igb_main.c 209.5 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2013 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

J
Jeff Kirsher 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

30 31 32
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
J
Jiri Pirko 已提交
33
#include <linux/bitops.h>
34 35 36 37
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
38
#include <linux/slab.h>
39 40
#include <net/checksum.h>
#include <net/ip6_checksum.h>
41
#include <linux/net_tstamp.h>
42 43
#include <linux/mii.h>
#include <linux/ethtool.h>
44
#include <linux/if.h>
45 46
#include <linux/if_vlan.h>
#include <linux/pci.h>
47
#include <linux/pci-aspm.h>
48 49
#include <linux/delay.h>
#include <linux/interrupt.h>
50 51 52
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
53
#include <linux/if_ether.h>
54
#include <linux/aer.h>
55
#include <linux/prefetch.h>
Y
Yan, Zheng 已提交
56
#include <linux/pm_runtime.h>
57
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
58 59
#include <linux/dca.h>
#endif
C
Carolyn Wyborny 已提交
60
#include <linux/i2c.h>
61 62
#include "igb.h"

C
Carolyn Wyborny 已提交
63
#define MAJ 4
C
Carolyn Wyborny 已提交
64 65
#define MIN 1
#define BUILD 2
C
Carolyn Wyborny 已提交
66
#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67
__stringify(BUILD) "-k"
68 69 70 71
char igb_driver_name[] = "igb";
char igb_driver_version[] = DRV_VERSION;
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
72 73
static const char igb_copyright[] =
				"Copyright (c) 2007-2013 Intel Corporation.";
74 75 76 77 78

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

79
static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 81 82 83 84
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85 86 87 88
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
89 90
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
91
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
92 93 94
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
95 96
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
G
Gasparakis, Joseph 已提交
97 98
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
A
Alexander Duyck 已提交
99
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
100
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
101
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
A
Alexander Duyck 已提交
102 103
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
104
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
105
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
106
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
107 108 109 110 111 112 113 114 115 116 117 118 119 120
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

void igb_reset(struct igb_adapter *);
static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
121
static void igb_setup_mrqc(struct igb_adapter *);
122
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123
static void igb_remove(struct pci_dev *pdev);
124 125 126
static int igb_sw_init(struct igb_adapter *);
static int igb_open(struct net_device *);
static int igb_close(struct net_device *);
127
static void igb_configure(struct igb_adapter *);
128 129 130 131
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
132 133
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
134
static void igb_set_rx_mode(struct net_device *);
135 136 137
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
static void igb_watchdog_task(struct work_struct *);
138
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
E
Eric Dumazet 已提交
139 140
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
						 struct rtnl_link_stats64 *stats);
141 142
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
143
static void igb_set_uta(struct igb_adapter *adapter);
144 145 146
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
147
static irqreturn_t igb_msix_ring(int irq, void *);
148
#ifdef CONFIG_IGB_DCA
149
static void igb_update_dca(struct igb_q_vector *);
J
Jeb Cramer 已提交
150
static void igb_setup_dca(struct igb_adapter *);
151
#endif /* CONFIG_IGB_DCA */
152
static int igb_poll(struct napi_struct *, int);
153
static bool igb_clean_tx_irq(struct igb_q_vector *);
154
static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 156 157
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
158
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
159 160
static int igb_vlan_rx_add_vid(struct net_device *, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, u16);
161
static void igb_restore_vlan(struct igb_adapter *);
162
static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
163 164 165
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
166
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
167
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
168 169 170 171 172 173
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos);
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
174
static void igb_check_vf_rate_limit(struct igb_adapter *);
R
RongQing Li 已提交
175 176

#ifdef CONFIG_PCI_IOV
177
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178
static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
R
RongQing Li 已提交
179
#endif
180 181

#ifdef CONFIG_PM
182
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
183
static int igb_suspend(struct device *);
184
#endif
Y
Yan, Zheng 已提交
185 186 187 188 189 190 191 192 193 194 195
static int igb_resume(struct device *);
#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
#endif
static const struct dev_pm_ops igb_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
			igb_runtime_idle)
};
196 197
#endif
static void igb_shutdown(struct pci_dev *);
198
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
199
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
200 201 202 203 204 205 206
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
207 208 209 210
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void igb_netpoll(struct net_device *);
#endif
211
#ifdef CONFIG_PCI_IOV
212 213 214 215 216 217
static unsigned int max_vfs = 0;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
                 "per physical function");
#endif /* CONFIG_PCI_IOV */

218 219 220 221 222
static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

223
static const struct pci_error_handlers igb_err_handler = {
224 225 226 227 228
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

229
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
230 231 232 233 234

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
235
	.remove   = igb_remove,
236
#ifdef CONFIG_PM
Y
Yan, Zheng 已提交
237
	.driver.pm = &igb_pm_ops,
238 239
#endif
	.shutdown = igb_shutdown,
240
	.sriov_configure = igb_pci_sriov_configure,
241 242 243 244 245 246 247 248
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

249 250 251 252 253
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * igb_regdump - register printout routine
 */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
J
Jeff Kirsher 已提交
354
		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355 356 357 358
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
J
Jeff Kirsher 已提交
359 360
	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
		regs[2], regs[3]);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
}

/*
 * igb_dump - Print registers, tx-rings and rx-rings
 */
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { u64 a; u64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
377
	u16 i, n;
378 379 380 381 382 383 384

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
J
Jeff Kirsher 已提交
385 386 387 388
		pr_info("Device Name     state            trans_start      "
			"last_rx\n");
		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
			netdev->state, netdev->trans_start, netdev->last_rx);
389 390 391 392
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
J
Jeff Kirsher 已提交
393
	pr_info(" Register Name   Value\n");
394 395 396 397 398 399 400 401 402 403
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
J
Jeff Kirsher 已提交
404
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
405
	for (n = 0; n < adapter->num_tx_queues; n++) {
406
		struct igb_tx_buffer *buffer_info;
407
		tx_ring = adapter->tx_ring[n];
408
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
J
Jeff Kirsher 已提交
409 410
		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
			n, tx_ring->next_to_use, tx_ring->next_to_clean,
411 412
			(u64)dma_unmap_addr(buffer_info, dma),
			dma_unmap_len(buffer_info, len),
J
Jeff Kirsher 已提交
413 414
			buffer_info->next_to_watch,
			(u64)buffer_info->time_stamp);
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
J
Jeff Kirsher 已提交
436 437 438 439 440 441
		pr_info("------------------------------------\n");
		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] "
			"[bi->dma       ] leng  ntw timestamp        "
			"bi->skb\n");
442 443

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
J
Jeff Kirsher 已提交
444
			const char *next_desc;
445
			struct igb_tx_buffer *buffer_info;
446
			tx_desc = IGB_TX_DESC(tx_ring, i);
447
			buffer_info = &tx_ring->tx_buffer_info[i];
448
			u0 = (struct my_u0 *)tx_desc;
J
Jeff Kirsher 已提交
449 450 451 452 453 454 455 456 457 458 459 460
			if (i == tx_ring->next_to_use &&
			    i == tx_ring->next_to_clean)
				next_desc = " NTC/U";
			else if (i == tx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == tx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			pr_info("T [0x%03X]    %016llX %016llX %016llX"
				" %04X  %p %016llX %p%s\n", i,
461 462
				le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
463 464
				(u64)dma_unmap_addr(buffer_info, dma),
				dma_unmap_len(buffer_info, len),
465 466
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
J
Jeff Kirsher 已提交
467
				buffer_info->skb, next_desc);
468

469
			if (netif_msg_pktdata(adapter) && buffer_info->skb)
470 471
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
472
					16, 1, buffer_info->skb->data,
473 474
					dma_unmap_len(buffer_info, len),
					true);
475 476 477 478 479 480
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
J
Jeff Kirsher 已提交
481
	pr_info("Queue [NTU] [NTC]\n");
482 483
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
484 485
		pr_info(" %5d %5X %5X\n",
			n, rx_ring->next_to_use, rx_ring->next_to_clean);
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
J
Jeff Kirsher 已提交
517 518 519 520 521 522 523
		pr_info("------------------------------------\n");
		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] "
			"[bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] -----"
			"----------- [bi->skb] <-- Adv Rx Write-Back format\n");
524 525

		for (i = 0; i < rx_ring->count; i++) {
J
Jeff Kirsher 已提交
526
			const char *next_desc;
527 528
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
529
			rx_desc = IGB_RX_DESC(rx_ring, i);
530 531
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
J
Jeff Kirsher 已提交
532 533 534 535 536 537 538 539

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

540 541
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
542 543
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
					"RWB", i,
544 545
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
546
					next_desc);
547
			} else {
548 549
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
					"R  ", i,
550 551 552
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
553
					next_desc);
554

555
				if (netif_msg_pktdata(adapter) &&
556
				    buffer_info->dma && buffer_info->page) {
557 558 559
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
560 561
					  page_address(buffer_info->page) +
						      buffer_info->page_offset,
562
					  IGB_RX_BUFSZ, true);
563 564 565 566 567 568 569 570 571
				}
			}
		}
	}

exit:
	return;
}

C
Carolyn Wyborny 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
/*  igb_get_i2c_data - Reads the I2C SDA data bit
 *  @hw: pointer to hardware structure
 *  @i2cctl: Current value of I2CCTL register
 *
 *  Returns the I2C data bit value
 */
static int igb_get_i2c_data(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_DATA_IN) != 0);
}

/* igb_set_i2c_data - Sets the I2C data bit
 *  @data: pointer to hardware structure
 *  @state: I2C data value (0 or 1) to set
 *
 *  Sets the I2C data bit
 */
static void igb_set_i2c_data(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state)
		i2cctl |= E1000_I2C_DATA_OUT;
	else
		i2cctl &= ~E1000_I2C_DATA_OUT;

	i2cctl &= ~E1000_I2C_DATA_OE_N;
	i2cctl |= E1000_I2C_CLK_OE_N;
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();

}

/* igb_set_i2c_clk - Sets the I2C SCL clock
 *  @data: pointer to hardware structure
 *  @state: state to set clock
 *
 *  Sets the I2C clock line to state
 */
static void igb_set_i2c_clk(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state) {
		i2cctl |= E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	} else {
		i2cctl &= ~E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	}
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();
}

/* igb_get_i2c_clk - Gets the I2C SCL clock state
 *  @data: pointer to hardware structure
 *
 *  Gets the I2C clock state
 */
static int igb_get_i2c_clk(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return ((i2cctl & E1000_I2C_CLK_IN) != 0);
}

static const struct i2c_algo_bit_data igb_i2c_algo = {
	.setsda		= igb_set_i2c_data,
	.setscl		= igb_set_i2c_clk,
	.getsda		= igb_get_i2c_data,
	.getscl		= igb_get_i2c_clk,
	.udelay		= 5,
	.timeout	= 20,
};

657
/**
658
 * igb_get_hw_dev - return device
659 660
 * used by hardware layer to print debugging information
 **/
661
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
662 663
{
	struct igb_adapter *adapter = hw->back;
664
	return adapter->netdev;
665
}
P
Patrick Ohly 已提交
666

667 668 669 670 671 672 673 674 675
/**
 * igb_init_module - Driver Registration Routine
 *
 * igb_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;
J
Jeff Kirsher 已提交
676
	pr_info("%s - version %s\n",
677 678
	       igb_driver_string, igb_driver_version);

J
Jeff Kirsher 已提交
679
	pr_info("%s\n", igb_copyright);
680

681
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
682 683
	dca_register_notify(&dca_notifier);
#endif
684
	ret = pci_register_driver(&igb_driver);
685 686 687 688 689 690 691 692 693 694 695 696 697
	return ret;
}

module_init(igb_init_module);

/**
 * igb_exit_module - Driver Exit Cleanup Routine
 *
 * igb_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit igb_exit_module(void)
{
698
#ifdef CONFIG_IGB_DCA
J
Jeb Cramer 已提交
699 700
	dca_unregister_notify(&dca_notifier);
#endif
701 702 703 704 705
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

706 707 708 709 710 711 712 713 714 715
#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 * igb_cache_ring_register - Descriptor ring to register mapping
 * @adapter: board private structure to initialize
 *
 * Once we know the feature-set enabled for the device, we'll cache
 * the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
716
	int i = 0, j = 0;
717
	u32 rbase_offset = adapter->vfs_allocated_count;
718 719 720 721 722 723 724 725

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
726
		if (adapter->vfs_allocated_count) {
727
			for (; i < adapter->rss_queues; i++)
728 729
				adapter->rx_ring[i]->reg_idx = rbase_offset +
				                               Q_IDX_82576(i);
730
		}
731
	case e1000_82575:
732
	case e1000_82580:
733
	case e1000_i350:
734 735
	case e1000_i210:
	case e1000_i211:
736
	default:
737
		for (; i < adapter->num_rx_queues; i++)
738
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
739
		for (; j < adapter->num_tx_queues; j++)
740
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
741 742 743 744
		break;
	}
}

A
Alexander Duyck 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

771
#define IGB_N0_QUEUE -1
772
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
773
{
774
	struct igb_adapter *adapter = q_vector->adapter;
775
	struct e1000_hw *hw = &adapter->hw;
776 777
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
A
Alexander Duyck 已提交
778
	u32 msixbm = 0;
779

780 781 782 783
	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;
A
Alexander Duyck 已提交
784 785 786

	switch (hw->mac.type) {
	case e1000_82575:
787 788 789 790
		/* The 82575 assigns vectors using a bitmask, which matches the
		   bitmask for the EICR/EIMS/EIMC registers.  To assign one
		   or more queues to a vector, we write the appropriate bits
		   into the MSIXBM register for that vector. */
791
		if (rx_queue > IGB_N0_QUEUE)
792
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
793
		if (tx_queue > IGB_N0_QUEUE)
794
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
795 796
		if (!adapter->msix_entries && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
797
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
798
		q_vector->eims_value = msixbm;
A
Alexander Duyck 已提交
799 800
		break;
	case e1000_82576:
A
Alexander Duyck 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813 814
		/*
		 * 82576 uses a table that essentially consists of 2 columns
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
815
		q_vector->eims_value = 1 << msix_vector;
A
Alexander Duyck 已提交
816
		break;
817
	case e1000_82580:
818
	case e1000_i350:
819 820
	case e1000_i210:
	case e1000_i211:
A
Alexander Duyck 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
		/*
		 * On 82580 and newer adapters the scheme is similar to 82576
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
836 837
		q_vector->eims_value = 1 << msix_vector;
		break;
A
Alexander Duyck 已提交
838 839 840 841
	default:
		BUG();
		break;
	}
842 843 844 845 846 847

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
}

/**
 * igb_configure_msix - Configure MSI-X hardware
 *
 * igb_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
A
Alexander Duyck 已提交
865 866
	switch (hw->mac.type) {
	case e1000_82575:
867 868 869 870 871 872 873 874 875
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);
876 877 878 879

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++,
		                      E1000_EIMS_OTHER);
P
PJ Waskiewicz 已提交
880
		adapter->eims_other = E1000_EIMS_OTHER;
881

A
Alexander Duyck 已提交
882 883 884
		break;

	case e1000_82576:
885
	case e1000_82580:
886
	case e1000_i350:
887 888
	case e1000_i210:
	case e1000_i211:
889 890 891 892 893 894 895 896
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug. */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		                E1000_GPIE_PBA | E1000_GPIE_EIAME |
		                E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = 1 << vector;
A
Alexander Duyck 已提交
897 898
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

899
		wr32(E1000_IVAR_MISC, tmp);
A
Alexander Duyck 已提交
900 901 902 903 904
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */
905 906 907

	adapter->eims_enable_mask |= adapter->eims_other;

908 909
	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);
910

911 912 913 914 915 916 917 918 919 920 921 922
	wrfl();
}

/**
 * igb_request_msix - Initialize MSI-X interrupts
 *
 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
923
	struct e1000_hw *hw = &adapter->hw;
924
	int i, err = 0, vector = 0, free_vector = 0;
925

926
	err = request_irq(adapter->msix_entries[vector].vector,
927
	                  igb_msix_other, 0, netdev->name, adapter);
928
	if (err)
929
		goto err_out;
930 931 932 933

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

934 935
		vector++;

936 937
		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);

938
		if (q_vector->rx.ring && q_vector->tx.ring)
939
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
940 941
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
942
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
943 944
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
945
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
946
				q_vector->rx.ring->queue_index);
947
		else
948 949
			sprintf(q_vector->name, "%s-unused", netdev->name);

950
		err = request_irq(adapter->msix_entries[vector].vector,
951
		                  igb_msix_ring, 0, q_vector->name,
952
		                  q_vector);
953
		if (err)
954
			goto err_free;
955 956 957 958
	}

	igb_configure_msix(adapter);
	return 0;
959 960 961 962 963 964 965 966 967 968 969

err_free:
	/* free already assigned IRQs */
	free_irq(adapter->msix_entries[free_vector++].vector, adapter);

	vector--;
	for (i = 0; i < vector; i++) {
		free_irq(adapter->msix_entries[free_vector++].vector,
			 adapter->q_vector[i]);
	}
err_out:
970 971 972 973 974 975 976 977 978
	return err;
}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
979
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
980
		pci_disable_msi(adapter->pdev);
981
	}
982 983
}

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
/**
 * igb_free_q_vector - Free memory allocated for specific interrupt vector
 * @adapter: board private structure to initialize
 * @v_idx: Index of vector to be freed
 *
 * This function frees the memory allocated to the q_vector.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

	if (q_vector->tx.ring)
		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;

	if (q_vector->rx.ring)
		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;

	adapter->q_vector[v_idx] = NULL;
	netif_napi_del(&q_vector->napi);

	/*
	 * ixgbe_get_stats64() might access the rings on this vector,
	 * we must wait a grace period before freeing it.
	 */
	kfree_rcu(q_vector, rcu);
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
/**
 * igb_free_q_vectors - Free memory allocated for interrupt vectors
 * @adapter: board private structure to initialize
 *
 * This function frees the memory allocated to the q_vectors.  In addition if
 * NAPI is enabled it will delete any references to the NAPI struct prior
 * to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
1023 1024 1025 1026
	int v_idx = adapter->num_q_vectors;

	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
1027
	adapter->num_q_vectors = 0;
1028 1029 1030

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
}

/**
 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *
 * This function resets the device so that it has 0 rx queues, tx queues, and
 * MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}
1044 1045 1046 1047 1048 1049 1050

/**
 * igb_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
1051
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1052 1053 1054 1055
{
	int err;
	int numvecs, i;

1056 1057 1058
	if (!msix)
		goto msi_only;

1059
	/* Number of supported queues. */
1060
	adapter->num_rx_queues = adapter->rss_queues;
1061 1062 1063 1064
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;
1065

1066 1067 1068
	/* start with one vector for every rx queue */
	numvecs = adapter->num_rx_queues;

D
Daniel Mack 已提交
1069
	/* if tx handler is separate add 1 for every tx queue */
1070 1071
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;
1072 1073 1074 1075 1076 1077

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
1078 1079
	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
					GFP_KERNEL);
1080

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	if (!adapter->msix_entries)
		goto msi_only;

	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix(adapter->pdev,
			      adapter->msix_entries,
			      numvecs);
	if (err == 0)
1091
		return;
1092 1093 1094 1095 1096

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1108
		wrfl();
1109 1110 1111 1112
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
1113
	adapter->vfs_allocated_count = 0;
1114
	adapter->rss_queues = 1;
1115
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1116
	adapter->num_rx_queues = 1;
1117
	adapter->num_tx_queues = 1;
1118
	adapter->num_q_vectors = 1;
1119
	if (!pci_enable_msi(adapter->pdev))
1120
		adapter->flags |= IGB_FLAG_HAS_MSI;
1121 1122
}

1123 1124 1125 1126 1127 1128 1129
static void igb_add_ring(struct igb_ring *ring,
			 struct igb_ring_container *head)
{
	head->ring = ring;
	head->count++;
}

1130
/**
1131
 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1132
 * @adapter: board private structure to initialize
1133 1134 1135 1136 1137 1138
 * @v_count: q_vectors allocated on adapter, used for ring interleaving
 * @v_idx: index of vector in adapter struct
 * @txr_count: total number of Tx rings to allocate
 * @txr_idx: index of first Tx ring to allocate
 * @rxr_count: total number of Rx rings to allocate
 * @rxr_idx: index of first Rx ring to allocate
1139
 *
1140
 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1141
 **/
1142 1143 1144 1145
static int igb_alloc_q_vector(struct igb_adapter *adapter,
			      int v_count, int v_idx,
			      int txr_count, int txr_idx,
			      int rxr_count, int rxr_idx)
1146 1147
{
	struct igb_q_vector *q_vector;
1148 1149
	struct igb_ring *ring;
	int ring_count, size;
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
	if (txr_count > 1 || rxr_count > 1)
		return -ENOMEM;

	ring_count = txr_count + rxr_count;
	size = sizeof(struct igb_q_vector) +
	       (sizeof(struct igb_ring) * ring_count);

	/* allocate q_vector and rings */
	q_vector = kzalloc(size, GFP_KERNEL);
	if (!q_vector)
		return -ENOMEM;

	/* initialize NAPI */
	netif_napi_add(adapter->netdev, &q_vector->napi,
		       igb_poll, 64);

	/* tie q_vector and adapter together */
	adapter->q_vector[v_idx] = q_vector;
	q_vector->adapter = adapter;

	/* initialize work limits */
	q_vector->tx.work_limit = adapter->tx_work_limit;

	/* initialize ITR configuration */
	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
	q_vector->itr_val = IGB_START_ITR;

	/* initialize pointer to rings */
	ring = q_vector->ring;

	if (txr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* update q_vector Tx values */
		igb_add_ring(ring, &q_vector->tx);

		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);

		/* apply Tx specific ring traits */
		ring->count = adapter->tx_ring_count;
		ring->queue_index = txr_idx;

		/* assign ring to adapter */
		adapter->tx_ring[txr_idx] = ring;

		/* push pointer to next ring */
		ring++;
1206
	}
1207

1208 1209 1210 1211
	if (rxr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;
1212

1213 1214
		/* configure backlink on ring */
		ring->q_vector = q_vector;
1215

1216 1217
		/* update q_vector Rx values */
		igb_add_ring(ring, &q_vector->rx);
1218

1219 1220 1221
		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1222

1223 1224 1225 1226 1227 1228
		/*
		 * On i350, i210, and i211, loopback VLAN packets
		 * have the tag byte-swapped.
		 * */
		if (adapter->hw.mac.type >= e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1229

1230 1231 1232 1233 1234 1235 1236 1237 1238
		/* apply Rx specific ring traits */
		ring->count = adapter->rx_ring_count;
		ring->queue_index = rxr_idx;

		/* assign ring to adapter */
		adapter->rx_ring[rxr_idx] = ring;
	}

	return 0;
1239 1240
}

1241

1242
/**
1243 1244
 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
 * @adapter: board private structure to initialize
1245
 *
1246 1247
 * We allocate one q_vector per queue interrupt.  If allocation fails we
 * return -ENOMEM.
1248
 **/
1249
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1250
{
1251 1252 1253 1254 1255
	int q_vectors = adapter->num_q_vectors;
	int rxr_remaining = adapter->num_rx_queues;
	int txr_remaining = adapter->num_tx_queues;
	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
	int err;
1256

1257 1258 1259 1260
	if (q_vectors >= (rxr_remaining + txr_remaining)) {
		for (; rxr_remaining; v_idx++) {
			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
						 0, 0, 1, rxr_idx);
1261

1262 1263 1264 1265 1266 1267
			if (err)
				goto err_out;

			/* update counts and index */
			rxr_remaining--;
			rxr_idx++;
1268 1269
		}
	}
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

	for (; v_idx < q_vectors; v_idx++) {
		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
					 tqpv, txr_idx, rqpv, rxr_idx);

		if (err)
			goto err_out;

		/* update counts and index */
		rxr_remaining -= rqpv;
		txr_remaining -= tqpv;
		rxr_idx++;
		txr_idx++;
	}

1287
	return 0;
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

err_out:
	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
	adapter->num_q_vectors = 0;

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);

	return -ENOMEM;
1298 1299 1300 1301 1302 1303 1304
}

/**
 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *
 * This function initializes the interrupts and allocates all of the queues.
 **/
1305
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1306 1307 1308 1309
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

1310
	igb_set_interrupt_capability(adapter, msix);
1311 1312 1313 1314 1315 1316 1317

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

1318
	igb_cache_ring_register(adapter);
1319 1320

	return 0;
1321

1322 1323 1324 1325 1326
err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

1327 1328 1329 1330 1331 1332 1333 1334 1335
/**
 * igb_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1336
	struct pci_dev *pdev = adapter->pdev;
1337 1338 1339 1340
	int err = 0;

	if (adapter->msix_entries) {
		err = igb_request_msix(adapter);
P
PJ Waskiewicz 已提交
1341
		if (!err)
1342 1343
			goto request_done;
		/* fall back to MSI */
1344 1345
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);
1346

1347
		igb_clear_interrupt_scheme(adapter);
1348 1349
		err = igb_init_interrupt_scheme(adapter, false);
		if (err)
1350
			goto request_done;
1351

1352 1353
		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
1354
		igb_configure(adapter);
1355
	}
P
PJ Waskiewicz 已提交
1356

1357 1358
	igb_assign_vector(adapter->q_vector[0], 0);

1359
	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1360
		err = request_irq(pdev->irq, igb_intr_msi, 0,
1361
				  netdev->name, adapter);
1362 1363
		if (!err)
			goto request_done;
1364

1365 1366
		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
1367
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1368 1369
	}

1370
	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1371
			  netdev->name, adapter);
1372

A
Andy Gospodarek 已提交
1373
	if (err)
1374
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->msix_entries) {
		int vector = 0, i;

1386
		free_irq(adapter->msix_entries[vector++].vector, adapter);
1387

1388
		for (i = 0; i < adapter->num_q_vectors; i++)
1389
			free_irq(adapter->msix_entries[vector++].vector,
1390
				 adapter->q_vector[i]);
1391 1392
	} else {
		free_irq(adapter->pdev->irq, adapter);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	}
}

/**
 * igb_irq_disable - Mask off interrupt generation on the NIC
 * @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1404 1405 1406 1407 1408
	/*
	 * we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
1409
	if (adapter->msix_entries) {
1410 1411 1412 1413 1414
		u32 regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1415
	}
P
PJ Waskiewicz 已提交
1416 1417

	wr32(E1000_IAM, 0);
1418 1419
	wr32(E1000_IMC, ~0);
	wrfl();
1420 1421 1422 1423 1424 1425 1426
	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
}

/**
 * igb_irq_enable - Enable default interrupt generation settings
 * @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->msix_entries) {
1438
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1439 1440 1441 1442
		u32 regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
P
PJ Waskiewicz 已提交
1443
		wr32(E1000_EIMS, adapter->eims_enable_mask);
1444
		if (adapter->vfs_allocated_count) {
1445
			wr32(E1000_MBVFIMR, 0xFF);
1446 1447 1448
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
P
PJ Waskiewicz 已提交
1449
	} else {
1450 1451 1452 1453
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
P
PJ Waskiewicz 已提交
1454
	}
1455 1456 1457 1458
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
1459
	struct e1000_hw *hw = &adapter->hw;
1460 1461
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
J
Jiri Pirko 已提交
1473
	    !test_bit(old_vid, adapter->active_vlans)) {
1474 1475
		/* remove VID from filter table */
		igb_vfta_set(hw, old_vid, false);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	}
}

/**
 * igb_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded.
 *
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded.
 *
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

/**
 * igb_configure - configure the hardware for RX and TX
 * @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
1529
	igb_set_rx_mode(netdev);
1530 1531 1532

	igb_restore_vlan(adapter);

1533
	igb_setup_tctl(adapter);
1534
	igb_setup_mrqc(adapter);
1535
	igb_setup_rctl(adapter);
1536 1537

	igb_configure_tx(adapter);
1538
	igb_configure_rx(adapter);
1539 1540 1541

	igb_rx_fifo_flush_82575(&adapter->hw);

1542
	/* call igb_desc_unused which always leaves
1543 1544 1545
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean */
	for (i = 0; i < adapter->num_rx_queues; i++) {
1546
		struct igb_ring *ring = adapter->rx_ring[i];
1547
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1548 1549 1550
	}
}

1551 1552 1553 1554 1555 1556
/**
 * igb_power_up_link - Power up the phy/serdes link
 * @adapter: address of board private structure
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
1557 1558
	igb_reset_phy(&adapter->hw);

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);
}

/**
 * igb_power_down_link - Power down the phy/serdes link
 * @adapter: address of board private structure
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

/**
 * igb_up - Open the interface and prepare it to handle traffic
 * @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

1591 1592 1593
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

P
PJ Waskiewicz 已提交
1594
	if (adapter->msix_entries)
1595
		igb_configure_msix(adapter);
1596 1597
	else
		igb_assign_vector(adapter->q_vector[0], 0);
1598 1599 1600 1601 1602

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

1603 1604 1605 1606 1607 1608 1609
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

1610 1611
	netif_tx_start_all_queues(adapter->netdev);

1612 1613 1614 1615
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

1616 1617 1618 1619 1620 1621
	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
1622
	struct e1000_hw *hw = &adapter->hw;
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

1635
	netif_tx_stop_all_queues(netdev);
1636 1637 1638 1639 1640 1641 1642 1643 1644

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	msleep(10);

1645 1646
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_disable(&(adapter->q_vector[i]->napi));
1647 1648 1649 1650 1651 1652 1653

	igb_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
1654 1655

	/* record the stats before reset*/
E
Eric Dumazet 已提交
1656 1657 1658
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
1659

1660 1661 1662
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

1663 1664
	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);
1665 1666
	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
1667 1668 1669 1670 1671
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	WARN_ON(in_interrupt());
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

void igb_reset(struct igb_adapter *adapter)
{
1686
	struct pci_dev *pdev = adapter->pdev;
1687
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
1688 1689
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
1690
	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1691 1692 1693 1694

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
1695
	switch (mac->type) {
1696
	case e1000_i350:
1697 1698 1699 1700
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
1701
	case e1000_82576:
1702 1703
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
1704 1705
		break;
	case e1000_82575:
1706 1707
	case e1000_i210:
	case e1000_i211:
1708 1709 1710
	default:
		pba = E1000_PBA_34K;
		break;
A
Alexander Duyck 已提交
1711
	}
1712

A
Alexander Duyck 已提交
1713 1714
	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    (mac->type < e1000_82576)) {
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB. */
		pba = rd32(E1000_PBA);
		/* upper 16 bits has Tx packet buffer allocation size in KB */
		tx_space = pba >> 16;
		/* lower 16 bits has Rx packet buffer allocation size in KB */
		pba &= 0xffff;
		/* the tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it */
		min_tx_space = (adapter->max_frame_size +
1732
				sizeof(union e1000_adv_tx_desc) -
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
		min_rx_space = adapter->max_frame_size;
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation */
		if (tx_space < min_tx_space &&
		    ((min_tx_space - tx_space) < pba)) {
			pba = pba - (min_tx_space - tx_space);

			/* if short on rx space, rx wins and must trump tx
			 * adjustment */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}
A
Alexander Duyck 已提交
1753
		wr32(E1000_PBA, pba);
1754 1755 1756 1757 1758 1759 1760 1761 1762
	}

	/* flow control settings */
	/* The high water mark must be low enough to fit one full frame
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, or
	 * - the full Rx FIFO size minus one full frame */
	hwm = min(((pba << 10) * 9 / 10),
A
Alexander Duyck 已提交
1763
			((pba << 10) - 2 * adapter->max_frame_size));
1764

1765
	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1766
	fc->low_water = fc->high_water - 16;
1767 1768
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
1769
	fc->current_mode = fc->requested_mode;
1770

1771 1772 1773 1774
	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;
		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
G
Greg Rose 已提交
1775
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1776 1777

		/* ping all the active vfs to let them know we are going down */
1778
		igb_ping_all_vfs(adapter);
1779 1780 1781 1782 1783 1784

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

1785
	/* Allow time for pending master requests to run */
1786
	hw->mac.ops.reset_hw(hw);
1787 1788
	wr32(E1000_WUC, 0);

1789
	if (hw->mac.ops.init_hw(hw))
1790
		dev_err(&pdev->dev, "Hardware Error\n");
1791

1792 1793 1794 1795 1796 1797 1798
	/*
	 * Flow control settings reset on hardware reset, so guarantee flow
	 * control is off when forcing speed.
	 */
	if (!hw->mac.autoneg)
		igb_force_mac_fc(hw);

1799
	igb_init_dmac(adapter, pba);
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
#ifdef CONFIG_IGB_HWMON
	/* Re-initialize the thermal sensor on i350 devices. */
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (mac->type == e1000_i350 && hw->bus.func == 0) {
			/* If present, re-initialize the external thermal sensor
			 * interface.
			 */
			if (adapter->ets)
				mac->ops.init_thermal_sensor_thresh(hw);
		}
	}
#endif
1812 1813 1814
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

1815 1816 1817 1818 1819
	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

1820 1821 1822
	/* Re-enable PTP, where applicable. */
	igb_ptp_reset(adapter);

1823
	igb_get_phy_info(hw);
1824 1825
}

1826 1827
static netdev_features_t igb_fix_features(struct net_device *netdev,
	netdev_features_t features)
J
Jiri Pirko 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
{
	/*
	 * Since there is no support for separate rx/tx vlan accel
	 * enable/disable make sure tx flag is always in same state as rx.
	 */
	if (features & NETIF_F_HW_VLAN_RX)
		features |= NETIF_F_HW_VLAN_TX;
	else
		features &= ~NETIF_F_HW_VLAN_TX;

	return features;
}

1841 1842
static int igb_set_features(struct net_device *netdev,
	netdev_features_t features)
1843
{
1844
	netdev_features_t changed = netdev->features ^ features;
B
Ben Greear 已提交
1845
	struct igb_adapter *adapter = netdev_priv(netdev);
1846

J
Jiri Pirko 已提交
1847 1848 1849
	if (changed & NETIF_F_HW_VLAN_RX)
		igb_vlan_mode(netdev, features);

B
Ben Greear 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	if (!(changed & NETIF_F_RXALL))
		return 0;

	netdev->features = features;

	if (netif_running(netdev))
		igb_reinit_locked(adapter);
	else
		igb_reset(adapter);

1860 1861 1862
	return 0;
}

S
Stephen Hemminger 已提交
1863
static const struct net_device_ops igb_netdev_ops = {
1864
	.ndo_open		= igb_open,
S
Stephen Hemminger 已提交
1865
	.ndo_stop		= igb_close,
1866
	.ndo_start_xmit		= igb_xmit_frame,
E
Eric Dumazet 已提交
1867
	.ndo_get_stats64	= igb_get_stats64,
1868
	.ndo_set_rx_mode	= igb_set_rx_mode,
S
Stephen Hemminger 已提交
1869 1870 1871 1872 1873 1874 1875
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_do_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
1876 1877 1878 1879
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_tx_rate	= igb_ndo_set_vf_bw,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
S
Stephen Hemminger 已提交
1880 1881 1882
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= igb_netpoll,
#endif
J
Jiri Pirko 已提交
1883 1884
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
S
Stephen Hemminger 已提交
1885 1886
};

1887 1888 1889 1890 1891 1892 1893 1894
/**
 * igb_set_fw_version - Configure version string for ethtool
 * @adapter: adapter struct
 *
 **/
void igb_set_fw_version(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
1895 1896 1897 1898 1899 1900
	struct e1000_fw_version fw;

	igb_get_fw_version(hw, &fw);

	switch (hw->mac.type) {
	case e1000_i211:
1901
		snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
			 "%2d.%2d-%d",
			 fw.invm_major, fw.invm_minor, fw.invm_img_type);
		break;

	default:
		/* if option is rom valid, display its version too */
		if (fw.or_valid) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x, %d.%d.%d",
				 fw.eep_major, fw.eep_minor, fw.etrack_id,
				 fw.or_major, fw.or_build, fw.or_patch);
		/* no option rom */
		} else {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x",
				 fw.eep_major, fw.eep_minor, fw.etrack_id);
		}
		break;
1922 1923 1924 1925
	}
	return;
}

C
Carolyn Wyborny 已提交
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
static const struct i2c_board_info i350_sensor_info = {
	I2C_BOARD_INFO("i350bb", 0Xf8),
};

/*  igb_init_i2c - Init I2C interface
 *  @adapter: pointer to adapter structure
 *
 */
static s32 igb_init_i2c(struct igb_adapter *adapter)
{
	s32 status = E1000_SUCCESS;

	/* I2C interface supported on i350 devices */
	if (adapter->hw.mac.type != e1000_i350)
		return E1000_SUCCESS;

	/* Initialize the i2c bus which is controlled by the registers.
	 * This bus will use the i2c_algo_bit structue that implements
	 * the protocol through toggling of the 4 bits in the register.
	 */
	adapter->i2c_adap.owner = THIS_MODULE;
	adapter->i2c_algo = igb_i2c_algo;
	adapter->i2c_algo.data = adapter;
	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
	strlcpy(adapter->i2c_adap.name, "igb BB",
		sizeof(adapter->i2c_adap.name));
	status = i2c_bit_add_bus(&adapter->i2c_adap);
	return status;
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
/**
 * igb_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in igb_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * igb_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
1968
static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1969 1970 1971 1972
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
1973
	u16 eeprom_data = 0;
1974
	s32 ret_val;
1975
	static int global_quad_port_a; /* global quad port a indication */
1976 1977
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	unsigned long mmio_start, mmio_len;
1978
	int err, pci_using_dac;
1979
	u8 part_str[E1000_PBANUM_LENGTH];
1980

1981 1982 1983 1984 1985
	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1986
			pci_name(pdev), pdev->vendor, pdev->device);
1987 1988 1989
		return -EINVAL;
	}

1990
	err = pci_enable_device_mem(pdev);
1991 1992 1993 1994
	if (err)
		return err;

	pci_using_dac = 0;
1995
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1996
	if (!err) {
1997
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1998 1999 2000
		if (!err)
			pci_using_dac = 1;
	} else {
2001
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2002
		if (err) {
2003
			err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
2004 2005 2006 2007 2008 2009 2010 2011
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

2012 2013 2014
	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
	                                   IORESOURCE_MEM),
	                                   igb_driver_name);
2015 2016 2017
	if (err)
		goto err_pci_reg;

2018
	pci_enable_pcie_error_reporting(pdev);
2019

2020
	pci_set_master(pdev);
2021
	pci_save_state(pdev);
2022 2023

	err = -ENOMEM;
2024
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2025
				   IGB_MAX_TX_QUEUES);
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
2037
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2038 2039 2040 2041 2042

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
2043 2044
	hw->hw_addr = ioremap(mmio_start, mmio_len);
	if (!hw->hw_addr)
2045 2046
		goto err_ioremap;

S
Stephen Hemminger 已提交
2047
	netdev->netdev_ops = &igb_netdev_ops;
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
2070
		goto err_sw_init;
2071

2072
	/* setup the private structure */
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	/*
	 * features is initialized to 0 in allocation, it might have bits
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_IP_CSUM |
			    NETIF_F_IPV6_CSUM |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_VLAN_RX |
			    NETIF_F_HW_VLAN_TX;

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features;
B
Ben Greear 已提交
2109
	netdev->hw_features |= NETIF_F_RXALL;
2110 2111 2112 2113 2114 2115 2116 2117 2118

	/* set this bit last since it cannot be part of hw_features */
	netdev->features |= NETIF_F_HW_VLAN_FILTER;

	netdev->vlan_features |= NETIF_F_TSO |
				 NETIF_F_TSO6 |
				 NETIF_F_IP_CSUM |
				 NETIF_F_IPV6_CSUM |
				 NETIF_F_SG;
2119

2120 2121
	netdev->priv_flags |= IFF_SUPP_NOFCS;

2122
	if (pci_using_dac) {
2123
		netdev->features |= NETIF_F_HIGHDMA;
2124 2125
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
2126

2127 2128
	if (hw->mac.type >= e1000_82576) {
		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2129
		netdev->features |= NETIF_F_SCTP_CSUM;
2130
	}
2131

2132 2133
	netdev->priv_flags |= IFF_UNICAST_FLT;

2134
	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2135 2136 2137 2138 2139

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state */
	hw->mac.ops.reset_hw(hw);

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
	/*
	 * make sure the NVM is good , i211 parts have special NVM that
	 * doesn't contain a checksum
	 */
	if (hw->mac.type != e1000_i211) {
		if (hw->nvm.ops.validate(hw) < 0) {
			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
			err = -EIO;
			goto err_eeprom;
		}
2150 2151 2152 2153 2154 2155 2156 2157
	}

	/* copy the MAC address out of the NVM */
	if (hw->mac.ops.read_mac_addr(hw))
		dev_err(&pdev->dev, "NVM Read Error\n");

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);

2158
	if (!is_valid_ether_addr(netdev->dev_addr)) {
2159 2160 2161 2162 2163
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

2164 2165 2166
	/* get firmware version for ethtool -i */
	igb_set_fw_version(adapter);

2167
	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2168
	            (unsigned long) adapter);
2169
	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2170
	            (unsigned long) adapter);
2171 2172 2173 2174

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

2175
	/* Initialize link properties that are user-changeable */
2176 2177 2178 2179
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

2180 2181
	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;
2182 2183 2184

	igb_validate_mdi_setting(hw);

2185
	/* By default, support wake on port A */
2186
	if (hw->bus.func == 0)
2187 2188 2189 2190
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;

	/* Check the NVM for wake support on non-port A ports */
	if (hw->mac.type >= e1000_82580)
2191 2192 2193
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
		                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
		                 &eeprom_data);
2194 2195
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2196

2197 2198
	if (eeprom_data & IGB_EEPROM_APME)
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2199 2200 2201 2202 2203 2204

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2205
		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2206 2207
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
A
Alexander Duyck 已提交
2208 2209
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
2210 2211 2212
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2213
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2214
		break;
2215
	case E1000_DEV_ID_82576_QUAD_COPPER:
2216
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2217 2218
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
2219
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2220 2221 2222 2223 2224 2225
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
2226 2227 2228 2229
	default:
		/* If the device can't wake, don't set software support */
		if (!device_can_wakeup(&adapter->pdev->dev))
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2230 2231 2232
	}

	/* initialize the wol settings based on the eeprom settings */
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
		adapter->wol |= E1000_WUFC_MAG;

	/* Some vendors want WoL disabled by default, but still supported */
	if ((hw->mac.type == e1000_i350) &&
	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
		adapter->wol = 0;
	}

	device_set_wakeup_enable(&adapter->pdev->dev,
				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2245 2246 2247 2248

	/* reset the hardware with the new settings */
	igb_reset(adapter);

C
Carolyn Wyborny 已提交
2249 2250 2251 2252 2253 2254 2255
	/* Init the I2C interface */
	err = igb_init_i2c(adapter);
	if (err) {
		dev_err(&pdev->dev, "failed to init i2c interface\n");
		goto err_eeprom;
	}

2256 2257 2258 2259 2260 2261 2262 2263 2264
	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

2265 2266 2267
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

2268
#ifdef CONFIG_IGB_DCA
2269
	if (dca_add_requester(&pdev->dev) == 0) {
2270
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
J
Jeb Cramer 已提交
2271 2272 2273 2274
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

P
Patrick Ohly 已提交
2275
#endif
2276 2277 2278 2279
#ifdef CONFIG_IGB_HWMON
	/* Initialize the thermal sensor on i350 devices. */
	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
		u16 ets_word;
2280

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
		/*
		 * Read the NVM to determine if this i350 device supports an
		 * external thermal sensor.
		 */
		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
		if (ets_word != 0x0000 && ets_word != 0xFFFF)
			adapter->ets = true;
		else
			adapter->ets = false;
		if (igb_sysfs_init(adapter))
			dev_err(&pdev->dev,
				"failed to allocate sysfs resources\n");
	} else {
		adapter->ets = false;
	}
#endif
A
Anders Berggren 已提交
2297
	/* do hw tstamp init after resetting */
2298
	igb_ptp_init(adapter);
A
Anders Berggren 已提交
2299

2300 2301
	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info */
J
Johannes Berg 已提交
2302
	dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2303
		 netdev->name,
2304
		 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2305
		  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2306
		                                            "unknown"),
2307 2308 2309 2310
		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
		  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
		  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
		   "unknown"),
J
Johannes Berg 已提交
2311
		 netdev->dev_addr);
2312

2313 2314 2315 2316
	ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2317 2318 2319
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		adapter->msix_entries ? "MSI-X" :
2320
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2321
		adapter->num_rx_queues, adapter->num_tx_queues);
2322 2323
	switch (hw->mac.type) {
	case e1000_i350:
2324 2325
	case e1000_i210:
	case e1000_i211:
2326 2327 2328 2329 2330
		igb_set_eee_i350(hw);
		break;
	default:
		break;
	}
Y
Yan, Zheng 已提交
2331 2332

	pm_runtime_put_noidle(&pdev->dev);
2333 2334 2335 2336
	return 0;

err_register:
	igb_release_hw_control(adapter);
C
Carolyn Wyborny 已提交
2337
	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2338 2339
err_eeprom:
	if (!igb_check_reset_block(hw))
2340
		igb_reset_phy(hw);
2341 2342 2343 2344

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
2345
	igb_clear_interrupt_scheme(adapter);
2346 2347 2348 2349
	iounmap(hw->hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
2350 2351
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2352 2353 2354 2355 2356 2357
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
#ifdef CONFIG_PCI_IOV
static int  igb_disable_sriov(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		if (igb_vfs_are_assigned(adapter)) {
			dev_warn(&pdev->dev,
				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
			return -EPERM;
		} else {
			pci_disable_sriov(pdev);
			msleep(500);
		}

		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		adapter->vfs_allocated_count = 0;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		wrfl();
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");

		/* Re-enable DMA Coalescing flag since IOV is turned off */
		adapter->flags |= IGB_FLAG_DMAC;
	}

	return 0;
}

static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	int old_vfs = pci_num_vf(pdev);
	int err = 0;
	int i;

	if (!num_vfs)
		goto out;
	else if (old_vfs && old_vfs == num_vfs)
		goto out;
	else if (old_vfs && old_vfs != num_vfs)
		err = igb_disable_sriov(pdev);

	if (err)
		goto out;

	if (num_vfs > 7) {
		err = -EPERM;
		goto out;
	}

	adapter->vfs_allocated_count = num_vfs;

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);

	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
		adapter->vfs_allocated_count = 0;
		dev_err(&pdev->dev,
			"Unable to allocate memory for VF Data Storage\n");
		err = -ENOMEM;
		goto out;
	}

	err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
	if (err)
		goto err_out;

	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;

err_out:
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return err;
}

#endif
C
Carolyn Wyborny 已提交
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
/*
 *  igb_remove_i2c - Cleanup  I2C interface
 *  @adapter: pointer to adapter structure
 *
 */
static void igb_remove_i2c(struct igb_adapter *adapter)
{

	/* free the adapter bus structure */
	i2c_del_adapter(&adapter->i2c_adap);
}

2463 2464 2465 2466 2467 2468 2469 2470 2471
/**
 * igb_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * igb_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
2472
static void igb_remove(struct pci_dev *pdev)
2473 2474 2475
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
J
Jeb Cramer 已提交
2476
	struct e1000_hw *hw = &adapter->hw;
2477

Y
Yan, Zheng 已提交
2478
	pm_runtime_get_noresume(&pdev->dev);
2479 2480 2481
#ifdef CONFIG_IGB_HWMON
	igb_sysfs_exit(adapter);
#endif
C
Carolyn Wyborny 已提交
2482
	igb_remove_i2c(adapter);
2483
	igb_ptp_stop(adapter);
2484 2485 2486 2487
	/*
	 * The watchdog timer may be rescheduled, so explicitly
	 * disable watchdog from being rescheduled.
	 */
2488 2489 2490 2491
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

2492 2493
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
2494

2495
#ifdef CONFIG_IGB_DCA
2496
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
2497 2498
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
2499
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
2500
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
2501 2502 2503
	}
#endif

2504 2505 2506 2507 2508 2509
	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	unregister_netdev(netdev);

2510
	igb_clear_interrupt_scheme(adapter);
2511

2512
#ifdef CONFIG_PCI_IOV
2513
	igb_disable_sriov(pdev);
2514
#endif
2515

2516 2517 2518
	iounmap(hw->hw_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
2519 2520
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
2521

2522
	kfree(adapter->shadow_vfta);
2523 2524
	free_netdev(netdev);

2525
	pci_disable_pcie_error_reporting(pdev);
2526

2527 2528 2529
	pci_disable_device(pdev);
}

2530 2531 2532 2533 2534 2535 2536 2537 2538
/**
 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 * @adapter: board private structure to initialize
 *
 * This function initializes the vf specific data storage and then attempts to
 * allocate the VFs.  The reason for ordering it this way is because it is much
 * mor expensive time wise to disable SR-IOV than it is to allocate and free
 * the memory for the VFs.
 **/
2539
static void igb_probe_vfs(struct igb_adapter *adapter)
2540 2541 2542
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
2543
	struct e1000_hw *hw = &adapter->hw;
2544

2545 2546 2547 2548
	/* Virtualization features not supported on i210 family. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
		return;

2549 2550
	igb_enable_sriov(pdev, max_vfs);
	pci_sriov_set_totalvfs(pdev, 7);
2551

2552 2553 2554
#endif /* CONFIG_PCI_IOV */
}

2555
static void igb_init_queue_configuration(struct igb_adapter *adapter)
2556 2557
{
	struct e1000_hw *hw = &adapter->hw;
2558
	u32 max_rss_queues;
2559

2560
	/* Determine the maximum number of RSS queues supported. */
2561
	switch (hw->mac.type) {
2562 2563 2564 2565
	case e1000_i211:
		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
		break;
	case e1000_82575:
2566
	case e1000_i210:
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
		break;
	case e1000_i350:
		/* I350 cannot do RSS and SR-IOV at the same time */
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 1;
			break;
		}
		/* fall through */
	case e1000_82576:
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 2;
			break;
		}
		/* fall through */
	case e1000_82580:
	default:
		max_rss_queues = IGB_MAX_RX_QUEUES;
2585
		break;
2586 2587 2588 2589 2590 2591 2592
	}

	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());

	/* Determine if we need to pair queues. */
	switch (hw->mac.type) {
	case e1000_82575:
2593
	case e1000_i211:
2594
		/* Device supports enough interrupts without queue pairing. */
2595
		break;
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
	case e1000_82576:
		/*
		 * If VFs are going to be allocated with RSS queues then we
		 * should pair the queues in order to conserve interrupts due
		 * to limited supply.
		 */
		if ((adapter->rss_queues > 1) &&
		    (adapter->vfs_allocated_count > 6))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
		/* fall through */
	case e1000_82580:
	case e1000_i350:
	case e1000_i210:
2609
	default:
2610 2611 2612 2613 2614 2615
		/*
		 * If rss_queues > half of max_rss_queues, pair the queues in
		 * order to conserve interrupts due to limited supply.
		 */
		if (adapter->rss_queues > (max_rss_queues / 2))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2616 2617
		break;
	}
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
}

/**
 * igb_sw_init - Initialize general software structures (struct igb_adapter)
 * @adapter: board private structure to initialize
 *
 * igb_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

	/* set default ring sizes */
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;

	/* set default ITR values */
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
				  VLAN_HLEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

	spin_lock_init(&adapter->stats64_lock);
#ifdef CONFIG_PCI_IOV
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
			adapter->vfs_allocated_count = 7;
		} else
			adapter->vfs_allocated_count = max_vfs;
		if (adapter->vfs_allocated_count)
			dev_warn(&pdev->dev,
				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
		break;
	default:
		break;
	}
#endif /* CONFIG_PCI_IOV */

	igb_init_queue_configuration(adapter);
2672

2673
	/* Setup and initialize a copy of the hw vlan table array */
2674 2675
	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
				       GFP_ATOMIC);
2676

2677
	/* This call may decrease the number of queues */
2678
	if (igb_init_interrupt_scheme(adapter, true)) {
2679 2680 2681 2682
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

2683 2684
	igb_probe_vfs(adapter);

2685 2686 2687
	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

2688
	if (hw->mac.type >= e1000_i350)
2689 2690
		adapter->flags &= ~IGB_FLAG_DMAC;

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 * igb_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
Y
Yan, Zheng 已提交
2707
static int __igb_open(struct net_device *netdev, bool resuming)
2708 2709 2710
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
Y
Yan, Zheng 已提交
2711
	struct pci_dev *pdev = adapter->pdev;
2712 2713 2714 2715
	int err;
	int i;

	/* disallow open during test */
Y
Yan, Zheng 已提交
2716 2717
	if (test_bit(__IGB_TESTING, &adapter->state)) {
		WARN_ON(resuming);
2718
		return -EBUSY;
Y
Yan, Zheng 已提交
2719 2720 2721 2722
	}

	if (!resuming)
		pm_runtime_get_sync(&pdev->dev);
2723

2724 2725
	netif_carrier_off(netdev);

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

2736
	igb_power_up_link(adapter);
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.  */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
	/* Notify the stack of the actual queue counts. */
	err = netif_set_real_num_tx_queues(adapter->netdev,
					   adapter->num_tx_queues);
	if (err)
		goto err_set_queues;

	err = netif_set_real_num_rx_queues(adapter->netdev,
					   adapter->num_rx_queues);
	if (err)
		goto err_set_queues;

2759 2760 2761
	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

2762 2763
	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));
2764 2765 2766

	/* Clear any pending interrupts. */
	rd32(E1000_ICR);
P
PJ Waskiewicz 已提交
2767 2768 2769

	igb_irq_enable(adapter);

2770 2771 2772 2773 2774 2775 2776
	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);
		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

2777 2778
	netif_tx_start_all_queues(netdev);

Y
Yan, Zheng 已提交
2779 2780 2781
	if (!resuming)
		pm_runtime_put(&pdev->dev);

2782 2783 2784
	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);
2785 2786 2787

	return 0;

2788 2789
err_set_queues:
	igb_free_irq(adapter);
2790 2791
err_req_irq:
	igb_release_hw_control(adapter);
2792
	igb_power_down_link(adapter);
2793 2794 2795 2796 2797
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);
Y
Yan, Zheng 已提交
2798 2799
	if (!resuming)
		pm_runtime_put(&pdev->dev);
2800 2801 2802 2803

	return err;
}

Y
Yan, Zheng 已提交
2804 2805 2806 2807 2808
static int igb_open(struct net_device *netdev)
{
	return __igb_open(netdev, false);
}

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
/**
 * igb_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the driver's control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
Y
Yan, Zheng 已提交
2820
static int __igb_close(struct net_device *netdev, bool suspending)
2821 2822
{
	struct igb_adapter *adapter = netdev_priv(netdev);
Y
Yan, Zheng 已提交
2823
	struct pci_dev *pdev = adapter->pdev;
2824 2825 2826

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));

Y
Yan, Zheng 已提交
2827 2828 2829 2830
	if (!suspending)
		pm_runtime_get_sync(&pdev->dev);

	igb_down(adapter);
2831 2832 2833 2834 2835
	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

Y
Yan, Zheng 已提交
2836 2837
	if (!suspending)
		pm_runtime_put_sync(&pdev->dev);
2838 2839 2840
	return 0;
}

Y
Yan, Zheng 已提交
2841 2842 2843 2844 2845
static int igb_close(struct net_device *netdev)
{
	return __igb_close(netdev, false);
}

2846 2847 2848 2849 2850 2851
/**
 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 * Return 0 on success, negative on failure
 **/
2852
int igb_setup_tx_resources(struct igb_ring *tx_ring)
2853
{
2854
	struct device *dev = tx_ring->dev;
2855 2856
	int size;

2857
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2858 2859

	tx_ring->tx_buffer_info = vzalloc(size);
2860
	if (!tx_ring->tx_buffer_info)
2861 2862 2863
		goto err;

	/* round up to nearest 4K */
2864
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2865 2866
	tx_ring->size = ALIGN(tx_ring->size, 4096);

2867 2868
	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
2869 2870 2871 2872 2873
	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
2874

2875 2876 2877
	return 0;

err:
2878
	vfree(tx_ring->tx_buffer_info);
2879 2880
	tx_ring->tx_buffer_info = NULL;
	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	return -ENOMEM;
}

/**
 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
2893
	struct pci_dev *pdev = adapter->pdev;
2894 2895 2896
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
2897
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
2898
		if (err) {
2899
			dev_err(&pdev->dev,
2900 2901
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
2902
				igb_free_tx_resources(adapter->tx_ring[i]);
2903 2904 2905 2906 2907 2908 2909 2910
			break;
		}
	}

	return err;
}

/**
2911 2912
 * igb_setup_tctl - configure the transmit control registers
 * @adapter: Board private structure
2913
 **/
2914
void igb_setup_tctl(struct igb_adapter *adapter)
2915 2916 2917 2918
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

2919 2920
	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

2936 2937 2938 2939 2940 2941 2942
/**
 * igb_configure_tx_ring - Configure transmit ring after Reset
 * @adapter: board private structure
 * @ring: tx ring to configure
 *
 * Configure a transmit ring after a reset.
 **/
2943 2944
void igb_configure_tx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
2945 2946
{
	struct e1000_hw *hw = &adapter->hw;
2947
	u32 txdctl = 0;
2948 2949 2950 2951
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	/* disable the queue */
2952
	wr32(E1000_TXDCTL(reg_idx), 0);
2953 2954 2955 2956 2957 2958 2959 2960 2961
	wrfl();
	mdelay(10);

	wr32(E1000_TDLEN(reg_idx),
	                ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	                tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

2962
	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2963
	wr32(E1000_TDH(reg_idx), 0);
2964
	writel(0, ring->tail);
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 * igb_configure_tx - Configure transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
2985
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2986 2987
}

2988 2989 2990 2991 2992 2993
/**
 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 *
 * Returns 0 on success, negative on failure
 **/
2994
int igb_setup_rx_resources(struct igb_ring *rx_ring)
2995
{
2996
	struct device *dev = rx_ring->dev;
2997
	int size;
2998

2999
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3000 3001

	rx_ring->rx_buffer_info = vzalloc(size);
3002
	if (!rx_ring->rx_buffer_info)
3003 3004 3005
		goto err;

	/* Round up to nearest 4K */
3006
	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3007 3008
	rx_ring->size = ALIGN(rx_ring->size, 4096);

3009 3010
	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
3011 3012 3013
	if (!rx_ring->desc)
		goto err;

3014
	rx_ring->next_to_alloc = 0;
3015 3016 3017 3018 3019 3020
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	return 0;

err:
3021 3022
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3023
	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
	return -ENOMEM;
}

/**
 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				  (Descriptors) for all queues
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
3036
	struct pci_dev *pdev = adapter->pdev;
3037 3038 3039
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
3040
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3041
		if (err) {
3042
			dev_err(&pdev->dev,
3043 3044
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
3045
				igb_free_rx_resources(adapter->rx_ring[i]);
3046 3047 3048 3049 3050 3051 3052
			break;
		}
	}

	return err;
}

3053 3054 3055 3056 3057 3058 3059 3060
/**
 * igb_setup_mrqc - configure the multiple receive queue control registers
 * @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
3061
	u32 j, num_rx_queues, shift = 0;
3062 3063 3064 3065
	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
					0xFA01ACBE };
3066 3067

	/* Fill out hash function seeds */
3068 3069
	for (j = 0; j < 10; j++)
		wr32(E1000_RSSRK(j), rsskey[j]);
3070

3071
	num_rx_queues = adapter->rss_queues;
3072

3073 3074 3075 3076 3077 3078 3079
	switch (hw->mac.type) {
	case e1000_82575:
		shift = 6;
		break;
	case e1000_82576:
		/* 82576 supports 2 RSS queues for SR-IOV */
		if (adapter->vfs_allocated_count) {
3080 3081 3082
			shift = 3;
			num_rx_queues = 2;
		}
3083 3084 3085
		break;
	default:
		break;
3086 3087
	}

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
	/*
	 * Populate the indirection table 4 entries at a time.  To do this
	 * we are generating the results for n and n+2 and then interleaving
	 * those with the results with n+1 and n+3.
	 */
	for (j = 0; j < 32; j++) {
		/* first pass generates n and n+2 */
		u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
		u32 reta = (base & 0x07800780) >> (7 - shift);

		/* second pass generates n+1 and n+3 */
		base += 0x00010001 * num_rx_queues;
		reta |= (base & 0x07800780) << (1 + shift);

		wr32(E1000_RETA(j), reta);
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
	}

	/*
	 * Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);
3119

3120 3121 3122
	/* Generate RSS hash based on packet types, TCP/UDP
	 * port numbers and/or IPv4/v6 src and dst addresses
	 */
3123 3124 3125 3126 3127
	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6 |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3128

3129 3130 3131 3132 3133
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;

3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);
			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
3147
		if (adapter->rss_queues > 1)
3148
			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3149
		else
3150
			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3151
	} else {
3152 3153
		if (hw->mac.type != e1000_i211)
			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3154 3155 3156 3157 3158 3159
	}
	igb_vmm_control(adapter);

	wr32(E1000_MRQC, mrqc);
}

3160 3161 3162 3163
/**
 * igb_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
3164
void igb_setup_rctl(struct igb_adapter *adapter)
3165 3166 3167 3168 3169 3170 3171
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3172
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3173

3174
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3175
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3176

3177 3178 3179 3180
	/*
	 * enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
3181
	 */
3182
	rctl |= E1000_RCTL_SECRC;
3183

3184
	/* disable store bad packets and clear size bits. */
3185
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3186

A
Alexander Duyck 已提交
3187 3188
	/* enable LPE to prevent packets larger than max_frame_size */
	rctl |= E1000_RCTL_LPE;
3189

3190 3191
	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);
3192

3193 3194 3195 3196 3197 3198 3199 3200 3201
	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

B
Ben Greear 已提交
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
		 * in e1000e_set_rx_mode */
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
			  E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

3218 3219 3220
	wr32(E1000_RCTL, rctl);
}

3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
                                   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* if it isn't the PF check to see if VFs are enabled and
	 * increase the size to support vlan tags */
	if (vfn < adapter->vfs_allocated_count &&
	    adapter->vf_data[vfn].vlans_enabled)
		size += VLAN_TAG_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

3241 3242 3243 3244 3245 3246 3247 3248
/**
 * igb_rlpml_set - set maximum receive packet size
 * @adapter: board private structure
 *
 * Configure maximum receivable packet size.
 **/
static void igb_rlpml_set(struct igb_adapter *adapter)
{
3249
	u32 max_frame_size = adapter->max_frame_size;
3250 3251 3252 3253 3254
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;

	if (pf_id) {
		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3255 3256 3257 3258 3259 3260 3261
		/*
		 * If we're in VMDQ or SR-IOV mode, then set global RLPML
		 * to our max jumbo frame size, in case we need to enable
		 * jumbo frames on one of the rings later.
		 * This will not pass over-length frames into the default
		 * queue because it's gated by the VMOLR.RLPML.
		 */
3262
		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3263 3264 3265 3266 3267
	}

	wr32(E1000_RLPML, max_frame_size);
}

3268 3269
static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/*
	 * This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
3282 3283 3284 3285 3286
	vmolr |= E1000_VMOLR_STRVLAN;      /* Strip vlan tags */
	if (aupe)
		vmolr |= E1000_VMOLR_AUPE;        /* Accept untagged packets */
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3287 3288 3289 3290

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

3291
	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/*
	 * for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM;	   /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

3303 3304 3305 3306 3307 3308 3309
/**
 * igb_configure_rx_ring - Configure a receive ring after Reset
 * @adapter: board private structure
 * @ring: receive ring to be configured
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
3310 3311
void igb_configure_rx_ring(struct igb_adapter *adapter,
                           struct igb_ring *ring)
3312 3313 3314 3315
{
	struct e1000_hw *hw = &adapter->hw;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
3316
	u32 srrctl = 0, rxdctl = 0;
3317 3318

	/* disable the queue */
3319
	wr32(E1000_RXDCTL(reg_idx), 0);
3320 3321 3322 3323 3324 3325 3326 3327 3328

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	               ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
3329
	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3330
	wr32(E1000_RDH(reg_idx), 0);
3331
	writel(0, ring->tail);
3332

3333
	/* set descriptor configuration */
3334
	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3335
	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3336
	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3337
	if (hw->mac.type >= e1000_82580)
N
Nick Nunley 已提交
3338
		srrctl |= E1000_SRRCTL_TIMESTAMP;
3339 3340 3341
	/* Only set Drop Enable if we are supporting multiple queues */
	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
		srrctl |= E1000_SRRCTL_DROP_EN;
3342 3343 3344

	wr32(E1000_SRRCTL(reg_idx), srrctl);

3345
	/* set filtering for VMDQ pools */
3346
	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3347

3348 3349 3350
	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;
3351 3352 3353

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3354 3355 3356
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
				  struct igb_ring *rx_ring)
{
#define IGB_MAX_BUILD_SKB_SIZE \
	(SKB_WITH_OVERHEAD(IGB_RX_BUFSZ) - \
	 (NET_SKB_PAD + NET_IP_ALIGN + IGB_TS_HDR_LEN))

	/* set build_skb flag */
	if (adapter->max_frame_size <= IGB_MAX_BUILD_SKB_SIZE)
		set_ring_build_skb_enabled(rx_ring);
	else
		clear_ring_build_skb_enabled(rx_ring);
}

3371 3372 3373 3374 3375 3376 3377 3378
/**
 * igb_configure_rx - Configure receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
3379
	int i;
3380

3381 3382 3383
	/* set UTA to appropriate mode */
	igb_set_uta(adapter);

3384 3385 3386 3387
	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
	                 adapter->vfs_allocated_count);

3388 3389
	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring */
3390 3391 3392 3393 3394
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *rx_ring = adapter->rx_ring[i];
		igb_set_rx_buffer_len(adapter, rx_ring);
		igb_configure_rx_ring(adapter, rx_ring);
	}
3395 3396 3397 3398 3399 3400 3401 3402
}

/**
 * igb_free_tx_resources - Free Tx Resources per Queue
 * @tx_ring: Tx descriptor ring for a specific queue
 *
 * Free all transmit software resources
 **/
3403
void igb_free_tx_resources(struct igb_ring *tx_ring)
3404
{
3405
	igb_clean_tx_ring(tx_ring);
3406

3407 3408
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
3409

3410 3411 3412 3413
	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

3414 3415
	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430

	tx_ring->desc = NULL;
}

/**
 * igb_free_all_tx_resources - Free Tx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3431
		igb_free_tx_resources(adapter->tx_ring[i]);
3432 3433
}

3434 3435 3436 3437 3438
void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
				    struct igb_tx_buffer *tx_buffer)
{
	if (tx_buffer->skb) {
		dev_kfree_skb_any(tx_buffer->skb);
3439
		if (dma_unmap_len(tx_buffer, len))
3440
			dma_unmap_single(ring->dev,
3441 3442
					 dma_unmap_addr(tx_buffer, dma),
					 dma_unmap_len(tx_buffer, len),
3443
					 DMA_TO_DEVICE);
3444
	} else if (dma_unmap_len(tx_buffer, len)) {
3445
		dma_unmap_page(ring->dev,
3446 3447
			       dma_unmap_addr(tx_buffer, dma),
			       dma_unmap_len(tx_buffer, len),
3448 3449 3450 3451
			       DMA_TO_DEVICE);
	}
	tx_buffer->next_to_watch = NULL;
	tx_buffer->skb = NULL;
3452
	dma_unmap_len_set(tx_buffer, len, 0);
3453
	/* buffer_info must be completely set up in the transmit path */
3454 3455 3456 3457 3458 3459
}

/**
 * igb_clean_tx_ring - Free Tx Buffers
 * @tx_ring: ring to be cleaned
 **/
3460
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3461
{
3462
	struct igb_tx_buffer *buffer_info;
3463
	unsigned long size;
3464
	u16 i;
3465

3466
	if (!tx_ring->tx_buffer_info)
3467 3468 3469 3470
		return;
	/* Free all the Tx ring sk_buffs */

	for (i = 0; i < tx_ring->count; i++) {
3471
		buffer_info = &tx_ring->tx_buffer_info[i];
3472
		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3473 3474
	}

3475 3476
	netdev_tx_reset_queue(txring_txq(tx_ring));

3477 3478
	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
	memset(tx_ring->tx_buffer_info, 0, size);
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495

	/* Zero out the descriptor ring */
	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
3496
		igb_clean_tx_ring(adapter->tx_ring[i]);
3497 3498 3499 3500 3501 3502 3503 3504
}

/**
 * igb_free_rx_resources - Free Rx Resources
 * @rx_ring: ring to clean the resources from
 *
 * Free all receive software resources
 **/
3505
void igb_free_rx_resources(struct igb_ring *rx_ring)
3506
{
3507
	igb_clean_rx_ring(rx_ring);
3508

3509 3510
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
3511

3512 3513 3514 3515
	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

3516 3517
	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532

	rx_ring->desc = NULL;
}

/**
 * igb_free_all_rx_resources - Free Rx Resources for All Queues
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3533
		igb_free_rx_resources(adapter->rx_ring[i]);
3534 3535 3536 3537 3538 3539
}

/**
 * igb_clean_rx_ring - Free Rx Buffers per Queue
 * @rx_ring: ring to free buffers from
 **/
3540
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3541 3542
{
	unsigned long size;
3543
	u16 i;
3544

3545 3546 3547 3548
	if (rx_ring->skb)
		dev_kfree_skb(rx_ring->skb);
	rx_ring->skb = NULL;

3549
	if (!rx_ring->rx_buffer_info)
3550
		return;
3551

3552 3553
	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
3554
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3555

3556 3557 3558 3559 3560 3561 3562 3563 3564
		if (!buffer_info->page)
			continue;

		dma_unmap_page(rx_ring->dev,
			       buffer_info->dma,
			       PAGE_SIZE,
			       DMA_FROM_DEVICE);
		__free_page(buffer_info->page);

3565
		buffer_info->page = NULL;
3566 3567
	}

3568 3569
	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
	memset(rx_ring->rx_buffer_info, 0, size);
3570 3571 3572 3573

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

3574
	rx_ring->next_to_alloc = 0;
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
 * @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
3588
		igb_clean_rx_ring(adapter->rx_ring[i]);
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
}

/**
 * igb_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
3601
	struct e1000_hw *hw = &adapter->hw;
3602 3603 3604 3605 3606 3607
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3608
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3609

3610 3611 3612
	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
	                 adapter->vfs_allocated_count);
3613

3614 3615 3616 3617
	return 0;
}

/**
3618
 * igb_write_mc_addr_list - write multicast addresses to MTA
3619 3620
 * @netdev: network interface device structure
 *
3621 3622 3623 3624
 * Writes multicast address list to the MTA hash table.
 * Returns: -ENOMEM on failure
 *                0 on no addresses written
 *                X on writing X addresses to MTA
3625
 **/
3626
static int igb_write_mc_addr_list(struct net_device *netdev)
3627 3628 3629
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3630
	struct netdev_hw_addr *ha;
3631
	u8  *mta_list;
3632 3633
	int i;

3634
	if (netdev_mc_empty(netdev)) {
3635 3636 3637 3638 3639
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}
3640

3641
	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3642 3643
	if (!mta_list)
		return -ENOMEM;
3644

3645
	/* The shared function expects a packed array of only addresses. */
3646
	i = 0;
3647 3648
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3649 3650 3651 3652

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

3653
	return netdev_mc_count(netdev);
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
}

/**
 * igb_write_uc_addr_list - write unicast addresses to RAR table
 * @netdev: network interface device structure
 *
 * Writes unicast address list to the RAR table.
 * Returns: -ENOMEM on failure/insufficient address space
 *                0 on no addresses written
 *                X on writing X addresses to the RAR table
 **/
static int igb_write_uc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
	int count = 0;

	/* return ENOMEM indicating insufficient memory for addresses */
3674
	if (netdev_uc_count(netdev) > rar_entries)
3675
		return -ENOMEM;
3676

3677
	if (!netdev_uc_empty(netdev) && rar_entries) {
3678
		struct netdev_hw_addr *ha;
3679 3680

		netdev_for_each_uc_addr(ha, netdev) {
3681 3682
			if (!rar_entries)
				break;
3683 3684
			igb_rar_set_qsel(adapter, ha->addr,
			                 rar_entries--,
3685 3686
			                 vfn);
			count++;
3687 3688 3689 3690 3691 3692 3693 3694 3695
		}
	}
	/* write the addresses in reverse order to avoid write combining */
	for (; rar_entries > 0 ; rar_entries--) {
		wr32(E1000_RAH(rar_entries), 0);
		wr32(E1000_RAL(rar_entries), 0);
	}
	wrfl();

3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
	return count;
}

/**
 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_rx_mode entry point is called whenever the unicast or multicast
 * address lists or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper unicast, multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl, vmolr = 0;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	rctl = rd32(E1000_RCTL);

	/* clear the effected bits */
	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/*
			 * Write addresses to the MTA, if the attempt fails
L
Lucas De Marchi 已提交
3732
			 * then we should just turn on promiscuous mode so
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
		/*
		 * Write addresses to available RAR registers, if there is not
		 * sufficient space to store all the addresses then enable
L
Lucas De Marchi 已提交
3746
		 * unicast promiscuous mode
3747 3748 3749 3750 3751 3752 3753
		 */
		count = igb_write_uc_addr_list(netdev);
		if (count < 0) {
			rctl |= E1000_RCTL_UPE;
			vmolr |= E1000_VMOLR_ROPE;
		}
		rctl |= E1000_RCTL_VFE;
3754
	}
3755
	wr32(E1000_RCTL, rctl);
3756

3757 3758 3759 3760 3761 3762
	/*
	 * In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
3763
	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3764
		return;
3765

3766 3767 3768
	vmolr |= rd32(E1000_VMOLR(vfn)) &
	         ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
	wr32(E1000_VMOLR(vfn), vmolr);
3769
	igb_restore_vf_multicasts(adapter);
3770 3771
}

G
Greg Rose 已提交
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (!(wvbr = rd32(E1000_WVBR)))
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for(j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & (1 << j) ||
		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~((1 << j) |
				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
		}
	}
}

3811 3812 3813 3814 3815
/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy */
static void igb_update_phy_info(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
3816
	igb_get_phy_info(&adapter->hw);
3817 3818
}

A
Alexander Duyck 已提交
3819 3820 3821 3822
/**
 * igb_has_link - check shared code for link and determine up/down
 * @adapter: pointer to driver private info
 **/
3823
bool igb_has_link(struct igb_adapter *adapter)
A
Alexander Duyck 已提交
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;
	s32 ret_val = 0;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = true;
		}
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = hw->mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	return link_active;
}

3855 3856 3857 3858 3859
static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

3860
	/* check for thermal sensor event on i350 copper only */
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
			ret = !!(thstat & event);
		}
	}

	return ret;
}

3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
/**
 * igb_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void igb_watchdog(unsigned long data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
3888 3889
	                                           struct igb_adapter,
                                                   watchdog_task);
3890 3891
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
3892
	u32 link;
3893
	int i;
3894

A
Alexander Duyck 已提交
3895
	link = igb_has_link(adapter);
3896
	if (link) {
Y
Yan, Zheng 已提交
3897 3898 3899
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

3900 3901
		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;
3902 3903 3904
			hw->mac.ops.get_speed_and_duplex(hw,
			                                 &adapter->link_speed,
			                                 &adapter->link_duplex);
3905 3906

			ctrl = rd32(E1000_CTRL);
3907
			/* Links status message must follow this format */
J
Jeff Kirsher 已提交
3908 3909
			printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
			       "Duplex, Flow Control: %s\n",
3910 3911 3912
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
J
Jeff Kirsher 已提交
3913 3914 3915 3916 3917
			       "Full" : "Half",
			       (ctrl & E1000_CTRL_TFCE) &&
			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
3918

3919
			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3920 3921 3922 3923 3924
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_LINK_THROTTLE)) {
				netdev_info(netdev, "The network adapter link "
					    "speed was downshifted because it "
					    "overheated\n");
3925
			}
3926

3927
			/* adjust timeout factor according to speed/duplex */
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			netif_carrier_on(netdev);

3940
			igb_ping_all_vfs(adapter);
3941
			igb_check_vf_rate_limit(adapter);
3942

3943
			/* link state has changed, schedule phy info update */
3944 3945 3946 3947 3948 3949 3950 3951
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3952 3953

			/* check for thermal sensor event */
J
Jeff Kirsher 已提交
3954 3955 3956 3957
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_PWR_DOWN)) {
				netdev_err(netdev, "The network adapter was "
					   "stopped because it overheated\n");
3958
			}
3959

3960 3961 3962
			/* Links status message must follow this format */
			printk(KERN_INFO "igb: %s NIC Link is Down\n",
			       netdev->name);
3963
			netif_carrier_off(netdev);
3964

3965 3966
			igb_ping_all_vfs(adapter);

3967
			/* link state has changed, schedule phy info update */
3968 3969 3970
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
Y
Yan, Zheng 已提交
3971 3972 3973

			pm_schedule_suspend(netdev->dev.parent,
					    MSEC_PER_SEC * 5);
3974 3975 3976
		}
	}

E
Eric Dumazet 已提交
3977 3978 3979
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	spin_unlock(&adapter->stats64_lock);
3980

3981
	for (i = 0; i < adapter->num_tx_queues; i++) {
3982
		struct igb_ring *tx_ring = adapter->tx_ring[i];
3983
		if (!netif_carrier_ok(netdev)) {
3984 3985 3986 3987
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context). */
3988 3989 3990 3991 3992 3993
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
3994 3995
		}

3996
		/* Force detection of hung controller every watchdog period */
3997
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3998
	}
3999

4000
	/* Cause software interrupt to ensure rx ring is cleaned */
4001
	if (adapter->msix_entries) {
4002
		u32 eics = 0;
4003 4004
		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
4005 4006 4007 4008
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}
4009

G
Greg Rose 已提交
4010
	igb_spoof_check(adapter);
4011
	igb_ptp_rx_hang(adapter);
G
Greg Rose 已提交
4012

4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

4026 4027 4028 4029 4030 4031
/**
 * igb_update_ring_itr - update the dynamic ITR value based on packet size
 *
 *      Stores a new ITR value based on strictly on packet size.  This
 *      algorithm is less sophisticated than that used in igb_update_itr,
 *      due to the difficulty of synchronizing statistics across multiple
4032
 *      receive rings.  The divisors and thresholds used by this function
4033 4034 4035 4036 4037 4038 4039
 *      were determined based on theoretical maximum wire speed and testing
 *      data, in order to minimize response time while increasing bulk
 *      throughput.
 *      This functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  This function is called only when operating in a multiqueue
 *             receive environment.
4040
 * @q_vector: pointer to q_vector
4041
 **/
4042
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4043
{
4044
	int new_val = q_vector->itr_val;
4045
	int avg_wire_size = 0;
4046
	struct igb_adapter *adapter = q_vector->adapter;
E
Eric Dumazet 已提交
4047
	unsigned int packets;
4048

4049 4050 4051 4052
	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
4053
		new_val = IGB_4K_ITR;
4054
		goto set_itr_val;
4055
	}
4056

4057 4058 4059
	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;
4060

4061 4062 4063 4064
	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);
4065 4066 4067 4068

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;
4069

4070 4071 4072 4073 4074
	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);
4075

4076 4077 4078 4079 4080
	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;
4081

4082 4083 4084 4085 4086
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;
4087

4088
set_itr_val:
4089 4090 4091
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
4092
	}
4093
clear_counts:
4094 4095 4096 4097
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
}

/**
 * igb_update_itr - update the dynamic ITR value based on statistics
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
 *      while increasing bulk throughput.
 *      this functionality is controlled by the InterruptThrottleRate module
 *      parameter (see igb_param.c)
 *      NOTE:  These calculations are only valid when operating in a single-
 *             queue environment.
4113 4114
 * @q_vector: pointer to q_vector
 * @ring_container: ring info to update the itr for
4115
 **/
4116 4117
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
4118
{
4119 4120 4121
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;
4122

4123
	/* no packets, exit with status unchanged */
4124
	if (packets == 0)
4125
		return;
4126

4127
	switch (itrval) {
4128 4129 4130
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
4131
			itrval = bulk_latency;
4132
		else if ((packets < 5) && (bytes > 512))
4133
			itrval = low_latency;
4134 4135 4136 4137 4138
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
4139
				itrval = bulk_latency;
4140
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
4141
				itrval = bulk_latency;
4142
			} else if ((packets > 35)) {
4143
				itrval = lowest_latency;
4144 4145
			}
		} else if (bytes/packets > 2000) {
4146
			itrval = bulk_latency;
4147
		} else if (packets <= 2 && bytes < 512) {
4148
			itrval = lowest_latency;
4149 4150 4151 4152 4153
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
4154
				itrval = low_latency;
4155
		} else if (bytes < 1500) {
4156
			itrval = low_latency;
4157 4158 4159 4160
		}
		break;
	}

4161 4162 4163 4164 4165 4166
	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
4167 4168
}

4169
static void igb_set_itr(struct igb_q_vector *q_vector)
4170
{
4171
	struct igb_adapter *adapter = q_vector->adapter;
4172
	u32 new_itr = q_vector->itr_val;
4173
	u8 current_itr = 0;
4174 4175 4176 4177

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
4178
		new_itr = IGB_4K_ITR;
4179 4180 4181
		goto set_itr_now;
	}

4182 4183
	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);
4184

4185
	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4186

4187
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4188 4189 4190
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4191 4192
		current_itr = low_latency;

4193 4194 4195
	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
4196
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4197 4198
		break;
	case low_latency:
4199
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4200 4201
		break;
	case bulk_latency:
4202
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4203 4204 4205 4206 4207 4208
		break;
	default:
		break;
	}

set_itr_now:
4209
	if (new_itr != q_vector->itr_val) {
4210 4211 4212
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing */
4213 4214 4215
		new_itr = new_itr > q_vector->itr_val ?
		             max((new_itr * q_vector->itr_val) /
		                 (new_itr + (q_vector->itr_val >> 2)),
4216
				 new_itr) :
4217 4218 4219 4220 4221 4222 4223
			     new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
4224 4225
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
4226 4227 4228
	}
}

4229 4230
static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
			    u32 type_tucmd, u32 mss_l4len_idx)
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
4244
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4245 4246 4247 4248 4249 4250 4251 4252
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->seqnum_seed	= 0;
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
}

4253 4254 4255
static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
4256
{
4257
	struct sk_buff *skb = first->skb;
4258 4259 4260
	u32 vlan_macip_lens, type_tucmd;
	u32 mss_l4len_idx, l4len;

4261 4262 4263
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

4264 4265
	if (!skb_is_gso(skb))
		return 0;
4266 4267

	if (skb_header_cloned(skb)) {
4268
		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4269 4270 4271 4272
		if (err)
			return err;
	}

4273 4274
	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4275

4276
	if (first->protocol == __constant_htons(ETH_P_IP)) {
4277 4278 4279 4280 4281 4282 4283
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
							 iph->daddr, 0,
							 IPPROTO_TCP,
							 0);
4284
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4285 4286 4287
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
4288
	} else if (skb_is_gso_v6(skb)) {
4289 4290 4291 4292
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						       &ipv6_hdr(skb)->daddr,
						       0, IPPROTO_TCP, 0);
4293 4294
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
4295 4296
	}

4297
	/* compute header lengths */
4298 4299
	l4len = tcp_hdrlen(skb);
	*hdr_len = skb_transport_offset(skb) + l4len;
4300

4301 4302 4303 4304
	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

4305
	/* MSS L4LEN IDX */
4306 4307
	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4308

4309 4310 4311
	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = skb_network_header_len(skb);
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4312
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4313

4314
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4315

4316
	return 1;
4317 4318
}

4319
static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4320
{
4321
	struct sk_buff *skb = first->skb;
4322 4323 4324
	u32 vlan_macip_lens = 0;
	u32 mss_l4len_idx = 0;
	u32 type_tucmd = 0;
4325

4326
	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4327 4328
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
			return;
4329 4330
	} else {
		u8 l4_hdr = 0;
4331
		switch (first->protocol) {
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
		case __constant_htons(ETH_P_IP):
			vlan_macip_lens |= skb_network_header_len(skb);
			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
			l4_hdr = ip_hdr(skb)->protocol;
			break;
		case __constant_htons(ETH_P_IPV6):
			vlan_macip_lens |= skb_network_header_len(skb);
			l4_hdr = ipv6_hdr(skb)->nexthdr;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but proto=%x!\n",
4345
				 first->protocol);
4346
			}
4347 4348
			break;
		}
4349

4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
		switch (l4_hdr) {
		case IPPROTO_TCP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
			mss_l4len_idx = tcp_hdrlen(skb) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_SCTP:
			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
			mss_l4len_idx = sizeof(struct sctphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case IPPROTO_UDP:
			mss_l4len_idx = sizeof(struct udphdr) <<
					E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			if (unlikely(net_ratelimit())) {
				dev_warn(tx_ring->dev,
				 "partial checksum but l4 proto=%x!\n",
				 l4_hdr);
4370
			}
4371
			break;
4372
		}
4373 4374 4375

		/* update TX checksum flag */
		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4376
	}
4377

4378
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4379
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4380

4381
	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4382 4383
}

4384 4385 4386 4387 4388 4389
#define IGB_SET_FLAG(_input, _flag, _result) \
	((_flag <= _result) ? \
	 ((u32)(_input & _flag) * (_result / _flag)) : \
	 ((u32)(_input & _flag) / (_flag / _result)))

static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4390 4391
{
	/* set type for advanced descriptor with frame checksum insertion */
4392 4393 4394
	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
		       E1000_ADVTXD_DCMD_DEXT |
		       E1000_ADVTXD_DCMD_IFCS;
4395 4396

	/* set HW vlan bit if vlan is present */
4397 4398 4399 4400 4401 4402
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
				 (E1000_ADVTXD_DCMD_VLE));

	/* set segmentation bits for TSO */
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
				 (E1000_ADVTXD_DCMD_TSE));
4403 4404

	/* set timestamp bit if present */
4405 4406
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
				 (E1000_ADVTXD_MAC_TSTAMP));
4407

4408 4409
	/* insert frame checksum */
	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4410 4411 4412 4413

	return cmd_type;
}

4414 4415 4416
static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
4417 4418 4419
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

4420 4421
	/* 82575 requires a unique index per ring */
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4422 4423 4424
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
4425 4426 4427
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_CSUM,
				      (E1000_TXD_POPTS_TXSM << 8));
4428

4429 4430 4431 4432
	/* insert IPv4 checksum */
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_IPV4,
				      (E1000_TXD_POPTS_IXSM << 8));
4433

4434
	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4435 4436
}

4437 4438
static void igb_tx_map(struct igb_ring *tx_ring,
		       struct igb_tx_buffer *first,
4439
		       const u8 hdr_len)
4440
{
4441
	struct sk_buff *skb = first->skb;
4442
	struct igb_tx_buffer *tx_buffer;
4443
	union e1000_adv_tx_desc *tx_desc;
4444
	struct skb_frag_struct *frag;
4445
	dma_addr_t dma;
4446
	unsigned int data_len, size;
4447
	u32 tx_flags = first->tx_flags;
4448
	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4449 4450 4451 4452
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

4453 4454 4455 4456
	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);

	size = skb_headlen(skb);
	data_len = skb->data_len;
4457 4458

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4459

4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
	tx_buffer = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buffer, len, size);
		dma_unmap_addr_set(tx_buffer, dma, dma);

		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4471 4472 4473

		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
4474
				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4475 4476 4477 4478 4479 4480 4481

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}
4482
			tx_desc->read.olinfo_status = 0;
4483 4484 4485 4486 4487 4488 4489 4490 4491

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;
4492

4493
		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4494

4495
		i++;
4496 4497 4498
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
4499
			i = 0;
4500
		}
4501
		tx_desc->read.olinfo_status = 0;
4502

E
Eric Dumazet 已提交
4503
		size = skb_frag_size(frag);
4504 4505 4506
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4507
				       size, DMA_TO_DEVICE);
4508

4509
		tx_buffer = &tx_ring->tx_buffer_info[i];
4510 4511
	}

4512
	/* write last descriptor with RS and EOP bits */
4513 4514
	cmd_type |= size | IGB_TXD_DCMD;
	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4515

4516 4517
	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

4518 4519 4520
	/* set the timestamp */
	first->time_stamp = jiffies;

4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
	/*
	 * Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	wmb();

4531
	/* set next_to_watch value indicating a packet is present */
4532
	first->next_to_watch = tx_desc;
4533

4534 4535 4536
	i++;
	if (i == tx_ring->count)
		i = 0;
4537

4538
	tx_ring->next_to_use = i;
4539

4540
	writel(i, tx_ring->tail);
4541

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
	/* we need this if more than one processor can write to our tail
	 * at a time, it syncronizes IO on IA64/Altix systems */
	mmiowb();

	return;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");

	/* clear dma mappings for failed tx_buffer_info map */
	for (;;) {
4553 4554 4555
		tx_buffer = &tx_ring->tx_buffer_info[i];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
		if (tx_buffer == first)
4556
			break;
4557 4558
		if (i == 0)
			i = tx_ring->count;
4559 4560 4561
		i--;
	}

4562 4563 4564
	tx_ring->next_to_use = i;
}

4565
static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4566
{
4567 4568
	struct net_device *netdev = tx_ring->netdev;

4569 4570
	netif_stop_subqueue(netdev, tx_ring->queue_index);

4571 4572 4573 4574 4575 4576 4577
	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it. */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available. */
4578
	if (igb_desc_unused(tx_ring) < size)
4579 4580 4581
		return -EBUSY;

	/* A reprieve! */
4582
	netif_wake_subqueue(netdev, tx_ring->queue_index);
E
Eric Dumazet 已提交
4583 4584 4585 4586 4587

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

4588 4589 4590
	return 0;
}

4591
static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4592
{
4593
	if (igb_desc_unused(tx_ring) >= size)
4594
		return 0;
4595
	return __igb_maybe_stop_tx(tx_ring, size);
4596 4597
}

4598 4599
netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
4600
{
4601
	struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4602
	struct igb_tx_buffer *first;
4603
	int tso;
N
Nick Nunley 已提交
4604
	u32 tx_flags = 0;
4605
	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4606
	__be16 protocol = vlan_get_protocol(skb);
N
Nick Nunley 已提交
4607
	u8 hdr_len = 0;
4608

4609 4610
	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4611 4612
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for context descriptor,
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
	 * otherwise try next time
	 */
	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
		unsigned short f;
		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
	} else {
		count += skb_shinfo(skb)->nr_frags;
	}

	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4624 4625 4626
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}
4627

4628 4629 4630 4631 4632 4633
	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

4634 4635
	skb_tx_timestamp(skb);

4636 4637
	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
		     !(adapter->ptp_tx_skb))) {
4638
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4639
		tx_flags |= IGB_TX_FLAGS_TSTAMP;
4640 4641

		adapter->ptp_tx_skb = skb_get(skb);
4642
		adapter->ptp_tx_start = jiffies;
4643 4644
		if (adapter->hw.mac.type == e1000_82576)
			schedule_work(&adapter->ptp_tx_work);
4645
	}
4646

4647
	if (vlan_tx_tag_present(skb)) {
4648 4649 4650 4651
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

4652 4653 4654
	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;
A
Alexander Duyck 已提交
4655

4656 4657
	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
4658
		goto out_drop;
4659 4660
	else if (!tso)
		igb_tx_csum(tx_ring, first);
4661

4662
	igb_tx_map(tx_ring, first, hdr_len);
4663 4664

	/* Make sure there is space in the ring for the next send. */
4665
	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4666

4667
	return NETDEV_TX_OK;
4668 4669

out_drop:
4670 4671
	igb_unmap_and_free_tx_resource(tx_ring, first);

4672
	return NETDEV_TX_OK;
4673 4674
}

4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

4686 4687
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
4688 4689
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700

	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

4701 4702 4703 4704
	/*
	 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
	 * in order to meet this minimum size requirement.
	 */
4705 4706
	if (unlikely(skb->len < 17)) {
		if (skb_pad(skb, 17 - skb->len))
4707 4708
			return NETDEV_TX_OK;
		skb->len = 17;
4709
		skb_set_tail_pointer(skb, 17);
4710
	}
4711

4712
	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
}

/**
 * igb_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void igb_tx_timeout(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
4726

4727
	if (hw->mac.type >= e1000_82580)
4728 4729
		hw->dev_spec._82575.global_device_reset = true;

4730
	schedule_work(&adapter->reset_task);
4731 4732
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
4733 4734 4735 4736 4737 4738 4739
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

4740 4741
	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
4742 4743 4744 4745
	igb_reinit_locked(adapter);
}

/**
E
Eric Dumazet 已提交
4746
 * igb_get_stats64 - Get System Network Statistics
4747
 * @netdev: network interface device structure
E
Eric Dumazet 已提交
4748
 * @stats: rtnl_link_stats64 pointer
4749 4750
 *
 **/
E
Eric Dumazet 已提交
4751 4752
static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
						 struct rtnl_link_stats64 *stats)
4753
{
E
Eric Dumazet 已提交
4754 4755 4756 4757 4758 4759 4760 4761
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, &adapter->stats64);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);

	return stats;
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
}

/**
 * igb_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
4774
	struct pci_dev *pdev = adapter->pdev;
4775
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4776

4777
	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4778
		dev_err(&pdev->dev, "Invalid MTU setting\n");
4779 4780 4781
		return -EINVAL;
	}

4782
#define MAX_STD_JUMBO_FRAME_SIZE 9238
4783
	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4784
		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4785 4786 4787 4788 4789
		return -EINVAL;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		msleep(1);
4790

4791 4792
	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;
4793

4794 4795
	if (netif_running(netdev))
		igb_down(adapter);
4796

4797
	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
		 netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 * igb_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/

E
Eric Dumazet 已提交
4816 4817
void igb_update_stats(struct igb_adapter *adapter,
		      struct rtnl_link_stats64 *net_stats)
4818 4819 4820
{
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
4821
	u32 reg, mpc;
4822
	u16 phy_tmp;
4823 4824
	int i;
	u64 bytes, packets;
E
Eric Dumazet 已提交
4825 4826
	unsigned int start;
	u64 _bytes, _packets;
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838

#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

4839 4840 4841
	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_rx_queues; i++) {
4842
		u32 rqdpc = rd32(E1000_RQDPC(i));
4843
		struct igb_ring *ring = adapter->rx_ring[i];
E
Eric Dumazet 已提交
4844

4845 4846 4847 4848
		if (rqdpc) {
			ring->rx_stats.drops += rqdpc;
			net_stats->rx_fifo_errors += rqdpc;
		}
E
Eric Dumazet 已提交
4849 4850 4851 4852 4853 4854 4855 4856

		do {
			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4857 4858
	}

4859 4860
	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;
4861 4862 4863 4864

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
4865
		struct igb_ring *ring = adapter->tx_ring[i];
E
Eric Dumazet 已提交
4866 4867 4868 4869 4870 4871 4872
		do {
			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
4873
	}
4874 4875
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
4876 4877

	/* read stats registers */
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

4895 4896 4897
	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
4912
	adapter->stats.rnbc += rd32(E1000_RNBC);
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

4930 4931
	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);
4932 4933

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4934 4935 4936 4937
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);
4938 4939 4940 4941 4942

		/* this stat has invalid values on i210/i211 */
		if ((hw->mac.type != e1000_i210) &&
		    (hw->mac.type != e1000_i211))
			adapter->stats.tncrs += rd32(E1000_TNCRS);
4943 4944
	}

4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
4959 4960
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;
4961 4962 4963 4964

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
4965
	 * our own version based on RUC and ROC */
4966
	net_stats->rx_errors = adapter->stats.rxerrc +
4967 4968 4969
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
4970 4971 4972 4973 4974
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;
4975 4976

	/* Tx Errors */
4977 4978 4979 4980 4981
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4982 4983 4984 4985 4986 4987

	/* Tx Dropped needs to be maintained elsewhere */

	/* Phy Stats */
	if (hw->phy.media_type == e1000_media_type_copper) {
		if ((adapter->link_speed == SPEED_1000) &&
4988
		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4989 4990 4991 4992 4993 4994 4995 4996 4997
			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
			adapter->phy_stats.idle_errors += phy_tmp;
		}
	}

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4998 4999 5000 5001 5002 5003 5004 5005 5006

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
5007 5008 5009 5010
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
5011
	struct igb_adapter *adapter = data;
5012
	struct e1000_hw *hw = &adapter->hw;
P
PJ Waskiewicz 已提交
5013 5014
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */
5015

5016 5017 5018
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5019
	if (icr & E1000_ICR_DOUTSYNC) {
5020 5021
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
G
Greg Rose 已提交
5022 5023 5024 5025
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
		 * see if it is really a spoof event. */
		igb_check_wvbr(adapter);
5026
	}
5027

5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

P
PJ Waskiewicz 已提交
5050
	wr32(E1000_EIMS, adapter->eims_other);
5051 5052 5053 5054

	return IRQ_HANDLED;
}

5055
static void igb_write_itr(struct igb_q_vector *q_vector)
5056
{
5057
	struct igb_adapter *adapter = q_vector->adapter;
5058
	u32 itr_val = q_vector->itr_val & 0x7FFC;
5059

5060 5061
	if (!q_vector->set_itr)
		return;
5062

5063 5064
	if (!itr_val)
		itr_val = 0x4;
5065

5066 5067
	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
5068
	else
5069
		itr_val |= E1000_EITR_CNT_IGNR;
5070

5071 5072
	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
5073 5074
}

5075
static irqreturn_t igb_msix_ring(int irq, void *data)
5076
{
5077
	struct igb_q_vector *q_vector = data;
5078

5079 5080
	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);
5081

5082
	napi_schedule(&q_vector->napi);
P
PJ Waskiewicz 已提交
5083

5084
	return IRQ_HANDLED;
J
Jeb Cramer 已提交
5085 5086
}

5087
#ifdef CONFIG_IGB_DCA
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
static void igb_update_tx_dca(struct igb_adapter *adapter,
			      struct igb_ring *tx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);

	if (hw->mac.type != e1000_82575)
		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;

	/*
	 * We can enable relaxed ordering for reads, but not writes when
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
		  E1000_DCA_TXCTRL_DATA_RRO_EN |
		  E1000_DCA_TXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
}

static void igb_update_rx_dca(struct igb_adapter *adapter,
			      struct igb_ring *rx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);

	if (hw->mac.type != e1000_82575)
		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;

	/*
	 * We can enable relaxed ordering for reads, but not writes when
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
		  E1000_DCA_RXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
}

5131
static void igb_update_dca(struct igb_q_vector *q_vector)
J
Jeb Cramer 已提交
5132
{
5133
	struct igb_adapter *adapter = q_vector->adapter;
J
Jeb Cramer 已提交
5134 5135
	int cpu = get_cpu();

5136 5137 5138
	if (q_vector->cpu == cpu)
		goto out_no_update;

5139 5140 5141 5142 5143 5144
	if (q_vector->tx.ring)
		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);

	if (q_vector->rx.ring)
		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);

5145 5146
	q_vector->cpu = cpu;
out_no_update:
J
Jeb Cramer 已提交
5147 5148 5149 5150 5151
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
5152
	struct e1000_hw *hw = &adapter->hw;
J
Jeb Cramer 已提交
5153 5154
	int i;

5155
	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
J
Jeb Cramer 已提交
5156 5157
		return;

5158 5159 5160
	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

5161
	for (i = 0; i < adapter->num_q_vectors; i++) {
5162 5163
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
J
Jeb Cramer 已提交
5164 5165 5166 5167 5168 5169 5170
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
5171
	struct pci_dev *pdev = adapter->pdev;
J
Jeb Cramer 已提交
5172 5173 5174 5175 5176 5177
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
5178
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
J
Jeb Cramer 已提交
5179 5180
			break;
		if (dca_add_requester(dev) == 0) {
5181
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5182
			dev_info(&pdev->dev, "DCA enabled\n");
J
Jeb Cramer 已提交
5183 5184 5185 5186 5187
			igb_setup_dca(adapter);
			break;
		}
		/* Fall Through since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
5188
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
J
Jeb Cramer 已提交
5189
			/* without this a class_device is left
5190
			 * hanging around in the sysfs model */
J
Jeb Cramer 已提交
5191
			dca_remove_requester(dev);
5192
			dev_info(&pdev->dev, "DCA disabled\n");
5193
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
A
Alexander Duyck 已提交
5194
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
J
Jeb Cramer 已提交
5195 5196 5197
		}
		break;
	}
5198

J
Jeb Cramer 已提交
5199
	return 0;
5200 5201
}

J
Jeb Cramer 已提交
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
                          void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
	                                 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
5212
#endif /* CONFIG_IGB_DCA */
5213

5214 5215 5216 5217 5218
#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];

5219
	eth_zero_addr(mac_addr);
5220 5221
	igb_set_vf_mac(adapter, vf, mac_addr);

5222
	return 0;
5223 5224
}

5225
static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
5226 5227
{
	struct pci_dev *pdev = adapter->pdev;
5228 5229
	struct pci_dev *vfdev;
	int dev_id;
5230 5231 5232

	switch (adapter->hw.mac.type) {
	case e1000_82576:
5233
		dev_id = IGB_82576_VF_DEV_ID;
5234 5235
		break;
	case e1000_i350:
5236
		dev_id = IGB_I350_VF_DEV_ID;
5237 5238
		break;
	default:
5239
		return false;
5240 5241
	}

5242 5243 5244 5245 5246 5247 5248
	/* loop through all the VFs to see if we own any that are assigned */
	vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
	while (vfdev) {
		/* if we don't own it we don't care */
		if (vfdev->is_virtfn && vfdev->physfn == pdev) {
			/* if it is assigned we cannot release it */
			if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5249 5250
				return true;
		}
5251 5252

		vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5253
	}
5254

5255 5256 5257 5258
	return false;
}

#endif
5259 5260 5261 5262 5263 5264 5265 5266
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
5267
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5268 5269 5270 5271 5272
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

5273 5274 5275 5276 5277 5278
static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

5279
	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5280 5281 5282 5283 5284
	                    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
5285
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/*
		 * if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;

}

5313 5314 5315 5316 5317 5318 5319 5320
static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

5321
	/* salt away the number of multicast addresses assigned
5322 5323 5324 5325 5326
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

5327 5328 5329 5330 5331
	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
5332
	for (i = 0; i < n; i++)
5333
		vf_data->vf_mc_hashes[i] = hash_list[i];
5334 5335

	/* Flush and reset the mta with the new values */
5336
	igb_set_rx_mode(adapter->netdev);
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5348 5349 5350
		u32 vmolr = rd32(E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

5351
		vf_data = &adapter->vf_data[i];
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, reg, vid;
	int i;

	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));

		/* remove the vf from the pool */
		reg &= ~pool_mask;

		/* if pool is empty then remove entry from vfta */
		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
		    (reg & E1000_VLVF_VLANID_ENABLE)) {
			reg = 0;
			vid = reg & E1000_VLVF_VLANID_MASK;
			igb_vfta_set(hw, vid, false);
		}

		wr32(E1000_VLVF(i), reg);
	}
5390 5391

	adapter->vf_data[vf].vlans_enabled = 0;
5392 5393 5394 5395 5396 5397 5398
}

static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg, i;

5399 5400 5401 5402 5403
	/* The vlvf table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return -1;

	/* we only need to do this if VMDq is enabled */
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
	if (!adapter->vfs_allocated_count)
		return -1;

	/* Find the vlan filter for this id */
	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
		reg = rd32(E1000_VLVF(i));
		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
		    vid == (reg & E1000_VLVF_VLANID_MASK))
			break;
	}

	if (add) {
		if (i == E1000_VLVF_ARRAY_SIZE) {
			/* Did not find a matching VLAN ID entry that was
			 * enabled.  Search for a free filter entry, i.e.
			 * one without the enable bit set
			 */
			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
				reg = rd32(E1000_VLVF(i));
				if (!(reg & E1000_VLVF_VLANID_ENABLE))
					break;
			}
		}
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* Found an enabled/available entry */
			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);

			/* if !enabled we need to set this up in vfta */
			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5433 5434
				/* add VID to filter table */
				igb_vfta_set(hw, vid, true);
5435 5436
				reg |= E1000_VLVF_VLANID_ENABLE;
			}
A
Alexander Duyck 已提交
5437 5438
			reg &= ~E1000_VLVF_VLANID_MASK;
			reg |= vid;
5439
			wr32(E1000_VLVF(i), reg);
5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size += 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}

5455
			adapter->vf_data[vf].vlans_enabled++;
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
		}
	} else {
		if (i < E1000_VLVF_ARRAY_SIZE) {
			/* remove vf from the pool */
			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
			/* if pool is empty then remove entry from vfta */
			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
				reg = 0;
				igb_vfta_set(hw, vid, false);
			}
			wr32(E1000_VLVF(i), reg);
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481

			/* do not modify RLPML for PF devices */
			if (vf >= adapter->vfs_allocated_count)
				return 0;

			adapter->vf_data[vf].vlans_enabled--;
			if (!adapter->vf_data[vf].vlans_enabled) {
				u32 size;
				reg = rd32(E1000_VMOLR(vf));
				size = reg & E1000_VMOLR_RLPML_MASK;
				size -= 4;
				reg &= ~E1000_VMOLR_RLPML_MASK;
				reg |= size;
				wr32(E1000_VMOLR(vf), reg);
			}
5482 5483
		}
	}
5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532
	return 0;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos)
{
	int err = 0;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;
	if (vlan || qos) {
		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
		if (err)
			goto out;
		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
		igb_set_vmolr(adapter, vf, !vlan);
		adapter->vf_data[vf].pf_vlan = vlan;
		adapter->vf_data[vf].pf_qos = qos;
		dev_info(&adapter->pdev->dev,
			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
				 "The VF VLAN has been set,"
				 " but the PF device is not up.\n");
			dev_warn(&adapter->pdev->dev,
				 "Bring the PF device up before"
				 " attempting to use the VF device.\n");
		}
	} else {
		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
				   false, vf);
		igb_set_vmvir(adapter, vlan, vf);
		igb_set_vmolr(adapter, vf, true);
		adapter->vf_data[vf].pf_vlan = 0;
		adapter->vf_data[vf].pf_qos = 0;
       }
out:
       return err;
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
}

static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);

	return igb_vlvf_set(adapter, vid, add, vf);
}

5543
static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5544
{
G
Greg Rose 已提交
5545 5546
	/* clear flags - except flag that indicates PF has set the MAC */
	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5547
	adapter->vf_data[vf].last_nack = jiffies;
5548 5549

	/* reset offloads to defaults */
5550
	igb_set_vmolr(adapter, vf, true);
5551 5552 5553

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
5554 5555 5556 5557 5558 5559
	if (adapter->vf_data[vf].pf_vlan)
		igb_ndo_set_vf_vlan(adapter->netdev, vf,
				    adapter->vf_data[vf].pf_vlan,
				    adapter->vf_data[vf].pf_qos);
	else
		igb_clear_vf_vfta(adapter, vf);
5560 5561 5562 5563 5564

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
5565
	igb_set_rx_mode(adapter->netdev);
5566 5567
}

5568 5569 5570 5571
static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

5572
	/* clear mac address as we were hotplug removed/added */
5573
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5574
		eth_zero_addr(vf_mac);
5575 5576 5577 5578 5579 5580

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5581 5582 5583
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5584
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5585 5586 5587 5588
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
5589
	igb_vf_reset(adapter, vf);
5590 5591

	/* set vf mac address */
5592
	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5593 5594 5595 5596 5597 5598 5599

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | (1 << vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | (1 << vf));

G
Greg Rose 已提交
5600
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5601 5602 5603 5604 5605 5606 5607 5608 5609

	/* reply to reset with ack and vf mac address */
	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
	memcpy(addr, vf_mac, 6);
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
G
Greg Rose 已提交
5610 5611 5612 5613
	/*
	 * The VF MAC Address is stored in a packed array of bytes
	 * starting at the second 32 bit word of the msg array
	 */
5614 5615
	unsigned char *addr = (char *)&msg[1];
	int err = -1;
5616

5617 5618
	if (is_valid_ether_addr(addr))
		err = igb_set_vf_mac(adapter, vf, addr);
5619

5620
	return err;
5621 5622 5623 5624 5625
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
5626
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5627 5628 5629
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
5630 5631
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5632
		igb_write_mbx(hw, &msg, 1, vf);
5633
		vf_data->last_nack = jiffies;
5634 5635 5636
	}
}

5637
static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5638
{
5639 5640
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
5641
	struct e1000_hw *hw = &adapter->hw;
5642
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5643 5644
	s32 retval;

5645
	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5646

5647 5648
	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
5649
		dev_err(&pdev->dev, "Error receiving message from VF\n");
5650 5651 5652 5653 5654
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		goto out;
	}
5655 5656 5657

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5658
		return;
5659 5660 5661 5662 5663 5664 5665 5666

	/*
	 * until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */

	if (msgbuf[0] == E1000_VF_RESET) {
		igb_vf_reset_msg(adapter, vf);
5667
		return;
5668 5669
	}

5670
	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5671 5672 5673 5674
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			return;
		retval = -1;
		goto out;
5675 5676 5677 5678
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
5679 5680 5681 5682 5683 5684 5685 5686
		retval = -EINVAL;
		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		else
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set MAC address\nReload the VF driver to "
				 "resume operations\n", vf);
5687
		break;
5688 5689 5690
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
5691 5692 5693 5694 5695 5696 5697
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
5698 5699 5700 5701 5702 5703
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively "
				 "set VLAN tag\nReload the VF driver to "
				 "resume operations\n", vf);
5704 5705
		else
			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5706 5707
		break;
	default:
5708
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5709 5710 5711 5712
		retval = -1;
		break;
	}

5713 5714
	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
5715 5716 5717 5718 5719 5720 5721
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	igb_write_mbx(hw, msgbuf, 1, vf);
5722
}
5723

5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
5742 5743
}

5744 5745 5746 5747 5748 5749 5750
/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
L
Lucas De Marchi 已提交
5751 5752
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
 **/
static void igb_set_uta(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* The UTA table only exists on 82576 hardware and newer */
	if (hw->mac.type < e1000_82576)
		return;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = 0; i < hw->mac.uta_reg_count; i++)
		array_wr32(E1000_UTA, i, ~0);
}

5771 5772 5773 5774 5775 5776 5777
/**
 * igb_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
5778 5779
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5780 5781 5782 5783
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

5784
	igb_write_itr(q_vector);
5785

5786 5787 5788
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5789
	if (icr & E1000_ICR_DOUTSYNC) {
5790 5791 5792 5793
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5794 5795 5796 5797 5798 5799
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5811
	napi_schedule(&q_vector->napi);
5812 5813 5814 5815 5816

	return IRQ_HANDLED;
}

/**
5817
 * igb_intr - Legacy Interrupt Handler
5818 5819 5820 5821 5822
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
5823 5824
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
5825 5826 5827 5828 5829 5830 5831 5832 5833 5834
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write */
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

5835 5836
	igb_write_itr(q_vector);

5837 5838 5839
	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

5840
	if (icr & E1000_ICR_DOUTSYNC) {
5841 5842 5843 5844
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

5845 5846 5847 5848 5849 5850 5851
	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
	if (icr & E1000_ICR_TS) {
		u32 tsicr = rd32(E1000_TSICR);

		if (tsicr & E1000_TSICR_TXTS) {
			/* acknowledge the interrupt */
			wr32(E1000_TSICR, E1000_TSICR_TXTS);
			/* retrieve hardware timestamp */
			schedule_work(&adapter->ptp_tx_work);
		}
	}

5863
	napi_schedule(&q_vector->napi);
5864 5865 5866 5867

	return IRQ_HANDLED;
}

5868
static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5869
{
5870
	struct igb_adapter *adapter = q_vector->adapter;
5871
	struct e1000_hw *hw = &adapter->hw;
5872

5873 5874 5875 5876
	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
5877
		else
5878
			igb_update_ring_itr(q_vector);
5879 5880
	}

5881 5882
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->msix_entries)
5883
			wr32(E1000_EIMS, q_vector->eims_value);
5884 5885 5886
		else
			igb_irq_enable(adapter);
	}
5887 5888
}

5889 5890 5891 5892 5893 5894
/**
 * igb_poll - NAPI Rx polling callback
 * @napi: napi polling structure
 * @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
5895
{
5896 5897 5898
	struct igb_q_vector *q_vector = container_of(napi,
	                                             struct igb_q_vector,
	                                             napi);
5899
	bool clean_complete = true;
5900

5901
#ifdef CONFIG_IGB_DCA
5902 5903
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
J
Jeb Cramer 已提交
5904
#endif
5905
	if (q_vector->tx.ring)
5906
		clean_complete = igb_clean_tx_irq(q_vector);
5907

5908
	if (q_vector->rx.ring)
5909
		clean_complete &= igb_clean_rx_irq(q_vector, budget);
5910

5911 5912 5913
	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;
5914

5915
	/* If not enough Rx work done, exit the polling mode */
5916 5917
	napi_complete(napi);
	igb_ring_irq_enable(q_vector);
5918

5919
	return 0;
5920
}
A
Al Viro 已提交
5921

5922 5923
/**
 * igb_clean_tx_irq - Reclaim resources after transmit completes
5924
 * @q_vector: pointer to q_vector containing needed info
5925
 *
5926 5927
 * returns true if ring is completely cleaned
 **/
5928
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5929
{
5930
	struct igb_adapter *adapter = q_vector->adapter;
5931
	struct igb_ring *tx_ring = q_vector->tx.ring;
5932
	struct igb_tx_buffer *tx_buffer;
5933
	union e1000_adv_tx_desc *tx_desc;
5934
	unsigned int total_bytes = 0, total_packets = 0;
5935
	unsigned int budget = q_vector->tx.work_limit;
5936
	unsigned int i = tx_ring->next_to_clean;
5937

5938 5939
	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;
A
Alexander Duyck 已提交
5940

5941
	tx_buffer = &tx_ring->tx_buffer_info[i];
5942
	tx_desc = IGB_TX_DESC(tx_ring, i);
5943
	i -= tx_ring->count;
5944

5945 5946
	do {
		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5947 5948 5949 5950

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;
5951

5952
		/* prevent any other reads prior to eop_desc */
5953
		read_barrier_depends();
5954

5955 5956 5957 5958
		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

5959 5960
		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;
5961

5962 5963 5964
		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;
5965

5966 5967
		/* free the skb */
		dev_kfree_skb_any(tx_buffer->skb);
5968

5969 5970
		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
5971 5972
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
5973 5974
				 DMA_TO_DEVICE);

5975 5976 5977 5978
		/* clear tx_buffer data */
		tx_buffer->skb = NULL;
		dma_unmap_len_set(tx_buffer, len, 0);

5979 5980
		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
5981 5982
			tx_buffer++;
			tx_desc++;
5983
			i++;
5984 5985
			if (unlikely(!i)) {
				i -= tx_ring->count;
5986
				tx_buffer = tx_ring->tx_buffer_info;
5987 5988
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}
5989 5990

			/* unmap any remaining paged data */
5991
			if (dma_unmap_len(tx_buffer, len)) {
5992
				dma_unmap_page(tx_ring->dev,
5993 5994
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
5995
					       DMA_TO_DEVICE);
5996
				dma_unmap_len_set(tx_buffer, len, 0);
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}
6009 6010 6011 6012 6013 6014 6015

		/* issue prefetch for next Tx descriptor */
		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));
A
Alexander Duyck 已提交
6016

6017 6018
	netdev_tx_completed_queue(txring_txq(tx_ring),
				  total_packets, total_bytes);
6019
	i += tx_ring->count;
6020
	tx_ring->next_to_clean = i;
6021 6022 6023 6024
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
6025 6026
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;
6027

6028
	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6029
		struct e1000_hw *hw = &adapter->hw;
E
Eric Dumazet 已提交
6030

6031 6032
		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i */
6033
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6034
		if (tx_buffer->next_to_watch &&
6035
		    time_after(jiffies, tx_buffer->time_stamp +
6036 6037
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6038 6039

			/* detected Tx unit hang */
6040
			dev_err(tx_ring->dev,
6041
				"Detected Tx Unit Hang\n"
A
Alexander Duyck 已提交
6042
				"  Tx Queue             <%d>\n"
6043 6044 6045 6046 6047 6048
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
6049
				"  next_to_watch        <%p>\n"
6050 6051
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
A
Alexander Duyck 已提交
6052
				tx_ring->queue_index,
6053
				rd32(E1000_TDH(tx_ring->reg_idx)),
6054
				readl(tx_ring->tail),
6055 6056
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
6057
				tx_buffer->time_stamp,
6058
				tx_buffer->next_to_watch,
6059
				jiffies,
6060
				tx_buffer->next_to_watch->wb.status);
6061 6062 6063 6064 6065
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
6066 6067
		}
	}
6068

6069
#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6070 6071
	if (unlikely(total_packets &&
		     netif_carrier_ok(tx_ring->netdev) &&
6072
		     igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
6090 6091
}

6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116
/**
 * igb_reuse_rx_page - page flip buffer and store it back on the ring
 * @rx_ring: rx descriptor ring to store buffers on
 * @old_buff: donor buffer to have page reused
 *
 * Synchronizes page for reuse by the adapter
 **/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
			      struct igb_rx_buffer *old_buff)
{
	struct igb_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_buffer_info[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* transfer page from old buffer to new buffer */
	memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));

	/* sync the buffer for use by the device */
	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
					 old_buff->page_offset,
6117
					 IGB_RX_BUFSZ,
6118 6119 6120
					 DMA_FROM_DEVICE);
}

6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
				  struct page *page,
				  unsigned int truesize)
{
	/* avoid re-using remote pages */
	if (unlikely(page_to_nid(page) != numa_node_id()))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely(page_count(page) != 1))
		return false;

	/* flip page offset to other buffer */
	rx_buffer->page_offset ^= IGB_RX_BUFSZ;

	/* since we are the only owner of the page and we need to
	 * increment it, just set the value to 2 in order to avoid
	 * an unnecessary locked operation
	 */
	atomic_set(&page->_count, 2);
#else
	/* move offset up to the next cache line */
	rx_buffer->page_offset += truesize;

	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
		return false;

	/* bump ref count on page before it is given to the stack */
	get_page(page);
#endif

	return true;
}

6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177
/**
 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 * @rx_ring: rx descriptor ring to transact packets on
 * @rx_buffer: buffer containing page to add
 * @rx_desc: descriptor containing length of buffer written by hardware
 * @skb: sk_buff to place the data into
 *
 * This function will add the data contained in rx_buffer->page to the skb.
 * This is done either through a direct copy if the data in the buffer is
 * less than the skb header size, otherwise it will just attach the page as
 * a frag to the skb.
 *
 * The function will then update the page offset if necessary and return
 * true if the buffer can be reused by the adapter.
 **/
static bool igb_add_rx_frag(struct igb_ring *rx_ring,
			    struct igb_rx_buffer *rx_buffer,
			    union e1000_adv_rx_desc *rx_desc,
			    struct sk_buff *skb)
{
	struct page *page = rx_buffer->page;
	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6178 6179 6180 6181 6182
#if (PAGE_SIZE < 8192)
	unsigned int truesize = IGB_RX_BUFSZ;
#else
	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
#endif
6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204

	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
		unsigned char *va = page_address(page) + rx_buffer->page_offset;

		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
			va += IGB_TS_HDR_LEN;
			size -= IGB_TS_HDR_LEN;
		}

		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));

		/* we can reuse buffer as-is, just make sure it is local */
		if (likely(page_to_nid(page) == numa_node_id()))
			return true;

		/* this page cannot be reused so discard it */
		put_page(page);
		return false;
	}

	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6205
			rx_buffer->page_offset, size, truesize);
6206

6207 6208
	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
}
6209

6210 6211 6212 6213 6214 6215 6216 6217
static struct sk_buff *igb_build_rx_buffer(struct igb_ring *rx_ring,
					   union e1000_adv_rx_desc *rx_desc)
{
	struct igb_rx_buffer *rx_buffer;
	struct sk_buff *skb;
	struct page *page;
	void *page_addr;
	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6218
#if (PAGE_SIZE < 8192)
6219 6220 6221 6222 6223 6224 6225
	unsigned int truesize = IGB_RX_BUFSZ;
#else
	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
				SKB_DATA_ALIGN(NET_SKB_PAD +
					       NET_IP_ALIGN +
					       size);
#endif
6226

6227 6228
	/* If we spanned a buffer we have a huge mess so test for it */
	BUG_ON(unlikely(!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)));
6229

6230 6231 6232
	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
	page = rx_buffer->page;
	prefetchw(page);
6233

6234 6235 6236 6237 6238 6239
	page_addr = page_address(page) + rx_buffer->page_offset;

	/* prefetch first cache line of first page */
	prefetch(page_addr + NET_SKB_PAD + NET_IP_ALIGN);
#if L1_CACHE_BYTES < 128
	prefetch(page_addr + L1_CACHE_BYTES + NET_SKB_PAD + NET_IP_ALIGN);
6240
#endif
6241

6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279
	/* build an skb to around the page buffer */
	skb = build_skb(page_addr, truesize);
	if (unlikely(!skb)) {
		rx_ring->rx_stats.alloc_failed++;
		return NULL;
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      IGB_RX_BUFSZ,
				      DMA_FROM_DEVICE);

	/* update pointers within the skb to store the data */
	skb_reserve(skb, NET_IP_ALIGN + NET_SKB_PAD);
	__skb_put(skb, size);

	/* pull timestamp out of packet data */
	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
		__skb_pull(skb, IGB_TS_HDR_LEN);
	}

	if (igb_can_reuse_rx_page(rx_buffer, page, truesize)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of buffer_info */
	rx_buffer->dma = 0;
	rx_buffer->page = NULL;

	return skb;
6280 6281
}

6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
					   union e1000_adv_rx_desc *rx_desc,
					   struct sk_buff *skb)
{
	struct igb_rx_buffer *rx_buffer;
	struct page *page;

	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];

	page = rx_buffer->page;
	prefetchw(page);

	if (likely(!skb)) {
		void *page_addr = page_address(page) +
				  rx_buffer->page_offset;

		/* prefetch first cache line of first page */
		prefetch(page_addr);
#if L1_CACHE_BYTES < 128
		prefetch(page_addr + L1_CACHE_BYTES);
#endif

		/* allocate a skb to store the frags */
		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
						IGB_RX_HDR_LEN);
		if (unlikely(!skb)) {
			rx_ring->rx_stats.alloc_failed++;
			return NULL;
		}

		/*
		 * we will be copying header into skb->data in
		 * pskb_may_pull so it is in our interest to prefetch
		 * it now to avoid a possible cache miss
		 */
		prefetchw(skb->data);
	}

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
6324
				      IGB_RX_BUFSZ,
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
				      DMA_FROM_DEVICE);

	/* pull page into skb */
	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* we are not reusing the buffer so unmap it */
		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
			       PAGE_SIZE, DMA_FROM_DEVICE);
	}

	/* clear contents of rx_buffer */
	rx_buffer->page = NULL;

	return skb;
}

6343
static inline void igb_rx_checksum(struct igb_ring *ring,
6344 6345
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
6346
{
6347
	skb_checksum_none_assert(skb);
6348

6349
	/* Ignore Checksum bit is set */
6350
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6351 6352 6353 6354
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6355
		return;
6356

6357
	/* TCP/UDP checksum error bit is set */
6358 6359 6360
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
6361 6362 6363 6364 6365
		/*
		 * work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
6366 6367
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
E
Eric Dumazet 已提交
6368
			u64_stats_update_begin(&ring->rx_syncp);
6369
			ring->rx_stats.csum_err++;
E
Eric Dumazet 已提交
6370 6371
			u64_stats_update_end(&ring->rx_syncp);
		}
6372 6373 6374 6375
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
6376 6377
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
6378 6379
		skb->ip_summed = CHECKSUM_UNNECESSARY;

6380 6381
	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
6382 6383
}

6384 6385 6386 6387 6388 6389 6390 6391
static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
		skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
}

6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419
/**
 * igb_is_non_eop - process handling of non-EOP buffers
 * @rx_ring: Rx ring being processed
 * @rx_desc: Rx descriptor for current buffer
 * @skb: current socket buffer containing buffer in progress
 *
 * This function updates next to clean.  If the buffer is an EOP buffer
 * this function exits returning false, otherwise it will place the
 * sk_buff in the next buffer to be chained and return true indicating
 * that this is in fact a non-EOP buffer.
 **/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
			   union e1000_adv_rx_desc *rx_desc)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(IGB_RX_DESC(rx_ring, ntc));

	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
		return false;

	return true;
}

6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478
/**
 * igb_get_headlen - determine size of header for LRO/GRO
 * @data: pointer to the start of the headers
 * @max_len: total length of section to find headers in
 *
 * This function is meant to determine the length of headers that will
 * be recognized by hardware for LRO, and GRO offloads.  The main
 * motivation of doing this is to only perform one pull for IPv4 TCP
 * packets so that we can do basic things like calculating the gso_size
 * based on the average data per packet.
 **/
static unsigned int igb_get_headlen(unsigned char *data,
				    unsigned int max_len)
{
	union {
		unsigned char *network;
		/* l2 headers */
		struct ethhdr *eth;
		struct vlan_hdr *vlan;
		/* l3 headers */
		struct iphdr *ipv4;
		struct ipv6hdr *ipv6;
	} hdr;
	__be16 protocol;
	u8 nexthdr = 0;	/* default to not TCP */
	u8 hlen;

	/* this should never happen, but better safe than sorry */
	if (max_len < ETH_HLEN)
		return max_len;

	/* initialize network frame pointer */
	hdr.network = data;

	/* set first protocol and move network header forward */
	protocol = hdr.eth->h_proto;
	hdr.network += ETH_HLEN;

	/* handle any vlan tag if present */
	if (protocol == __constant_htons(ETH_P_8021Q)) {
		if ((hdr.network - data) > (max_len - VLAN_HLEN))
			return max_len;

		protocol = hdr.vlan->h_vlan_encapsulated_proto;
		hdr.network += VLAN_HLEN;
	}

	/* handle L3 protocols */
	if (protocol == __constant_htons(ETH_P_IP)) {
		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
			return max_len;

		/* access ihl as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[0] & 0x0F) << 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct iphdr))
			return hdr.network - data;

6479 6480 6481
		/* record next protocol if header is present */
		if (!hdr.ipv4->frag_off)
			nexthdr = hdr.ipv4->protocol;
6482 6483 6484 6485 6486 6487
	} else if (protocol == __constant_htons(ETH_P_IPV6)) {
		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
			return max_len;

		/* record next protocol */
		nexthdr = hdr.ipv6->nexthdr;
6488
		hlen = sizeof(struct ipv6hdr);
6489 6490 6491 6492
	} else {
		return hdr.network - data;
	}

6493 6494 6495
	/* relocate pointer to start of L4 header */
	hdr.network += hlen;

6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530
	/* finally sort out TCP */
	if (nexthdr == IPPROTO_TCP) {
		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
			return max_len;

		/* access doff as a u8 to avoid unaligned access on ia64 */
		hlen = (hdr.network[12] & 0xF0) >> 2;

		/* verify hlen meets minimum size requirements */
		if (hlen < sizeof(struct tcphdr))
			return hdr.network - data;

		hdr.network += hlen;
	} else if (nexthdr == IPPROTO_UDP) {
		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
			return max_len;

		hdr.network += sizeof(struct udphdr);
	}

	/*
	 * If everything has gone correctly hdr.network should be the
	 * data section of the packet and will be the end of the header.
	 * If not then it probably represents the end of the last recognized
	 * header.
	 */
	if ((hdr.network - data) < max_len)
		return hdr.network - data;
	else
		return max_len;
}

/**
 * igb_pull_tail - igb specific version of skb_pull_tail
 * @rx_ring: rx descriptor ring packet is being transacted on
6531
 * @rx_desc: pointer to the EOP Rx descriptor
6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
 * @skb: pointer to current skb being adjusted
 *
 * This function is an igb specific version of __pskb_pull_tail.  The
 * main difference between this version and the original function is that
 * this function can make several assumptions about the state of things
 * that allow for significant optimizations versus the standard function.
 * As a result we can do things like drop a frag and maintain an accurate
 * truesize for the skb.
 */
static void igb_pull_tail(struct igb_ring *rx_ring,
			  union e1000_adv_rx_desc *rx_desc,
			  struct sk_buff *skb)
6544
{
6545 6546 6547 6548 6549 6550 6551 6552
	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
	unsigned char *va;
	unsigned int pull_len;

	/*
	 * it is valid to use page_address instead of kmap since we are
	 * working with pages allocated out of the lomem pool per
	 * alloc_page(GFP_ATOMIC)
6553
	 */
6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
	va = skb_frag_address(frag);

	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
		/* retrieve timestamp from buffer */
		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);

		/* update pointers to remove timestamp header */
		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
		frag->page_offset += IGB_TS_HDR_LEN;
		skb->data_len -= IGB_TS_HDR_LEN;
		skb->len -= IGB_TS_HDR_LEN;

		/* move va to start of packet data */
		va += IGB_TS_HDR_LEN;
	}

	/*
	 * we need the header to contain the greater of either ETH_HLEN or
	 * 60 bytes if the skb->len is less than 60 for skb_pad.
	 */
	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);

	/* align pull length to size of long to optimize memcpy performance */
	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));

	/* update all of the pointers */
	skb_frag_size_sub(frag, pull_len);
	frag->page_offset += pull_len;
	skb->data_len -= pull_len;
	skb->tail += pull_len;
}

/**
 * igb_cleanup_headers - Correct corrupted or empty headers
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being fixed
 *
 * Address the case where we are pulling data in on pages only
 * and as such no data is present in the skb header.
 *
 * In addition if skb is not at least 60 bytes we need to pad it so that
 * it is large enough to qualify as a valid Ethernet frame.
 *
 * Returns true if an error was encountered and skb was freed.
 **/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
				union e1000_adv_rx_desc *rx_desc,
				struct sk_buff *skb)
{

	if (unlikely((igb_test_staterr(rx_desc,
				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
		struct net_device *netdev = rx_ring->netdev;
		if (!(netdev->features & NETIF_F_RXALL)) {
			dev_kfree_skb_any(skb);
			return true;
		}
	}

	/* place header in linear portion of buffer */
	if (skb_is_nonlinear(skb))
		igb_pull_tail(rx_ring, rx_desc, skb);

	/* if skb_pad returns an error the skb was freed */
	if (unlikely(skb->len < 60)) {
		int pad_len = 60 - skb->len;

		if (skb_pad(skb, pad_len))
			return true;
		__skb_put(skb, pad_len);
	}

	return false;
6628 6629
}

6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668
/**
 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
 * @rx_ring: rx descriptor ring packet is being transacted on
 * @rx_desc: pointer to the EOP Rx descriptor
 * @skb: pointer to current skb being populated
 *
 * This function checks the ring, descriptor, and packet information in
 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 * other fields within the skb.
 **/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
{
	struct net_device *dev = rx_ring->netdev;

	igb_rx_hash(rx_ring, rx_desc, skb);

	igb_rx_checksum(rx_ring, rx_desc, skb);

	igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);

	if ((dev->features & NETIF_F_HW_VLAN_RX) &&
	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;
		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

		__vlan_hwaccel_put_tag(skb, vid);
	}

	skb_record_rx_queue(skb, rx_ring->queue_index);

	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}

6669
static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6670
{
6671
	struct igb_ring *rx_ring = q_vector->rx.ring;
6672
	struct sk_buff *skb = rx_ring->skb;
6673
	unsigned int total_bytes = 0, total_packets = 0;
6674
	u16 cleaned_count = igb_desc_unused(rx_ring);
6675

6676 6677
	do {
		union e1000_adv_rx_desc *rx_desc;
6678

6679 6680 6681 6682 6683
		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
			cleaned_count = 0;
		}
6684

6685
		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6686

6687 6688
		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
			break;
6689

6690 6691 6692 6693 6694 6695
		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * RXD_STAT_DD bit is set
		 */
		rmb();

6696
		/* retrieve a buffer from the ring */
6697 6698 6699 6700
		if (ring_uses_build_skb(rx_ring))
			skb = igb_build_rx_buffer(rx_ring, rx_desc);
		else
			skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6701

6702 6703 6704
		/* exit if we failed to retrieve a buffer */
		if (!skb)
			break;
6705

6706
		cleaned_count++;
6707

6708 6709 6710
		/* fetch next buffer in frame if non-eop */
		if (igb_is_non_eop(rx_ring, rx_desc))
			continue;
6711 6712 6713 6714 6715

		/* verify the packet layout is correct */
		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
			skb = NULL;
			continue;
6716 6717
		}

6718
		/* probably a little skewed due to removing CRC */
6719 6720
		total_bytes += skb->len;

6721 6722
		/* populate checksum, timestamp, VLAN, and protocol */
		igb_process_skb_fields(rx_ring, rx_desc, skb);
6723

J
Jiri Pirko 已提交
6724
		napi_gro_receive(&q_vector->napi, skb);
6725

6726 6727 6728
		/* reset skb pointer */
		skb = NULL;

6729 6730 6731
		/* update budget accounting */
		total_packets++;
	} while (likely(total_packets < budget));
6732

6733 6734 6735
	/* place incomplete frames back on ring for completion */
	rx_ring->skb = skb;

E
Eric Dumazet 已提交
6736
	u64_stats_update_begin(&rx_ring->rx_syncp);
6737 6738
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
E
Eric Dumazet 已提交
6739
	u64_stats_update_end(&rx_ring->rx_syncp);
6740 6741
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;
6742 6743

	if (cleaned_count)
6744
		igb_alloc_rx_buffers(rx_ring, cleaned_count);
6745

6746
	return (total_packets < budget);
6747 6748
}

6749
static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6750
				  struct igb_rx_buffer *bi)
6751 6752
{
	struct page *page = bi->page;
6753
	dma_addr_t dma;
6754

6755 6756
	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page))
6757 6758
		return true;

6759 6760 6761 6762 6763
	/* alloc new page for storage */
	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
6764 6765
	}

6766 6767
	/* map page for use */
	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6768

6769 6770 6771 6772
	/*
	 * if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
	 */
6773
	if (dma_mapping_error(rx_ring->dev, dma)) {
6774 6775
		__free_page(page);

6776 6777 6778 6779
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

6780
	bi->dma = dma;
6781 6782
	bi->page = page;
	bi->page_offset = 0;
6783

6784 6785 6786
	return true;
}

6787 6788 6789 6790 6791 6792 6793 6794
static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
{
	if (ring_uses_build_skb(rx_ring))
		return NET_SKB_PAD + NET_IP_ALIGN;
	else
		return 0;
}

6795
/**
6796
 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6797 6798
 * @adapter: address of board private structure
 **/
6799
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6800 6801
{
	union e1000_adv_rx_desc *rx_desc;
6802
	struct igb_rx_buffer *bi;
6803
	u16 i = rx_ring->next_to_use;
6804

6805 6806 6807 6808
	/* nothing to do */
	if (!cleaned_count)
		return;

6809
	rx_desc = IGB_RX_DESC(rx_ring, i);
6810
	bi = &rx_ring->rx_buffer_info[i];
6811
	i -= rx_ring->count;
6812

6813
	do {
6814
		if (!igb_alloc_mapped_page(rx_ring, bi))
6815
			break;
6816

6817 6818 6819 6820
		/*
		 * Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
6821 6822 6823
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma +
						     bi->page_offset +
						     igb_rx_offset(rx_ring));
6824

6825 6826
		rx_desc++;
		bi++;
6827
		i++;
6828
		if (unlikely(!i)) {
6829
			rx_desc = IGB_RX_DESC(rx_ring, 0);
6830
			bi = rx_ring->rx_buffer_info;
6831 6832 6833 6834 6835
			i -= rx_ring->count;
		}

		/* clear the hdr_addr for the next_to_use descriptor */
		rx_desc->read.hdr_addr = 0;
6836 6837 6838

		cleaned_count--;
	} while (cleaned_count);
6839

6840 6841
	i += rx_ring->count;

6842
	if (rx_ring->next_to_use != i) {
6843
		/* record the next descriptor to use */
6844 6845
		rx_ring->next_to_use = i;

6846 6847 6848 6849 6850
		/* update next to alloc since we have filled the ring */
		rx_ring->next_to_alloc = i;

		/*
		 * Force memory writes to complete before letting h/w
6851 6852
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
6853 6854
		 * such as IA-64).
		 */
6855
		wmb();
6856
		writel(i, rx_ring->tail);
6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878
	}
}

/**
 * igb_mii_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
6879 6880
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
		                     &data->val_out))
6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

/**
 * igb_ioctl -
 * @netdev:
 * @ifreq:
 * @cmd:
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
6903
	case SIOCSHWTSTAMP:
6904
		return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6905 6906 6907 6908 6909
	default:
		return -EOPNOTSUPP;
	}
}

6910 6911 6912 6913
s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6914
	if (pcie_capability_read_word(adapter->pdev, reg, value))
6915 6916 6917 6918 6919 6920 6921 6922 6923
		return -E1000_ERR_CONFIG;

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

6924
	if (pcie_capability_write_word(adapter->pdev, reg, *value))
6925 6926 6927 6928 6929
		return -E1000_ERR_CONFIG;

	return 0;
}

6930
static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6931 6932 6933 6934
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
6935
	bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6936

6937
	if (enable) {
6938 6939 6940 6941 6942
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

6943
		/* Disable CFI check */
6944 6945 6946 6947 6948 6949 6950 6951 6952 6953
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

6954
	igb_rlpml_set(adapter);
6955 6956
}

6957
static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6958 6959 6960
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6961
	int pf_id = adapter->vfs_allocated_count;
6962

6963 6964
	/* attempt to add filter to vlvf array */
	igb_vlvf_set(adapter, vid, true, pf_id);
6965

6966 6967
	/* add the filter since PF can receive vlans w/o entry in vlvf */
	igb_vfta_set(hw, vid, true);
J
Jiri Pirko 已提交
6968 6969

	set_bit(vid, adapter->active_vlans);
6970 6971

	return 0;
6972 6973
}

6974
static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6975 6976 6977
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
6978
	int pf_id = adapter->vfs_allocated_count;
6979
	s32 err;
6980

6981 6982
	/* remove vlan from VLVF table array */
	err = igb_vlvf_set(adapter, vid, false, pf_id);
6983

6984 6985
	/* if vid was not present in VLVF just remove it from table */
	if (err)
6986
		igb_vfta_set(hw, vid, false);
J
Jiri Pirko 已提交
6987 6988

	clear_bit(vid, adapter->active_vlans);
6989 6990

	return 0;
6991 6992 6993 6994
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
J
Jiri Pirko 已提交
6995
	u16 vid;
6996

6997 6998
	igb_vlan_mode(adapter->netdev, adapter->netdev->features);

J
Jiri Pirko 已提交
6999 7000
	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
		igb_vlan_rx_add_vid(adapter->netdev, vid);
7001 7002
}

7003
int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7004
{
7005
	struct pci_dev *pdev = adapter->pdev;
7006 7007 7008 7009
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

7010 7011 7012 7013 7014
	/* Make sure dplx is at most 1 bit and lsb of speed is not set
	 * for the switch() below to work */
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

7015 7016
	/* Fiber NIC's only allow 1000 Gbps Full duplex */
	if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
7017 7018 7019
	    spd != SPEED_1000 &&
	    dplx != DUPLEX_FULL)
		goto err_inval;
7020

7021
	switch (spd + dplx) {
7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
7040
		goto err_inval;
7041
	}
7042 7043 7044 7045

	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
	adapter->hw.phy.mdix = AUTO_ALL_MODES;

7046
	return 0;
7047 7048 7049 7050

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
7051 7052
}

Y
Yan, Zheng 已提交
7053 7054
static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
			  bool runtime)
7055 7056 7057 7058
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
A
Alexander Duyck 已提交
7059
	u32 ctrl, rctl, status;
Y
Yan, Zheng 已提交
7060
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7061 7062 7063 7064 7065 7066
#ifdef CONFIG_PM
	int retval = 0;
#endif

	netif_device_detach(netdev);

A
Alexander Duyck 已提交
7067
	if (netif_running(netdev))
Y
Yan, Zheng 已提交
7068
		__igb_close(netdev, true);
A
Alexander Duyck 已提交
7069

7070
	igb_clear_interrupt_scheme(adapter);
7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083

#ifdef CONFIG_PM
	retval = pci_save_state(pdev);
	if (retval)
		return retval;
#endif

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
7084
		igb_set_rx_mode(netdev);
7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
7102
		igb_disable_pcie_master(hw);
7103 7104 7105 7106 7107 7108 7109 7110

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

7111 7112
	*enable_wake = wufc || adapter->en_mng_pt;
	if (!*enable_wake)
7113 7114 7115
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);
7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant. */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

#ifdef CONFIG_PM
7127
#ifdef CONFIG_PM_SLEEP
Y
Yan, Zheng 已提交
7128
static int igb_suspend(struct device *dev)
7129 7130 7131
{
	int retval;
	bool wake;
Y
Yan, Zheng 已提交
7132
	struct pci_dev *pdev = to_pci_dev(dev);
7133

Y
Yan, Zheng 已提交
7134
	retval = __igb_shutdown(pdev, &wake, 0);
7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}

	return 0;
}
7147
#endif /* CONFIG_PM_SLEEP */
7148

Y
Yan, Zheng 已提交
7149
static int igb_resume(struct device *dev)
7150
{
Y
Yan, Zheng 已提交
7151
	struct pci_dev *pdev = to_pci_dev(dev);
7152 7153 7154 7155 7156 7157 7158
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
7159
	pci_save_state(pdev);
T
Taku Izumi 已提交
7160

7161
	err = pci_enable_device_mem(pdev);
7162 7163 7164 7165 7166 7167 7168 7169 7170 7171
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

7172
	if (igb_init_interrupt_scheme(adapter, true)) {
A
Alexander Duyck 已提交
7173 7174
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
7175 7176 7177
	}

	igb_reset(adapter);
7178 7179 7180 7181 7182

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);

7183 7184
	wr32(E1000_WUS, ~0);

Y
Yan, Zheng 已提交
7185
	if (netdev->flags & IFF_UP) {
7186
		rtnl_lock();
Y
Yan, Zheng 已提交
7187
		err = __igb_open(netdev, true);
7188
		rtnl_unlock();
A
Alexander Duyck 已提交
7189 7190 7191
		if (err)
			return err;
	}
7192 7193

	netif_device_attach(netdev);
Y
Yan, Zheng 已提交
7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225
	return 0;
}

#ifdef CONFIG_PM_RUNTIME
static int igb_runtime_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (!igb_has_link(adapter))
		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);

	return -EBUSY;
}

static int igb_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __igb_shutdown(pdev, &wake, 1);
	if (retval)
		return retval;

	if (wake) {
		pci_prepare_to_sleep(pdev);
	} else {
		pci_wake_from_d3(pdev, false);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7226 7227 7228

	return 0;
}
Y
Yan, Zheng 已提交
7229 7230 7231 7232 7233 7234

static int igb_runtime_resume(struct device *dev)
{
	return igb_resume(dev);
}
#endif /* CONFIG_PM_RUNTIME */
7235 7236 7237 7238
#endif

static void igb_shutdown(struct pci_dev *pdev)
{
7239 7240
	bool wake;

Y
Yan, Zheng 已提交
7241
	__igb_shutdown(pdev, &wake, 0);
7242 7243 7244 7245 7246

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
7247 7248
}

7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314
#ifdef CONFIG_PCI_IOV
static int igb_sriov_reinit(struct pci_dev *dev)
{
	struct net_device *netdev = pci_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;

	rtnl_lock();

	if (netif_running(netdev))
		igb_close(netdev);

	igb_clear_interrupt_scheme(adapter);

	igb_init_queue_configuration(adapter);

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		igb_open(netdev);

	rtnl_unlock();

	return 0;
}

static int igb_pci_disable_sriov(struct pci_dev *dev)
{
	int err = igb_disable_sriov(dev);

	if (!err)
		err = igb_sriov_reinit(dev);

	return err;
}

static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
{
	int err = igb_enable_sriov(dev, num_vfs);

	if (err)
		goto out;

	err = igb_sriov_reinit(dev);
	if (!err)
		return num_vfs;

out:
	return err;
}

#endif
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
#ifdef CONFIG_PCI_IOV
	if (num_vfs == 0)
		return igb_pci_disable_sriov(dev);
	else
		return igb_pci_enable_sriov(dev, num_vfs);
#endif
	return 0;
}

7315 7316 7317 7318 7319 7320 7321 7322 7323
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void igb_netpoll(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
7324
	struct e1000_hw *hw = &adapter->hw;
7325
	struct igb_q_vector *q_vector;
7326 7327
	int i;

7328
	for (i = 0; i < adapter->num_q_vectors; i++) {
7329 7330 7331 7332 7333
		q_vector = adapter->q_vector[i];
		if (adapter->msix_entries)
			wr32(E1000_EIMC, q_vector->eims_value);
		else
			igb_irq_disable(adapter);
7334
		napi_schedule(&q_vector->napi);
7335
	}
7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

/**
 * igb_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

7355 7356 7357
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377
	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * igb_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the igb_resume routine.
 */
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
7378
	pci_ers_result_t result;
T
Taku Izumi 已提交
7379
	int err;
7380

7381
	if (pci_enable_device_mem(pdev)) {
7382 7383
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
7384 7385 7386 7387
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
7388
		pci_save_state(pdev);
7389

7390 7391
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
7392

7393 7394 7395 7396
		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
7397

7398 7399 7400 7401 7402 7403
	err = pci_cleanup_aer_uncorrect_error_status(pdev);
	if (err) {
		dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
		        "failed 0x%0x\n", err);
		/* non-fatal, continue */
	}
7404 7405

	return result;
7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434
}

/**
 * igb_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver. */
	igb_get_hw_control(adapter);
}

7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461
static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
                             u8 qsel)
{
	u32 rar_low, rar_high;
	struct e1000_hw *hw = &adapter->hw;

	/* HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
	          ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));

	/* Indicate to hardware the Address is Valid. */
	rar_high |= E1000_RAH_AV;

	if (hw->mac.type == e1000_82575)
		rar_high |= E1000_RAH_POOL_1 * qsel;
	else
		rar_high |= E1000_RAH_POOL_1 << qsel;

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

7462 7463 7464 7465
static int igb_set_vf_mac(struct igb_adapter *adapter,
                          int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
7466 7467 7468
	/* VF MAC addresses start at end of receive addresses and moves
	 * torwards the first, as a result a collision should not be possible */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7469

7470
	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7471

7472
	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7473 7474 7475 7476

	return 0;
}

7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
		return -EINVAL;
	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
	dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
				      " change effective.");
	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
			 " but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
			 " attempting to use the VF device.\n");
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527
static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
		rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
		bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
		               E1000_RTTBCNRC_RF_INT_MASK);
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
L
Lior Levy 已提交
7528 7529 7530 7531 7532
	/*
	 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
	 */
	wr32(E1000_RTTBCNRM, 0x14);
7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
		         "Link speed has been changed. VF Transmit "
		         "rate is disabled\n");
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
		                      adapter->vf_data[i].tx_rate,
		                      actual_link_speed);
	}
}

7565 7566
static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
{
7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (tx_rate < 0) || (tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)tx_rate;
	igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);

	return 0;
7585 7586 7587 7588 7589 7590 7591 7592 7593 7594
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7595
	ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7596 7597 7598 7599 7600
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	return 0;
}

7601 7602 7603
static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
7604
	u32 reg;
7605

7606 7607
	switch (hw->mac.type) {
	case e1000_82575:
7608 7609
	case e1000_i210:
	case e1000_i211:
7610 7611
	default:
		/* replication is not supported for 82575 */
7612
		return;
7613 7614 7615 7616 7617 7618 7619 7620 7621 7622
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
7623 7624
	case e1000_i350:
		/* none of the above registers are supported by i350 */
7625 7626
		break;
	}
7627

7628 7629 7630
	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
G
Greg Rose 已提交
7631 7632
		igb_vmdq_set_anti_spoofing_pf(hw, true,
						adapter->vfs_allocated_count);
7633 7634 7635 7636
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
7637 7638
}

7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652
static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

			/*
7653 7654 7655
			 * DMA Coalescing high water mark needs to be greater
			 * than the Rx threshold. Set hwm to PBA - max frame
			 * size in 16B units, capping it at PBA - 6KB.
7656
			 */
7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672
			hwm = 64 * pba - adapter->max_frame_size / 16;
			if (hwm < 64 * (pba - 6))
				hwm = 64 * (pba - 6);
			reg = rd32(E1000_FCRTC);
			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
				& E1000_FCRTC_RTH_COAL_MASK);
			wr32(E1000_FCRTC, reg);

			/*
			 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
			 * frame size, capping it at PBA - 10KB.
			 */
			dmac_thr = pba - adapter->max_frame_size / 512;
			if (dmac_thr < pba - 10)
				dmac_thr = pba - 10;
7673 7674 7675 7676 7677 7678 7679 7680 7681 7682
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);
7683 7684 7685

			/* Disable BMC-to-OS Watchdog Enable */
			reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719
			wr32(E1000_DMACR, reg);

			/*
			 * no lower threshold to disable
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

			/*
			 * free space in tx packet buffer to wake from
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

			/*
			 * make low power state decision controlled
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);
		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

C
Carolyn Wyborny 已提交
7720 7721 7722 7723 7724 7725 7726
static DEFINE_SPINLOCK(i2c_clients_lock);

/*  igb_get_i2c_client - returns matching client
 *  in adapters's client list.
 *  @adapter: adapter struct
 *  @dev_addr: device address of i2c needed.
 */
7727
static struct i2c_client *
C
Carolyn Wyborny 已提交
7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749
igb_get_i2c_client(struct igb_adapter *adapter, u8 dev_addr)
{
	ulong flags;
	struct igb_i2c_client_list *client_list;
	struct i2c_client *client = NULL;
	struct i2c_board_info client_info = {
		I2C_BOARD_INFO("igb", 0x00),
	};

	spin_lock_irqsave(&i2c_clients_lock, flags);
	client_list = adapter->i2c_clients;

	/* See if we already have an i2c_client */
	while (client_list) {
		if (client_list->client->addr == (dev_addr >> 1)) {
			client = client_list->client;
			goto exit;
		} else {
			client_list = client_list->next;
		}
	}

7750
	/* no client_list found, create a new one */
7751
	client_list = kzalloc(sizeof(*client_list), GFP_ATOMIC);
C
Carolyn Wyborny 已提交
7752 7753 7754 7755 7756 7757 7758 7759 7760 7761
	if (client_list == NULL)
		goto exit;

	/* dev_addr passed to us is left-shifted by 1 bit
	 * i2c_new_device call expects it to be flush to the right.
	 */
	client_info.addr = dev_addr >> 1;
	client_info.platform_data = adapter;
	client_list->client = i2c_new_device(&adapter->i2c_adap, &client_info);
	if (client_list->client == NULL) {
7762 7763
		dev_info(&adapter->pdev->dev,
			"Failed to create new i2c device..\n");
C
Carolyn Wyborny 已提交
7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848
		goto err_no_client;
	}

	/* insert new client at head of list */
	client_list->next = adapter->i2c_clients;
	adapter->i2c_clients = client_list;

	client = client_list->client;
	goto exit;

err_no_client:
	kfree(client_list);
exit:
	spin_unlock_irqrestore(&i2c_clients_lock, flags);
	return client;
}

/*  igb_read_i2c_byte - Reads 8 bit word over I2C
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to read
 *  @dev_addr: device address
 *  @data: value read
 *
 *  Performs byte read operation over I2C interface at
 *  a specified device address.
 */
s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
				u8 dev_addr, u8 *data)
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
	struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr);
	s32 status;
	u16 swfw_mask = 0;

	if (!this_client)
		return E1000_ERR_I2C;

	swfw_mask = E1000_SWFW_PHY0_SM;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
	    != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;

	status = i2c_smbus_read_byte_data(this_client, byte_offset);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status < 0)
		return E1000_ERR_I2C;
	else {
		*data = status;
		return E1000_SUCCESS;
	}
}

/*  igb_write_i2c_byte - Writes 8 bit word over I2C
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to write
 *  @dev_addr: device address
 *  @data: value to write
 *
 *  Performs byte write operation over I2C interface at
 *  a specified device address.
 */
s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
				 u8 dev_addr, u8 data)
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
	struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr);
	s32 status;
	u16 swfw_mask = E1000_SWFW_PHY0_SM;

	if (!this_client)
		return E1000_ERR_I2C;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
		return E1000_ERR_SWFW_SYNC;
	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status)
		return E1000_ERR_I2C;
	else
		return E1000_SUCCESS;

}
7849
/* igb_main.c */