huge_memory.c 72.9 KB
Newer Older
1 2 3 4 5 6 7
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 */

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11
#include <linux/mm.h>
#include <linux/sched.h>
12
#include <linux/sched/coredump.h>
13 14 15 16 17
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
18
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
19
#include <linux/mm_inline.h>
20
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
21
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
22
#include <linux/khugepaged.h>
23
#include <linux/freezer.h>
24
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
25
#include <linux/mman.h>
26
#include <linux/memremap.h>
R
Ralf Baechle 已提交
27
#include <linux/pagemap.h>
28
#include <linux/debugfs.h>
29
#include <linux/migrate.h>
30
#include <linux/hashtable.h>
31
#include <linux/userfaultfd_k.h>
32
#include <linux/page_idle.h>
33
#include <linux/shmem_fs.h>
34

35 36 37 38
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
39
/*
40 41 42 43 44 45
 * By default transparent hugepage support is disabled in order that avoid
 * to risk increase the memory footprint of applications without a guaranteed
 * benefit. When transparent hugepage support is enabled, is for all mappings,
 * and khugepaged scans all mappings.
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
46
 */
47
unsigned long transparent_hugepage_flags __read_mostly =
48
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
49
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
50 51 52 53
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
54
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
55 56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
57

58
static struct shrinker deferred_split_shrinker;
59

60
static atomic_t huge_zero_refcount;
61
struct page *huge_zero_page __read_mostly;
62

63
static struct page *get_huge_zero_page(void)
64 65 66 67
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
68
		return READ_ONCE(huge_zero_page);
69 70

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
71
			HPAGE_PMD_ORDER);
72 73
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
74
		return NULL;
75 76
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
77
	preempt_disable();
78
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
79
		preempt_enable();
80
		__free_pages(zero_page, compound_order(zero_page));
81 82 83 84 85 86
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
87
	return READ_ONCE(huge_zero_page);
88 89
}

90
static void put_huge_zero_page(void)
91
{
92 93 94 95 96
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
97 98
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

119 120
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
121
{
122 123 124
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
125

126 127 128
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
129
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
130 131
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
132
		__free_pages(zero_page, compound_order(zero_page));
133
		return HPAGE_PMD_NR;
134 135 136
	}

	return 0;
137 138
}

139
static struct shrinker huge_zero_page_shrinker = {
140 141
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
142 143 144
	.seeks = DEFAULT_SEEKS,
};

145 146 147 148
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
149 150 151 152 153 154
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
155
}
156

157 158 159 160
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
161
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
162

163 164 165 166 167 168 169 170 171 172 173 174 175 176
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
177 178

	if (ret > 0) {
179
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
180 181 182 183
		if (err)
			ret = err;
	}
	return ret;
184 185 186 187
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

188
ssize_t single_hugepage_flag_show(struct kobject *kobj,
189 190 191
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
192 193
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
194
}
195

196
ssize_t single_hugepage_flag_store(struct kobject *kobj,
197 198 199 200
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
201 202 203 204 205 206 207 208 209 210
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
211
		set_bit(flag, &transparent_hugepage_flags);
212
	else
213 214 215 216 217 218 219 220
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
221
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
222
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
223
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
224 225 226 227 228 229
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
230
}
231

232 233 234 235
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("defer", buf,
		    min(sizeof("defer")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("defer+madvise", buf,
		    min(sizeof("defer+madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
270 271 272 273
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

274 275 276
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
277
	return single_hugepage_flag_show(kobj, attr, buf,
278 279 280 281 282
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
283
	return single_hugepage_flag_store(kobj, attr, buf, count,
284 285 286 287
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
288 289 290 291 292 293 294 295 296

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

297 298 299 300
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
301
	return single_hugepage_flag_show(kobj, attr, buf,
302 303 304 305 306 307
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
308
	return single_hugepage_flag_store(kobj, attr, buf, count,
309 310 311 312 313 314 315 316 317
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
318
	&use_zero_page_attr.attr,
319
	&hpage_pmd_size_attr.attr,
320
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
321 322
	&shmem_enabled_attr.attr,
#endif
323 324 325 326 327 328 329 330
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

static struct attribute_group hugepage_attr_group = {
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
331 332
};

S
Shaohua Li 已提交
333
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
334 335 336
{
	int err;

S
Shaohua Li 已提交
337 338
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
339
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
340
		return -ENOMEM;
A
Andrea Arcangeli 已提交
341 342
	}

S
Shaohua Li 已提交
343
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
344
	if (err) {
345
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
346
		goto delete_obj;
A
Andrea Arcangeli 已提交
347 348
	}

S
Shaohua Li 已提交
349
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
350
	if (err) {
351
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
352
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
353
	}
S
Shaohua Li 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

391 392 393 394 395 396 397 398 399 400
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
401 402
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
403
		goto err_sysfs;
A
Andrea Arcangeli 已提交
404

405
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
406
	if (err)
407
		goto err_slab;
A
Andrea Arcangeli 已提交
408

409 410 411
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
412 413 414
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
415

416 417 418 419 420
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
421
	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
422
		transparent_hugepage_flags = 0;
423 424
		return 0;
	}
425

426
	err = start_stop_khugepaged();
427 428
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
429

S
Shaohua Li 已提交
430
	return 0;
431
err_khugepaged:
432 433
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
434 435
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
436
	khugepaged_destroy();
437
err_slab:
S
Shaohua Li 已提交
438
	hugepage_exit_sysfs(hugepage_kobj);
439
err_sysfs:
A
Andrea Arcangeli 已提交
440
	return err;
441
}
442
subsys_initcall(hugepage_init);
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
470
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
471 472 473 474
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

475
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
476 477 478 479 480 481
{
	if (likely(vma->vm_flags & VM_WRITE))
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
static inline struct list_head *page_deferred_list(struct page *page)
{
	/*
	 * ->lru in the tail pages is occupied by compound_head.
	 * Let's use ->mapping + ->index in the second tail page as list_head.
	 */
	return (struct list_head *)&page[2].mapping;
}

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
		loff_t off, unsigned long flags, unsigned long size)
{
	unsigned long addr;
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
	unsigned long len_pad;

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
					      off >> PAGE_SHIFT, flags);
	if (IS_ERR_VALUE(addr))
		return 0;

	addr += (off - addr) & (size - 1);
	return addr;
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (addr)
		goto out;
	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
	if (addr)
		return addr;

 out:
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

J
Jan Kara 已提交
545
static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
K
Kirill A. Shutemov 已提交
546
		gfp_t gfp)
547
{
J
Jan Kara 已提交
548
	struct vm_area_struct *vma = vmf->vma;
549
	struct mem_cgroup *memcg;
550
	pgtable_t pgtable;
J
Jan Kara 已提交
551
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
552

553
	VM_BUG_ON_PAGE(!PageCompound(page), page);
554

K
Kirill A. Shutemov 已提交
555
	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
556 557 558 559
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
560

K
Kirill A. Shutemov 已提交
561
	pgtable = pte_alloc_one(vma->vm_mm, haddr);
562
	if (unlikely(!pgtable)) {
563
		mem_cgroup_cancel_charge(page, memcg, true);
564
		put_page(page);
565
		return VM_FAULT_OOM;
566
	}
567 568

	clear_huge_page(page, haddr, HPAGE_PMD_NR);
569 570 571 572 573
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
574 575
	__SetPageUptodate(page);

J
Jan Kara 已提交
576 577 578
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
		spin_unlock(vmf->ptl);
579
		mem_cgroup_cancel_charge(page, memcg, true);
580
		put_page(page);
K
Kirill A. Shutemov 已提交
581
		pte_free(vma->vm_mm, pgtable);
582 583
	} else {
		pmd_t entry;
584 585 586 587 588

		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
			int ret;

J
Jan Kara 已提交
589
			spin_unlock(vmf->ptl);
590
			mem_cgroup_cancel_charge(page, memcg, true);
591
			put_page(page);
K
Kirill A. Shutemov 已提交
592
			pte_free(vma->vm_mm, pgtable);
J
Jan Kara 已提交
593
			ret = handle_userfault(vmf, VM_UFFD_MISSING);
594 595 596 597
			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			return ret;
		}

598 599
		entry = mk_huge_pmd(page, vma->vm_page_prot);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
600
		page_add_new_anon_rmap(page, vma, haddr, true);
601
		mem_cgroup_commit_charge(page, memcg, false, true);
602
		lru_cache_add_active_or_unevictable(page, vma);
J
Jan Kara 已提交
603 604
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
605 606
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
		atomic_long_inc(&vma->vm_mm->nr_ptes);
J
Jan Kara 已提交
607
		spin_unlock(vmf->ptl);
608
		count_vm_event(THP_FAULT_ALLOC);
609 610
	}

611
	return 0;
612 613
}

614
/*
615 616 617 618 619 620 621
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
622 623 624
 */
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
{
625
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
626

627
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
628
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
629 630 631 632 633 634 635 636
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     __GFP_KSWAPD_RECLAIM);
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     0);
637
	return GFP_TRANSHUGE_LIGHT;
638 639
}

640
/* Caller must hold page table lock. */
641
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
642
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
643
		struct page *zero_page)
644 645
{
	pmd_t entry;
A
Andrew Morton 已提交
646 647
	if (!pmd_none(*pmd))
		return false;
648
	entry = mk_pmd(zero_page, vma->vm_page_prot);
649
	entry = pmd_mkhuge(entry);
650 651
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
652
	set_pmd_at(mm, haddr, pmd, entry);
653
	atomic_long_inc(&mm->nr_ptes);
A
Andrew Morton 已提交
654
	return true;
655 656
}

J
Jan Kara 已提交
657
int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
658
{
J
Jan Kara 已提交
659
	struct vm_area_struct *vma = vmf->vma;
660
	gfp_t gfp;
661
	struct page *page;
J
Jan Kara 已提交
662
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
663

664
	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
665
		return VM_FAULT_FALLBACK;
666 667
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
668
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
669
		return VM_FAULT_OOM;
J
Jan Kara 已提交
670
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
671
			!mm_forbids_zeropage(vma->vm_mm) &&
672 673 674 675
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
676
		int ret;
K
Kirill A. Shutemov 已提交
677
		pgtable = pte_alloc_one(vma->vm_mm, haddr);
678
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
679
			return VM_FAULT_OOM;
680
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
681
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
682
			pte_free(vma->vm_mm, pgtable);
683
			count_vm_event(THP_FAULT_FALLBACK);
684
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
685
		}
J
Jan Kara 已提交
686
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
687 688
		ret = 0;
		set = false;
J
Jan Kara 已提交
689
		if (pmd_none(*vmf->pmd)) {
690
			if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
691 692
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
693 694
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
695
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
696 697
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
698 699 700
				set = true;
			}
		} else
J
Jan Kara 已提交
701
			spin_unlock(vmf->ptl);
702
		if (!set)
K
Kirill A. Shutemov 已提交
703
			pte_free(vma->vm_mm, pgtable);
704
		return ret;
705
	}
706
	gfp = alloc_hugepage_direct_gfpmask(vma);
707
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
708 709
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
710
		return VM_FAULT_FALLBACK;
711
	}
712
	prep_transhuge_page(page);
J
Jan Kara 已提交
713
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
714 715
}

716
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
717
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
M
Matthew Wilcox 已提交
718 719 720 721 722 723
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
724 725 726
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
727 728 729
	if (write) {
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
730
	}
731 732
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
M
Matthew Wilcox 已提交
733 734 735 736
	spin_unlock(ptl);
}

int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
737
			pmd_t *pmd, pfn_t pfn, bool write)
M
Matthew Wilcox 已提交
738 739 740 741 742 743 744 745 746 747 748
{
	pgprot_t pgprot = vma->vm_page_prot;
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
749
	BUG_ON(!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
750 751 752

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
753 754 755

	track_pfn_insert(vma, &pgprot, pfn);

756 757
	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
758
}
759
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
M
Matthew Wilcox 已提交
760

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
{
	if (likely(vma->vm_flags & VM_WRITE))
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
	spin_unlock(ptl);
}

int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
			pud_t *pud, pfn_t pfn, bool write)
{
	pgprot_t pgprot = vma->vm_page_prot;
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
	BUG_ON(!pfn_t_devmap(pfn));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
	return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd)
{
	pmd_t _pmd;

	/*
	 * We should set the dirty bit only for FOLL_WRITE but for now
	 * the dirty bit in the pmd is meaningless.  And if the dirty
	 * bit will become meaningful and we'll only set it with
	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
	 * set the young bit, instead of the current set_pmd_at.
	 */
	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
				pmd, _pmd,  1))
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd, int flags)
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

843 844 845 846 847 848
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
		touch_pmd(vma, addr, pmd);

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

878 879 880 881
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
882
	spinlock_t *dst_ptl, *src_ptl;
883 884
	struct page *src_page;
	pmd_t pmd;
885
	pgtable_t pgtable = NULL;
886
	int ret = -ENOMEM;
887

888 889 890 891 892 893 894
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

	pgtable = pte_alloc_one(dst_mm, addr);
	if (unlikely(!pgtable))
		goto out;
895

896 897 898
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
899 900 901

	ret = -EAGAIN;
	pmd = *src_pmd;
902
	if (unlikely(!pmd_trans_huge(pmd))) {
903 904 905
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
906
	/*
907
	 * When page table lock is held, the huge zero pmd should not be
908 909 910 911
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
912
		struct page *zero_page;
913 914 915 916 917
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
918
		zero_page = mm_get_huge_zero_page(dst_mm);
919
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
920
				zero_page);
921 922 923
		ret = 0;
		goto out_unlock;
	}
924

925 926 927 928 929 930 931
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
	atomic_long_inc(&dst_mm->nr_ptes);
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
932 933 934 935 936 937 938

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
939 940
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
941 942 943 944
out:
	return ret;
}

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud)
{
	pud_t _pud;

	/*
	 * We should set the dirty bit only for FOLL_WRITE but for now
	 * the dirty bit in the pud is meaningless.  And if the dirty
	 * bit will become meaningful and we'll only set it with
	 * FOLL_WRITE, an atomic set_bit will be required on the pud to
	 * set the young bit, instead of the current set_pud_at.
	 */
	_pud = pud_mkyoung(pud_mkdirty(*pud));
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
				pud, _pud,  1))
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, int flags)
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

	if (flags & FOLL_WRITE && !pud_write(*pud))
		return NULL;

	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
		touch_pud(vma, addr, pud);

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1062
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1063 1064 1065
{
	pmd_t entry;
	unsigned long haddr;
1066
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1067

J
Jan Kara 已提交
1068 1069
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1070 1071 1072
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1073 1074
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1075
	haddr = vmf->address & HPAGE_PMD_MASK;
1076
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1077
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1078 1079

unlock:
J
Jan Kara 已提交
1080
	spin_unlock(vmf->ptl);
1081 1082
}

J
Jan Kara 已提交
1083
static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
K
Kirill A. Shutemov 已提交
1084
		struct page *page)
1085
{
J
Jan Kara 已提交
1086 1087
	struct vm_area_struct *vma = vmf->vma;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1088
	struct mem_cgroup *memcg;
1089 1090 1091 1092
	pgtable_t pgtable;
	pmd_t _pmd;
	int ret = 0, i;
	struct page **pages;
1093 1094
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1095 1096 1097 1098 1099 1100 1101 1102 1103

	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
			GFP_KERNEL);
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
M
Michal Hocko 已提交
1104
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
J
Jan Kara 已提交
1105
					       vmf->address, page_to_nid(page));
A
Andrea Arcangeli 已提交
1106
		if (unlikely(!pages[i] ||
K
Kirill A. Shutemov 已提交
1107 1108
			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
				     GFP_KERNEL, &memcg, false))) {
A
Andrea Arcangeli 已提交
1109
			if (pages[i])
1110
				put_page(pages[i]);
A
Andrea Arcangeli 已提交
1111
			while (--i >= 0) {
1112 1113
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
1114 1115
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
A
Andrea Arcangeli 已提交
1116 1117
				put_page(pages[i]);
			}
1118 1119 1120 1121
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
1122
		set_page_private(pages[i], (unsigned long)memcg);
1123 1124 1125 1126
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
1127
				   haddr + PAGE_SIZE * i, vma);
1128 1129 1130 1131
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

1132 1133
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1134
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1135

J
Jan Kara 已提交
1136 1137
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1138
		goto out_free_pages;
1139
	VM_BUG_ON_PAGE(!PageHead(page), page);
1140

J
Jan Kara 已提交
1141
	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1142 1143
	/* leave pmd empty until pte is filled */

J
Jan Kara 已提交
1144
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
K
Kirill A. Shutemov 已提交
1145
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1146 1147

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
K
Kirill A. Shutemov 已提交
1148
		pte_t entry;
1149 1150
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1151 1152
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
J
Jan Kara 已提交
1153
		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1154
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1155
		lru_cache_add_active_or_unevictable(pages[i], vma);
J
Jan Kara 已提交
1156 1157 1158 1159
		vmf->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*vmf->pte));
		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
		pte_unmap(vmf->pte);
1160 1161 1162 1163
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
J
Jan Kara 已提交
1164
	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1165
	page_remove_rmap(page, true);
J
Jan Kara 已提交
1166
	spin_unlock(vmf->ptl);
1167

K
Kirill A. Shutemov 已提交
1168
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1169

1170 1171 1172 1173 1174 1175 1176
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
J
Jan Kara 已提交
1177
	spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
1178
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
1179
	for (i = 0; i < HPAGE_PMD_NR; i++) {
1180 1181
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
1182
		mem_cgroup_cancel_charge(pages[i], memcg, false);
1183
		put_page(pages[i]);
A
Andrea Arcangeli 已提交
1184
	}
1185 1186 1187 1188
	kfree(pages);
	goto out;
}

J
Jan Kara 已提交
1189
int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1190
{
J
Jan Kara 已提交
1191
	struct vm_area_struct *vma = vmf->vma;
1192
	struct page *page = NULL, *new_page;
1193
	struct mem_cgroup *memcg;
J
Jan Kara 已提交
1194
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1195 1196
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1197
	gfp_t huge_gfp;			/* for allocation and charge */
K
Kirill A. Shutemov 已提交
1198
	int ret = 0;
1199

J
Jan Kara 已提交
1200
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1201
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1202 1203
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
J
Jan Kara 已提交
1204 1205
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1206 1207 1208
		goto out_unlock;

	page = pmd_page(orig_pmd);
1209
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1210 1211
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
1212
	 * part.
1213
	 */
1214
	if (page_trans_huge_mapcount(page, NULL) == 1) {
1215 1216 1217
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1218 1219
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1220 1221 1222
		ret |= VM_FAULT_WRITE;
		goto out_unlock;
	}
1223
	get_page(page);
J
Jan Kara 已提交
1224
	spin_unlock(vmf->ptl);
1225
alloc:
1226
	if (transparent_hugepage_enabled(vma) &&
1227
	    !transparent_hugepage_debug_cow()) {
1228
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1229
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1230
	} else
1231 1232
		new_page = NULL;

1233 1234 1235
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
1236
		if (!page) {
J
Jan Kara 已提交
1237
			split_huge_pmd(vma, vmf->pmd, vmf->address);
1238
			ret |= VM_FAULT_FALLBACK;
1239
		} else {
J
Jan Kara 已提交
1240
			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1241
			if (ret & VM_FAULT_OOM) {
J
Jan Kara 已提交
1242
				split_huge_pmd(vma, vmf->pmd, vmf->address);
1243 1244
				ret |= VM_FAULT_FALLBACK;
			}
1245
			put_page(page);
1246
		}
1247
		count_vm_event(THP_FAULT_FALLBACK);
1248 1249 1250
		goto out;
	}

K
Kirill A. Shutemov 已提交
1251 1252
	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
					huge_gfp, &memcg, true))) {
A
Andrea Arcangeli 已提交
1253
		put_page(new_page);
J
Jan Kara 已提交
1254
		split_huge_pmd(vma, vmf->pmd, vmf->address);
K
Kirill A. Shutemov 已提交
1255
		if (page)
1256
			put_page(page);
1257
		ret |= VM_FAULT_FALLBACK;
1258
		count_vm_event(THP_FAULT_FALLBACK);
A
Andrea Arcangeli 已提交
1259 1260 1261
		goto out;
	}

1262 1263
	count_vm_event(THP_FAULT_ALLOC);

1264
	if (!page)
1265 1266 1267
		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
	else
		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1268 1269
	__SetPageUptodate(new_page);

1270 1271
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1272
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1273

J
Jan Kara 已提交
1274
	spin_lock(vmf->ptl);
1275
	if (page)
1276
		put_page(page);
J
Jan Kara 已提交
1277 1278
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
1279
		mem_cgroup_cancel_charge(new_page, memcg, true);
1280
		put_page(new_page);
1281
		goto out_mn;
A
Andrea Arcangeli 已提交
1282
	} else {
1283
		pmd_t entry;
1284 1285
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1286
		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1287
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1288
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1289
		lru_cache_add_active_or_unevictable(new_page, vma);
J
Jan Kara 已提交
1290 1291
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1292
		if (!page) {
K
Kirill A. Shutemov 已提交
1293
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1294
		} else {
1295
			VM_BUG_ON_PAGE(!PageHead(page), page);
1296
			page_remove_rmap(page, true);
1297 1298
			put_page(page);
		}
1299 1300
		ret |= VM_FAULT_WRITE;
	}
J
Jan Kara 已提交
1301
	spin_unlock(vmf->ptl);
1302
out_mn:
K
Kirill A. Shutemov 已提交
1303
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1304 1305
out:
	return ret;
1306
out_unlock:
J
Jan Kara 已提交
1307
	spin_unlock(vmf->ptl);
1308
	return ret;
1309 1310
}

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
/*
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
	return pmd_write(pmd) ||
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
}

1321
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1322 1323 1324 1325
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1326
	struct mm_struct *mm = vma->vm_mm;
1327 1328
	struct page *page = NULL;

1329
	assert_spin_locked(pmd_lockptr(mm, pmd));
1330

1331
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1332 1333
		goto out;

1334 1335 1336 1337
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1338
	/* Full NUMA hinting faults to serialise migration in fault paths */
1339
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1340 1341
		goto out;

1342
	page = pmd_page(*pmd);
1343
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1344 1345
	if (flags & FOLL_TOUCH)
		touch_pmd(vma, addr, pmd);
E
Eric B Munson 已提交
1346
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1347 1348 1349 1350
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1351 1352
		 * For anon THP:
		 *
1353 1354 1355 1356 1357 1358 1359
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1360 1361 1362 1363 1364 1365
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1366
		 */
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1378
	}
1379
skip_mlock:
1380
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1381
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1382
	if (flags & FOLL_GET)
1383
		get_page(page);
1384 1385 1386 1387 1388

out:
	return page;
}

1389
/* NUMA hinting page fault entry point for trans huge pmds */
J
Jan Kara 已提交
1390
int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1391
{
J
Jan Kara 已提交
1392
	struct vm_area_struct *vma = vmf->vma;
1393
	struct anon_vma *anon_vma = NULL;
1394
	struct page *page;
J
Jan Kara 已提交
1395
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1396
	int page_nid = -1, this_nid = numa_node_id();
1397
	int target_nid, last_cpupid = -1;
1398 1399
	bool page_locked;
	bool migrated = false;
1400
	bool was_writable;
1401
	int flags = 0;
1402

J
Jan Kara 已提交
1403 1404
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1405 1406
		goto out_unlock;

1407 1408 1409 1410 1411
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1412 1413 1414
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
		spin_unlock(vmf->ptl);
1415
		wait_on_page_locked(page);
1416 1417 1418
		goto out;
	}

1419
	page = pmd_page(pmd);
1420
	BUG_ON(is_huge_zero_page(page));
1421
	page_nid = page_to_nid(page);
1422
	last_cpupid = page_cpupid_last(page);
1423
	count_vm_numa_event(NUMA_HINT_FAULTS);
1424
	if (page_nid == this_nid) {
1425
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1426 1427
		flags |= TNF_FAULT_LOCAL;
	}
1428

1429
	/* See similar comment in do_numa_page for explanation */
1430
	if (!pmd_savedwrite(pmd))
1431 1432
		flags |= TNF_NO_GROUP;

1433 1434 1435 1436
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1437 1438 1439 1440
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
	if (target_nid == -1) {
		/* If the page was locked, there are no parallel migrations */
1441
		if (page_locked)
1442
			goto clear_pmdnuma;
1443
	}
1444

1445
	/* Migration could have started since the pmd_trans_migrating check */
1446
	if (!page_locked) {
J
Jan Kara 已提交
1447
		spin_unlock(vmf->ptl);
1448
		wait_on_page_locked(page);
1449
		page_nid = -1;
1450 1451 1452
		goto out;
	}

1453 1454 1455 1456
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1457
	get_page(page);
J
Jan Kara 已提交
1458
	spin_unlock(vmf->ptl);
1459
	anon_vma = page_lock_anon_vma_read(page);
1460

P
Peter Zijlstra 已提交
1461
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1462 1463
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1464 1465
		unlock_page(page);
		put_page(page);
1466
		page_nid = -1;
1467
		goto out_unlock;
1468
	}
1469

1470 1471 1472 1473 1474 1475 1476
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
		page_nid = -1;
		goto clear_pmdnuma;
	}

1477 1478
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1479
	 * and access rights restored.
1480
	 */
J
Jan Kara 已提交
1481
	spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
1482
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1483
				vmf->pmd, pmd, vmf->address, page, target_nid);
1484 1485
	if (migrated) {
		flags |= TNF_MIGRATED;
1486
		page_nid = target_nid;
1487 1488
	} else
		flags |= TNF_MIGRATE_FAIL;
1489

1490
	goto out;
1491
clear_pmdnuma:
1492
	BUG_ON(!PageLocked(page));
1493
	was_writable = pmd_savedwrite(pmd);
1494
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1495
	pmd = pmd_mkyoung(pmd);
1496 1497
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1498 1499
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1500
	unlock_page(page);
1501
out_unlock:
J
Jan Kara 已提交
1502
	spin_unlock(vmf->ptl);
1503 1504 1505 1506 1507

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1508
	if (page_nid != -1)
J
Jan Kara 已提交
1509
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1510
				flags);
1511

1512 1513 1514
	return 0;
}

1515 1516 1517 1518 1519
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1520 1521 1522 1523 1524 1525
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1526
	bool ret = false;
1527

1528 1529
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1530 1531
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1532
		goto out_unlocked;
1533 1534

	orig_pmd = *pmd;
1535
	if (is_huge_zero_pmd(orig_pmd))
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
		goto out;

	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1556
		split_huge_page(page);
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
		put_page(page);
		unlock_page(page);
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (PageActive(page))
		deactivate_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
1578
	ret = true;
1579 1580 1581 1582 1583 1584
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1585 1586 1587 1588 1589 1590 1591 1592 1593
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
	atomic_long_dec(&mm->nr_ptes);
}

1594
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1595
		 pmd_t *pmd, unsigned long addr)
1596
{
1597
	pmd_t orig_pmd;
1598
	spinlock_t *ptl;
1599

1600 1601
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1602 1603
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1617
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1618 1619 1620 1621
	} else if (is_huge_zero_pmd(orig_pmd)) {
		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
		atomic_long_dec(&tlb->mm->nr_ptes);
		spin_unlock(ptl);
1622
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1623 1624
	} else {
		struct page *page = pmd_page(orig_pmd);
1625
		page_remove_rmap(page, true);
1626 1627
		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
		VM_BUG_ON_PAGE(!PageHead(page), page);
1628 1629 1630 1631 1632 1633 1634
		if (PageAnon(page)) {
			pgtable_t pgtable;
			pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
			pte_free(tlb->mm, pgtable);
			atomic_long_dec(&tlb->mm->nr_ptes);
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1635 1636
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1637 1638
			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
		}
1639
		spin_unlock(ptl);
1640
		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1641
	}
1642
	return 1;
1643 1644
}

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1660
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1661
		  unsigned long new_addr, unsigned long old_end,
1662
		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1663
{
1664
	spinlock_t *old_ptl, *new_ptl;
1665 1666
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1667
	bool force_flush = false;
1668 1669 1670

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1671
	    old_end - old_addr < HPAGE_PMD_SIZE)
1672
		return false;
1673 1674 1675 1676 1677 1678 1679

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1680
		return false;
1681 1682
	}

1683 1684 1685 1686
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1687 1688
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1689 1690 1691
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1692
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1693 1694
		if (pmd_present(pmd) && pmd_dirty(pmd))
			force_flush = true;
1695
		VM_BUG_ON(!pmd_none(*new_pmd));
1696

1697
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1698
			pgtable_t pgtable;
1699 1700 1701
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1702 1703 1704
		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1705 1706 1707 1708
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
		else
			*need_flush = true;
1709
		spin_unlock(old_ptl);
1710
		return true;
1711
	}
1712
	return false;
1713 1714
}

1715 1716 1717 1718 1719 1720
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1721
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1722
		unsigned long addr, pgprot_t newprot, int prot_numa)
1723 1724
{
	struct mm_struct *mm = vma->vm_mm;
1725
	spinlock_t *ptl;
1726 1727
	int ret = 0;

1728 1729
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
1730
		pmd_t entry;
1731
		bool preserve_write = prot_numa && pmd_write(*pmd);
1732
		ret = 1;
1733 1734 1735 1736 1737 1738 1739 1740

		/*
		 * Avoid trapping faults against the zero page. The read-only
		 * data is likely to be read-cached on the local CPU and
		 * local/remote hits to the zero page are not interesting.
		 */
		if (prot_numa && is_huge_zero_pmd(*pmd)) {
			spin_unlock(ptl);
1741
			return ret;
1742 1743
		}

1744
		if (!prot_numa || !pmd_protnone(*pmd)) {
1745
			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1746
			entry = pmd_modify(entry, newprot);
1747
			if (preserve_write)
1748
				entry = pmd_mk_savedwrite(entry);
1749 1750
			ret = HPAGE_PMD_NR;
			set_pmd_at(mm, addr, pmd, entry);
1751 1752
			BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
					pmd_write(entry));
1753
		}
1754
		spin_unlock(ptl);
1755 1756 1757 1758 1759 1760
	}

	return ret;
}

/*
1761
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1762
 *
1763 1764
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1765
 */
1766
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1767
{
1768 1769
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1770
	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1771 1772 1773
		return ptl;
	spin_unlock(ptl);
	return NULL;
1774 1775
}

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	pud_t orig_pud;
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
			tlb->fullmm);
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

	count_vm_event(THP_SPLIT_PMD);

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PUD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
	ptl = pud_lock(mm, pud);
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
	__split_huge_pud_locked(vma, pud, haddr);

out:
	spin_unlock(ptl);
	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

	/* leave pmd empty until pte is filled */
	pmdp_huge_clear_flush_notify(vma, haddr, pmd);

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1882
		unsigned long haddr, bool freeze)
1883 1884 1885 1886 1887
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
	pmd_t _pmd;
1888
	bool young, write, dirty, soft_dirty;
1889
	unsigned long addr;
1890 1891 1892 1893 1894
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1895
	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1896 1897 1898

	count_vm_event(THP_SPLIT_PMD);

1899 1900
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1901 1902 1903 1904 1905 1906
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
1907 1908 1909 1910 1911 1912 1913 1914
		if (vma_is_dax(vma))
			return;
		page = pmd_page(_pmd);
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1915 1916 1917 1918 1919 1920 1921
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

	page = pmd_page(*pmd);
	VM_BUG_ON_PAGE(!page_count(page), page);
1922
	page_ref_add(page, HPAGE_PMD_NR - 1);
1923 1924
	write = pmd_write(*pmd);
	young = pmd_young(*pmd);
1925
	dirty = pmd_dirty(*pmd);
1926
	soft_dirty = pmd_soft_dirty(*pmd);
1927

1928
	pmdp_huge_split_prepare(vma, haddr, pmd);
1929 1930 1931
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

1932
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1933 1934 1935 1936 1937 1938
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
1939 1940 1941 1942
		if (freeze) {
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
1943 1944
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
1945
		} else {
1946
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1947
			entry = maybe_mkwrite(entry, vma);
1948 1949 1950 1951
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
1952 1953
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
1954
		}
1955 1956
		if (dirty)
			SetPageDirty(page + i);
1957
		pte = pte_offset_map(&_pmd, addr);
1958
		BUG_ON(!pte_none(*pte));
1959
		set_pte_at(mm, addr, pte, entry);
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
1975
		__dec_node_page_state(page, NR_ANON_THPS);
1976 1977 1978 1979 1980 1981 1982 1983
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * and pmd_trans_splitting must remain set at all times on the pmd
	 * until the split is complete for this pmd), then we flush the SMP TLB
	 * and finally we write the non-huge version of the pmd entry with
	 * pmd_populate.
	 */
	pmdp_invalidate(vma, haddr, pmd);
2006
	pmd_populate(mm, pmd, pgtable);
2007 2008

	if (freeze) {
2009
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2010 2011 2012 2013
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2014 2015 2016
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2017
		unsigned long address, bool freeze, struct page *page)
2018 2019 2020 2021 2022 2023 2024
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PMD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
	ptl = pmd_lock(mm, pmd);
2025 2026 2027 2028 2029 2030 2031 2032 2033

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

2034
	if (pmd_trans_huge(*pmd)) {
2035
		page = pmd_page(*pmd);
2036
		if (PageMlocked(page))
2037
			clear_page_mlock(page);
2038
	} else if (!pmd_devmap(*pmd))
2039
		goto out;
2040
	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2041
out:
2042 2043 2044 2045
	spin_unlock(ptl);
	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
}

2046 2047
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2048
{
2049 2050
	pgd_t *pgd;
	pud_t *pud;
2051 2052
	pmd_t *pmd;

2053
	pgd = pgd_offset(vma->vm_mm, address);
2054 2055 2056 2057 2058 2059 2060 2061
	if (!pgd_present(*pgd))
		return;

	pud = pud_offset(pgd, address);
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2062

2063
	__split_huge_pmd(vma, pmd, address, freeze, page);
2064 2065
}

2066
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2079
		split_huge_pmd_address(vma, start, false, NULL);
2080 2081 2082 2083 2084 2085 2086 2087 2088

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2089
		split_huge_pmd_address(vma, end, false, NULL);
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2103
			split_huge_pmd_address(next, nstart, false, NULL);
2104 2105
	}
}
2106

2107
static void freeze_page(struct page *page)
2108
{
2109
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2110 2111
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
	int ret;
2112 2113 2114

	VM_BUG_ON_PAGE(!PageHead(page), page);

2115 2116 2117
	if (PageAnon(page))
		ttu_flags |= TTU_MIGRATION;

2118 2119
	ret = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(ret, page);
2120 2121
}

2122
static void unfreeze_page(struct page *page)
2123
{
2124
	int i;
2125 2126 2127 2128 2129 2130
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2131 2132
}

2133
static void __split_huge_page_tail(struct page *head, int tail,
2134 2135 2136 2137
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2138
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2139
	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
2140 2141

	/*
2142
	 * tail_page->_refcount is zero and not changing from under us. But
2143
	 * get_page_unless_zero() may be running from under us on the
2144 2145
	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
	 * atomic_add(), we would then run atomic_set() concurrently with
2146 2147 2148 2149
	 * get_page_unless_zero(), and atomic_set() is implemented in C not
	 * using locked ops. spin_unlock on x86 sometime uses locked ops
	 * because of PPro errata 66, 92, so unless somebody can guarantee
	 * atomic_set() here would be safe on all archs (and not only on x86),
2150
	 * it's safer to use atomic_inc()/atomic_add().
2151
	 */
2152 2153 2154 2155 2156 2157
	if (PageAnon(head)) {
		page_ref_inc(page_tail);
	} else {
		/* Additional pin to radix tree */
		page_ref_add(page_tail, 2);
	}
2158 2159 2160 2161 2162 2163 2164 2165 2166

	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
			 (1L << PG_locked) |
2167 2168
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183

	/*
	 * After clearing PageTail the gup refcount can be released.
	 * Page flags also must be visible before we make the page non-compound.
	 */
	smp_wmb();

	clear_compound_head(page_tail);

	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	/* ->mapping in first tail page is compound_mapcount */
2184
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2185 2186 2187 2188 2189 2190 2191 2192
			page_tail);
	page_tail->mapping = head->mapping;

	page_tail->index = head->index + tail;
	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2193 2194
static void __split_huge_page(struct page *page, struct list_head *list,
		unsigned long flags)
2195 2196 2197 2198
{
	struct page *head = compound_head(page);
	struct zone *zone = page_zone(head);
	struct lruvec *lruvec;
2199
	pgoff_t end = -1;
2200
	int i;
2201

M
Mel Gorman 已提交
2202
	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2203 2204 2205 2206

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2207 2208 2209 2210
	if (!PageAnon(page))
		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);

	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2211
		__split_huge_page_tail(head, i, lruvec, list);
2212 2213 2214 2215
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
			__ClearPageDirty(head + i);
			__delete_from_page_cache(head + i, NULL);
2216 2217
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2218 2219 2220
			put_page(head + i);
		}
	}
2221 2222

	ClearPageCompound(head);
2223 2224 2225 2226 2227 2228 2229 2230 2231
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
		page_ref_inc(head);
	} else {
		/* Additional pin to radix tree */
		page_ref_add(head, 2);
		spin_unlock(&head->mapping->tree_lock);
	}

2232
	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2233

2234
	unfreeze_page(head);
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2253 2254
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
2255
	int i, compound, ret;
2256 2257 2258 2259 2260 2261

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2262
	compound = compound_mapcount(page);
2263
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2264 2265
		return compound;
	ret = compound;
2266 2267
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2268 2269 2270
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2271 2272 2273 2274 2275
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2356
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2357 2358 2359
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2360
	bool mlocked;
2361
	unsigned long flags;
2362 2363 2364 2365 2366 2367

	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
	VM_BUG_ON_PAGE(!PageCompound(page), page);

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
		extra_pins = 0;
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		/* Addidional pins from radix tree */
		extra_pins = HPAGE_PMD_NR;
		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2398 2399 2400 2401 2402 2403
	}

	/*
	 * Racy check if we can split the page, before freeze_page() will
	 * split PMDs
	 */
2404
	if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2405 2406 2407 2408
		ret = -EBUSY;
		goto out_unlock;
	}

2409
	mlocked = PageMlocked(page);
2410
	freeze_page(head);
2411 2412
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2413 2414 2415 2416
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2417
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2418
	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434

	if (mapping) {
		void **pslot;

		spin_lock(&mapping->tree_lock);
		pslot = radix_tree_lookup_slot(&mapping->page_tree,
				page_index(head));
		/*
		 * Check if the head page is present in radix tree.
		 * We assume all tail are present too, if head is there.
		 */
		if (radix_tree_deref_slot_protected(pslot,
					&mapping->tree_lock) != head)
			goto fail;
	}

2435
	/* Prevent deferred_split_scan() touching ->_refcount */
2436
	spin_lock(&pgdata->split_queue_lock);
2437 2438
	count = page_count(head);
	mapcount = total_mapcount(head);
2439
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2440
		if (!list_empty(page_deferred_list(head))) {
2441
			pgdata->split_queue_len--;
2442 2443
			list_del(page_deferred_list(head));
		}
2444
		if (mapping)
2445
			__dec_node_page_state(page, NR_SHMEM_THPS);
2446 2447
		spin_unlock(&pgdata->split_queue_lock);
		__split_huge_page(page, list, flags);
2448 2449
		ret = 0;
	} else {
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
		spin_unlock(&pgdata->split_queue_lock);
fail:		if (mapping)
			spin_unlock(&mapping->tree_lock);
2461
		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2462
		unfreeze_page(head);
2463 2464 2465 2466
		ret = -EBUSY;
	}

out_unlock:
2467 2468 2469 2470 2471 2472
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2473 2474 2475 2476
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2477 2478 2479

void free_transhuge_page(struct page *page)
{
2480
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2481 2482
	unsigned long flags;

2483
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2484
	if (!list_empty(page_deferred_list(page))) {
2485
		pgdata->split_queue_len--;
2486 2487
		list_del(page_deferred_list(page));
	}
2488
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2489 2490 2491 2492 2493
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2494
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2495 2496 2497 2498
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2499
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2500
	if (list_empty(page_deferred_list(page))) {
2501
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2502 2503
		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
		pgdata->split_queue_len++;
2504
	}
2505
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2506 2507 2508 2509 2510
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2511
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2512
	return ACCESS_ONCE(pgdata->split_queue_len);
2513 2514 2515 2516 2517
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2518
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2519 2520 2521 2522 2523
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2524
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2525
	/* Take pin on all head pages to avoid freeing them under us */
2526
	list_for_each_safe(pos, next, &pgdata->split_queue) {
2527 2528
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2529 2530 2531 2532
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2533
			list_del_init(page_deferred_list(page));
2534
			pgdata->split_queue_len--;
2535
		}
2536 2537
		if (!--sc->nr_to_scan)
			break;
2538
	}
2539
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
		lock_page(page);
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
		put_page(page);
	}

2551 2552 2553
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
	list_splice_tail(&list, &pgdata->split_queue);
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2554

2555 2556 2557 2558 2559 2560 2561
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
	if (!split && list_empty(&pgdata->split_queue))
		return SHRINK_STOP;
	return split;
2562 2563 2564 2565 2566 2567
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2568
	.flags = SHRINKER_NUMA_AWARE,
2569
};
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2595
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2608
	pr_info("%lu of %lu THP split\n", split, total);
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
	void *ret;

2619
	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2620 2621 2622 2623 2624 2625 2626
			&split_huge_pages_fops);
	if (!ret)
		pr_warn("Failed to create split_huge_pages in debugfs");
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif