HPAGE_PMD_NR;
136 137 138
	}

	return 0;
139 140
}

141
static struct shrinker huge_zero_page_shrinker = {
142 143
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
144 145 146
	.seeks = DEFAULT_SEEKS,
};

147 148 149 150
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
151 152 153 154 155 156
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
157
}
158

159 160 161 162
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
163
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
164

165 166 167 168 169 170 171 172 173 174 175 176 177 178
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
179 180

	if (ret > 0) {
181
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
182 183 184 185
		if (err)
			ret = err;
	}
	return ret;
186 187 188 189
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

190
ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 192 193
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
194 195
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
196
}
197

198
ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 200 201 202
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
203 204 205 206 207 208 209 210 211 212
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
213
		set_bit(flag, &transparent_hugepage_flags);
214
	else
215 216 217 218 219 220 221 222
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
223
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 227 228 229 230 231
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
232
}
233

234 235 236 237
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
238 239 240 241 242 243 244 245 246 247 248 249
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("defer+madvise", buf,
		    min(sizeof("defer+madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 251 252 253 254 255
	} else if (!memcmp("defer", buf,
		    min(sizeof("defer")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
272 273 274 275
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

276 277 278
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
279
	return single_hugepage_flag_show(kobj, attr, buf,
280 281 282 283 284
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
285
	return single_hugepage_flag_store(kobj, attr, buf, count,
286 287 288 289
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
290 291 292 293 294 295 296 297 298

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

299 300 301 302
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
303
	return single_hugepage_flag_show(kobj, attr, buf,
304 305 306 307 308 309
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
310
	return single_hugepage_flag_store(kobj, attr, buf, count,
311 312 313 314 315 316 317 318 319
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
320
	&use_zero_page_attr.attr,
321
	&hpage_pmd_size_attr.attr,
322
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 324
	&shmem_enabled_attr.attr,
#endif
325 326 327 328 329 330
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

331
static const struct attribute_group hugepage_attr_group = {
332
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
333 334
};

S
Shaohua Li 已提交
335
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 337 338
{
	int err;

S
Shaohua Li 已提交
339 340
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
341
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
342
		return -ENOMEM;
A
Andrea Arcangeli 已提交
343 344
	}

S
Shaohua Li 已提交
345
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
346
	if (err) {
347
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
348
		goto delete_obj;
A
Andrea Arcangeli 已提交
349 350
	}

S
Shaohua Li 已提交
351
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
352
	if (err) {
353
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
354
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
355
	}
S
Shaohua Li 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

393 394 395 396 397 398 399 400 401 402
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
403 404
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
405
		goto err_sysfs;
A
Andrea Arcangeli 已提交
406

407
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
408
	if (err)
409
		goto err_slab;
A
Andrea Arcangeli 已提交
410

411 412 413
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
414 415 416
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
417

418 419 420 421 422
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
423
	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424
		transparent_hugepage_flags = 0;
425 426
		return 0;
	}
427

428
	err = start_stop_khugepaged();
429 430
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
431

S
Shaohua Li 已提交
432
	return 0;
433
err_khugepaged:
434 435
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
436 437
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
438
	khugepaged_destroy();
439
err_slab:
S
Shaohua Li 已提交
440
	hugepage_exit_sysfs(hugepage_kobj);
441
err_sysfs:
A
Andrea Arcangeli 已提交
442
	return err;
443
}
444
subsys_initcall(hugepage_init);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
472
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 474 475 476
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

477
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478
{
479
	if (likely(vma->vm_flags & VM_WRITE))
480 481 482 483
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

484 485
static inline struct list_head *page_deferred_list(struct page *page)
{
M
Matthew Wilcox 已提交
486 487
	/* ->lru in the tail pages is occupied by compound_head. */
	return &page[2].deferred_list;
488 489 490 491 492 493 494 495 496 497 498 499 500
}

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
		loff_t off, unsigned long flags, unsigned long size)
{
	unsigned long addr;
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
	unsigned long len_pad;

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
					      off >> PAGE_SHIFT, flags);
	if (IS_ERR_VALUE(addr))
		return 0;

	addr += (off - addr) & (size - 1);
	return addr;
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (addr)
		goto out;
	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
	if (addr)
		return addr;

 out:
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

J
Jan Kara 已提交
544
static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
K
Kirill A. Shutemov 已提交
545
		gfp_t gfp)
546
{
J
Jan Kara 已提交
547
	struct vm_area_struct *vma = vmf->vma;
548
	struct mem_cgroup *memcg;
549
	pgtable_t pgtable;
J
Jan Kara 已提交
550
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
551
	int ret = 0;
552

553
	VM_BUG_ON_PAGE(!PageCompound(page), page);
554

555
	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
556 557 558 559
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
560

K
Kirill A. Shutemov 已提交
561
	pgtable = pte_alloc_one(vma->vm_mm, haddr);
562
	if (unlikely(!pgtable)) {
563 564
		ret = VM_FAULT_OOM;
		goto release;
565
	}
566

567
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
568 569 570 571 572
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
573 574
	__SetPageUptodate(page);

J
Jan Kara 已提交
575 576
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
577
		goto unlock_release;
578 579
	} else {
		pmd_t entry;
580

581 582 583 584
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

585 586 587 588
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
			int ret;

J
Jan Kara 已提交
589
			spin_unlock(vmf->ptl);
590
			mem_cgroup_cancel_charge(page, memcg, true);
591
			put_page(page);
K
Kirill A. Shutemov 已提交
592
			pte_free(vma->vm_mm, pgtable);
J
Jan Kara 已提交
593
			ret = handle_userfault(vmf, VM_UFFD_MISSING);
594 595 596 597
			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			return ret;
		}

598
		entry = mk_huge_pmd(page, vma->vm_page_prot);
599
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
600
		page_add_new_anon_rmap(page, vma, haddr, true);
601
		mem_cgroup_commit_charge(page, memcg, false, true);
602
		lru_cache_add_active_or_unevictable(page, vma);
J
Jan Kara 已提交
603 604
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
605
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
606
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
607
		spin_unlock(vmf->ptl);
608
		count_vm_event(THP_FAULT_ALLOC);
609 610
	}

611
	return 0;
612 613 614 615 616 617 618 619 620
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	mem_cgroup_cancel_charge(page, memcg, true);
	put_page(page);
	return ret;

621 622
}

623
/*
624 625 626 627 628 629 630
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
631 632 633
 */
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
{
634
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
635

636
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
637
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
638 639 640 641 642 643 644 645
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     __GFP_KSWAPD_RECLAIM);
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     0);
646
	return GFP_TRANSHUGE_LIGHT;
647 648
}

649
/* Caller must hold page table lock. */
650
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
651
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
652
		struct page *zero_page)
653 654
{
	pmd_t entry;
A
Andrew Morton 已提交
655 656
	if (!pmd_none(*pmd))
		return false;
657
	entry = mk_pmd(zero_page, vma->vm_page_prot);
658
	entry = pmd_mkhuge(entry);
659 660
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
661
	set_pmd_at(mm, haddr, pmd, entry);
662
	mm_inc_nr_ptes(mm);
A
Andrew Morton 已提交
663
	return true;
664 665
}

J
Jan Kara 已提交
666
int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
667
{
J
Jan Kara 已提交
668
	struct vm_area_struct *vma = vmf->vma;
669
	gfp_t gfp;
670
	struct page *page;
J
Jan Kara 已提交
671
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
672

673
	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
674
		return VM_FAULT_FALLBACK;
675 676
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
677
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
678
		return VM_FAULT_OOM;
J
Jan Kara 已提交
679
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
680
			!mm_forbids_zeropage(vma->vm_mm) &&
681 682 683 684
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
685
		int ret;
K
Kirill A. Shutemov 已提交
686
		pgtable = pte_alloc_one(vma->vm_mm, haddr);
687
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
688
			return VM_FAULT_OOM;
689
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
690
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
691
			pte_free(vma->vm_mm, pgtable);
692
			count_vm_event(THP_FAULT_FALLBACK);
693
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
694
		}
J
Jan Kara 已提交
695
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
696 697
		ret = 0;
		set = false;
J
Jan Kara 已提交
698
		if (pmd_none(*vmf->pmd)) {
699 700 701 702
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
703 704
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
705 706
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
707
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
708 709
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
710 711 712
				set = true;
			}
		} else
J
Jan Kara 已提交
713
			spin_unlock(vmf->ptl);
714
		if (!set)
K
Kirill A. Shutemov 已提交
715
			pte_free(vma->vm_mm, pgtable);
716
		return ret;
717
	}
718
	gfp = alloc_hugepage_direct_gfpmask(vma);
719
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
720 721
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
722
		return VM_FAULT_FALLBACK;
723
	}
724
	prep_transhuge_page(page);
J
Jan Kara 已提交
725
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
726 727
}

728
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
729 730
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
731 732 733 734 735 736
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
737 738 739
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
740
	if (write) {
741 742
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
743
	}
744 745 746

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
747
		mm_inc_nr_ptes(mm);
748 749
	}

750 751
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
M
Matthew Wilcox 已提交
752 753 754 755
	spin_unlock(ptl);
}

int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
756
			pmd_t *pmd, pfn_t pfn, bool write)
M
Matthew Wilcox 已提交
757 758
{
	pgprot_t pgprot = vma->vm_page_prot;
759
	pgtable_t pgtable = NULL;
M
Matthew Wilcox 已提交
760 761 762 763 764
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
765 766
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
767 768 769 770 771 772
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
773

774 775 776 777 778 779
	if (arch_needs_pgtable_deposit()) {
		pgtable = pte_alloc_one(vma->vm_mm, addr);
		if (!pgtable)
			return VM_FAULT_OOM;
	}

780 781
	track_pfn_insert(vma, &pgprot, pfn);

782
	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
783
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
784
}
785
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
M
Matthew Wilcox 已提交
786

787
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
788
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
789
{
790
	if (likely(vma->vm_flags & VM_WRITE))
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
807 808
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
	spin_unlock(ptl);
}

int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
			pud_t *pud, pfn_t pfn, bool write)
{
	pgprot_t pgprot = vma->vm_page_prot;
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
	BUG_ON(!pfn_t_devmap(pfn));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
	return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

841
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
842
		pmd_t *pmd, int flags)
843 844 845
{
	pmd_t _pmd;

846 847 848
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
849
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
850
				pmd, _pmd, flags & FOLL_WRITE))
851 852 853 854 855 856 857 858 859 860 861 862 863
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd, int flags)
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

864 865 866 867 868 869
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

870
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
871 872 873 874 875 876 877 878
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
879
		touch_pmd(vma, addr, pmd, flags);
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

899 900 901 902
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
903
	spinlock_t *dst_ptl, *src_ptl;
904 905
	struct page *src_page;
	pmd_t pmd;
906
	pgtable_t pgtable = NULL;
907
	int ret = -ENOMEM;
908

909 910 911 912 913 914 915
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

	pgtable = pte_alloc_one(dst_mm, addr);
	if (unlikely(!pgtable))
		goto out;
916

917 918 919
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
920 921 922

	ret = -EAGAIN;
	pmd = *src_pmd;
923 924 925 926 927 928 929 930 931

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
932 933
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
934 935
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
936
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
937
		mm_inc_nr_ptes(dst_mm);
938
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
939 940 941 942 943 944
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

945
	if (unlikely(!pmd_trans_huge(pmd))) {
946 947 948
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
949
	/*
950
	 * When page table lock is held, the huge zero pmd should not be
951 952 953 954
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
955
		struct page *zero_page;
956 957 958 959 960
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
961
		zero_page = mm_get_huge_zero_page(dst_mm);
962
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
963
				zero_page);
964 965 966
		ret = 0;
		goto out_unlock;
	}
967

968 969 970 971 972
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
973
	mm_inc_nr_ptes(dst_mm);
974
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
975 976 977 978 979 980 981

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
982 983
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
984 985 986 987
out:
	return ret;
}

988 989
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
990
		pud_t *pud, int flags)
991 992 993
{
	pud_t _pud;

994 995 996
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
997
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
998
				pud, _pud, flags & FOLL_WRITE))
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, int flags)
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1012
	if (flags & FOLL_WRITE && !pud_write(*pud))
1013 1014 1015 1016 1017 1018 1019 1020
		return NULL;

	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1021
		touch_pud(vma, addr, pud, flags);
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1100
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1101 1102 1103
{
	pmd_t entry;
	unsigned long haddr;
1104
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1105

J
Jan Kara 已提交
1106 1107
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1108 1109 1110
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1111 1112
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1113
	haddr = vmf->address & HPAGE_PMD_MASK;
1114
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1115
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1116 1117

unlock:
J
Jan Kara 已提交
1118
	spin_unlock(vmf->ptl);
1119 1120
}

J
Jan Kara 已提交
1121
static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
K
Kirill A. Shutemov 已提交
1122
		struct page *page)
1123
{
J
Jan Kara 已提交
1124 1125
	struct vm_area_struct *vma = vmf->vma;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1126
	struct mem_cgroup *memcg;
1127 1128 1129 1130
	pgtable_t pgtable;
	pmd_t _pmd;
	int ret = 0, i;
	struct page **pages;
1131 1132
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1133

1134 1135
	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
			      GFP_KERNEL);
1136 1137 1138 1139 1140 1141
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
M
Michal Hocko 已提交
1142
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
J
Jan Kara 已提交
1143
					       vmf->address, page_to_nid(page));
A
Andrea Arcangeli 已提交
1144
		if (unlikely(!pages[i] ||
1145
			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
K
Kirill A. Shutemov 已提交
1146
				     GFP_KERNEL, &memcg, false))) {
A
Andrea Arcangeli 已提交
1147
			if (pages[i])
1148
				put_page(pages[i]);
A
Andrea Arcangeli 已提交
1149
			while (--i >= 0) {
1150 1151
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
1152 1153
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
A
Andrea Arcangeli 已提交
1154 1155
				put_page(pages[i]);
			}
1156 1157 1158 1159
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
1160
		set_page_private(pages[i], (unsigned long)memcg);
1161 1162 1163 1164
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
1165
				   haddr + PAGE_SIZE * i, vma);
1166 1167 1168 1169
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

1170 1171
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1172
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1173

J
Jan Kara 已提交
1174 1175
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1176
		goto out_free_pages;
1177
	VM_BUG_ON_PAGE(!PageHead(page), page);
1178

1179 1180 1181 1182 1183 1184
	/*
	 * Leave pmd empty until pte is filled note we must notify here as
	 * concurrent CPU thread might write to new page before the call to
	 * mmu_notifier_invalidate_range_end() happens which can lead to a
	 * device seeing memory write in different order than CPU.
	 *
1185
	 * See Documentation/vm/mmu_notifier.rst
1186
	 */
J
Jan Kara 已提交
1187
	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1188

J
Jan Kara 已提交
1189
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
K
Kirill A. Shutemov 已提交
1190
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1191 1192

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
K
Kirill A. Shutemov 已提交
1193
		pte_t entry;
1194 1195
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1196 1197
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
J
Jan Kara 已提交
1198
		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1199
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1200
		lru_cache_add_active_or_unevictable(pages[i], vma);
J
Jan Kara 已提交
1201 1202 1203 1204
		vmf->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*vmf->pte));
		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
		pte_unmap(vmf->pte);
1205 1206 1207 1208
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
J
Jan Kara 已提交
1209
	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1210
	page_remove_rmap(page, true);
J
Jan Kara 已提交
1211
	spin_unlock(vmf->ptl);
1212

1213 1214 1215 1216 1217 1218
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
						mmun_end);
1219

1220 1221 1222 1223 1224 1225 1226
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
J
Jan Kara 已提交
1227
	spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
1228
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
1229
	for (i = 0; i < HPAGE_PMD_NR; i++) {
1230 1231
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
1232
		mem_cgroup_cancel_charge(pages[i], memcg, false);
1233
		put_page(pages[i]);
A
Andrea Arcangeli 已提交
1234
	}
1235 1236 1237 1238
	kfree(pages);
	goto out;
}

J
Jan Kara 已提交
1239
int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1240
{
J
Jan Kara 已提交
1241
	struct vm_area_struct *vma = vmf->vma;
1242
	struct page *page = NULL, *new_page;
1243
	struct mem_cgroup *memcg;
J
Jan Kara 已提交
1244
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1245 1246
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1247
	gfp_t huge_gfp;			/* for allocation and charge */
K
Kirill A. Shutemov 已提交
1248
	int ret = 0;
1249

J
Jan Kara 已提交
1250
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1251
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1252 1253
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
J
Jan Kara 已提交
1254 1255
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1256 1257 1258
		goto out_unlock;

	page = pmd_page(orig_pmd);
1259
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1260 1261
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
1262
	 * part.
1263
	 */
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
			unlock_page(page);
			put_page(page);
			goto out_unlock;
		}
		put_page(page);
	}
	if (reuse_swap_page(page, NULL)) {
1277 1278
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1279
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1280 1281
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1282
		ret |= VM_FAULT_WRITE;
1283
		unlock_page(page);
1284 1285
		goto out_unlock;
	}
1286
	unlock_page(page);
1287
	get_page(page);
J
Jan Kara 已提交
1288
	spin_unlock(vmf->ptl);
1289
alloc:
1290
	if (transparent_hugepage_enabled(vma) &&
1291
	    !transparent_hugepage_debug_cow()) {
1292
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1293
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1294
	} else
1295 1296
		new_page = NULL;

1297 1298 1299
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
1300
		if (!page) {
J
Jan Kara 已提交
1301
			split_huge_pmd(vma, vmf->pmd, vmf->address);
1302
			ret |= VM_FAULT_FALLBACK;
1303
		} else {
J
Jan Kara 已提交
1304
			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1305
			if (ret & VM_FAULT_OOM) {
J
Jan Kara 已提交
1306
				split_huge_pmd(vma, vmf->pmd, vmf->address);
1307 1308
				ret |= VM_FAULT_FALLBACK;
			}
1309
			put_page(page);
1310
		}
1311
		count_vm_event(THP_FAULT_FALLBACK);
1312 1313 1314
		goto out;
	}

1315
	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1316
					huge_gfp, &memcg, true))) {
A
Andrea Arcangeli 已提交
1317
		put_page(new_page);
J
Jan Kara 已提交
1318
		split_huge_pmd(vma, vmf->pmd, vmf->address);
K
Kirill A. Shutemov 已提交
1319
		if (page)
1320
			put_page(page);
1321
		ret |= VM_FAULT_FALLBACK;
1322
		count_vm_event(THP_FAULT_FALLBACK);
A
Andrea Arcangeli 已提交
1323 1324 1325
		goto out;
	}

1326 1327
	count_vm_event(THP_FAULT_ALLOC);

1328
	if (!page)
1329
		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1330 1331
	else
		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1332 1333
	__SetPageUptodate(new_page);

1334 1335
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1336
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1337

J
Jan Kara 已提交
1338
	spin_lock(vmf->ptl);
1339
	if (page)
1340
		put_page(page);
J
Jan Kara 已提交
1341 1342
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
1343
		mem_cgroup_cancel_charge(new_page, memcg, true);
1344
		put_page(new_page);
1345
		goto out_mn;
A
Andrea Arcangeli 已提交
1346
	} else {
1347
		pmd_t entry;
1348
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1349
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1350
		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1351
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1352
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1353
		lru_cache_add_active_or_unevictable(new_page, vma);
J
Jan Kara 已提交
1354 1355
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1356
		if (!page) {
K
Kirill A. Shutemov 已提交
1357
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1358
		} else {
1359
			VM_BUG_ON_PAGE(!PageHead(page), page);
1360
			page_remove_rmap(page, true);
1361 1362
			put_page(page);
		}
1363 1364
		ret |= VM_FAULT_WRITE;
	}
J
Jan Kara 已提交
1365
	spin_unlock(vmf->ptl);
1366
out_mn:
1367 1368 1369 1370 1371 1372
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
					       mmun_end);
1373 1374
out:
	return ret;
1375
out_unlock:
J
Jan Kara 已提交
1376
	spin_unlock(vmf->ptl);
1377
	return ret;
1378 1379
}

1380 1381 1382 1383 1384 1385
/*
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1386
	return pmd_write(pmd) ||
1387 1388 1389
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
}

1390
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1391 1392 1393 1394
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1395
	struct mm_struct *mm = vma->vm_mm;
1396 1397
	struct page *page = NULL;

1398
	assert_spin_locked(pmd_lockptr(mm, pmd));
1399

1400
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1401 1402
		goto out;

1403 1404 1405 1406
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1407
	/* Full NUMA hinting faults to serialise migration in fault paths */
1408
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1409 1410
		goto out;

1411
	page = pmd_page(*pmd);
1412
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1413
	if (flags & FOLL_TOUCH)
1414
		touch_pmd(vma, addr, pmd, flags);
E
Eric B Munson 已提交
1415
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1416 1417 1418 1419
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1420 1421
		 * For anon THP:
		 *
1422 1423 1424 1425 1426 1427 1428
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1429 1430 1431 1432 1433 1434
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1435
		 */
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1447
	}
1448
skip_mlock:
1449
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1450
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1451
	if (flags & FOLL_GET)
1452
		get_page(page);
1453 1454 1455 1456 1457

out:
	return page;
}

1458
/* NUMA hinting page fault entry point for trans huge pmds */
J
Jan Kara 已提交
1459
int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1460
{
J
Jan Kara 已提交
1461
	struct vm_area_struct *vma = vmf->vma;
1462
	struct anon_vma *anon_vma = NULL;
1463
	struct page *page;
J
Jan Kara 已提交
1464
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1465
	int page_nid = -1, this_nid = numa_node_id();
1466
	int target_nid, last_cpupid = -1;
1467 1468
	bool page_locked;
	bool migrated = false;
1469
	bool was_writable;
1470
	int flags = 0;
1471

J
Jan Kara 已提交
1472 1473
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1474 1475
		goto out_unlock;

1476 1477 1478 1479 1480
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1481 1482
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1483 1484
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1485
		spin_unlock(vmf->ptl);
1486
		wait_on_page_locked(page);
1487
		put_page(page);
1488 1489 1490
		goto out;
	}

1491
	page = pmd_page(pmd);
1492
	BUG_ON(is_huge_zero_page(page));
1493
	page_nid = page_to_nid(page);
1494
	last_cpupid = page_cpupid_last(page);
1495
	count_vm_numa_event(NUMA_HINT_FAULTS);
1496
	if (page_nid == this_nid) {
1497
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1498 1499
		flags |= TNF_FAULT_LOCAL;
	}
1500

1501
	/* See similar comment in do_numa_page for explanation */
1502
	if (!pmd_savedwrite(pmd))
1503 1504
		flags |= TNF_NO_GROUP;

1505 1506 1507 1508
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1509 1510 1511 1512
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
	if (target_nid == -1) {
		/* If the page was locked, there are no parallel migrations */
1513
		if (page_locked)
1514
			goto clear_pmdnuma;
1515
	}
1516

1517
	/* Migration could have started since the pmd_trans_migrating check */
1518
	if (!page_locked) {
1519 1520 1521
		page_nid = -1;
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1522
		spin_unlock(vmf->ptl);
1523
		wait_on_page_locked(page);
1524
		put_page(page);
1525 1526 1527
		goto out;
	}

1528 1529 1530 1531
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1532
	get_page(page);
J
Jan Kara 已提交
1533
	spin_unlock(vmf->ptl);
1534
	anon_vma = page_lock_anon_vma_read(page);
1535

P
Peter Zijlstra 已提交
1536
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1537 1538
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1539 1540
		unlock_page(page);
		put_page(page);
1541
		page_nid = -1;
1542
		goto out_unlock;
1543
	}
1544

1545 1546 1547 1548 1549 1550 1551
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
		page_nid = -1;
		goto clear_pmdnuma;
	}

1552 1553 1554 1555 1556 1557
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1558 1559 1560 1561
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1562 1563
	 */
	if (mm_tlb_flush_pending(vma->vm_mm))
1564
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1565

1566 1567
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1568
	 * and access rights restored.
1569
	 */
J
Jan Kara 已提交
1570
	spin_unlock(vmf->ptl);
1571

K
Kirill A. Shutemov 已提交
1572
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1573
				vmf->pmd, pmd, vmf->address, page, target_nid);
1574 1575
	if (migrated) {
		flags |= TNF_MIGRATED;
1576
		page_nid = target_nid;
1577 1578
	} else
		flags |= TNF_MIGRATE_FAIL;
1579

1580
	goto out;
1581
clear_pmdnuma:
1582
	BUG_ON(!PageLocked(page));
1583
	was_writable = pmd_savedwrite(pmd);
1584
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1585
	pmd = pmd_mkyoung(pmd);
1586 1587
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1588 1589
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1590
	unlock_page(page);
1591
out_unlock:
J
Jan Kara 已提交
1592
	spin_unlock(vmf->ptl);
1593 1594 1595 1596 1597

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1598
	if (page_nid != -1)
J
Jan Kara 已提交
1599
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1600
				flags);
1601

1602 1603 1604
	return 0;
}

1605 1606 1607 1608 1609
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1610 1611 1612 1613 1614 1615
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1616
	bool ret = false;
1617

1618 1619
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1620 1621
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1622
		goto out_unlocked;
1623 1624

	orig_pmd = *pmd;
1625
	if (is_huge_zero_pmd(orig_pmd))
1626 1627
		goto out;

1628 1629 1630 1631 1632 1633
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1652
		split_huge_page(page);
1653
		unlock_page(page);
1654
		put_page(page);
1655 1656 1657 1658 1659 1660 1661 1662
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1663
		pmdp_invalidate(vma, addr, pmd);
1664 1665 1666 1667 1668 1669
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1670 1671

	mark_page_lazyfree(page);
1672
	ret = true;
1673 1674 1675 1676 1677 1678
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1679 1680 1681 1682 1683 1684
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1685
	mm_dec_nr_ptes(mm);
1686 1687
}

1688
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1689
		 pmd_t *pmd, unsigned long addr)
1690
{
1691
	pmd_t orig_pmd;
1692
	spinlock_t *ptl;
1693

1694 1695
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1696 1697
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	if (vma_is_dax(vma)) {
1709 1710
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1711 1712
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1713
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1714
	} else if (is_huge_zero_pmd(orig_pmd)) {
1715
		zap_deposited_table(tlb->mm, pmd);
1716
		spin_unlock(ptl);
1717
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1718
	} else {
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1737
		if (PageAnon(page)) {
1738
			zap_deposited_table(tlb->mm, pmd);
1739 1740
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1741 1742
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1743 1744
			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
		}
1745

1746
		spin_unlock(ptl);
1747 1748
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1749
	}
1750
	return 1;
1751 1752
}

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1779
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1780
		  unsigned long new_addr, unsigned long old_end,
1781
		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1782
{
1783
	spinlock_t *old_ptl, *new_ptl;
1784 1785
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1786
	bool force_flush = false;
1787 1788 1789

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1790
	    old_end - old_addr < HPAGE_PMD_SIZE)
1791
		return false;
1792 1793 1794 1795 1796 1797 1798

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1799
		return false;
1800 1801
	}

1802 1803 1804 1805
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1806 1807
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1808 1809 1810
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1811
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1812 1813
		if (pmd_present(pmd) && pmd_dirty(pmd))
			force_flush = true;
1814
		VM_BUG_ON(!pmd_none(*new_pmd));
1815

1816
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1817
			pgtable_t pgtable;
1818 1819 1820
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1821 1822
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1823 1824
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1825 1826 1827 1828
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
		else
			*need_flush = true;
1829
		spin_unlock(old_ptl);
1830
		return true;
1831
	}
1832
	return false;
1833 1834
}

1835 1836 1837 1838 1839 1840
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1841
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1842
		unsigned long addr, pgprot_t newprot, int prot_numa)
1843 1844
{
	struct mm_struct *mm = vma->vm_mm;
1845
	spinlock_t *ptl;
1846 1847 1848
	pmd_t entry;
	bool preserve_write;
	int ret;
1849

1850
	ptl = __pmd_trans_huge_lock(pmd, vma);
1851 1852
	if (!ptl)
		return 0;
1853

1854 1855
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1856

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1870 1871
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1872 1873 1874 1875 1876 1877
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1878 1879 1880 1881 1882 1883 1884
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1885

1886 1887 1888
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
	/*
	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
	 * which is also under down_read(mmap_sem):
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1910
	entry = pmdp_invalidate(vma, addr, pmd);
1911

1912 1913 1914 1915 1916 1917 1918 1919
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1920 1921 1922 1923
	return ret;
}

/*
1924
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1925
 *
1926 1927
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1928
 */
1929
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1930
{
1931 1932
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1933 1934
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1935 1936 1937
		return ptl;
	spin_unlock(ptl);
	return NULL;
1938 1939
}

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	pud_t orig_pud;
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
			tlb->fullmm);
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

1994
	count_vm_event(THP_SPLIT_PUD);
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PUD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
	ptl = pud_lock(mm, pud);
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
	__split_huge_pud_locked(vma, pud, haddr);

out:
	spin_unlock(ptl);
2014 2015 2016 2017 2018 2019
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
					       HPAGE_PUD_SIZE);
2020 2021 2022
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

2023 2024 2025 2026 2027 2028 2029 2030
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

2031 2032 2033 2034 2035 2036
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
2037
	 * See Documentation/vm/mmu_notifier.rst
2038 2039
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2058
		unsigned long haddr, bool freeze)
2059 2060 2061 2062
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2063
	pmd_t old_pmd, _pmd;
2064
	bool young, write, soft_dirty, pmd_migration = false;
2065
	unsigned long addr;
2066 2067 2068 2069 2070
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2071 2072
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2073 2074 2075

	count_vm_event(THP_SPLIT_PMD);

2076 2077
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2078 2079 2080 2081 2082 2083
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2084 2085 2086
		if (vma_is_dax(vma))
			return;
		page = pmd_page(_pmd);
2087 2088
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2089 2090 2091 2092 2093
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2094 2095
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
2096 2097 2098 2099 2100 2101 2102 2103 2104
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2105 2106 2107
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

2130
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2131
	pmd_migration = is_pmd_migration_entry(old_pmd);
2132 2133 2134
	if (pmd_migration) {
		swp_entry_t entry;

2135
		entry = pmd_to_swp_entry(old_pmd);
2136 2137 2138
		page = pfn_to_page(swp_offset(entry));
	} else
#endif
2139
		page = pmd_page(old_pmd);
2140
	VM_BUG_ON_PAGE(!page_count(page), page);
2141
	page_ref_add(page, HPAGE_PMD_NR - 1);
2142 2143 2144 2145 2146
	if (pmd_dirty(old_pmd))
		SetPageDirty(page);
	write = pmd_write(old_pmd);
	young = pmd_young(old_pmd);
	soft_dirty = pmd_soft_dirty(old_pmd);
2147

2148 2149 2150 2151
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2152 2153 2154
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2155
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2156 2157 2158 2159 2160 2161
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2162
		if (freeze || pmd_migration) {
2163 2164 2165
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2166 2167
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2168
		} else {
2169
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2170
			entry = maybe_mkwrite(entry, vma);
2171 2172 2173 2174
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2175 2176
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2177
		}
2178
		pte = pte_offset_map(&_pmd, addr);
2179
		BUG_ON(!pte_none(*pte));
2180
		set_pte_at(mm, addr, pte, entry);
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
2196
		__dec_node_page_state(page, NR_ANON_THPS);
2197 2198 2199 2200 2201 2202 2203 2204 2205
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2206 2207

	if (freeze) {
2208
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2209 2210 2211 2212
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2213 2214 2215
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2216
		unsigned long address, bool freeze, struct page *page)
2217 2218 2219 2220 2221 2222 2223
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PMD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
	ptl = pmd_lock(mm, pmd);
2224 2225 2226 2227 2228 2229 2230 2231 2232

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

2233
	if (pmd_trans_huge(*pmd)) {
2234
		page = pmd_page(*pmd);
2235
		if (PageMlocked(page))
2236
			clear_page_mlock(page);
2237
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2238
		goto out;
2239
	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2240
out:
2241
	spin_unlock(ptl);
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
					       HPAGE_PMD_SIZE);
2257 2258
}

2259 2260
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2261
{
2262
	pgd_t *pgd;
2263
	p4d_t *p4d;
2264
	pud_t *pud;
2265 2266
	pmd_t *pmd;

2267
	pgd = pgd_offset(vma->vm_mm, address);
2268 2269 2270
	if (!pgd_present(*pgd))
		return;

2271 2272 2273 2274 2275
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2276 2277 2278 2279
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2280

2281
	__split_huge_pmd(vma, pmd, address, freeze, page);
2282 2283
}

2284
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2297
		split_huge_pmd_address(vma, start, false, NULL);
2298 2299 2300 2301 2302 2303 2304 2305 2306

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2307
		split_huge_pmd_address(vma, end, false, NULL);
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2321
			split_huge_pmd_address(next, nstart, false, NULL);
2322 2323
	}
}
2324

2325
static void freeze_page(struct page *page)
2326
{
2327
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2328
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2329
	bool unmap_success;
2330 2331 2332

	VM_BUG_ON_PAGE(!PageHead(page), page);

2333
	if (PageAnon(page))
2334
		ttu_flags |= TTU_SPLIT_FREEZE;
2335

M
Minchan Kim 已提交
2336 2337
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2338 2339
}

2340
static void unfreeze_page(struct page *page)
2341
{
2342
	int i;
2343 2344 2345 2346 2347 2348
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2349 2350
}

2351
static void __split_huge_page_tail(struct page *head, int tail,
2352 2353 2354 2355
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2356
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2357 2358

	/*
2359 2360 2361 2362
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
	 * for exmaple lock_page() which set PG_waiters.
2363 2364 2365 2366 2367
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2368
			 (1L << PG_swapcache) |
2369 2370 2371 2372
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
			 (1L << PG_locked) |
2373 2374
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
2375

2376
	/* Page flags must be visible before we make the page non-compound. */
2377 2378
	smp_wmb();

2379 2380 2381 2382 2383 2384
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2385 2386
	clear_compound_head(page_tail);

2387 2388 2389 2390
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2391 2392 2393 2394 2395 2396
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	/* ->mapping in first tail page is compound_mapcount */
2397
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2398 2399 2400 2401 2402
			page_tail);
	page_tail->mapping = head->mapping;

	page_tail->index = head->index + tail;
	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2403 2404 2405 2406 2407 2408

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2409 2410 2411
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2412 2413
static void __split_huge_page(struct page *page, struct list_head *list,
		unsigned long flags)
2414 2415 2416 2417
{
	struct page *head = compound_head(page);
	struct zone *zone = page_zone(head);
	struct lruvec *lruvec;
2418
	pgoff_t end = -1;
2419
	int i;
2420

M
Mel Gorman 已提交
2421
	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2422 2423 2424 2425

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2426 2427 2428 2429
	if (!PageAnon(page))
		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);

	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2430
		__split_huge_page_tail(head, i, lruvec, list);
2431 2432
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2433
			ClearPageDirty(head + i);
2434
			__delete_from_page_cache(head + i, NULL);
2435 2436
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2437 2438 2439
			put_page(head + i);
		}
	}
2440 2441

	ClearPageCompound(head);
2442 2443
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
2444 2445 2446 2447 2448
		/* Additional pin to radix tree of swap cache */
		if (PageSwapCache(head))
			page_ref_add(head, 2);
		else
			page_ref_inc(head);
2449 2450 2451
	} else {
		/* Additional pin to radix tree */
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2452
		xa_unlock(&head->mapping->i_pages);
2453 2454
	}

2455
	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2456

2457
	unfreeze_page(head);
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2476 2477
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
2478
	int i, compound, ret;
2479 2480 2481 2482 2483 2484

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2485
	compound = compound_mapcount(page);
2486
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2487 2488
		return compound;
	ret = compound;
2489 2490
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2491 2492 2493
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2494 2495 2496 2497 2498
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

	/* Additional pins from radix tree */
	if (PageAnon(page))
		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
	else
		extra_pins = HPAGE_PMD_NR;
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2594
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2595 2596 2597
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2598
	bool mlocked;
2599
	unsigned long flags;
2600 2601 2602 2603 2604

	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageCompound(page), page);

2605 2606 2607
	if (PageWriteback(page))
		return -EBUSY;

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2635 2636 2637 2638 2639 2640
	}

	/*
	 * Racy check if we can split the page, before freeze_page() will
	 * split PMDs
	 */
2641
	if (!can_split_huge_page(head, &extra_pins)) {
2642 2643 2644 2645
		ret = -EBUSY;
		goto out_unlock;
	}

2646
	mlocked = PageMlocked(page);
2647
	freeze_page(head);
2648 2649
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2650 2651 2652 2653
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2654
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2655
	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2656 2657 2658 2659

	if (mapping) {
		void **pslot;

M
Matthew Wilcox 已提交
2660 2661
		xa_lock(&mapping->i_pages);
		pslot = radix_tree_lookup_slot(&mapping->i_pages,
2662 2663 2664 2665 2666 2667
				page_index(head));
		/*
		 * Check if the head page is present in radix tree.
		 * We assume all tail are present too, if head is there.
		 */
		if (radix_tree_deref_slot_protected(pslot,
M
Matthew Wilcox 已提交
2668
					&mapping->i_pages.xa_lock) != head)
2669 2670 2671
			goto fail;
	}

2672
	/* Prevent deferred_split_scan() touching ->_refcount */
2673
	spin_lock(&pgdata->split_queue_lock);
2674 2675
	count = page_count(head);
	mapcount = total_mapcount(head);
2676
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2677
		if (!list_empty(page_deferred_list(head))) {
2678
			pgdata->split_queue_len--;
2679 2680
			list_del(page_deferred_list(head));
		}
2681
		if (mapping)
2682
			__dec_node_page_state(page, NR_SHMEM_THPS);
2683 2684
		spin_unlock(&pgdata->split_queue_lock);
		__split_huge_page(page, list, flags);
2685 2686 2687 2688 2689 2690
		if (PageSwapCache(head)) {
			swp_entry_t entry = { .val = page_private(head) };

			ret = split_swap_cluster(entry);
		} else
			ret = 0;
2691
	} else {
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
		spin_unlock(&pgdata->split_queue_lock);
fail:		if (mapping)
M
Matthew Wilcox 已提交
2702
			xa_unlock(&mapping->i_pages);
2703
		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2704
		unfreeze_page(head);
2705 2706 2707 2708
		ret = -EBUSY;
	}

out_unlock:
2709 2710 2711 2712 2713 2714
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2715 2716 2717 2718
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2719 2720 2721

void free_transhuge_page(struct page *page)
{
2722
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2723 2724
	unsigned long flags;

2725
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2726
	if (!list_empty(page_deferred_list(page))) {
2727
		pgdata->split_queue_len--;
2728 2729
		list_del(page_deferred_list(page));
	}
2730
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2731 2732 2733 2734 2735
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2736
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2737 2738 2739 2740
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2741
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2742
	if (list_empty(page_deferred_list(page))) {
2743
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2744 2745
		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
		pgdata->split_queue_len++;
2746
	}
2747
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2748 2749 2750 2751 2752
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2753
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2754
	return READ_ONCE(pgdata->split_queue_len);
2755 2756 2757 2758 2759
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2760
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2761 2762 2763 2764 2765
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2766
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2767
	/* Take pin on all head pages to avoid freeing them under us */
2768
	list_for_each_safe(pos, next, &pgdata->split_queue) {
2769 2770
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2771 2772 2773 2774
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2775
			list_del_init(page_deferred_list(page));
2776
			pgdata->split_queue_len--;
2777
		}
2778 2779
		if (!--sc->nr_to_scan)
			break;
2780
	}
2781
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2782 2783 2784

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2785 2786
		if (!trylock_page(page))
			goto next;
2787 2788 2789 2790
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2791
next:
2792 2793 2794
		put_page(page);
	}

2795 2796 2797
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
	list_splice_tail(&list, &pgdata->split_queue);
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2798

2799 2800 2801 2802 2803 2804 2805
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
	if (!split && list_empty(&pgdata->split_queue))
		return SHRINK_STOP;
	return split;
2806 2807 2808 2809 2810 2811
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2812
	.flags = SHRINKER_NUMA_AWARE,
2813
};
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2839
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2852
	pr_info("%lu of %lu THP split\n", split, total);
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
	void *ret;

2863
	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2864 2865 2866 2867 2868 2869 2870
			&split_huge_pages_fops);
	if (!ret)
		pr_warn("Failed to create split_huge_pages in debugfs");
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
2881
	pmd_t pmdswp;
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	mmu_notifier_invalidate_range_start(mm, address,
			address + HPAGE_PMD_SIZE);

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
	pmdval = *pvmw->pmd;
	pmdp_invalidate(vma, address, pvmw->pmd);
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
2895 2896 2897 2898
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
	page_remove_rmap(page, true);
	put_page(page);

	mmu_notifier_invalidate_range_end(mm, address,
			address + HPAGE_PMD_SIZE);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2921 2922
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
2923
	if (is_write_migration_entry(entry))
2924
		pmde = maybe_pmd_mkwrite(pmde, vma);
2925 2926

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2927 2928 2929 2930
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
2931 2932 2933 2934 2935 2936
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
	if (vma->vm_flags & VM_LOCKED)
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif