/******************************************************************************* Intel(R) Gigabit Ethernet Linux driver Copyright(c) 2007-2013 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms and conditions of the GNU General Public License, version 2, as published by the Free Software Foundation. This program is distributed in the hope it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. The full GNU General Public License is included in this distribution in the file called "COPYING". Contact Information: e1000-devel Mailing List Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 *******************************************************************************/ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_IGB_DCA #include #endif #include #include "igb.h" #define MAJ 4 #define MIN 1 #define BUILD 2 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \ __stringify(BUILD) "-k" char igb_driver_name[] = "igb"; char igb_driver_version[] = DRV_VERSION; static const char igb_driver_string[] = "Intel(R) Gigabit Ethernet Network Driver"; static const char igb_copyright[] = "Copyright (c) 2007-2013 Intel Corporation."; static const struct e1000_info *igb_info_tbl[] = { [board_82575] = &e1000_82575_info, }; static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = { { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, /* required last entry */ {0, } }; MODULE_DEVICE_TABLE(pci, igb_pci_tbl); void igb_reset(struct igb_adapter *); static int igb_setup_all_tx_resources(struct igb_adapter *); static int igb_setup_all_rx_resources(struct igb_adapter *); static void igb_free_all_tx_resources(struct igb_adapter *); static void igb_free_all_rx_resources(struct igb_adapter *); static void igb_setup_mrqc(struct igb_adapter *); static int igb_probe(struct pci_dev *, const struct pci_device_id *); static void igb_remove(struct pci_dev *pdev); static int igb_sw_init(struct igb_adapter *); static int igb_open(struct net_device *); static int igb_close(struct net_device *); static void igb_configure(struct igb_adapter *); static void igb_configure_tx(struct igb_adapter *); static void igb_configure_rx(struct igb_adapter *); static void igb_clean_all_tx_rings(struct igb_adapter *); static void igb_clean_all_rx_rings(struct igb_adapter *); static void igb_clean_tx_ring(struct igb_ring *); static void igb_clean_rx_ring(struct igb_ring *); static void igb_set_rx_mode(struct net_device *); static void igb_update_phy_info(unsigned long); static void igb_watchdog(unsigned long); static void igb_watchdog_task(struct work_struct *); static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *); static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats); static int igb_change_mtu(struct net_device *, int); static int igb_set_mac(struct net_device *, void *); static void igb_set_uta(struct igb_adapter *adapter); static irqreturn_t igb_intr(int irq, void *); static irqreturn_t igb_intr_msi(int irq, void *); static irqreturn_t igb_msix_other(int irq, void *); static irqreturn_t igb_msix_ring(int irq, void *); #ifdef CONFIG_IGB_DCA static void igb_update_dca(struct igb_q_vector *); static void igb_setup_dca(struct igb_adapter *); #endif /* CONFIG_IGB_DCA */ static int igb_poll(struct napi_struct *, int); static bool igb_clean_tx_irq(struct igb_q_vector *); static bool igb_clean_rx_irq(struct igb_q_vector *, int); static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); static void igb_tx_timeout(struct net_device *); static void igb_reset_task(struct work_struct *); static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features); static int igb_vlan_rx_add_vid(struct net_device *, u16); static int igb_vlan_rx_kill_vid(struct net_device *, u16); static void igb_restore_vlan(struct igb_adapter *); static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8); static void igb_ping_all_vfs(struct igb_adapter *); static void igb_msg_task(struct igb_adapter *); static void igb_vmm_control(struct igb_adapter *); static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); static void igb_restore_vf_multicasts(struct igb_adapter *adapter); static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan, u8 qos); static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate); static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, struct ifla_vf_info *ivi); static void igb_check_vf_rate_limit(struct igb_adapter *); #ifdef CONFIG_PCI_IOV static int igb_vf_configure(struct igb_adapter *adapter, int vf); static bool igb_vfs_are_assigned(struct igb_adapter *adapter); #endif #ifdef CONFIG_PM #ifdef CONFIG_PM_SLEEP static int igb_suspend(struct device *); #endif static int igb_resume(struct device *); #ifdef CONFIG_PM_RUNTIME static int igb_runtime_suspend(struct device *dev); static int igb_runtime_resume(struct device *dev); static int igb_runtime_idle(struct device *dev); #endif static const struct dev_pm_ops igb_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume) SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume, igb_runtime_idle) }; #endif static void igb_shutdown(struct pci_dev *); static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs); #ifdef CONFIG_IGB_DCA static int igb_notify_dca(struct notifier_block *, unsigned long, void *); static struct notifier_block dca_notifier = { .notifier_call = igb_notify_dca, .next = NULL, .priority = 0 }; #endif #ifdef CONFIG_NET_POLL_CONTROLLER /* for netdump / net console */ static void igb_netpoll(struct net_device *); #endif #ifdef CONFIG_PCI_IOV static unsigned int max_vfs = 0; module_param(max_vfs, uint, 0); MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate " "per physical function"); #endif /* CONFIG_PCI_IOV */ static pci_ers_result_t igb_io_error_detected(struct pci_dev *, pci_channel_state_t); static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); static void igb_io_resume(struct pci_dev *); static const struct pci_error_handlers igb_err_handler = { .error_detected = igb_io_error_detected, .slot_reset = igb_io_slot_reset, .resume = igb_io_resume, }; static void igb_init_dmac(struct igb_adapter *adapter, u32 pba); static struct pci_driver igb_driver = { .name = igb_driver_name, .id_table = igb_pci_tbl, .probe = igb_probe, .remove = igb_remove, #ifdef CONFIG_PM .driver.pm = &igb_pm_ops, #endif .shutdown = igb_shutdown, .sriov_configure = igb_pci_sriov_configure, .err_handler = &igb_err_handler }; MODULE_AUTHOR("Intel Corporation, "); MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) static int debug = -1; module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); struct igb_reg_info { u32 ofs; char *name; }; static const struct igb_reg_info igb_reg_info_tbl[] = { /* General Registers */ {E1000_CTRL, "CTRL"}, {E1000_STATUS, "STATUS"}, {E1000_CTRL_EXT, "CTRL_EXT"}, /* Interrupt Registers */ {E1000_ICR, "ICR"}, /* RX Registers */ {E1000_RCTL, "RCTL"}, {E1000_RDLEN(0), "RDLEN"}, {E1000_RDH(0), "RDH"}, {E1000_RDT(0), "RDT"}, {E1000_RXDCTL(0), "RXDCTL"}, {E1000_RDBAL(0), "RDBAL"}, {E1000_RDBAH(0), "RDBAH"}, /* TX Registers */ {E1000_TCTL, "TCTL"}, {E1000_TDBAL(0), "TDBAL"}, {E1000_TDBAH(0), "TDBAH"}, {E1000_TDLEN(0), "TDLEN"}, {E1000_TDH(0), "TDH"}, {E1000_TDT(0), "TDT"}, {E1000_TXDCTL(0), "TXDCTL"}, {E1000_TDFH, "TDFH"}, {E1000_TDFT, "TDFT"}, {E1000_TDFHS, "TDFHS"}, {E1000_TDFPC, "TDFPC"}, /* List Terminator */ {} }; /* * igb_regdump - register printout routine */ static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) { int n = 0; char rname[16]; u32 regs[8]; switch (reginfo->ofs) { case E1000_RDLEN(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_RDLEN(n)); break; case E1000_RDH(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_RDH(n)); break; case E1000_RDT(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_RDT(n)); break; case E1000_RXDCTL(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_RXDCTL(n)); break; case E1000_RDBAL(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_RDBAL(n)); break; case E1000_RDBAH(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_RDBAH(n)); break; case E1000_TDBAL(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_RDBAL(n)); break; case E1000_TDBAH(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_TDBAH(n)); break; case E1000_TDLEN(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_TDLEN(n)); break; case E1000_TDH(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_TDH(n)); break; case E1000_TDT(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_TDT(n)); break; case E1000_TXDCTL(0): for (n = 0; n < 4; n++) regs[n] = rd32(E1000_TXDCTL(n)); break; default: pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs)); return; } snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1], regs[2], regs[3]); } /* * igb_dump - Print registers, tx-rings and rx-rings */ static void igb_dump(struct igb_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct e1000_hw *hw = &adapter->hw; struct igb_reg_info *reginfo; struct igb_ring *tx_ring; union e1000_adv_tx_desc *tx_desc; struct my_u0 { u64 a; u64 b; } *u0; struct igb_ring *rx_ring; union e1000_adv_rx_desc *rx_desc; u32 staterr; u16 i, n; if (!netif_msg_hw(adapter)) return; /* Print netdevice Info */ if (netdev) { dev_info(&adapter->pdev->dev, "Net device Info\n"); pr_info("Device Name state trans_start " "last_rx\n"); pr_info("%-15s %016lX %016lX %016lX\n", netdev->name, netdev->state, netdev->trans_start, netdev->last_rx); } /* Print Registers */ dev_info(&adapter->pdev->dev, "Register Dump\n"); pr_info(" Register Name Value\n"); for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; reginfo->name; reginfo++) { igb_regdump(hw, reginfo); } /* Print TX Ring Summary */ if (!netdev || !netif_running(netdev)) goto exit; dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); for (n = 0; n < adapter->num_tx_queues; n++) { struct igb_tx_buffer *buffer_info; tx_ring = adapter->tx_ring[n]; buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean]; pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n", n, tx_ring->next_to_use, tx_ring->next_to_clean, (u64)dma_unmap_addr(buffer_info, dma), dma_unmap_len(buffer_info, len), buffer_info->next_to_watch, (u64)buffer_info->time_stamp); } /* Print TX Rings */ if (!netif_msg_tx_done(adapter)) goto rx_ring_summary; dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); /* Transmit Descriptor Formats * * Advanced Transmit Descriptor * +--------------------------------------------------------------+ * 0 | Buffer Address [63:0] | * +--------------------------------------------------------------+ * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | * +--------------------------------------------------------------+ * 63 46 45 40 39 38 36 35 32 31 24 15 0 */ for (n = 0; n < adapter->num_tx_queues; n++) { tx_ring = adapter->tx_ring[n]; pr_info("------------------------------------\n"); pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index); pr_info("------------------------------------\n"); pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] " "[bi->dma ] leng ntw timestamp " "bi->skb\n"); for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { const char *next_desc; struct igb_tx_buffer *buffer_info; tx_desc = IGB_TX_DESC(tx_ring, i); buffer_info = &tx_ring->tx_buffer_info[i]; u0 = (struct my_u0 *)tx_desc; if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) next_desc = " NTC/U"; else if (i == tx_ring->next_to_use) next_desc = " NTU"; else if (i == tx_ring->next_to_clean) next_desc = " NTC"; else next_desc = ""; pr_info("T [0x%03X] %016llX %016llX %016llX" " %04X %p %016llX %p%s\n", i, le64_to_cpu(u0->a), le64_to_cpu(u0->b), (u64)dma_unmap_addr(buffer_info, dma), dma_unmap_len(buffer_info, len), buffer_info->next_to_watch, (u64)buffer_info->time_stamp, buffer_info->skb, next_desc); if (netif_msg_pktdata(adapter) && buffer_info->skb) print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 1, buffer_info->skb->data, dma_unmap_len(buffer_info, len), true); } } /* Print RX Rings Summary */ rx_ring_summary: dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); pr_info("Queue [NTU] [NTC]\n"); for (n = 0; n < adapter->num_rx_queues; n++) { rx_ring = adapter->rx_ring[n]; pr_info(" %5d %5X %5X\n", n, rx_ring->next_to_use, rx_ring->next_to_clean); } /* Print RX Rings */ if (!netif_msg_rx_status(adapter)) goto exit; dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); /* Advanced Receive Descriptor (Read) Format * 63 1 0 * +-----------------------------------------------------+ * 0 | Packet Buffer Address [63:1] |A0/NSE| * +----------------------------------------------+------+ * 8 | Header Buffer Address [63:1] | DD | * +-----------------------------------------------------+ * * * Advanced Receive Descriptor (Write-Back) Format * * 63 48 47 32 31 30 21 20 17 16 4 3 0 * +------------------------------------------------------+ * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | * | Checksum Ident | | | | Type | Type | * +------------------------------------------------------+ * 8 | VLAN Tag | Length | Extended Error | Extended Status | * +------------------------------------------------------+ * 63 48 47 32 31 20 19 0 */ for (n = 0; n < adapter->num_rx_queues; n++) { rx_ring = adapter->rx_ring[n]; pr_info("------------------------------------\n"); pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index); pr_info("------------------------------------\n"); pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] " "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n"); pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----" "----------- [bi->skb] <-- Adv Rx Write-Back format\n"); for (i = 0; i < rx_ring->count; i++) { const char *next_desc; struct igb_rx_buffer *buffer_info; buffer_info = &rx_ring->rx_buffer_info[i]; rx_desc = IGB_RX_DESC(rx_ring, i); u0 = (struct my_u0 *)rx_desc; staterr = le32_to_cpu(rx_desc->wb.upper.status_error); if (i == rx_ring->next_to_use) next_desc = " NTU"; else if (i == rx_ring->next_to_clean) next_desc = " NTC"; else next_desc = ""; if (staterr & E1000_RXD_STAT_DD) { /* Descriptor Done */ pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n", "RWB", i, le64_to_cpu(u0->a), le64_to_cpu(u0->b), next_desc); } else { pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n", "R ", i, le64_to_cpu(u0->a), le64_to_cpu(u0->b), (u64)buffer_info->dma, next_desc); if (netif_msg_pktdata(adapter) && buffer_info->dma && buffer_info->page) { print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 1, page_address(buffer_info->page) + buffer_info->page_offset, IGB_RX_BUFSZ, true); } } } } exit: return; } /* igb_get_i2c_data - Reads the I2C SDA data bit * @hw: pointer to hardware structure * @i2cctl: Current value of I2CCTL register * * Returns the I2C data bit value */ static int igb_get_i2c_data(void *data) { struct igb_adapter *adapter = (struct igb_adapter *)data; struct e1000_hw *hw = &adapter->hw; s32 i2cctl = rd32(E1000_I2CPARAMS); return ((i2cctl & E1000_I2C_DATA_IN) != 0); } /* igb_set_i2c_data - Sets the I2C data bit * @data: pointer to hardware structure * @state: I2C data value (0 or 1) to set * * Sets the I2C data bit */ static void igb_set_i2c_data(void *data, int state) { struct igb_adapter *adapter = (struct igb_adapter *)data; struct e1000_hw *hw = &adapter->hw; s32 i2cctl = rd32(E1000_I2CPARAMS); if (state) i2cctl |= E1000_I2C_DATA_OUT; else i2cctl &= ~E1000_I2C_DATA_OUT; i2cctl &= ~E1000_I2C_DATA_OE_N; i2cctl |= E1000_I2C_CLK_OE_N; wr32(E1000_I2CPARAMS, i2cctl); wrfl(); } /* igb_set_i2c_clk - Sets the I2C SCL clock * @data: pointer to hardware structure * @state: state to set clock * * Sets the I2C clock line to state */ static void igb_set_i2c_clk(void *data, int state) { struct igb_adapter *adapter = (struct igb_adapter *)data; struct e1000_hw *hw = &adapter->hw; s32 i2cctl = rd32(E1000_I2CPARAMS); if (state) { i2cctl |= E1000_I2C_CLK_OUT; i2cctl &= ~E1000_I2C_CLK_OE_N; } else { i2cctl &= ~E1000_I2C_CLK_OUT; i2cctl &= ~E1000_I2C_CLK_OE_N; } wr32(E1000_I2CPARAMS, i2cctl); wrfl(); } /* igb_get_i2c_clk - Gets the I2C SCL clock state * @data: pointer to hardware structure * * Gets the I2C clock state */ static int igb_get_i2c_clk(void *data) { struct igb_adapter *adapter = (struct igb_adapter *)data; struct e1000_hw *hw = &adapter->hw; s32 i2cctl = rd32(E1000_I2CPARAMS); return ((i2cctl & E1000_I2C_CLK_IN) != 0); } static const struct i2c_algo_bit_data igb_i2c_algo = { .setsda = igb_set_i2c_data, .setscl = igb_set_i2c_clk, .getsda = igb_get_i2c_data, .getscl = igb_get_i2c_clk, .udelay = 5, .timeout = 20, }; /** * igb_get_hw_dev - return device * used by hardware layer to print debugging information **/ struct net_device *igb_get_hw_dev(struct e1000_hw *hw) { struct igb_adapter *adapter = hw->back; return adapter->netdev; } /** * igb_init_module - Driver Registration Routine * * igb_init_module is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. **/ static int __init igb_init_module(void) { int ret; pr_info("%s - version %s\n", igb_driver_string, igb_driver_version); pr_info("%s\n", igb_copyright); #ifdef CONFIG_IGB_DCA dca_register_notify(&dca_notifier); #endif ret = pci_register_driver(&igb_driver); return ret; } module_init(igb_init_module); /** * igb_exit_module - Driver Exit Cleanup Routine * * igb_exit_module is called just before the driver is removed * from memory. **/ static void __exit igb_exit_module(void) { #ifdef CONFIG_IGB_DCA dca_unregister_notify(&dca_notifier); #endif pci_unregister_driver(&igb_driver); } module_exit(igb_exit_module); #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) /** * igb_cache_ring_register - Descriptor ring to register mapping * @adapter: board private structure to initialize * * Once we know the feature-set enabled for the device, we'll cache * the register offset the descriptor ring is assigned to. **/ static void igb_cache_ring_register(struct igb_adapter *adapter) { int i = 0, j = 0; u32 rbase_offset = adapter->vfs_allocated_count; switch (adapter->hw.mac.type) { case e1000_82576: /* The queues are allocated for virtualization such that VF 0 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. * In order to avoid collision we start at the first free queue * and continue consuming queues in the same sequence */ if (adapter->vfs_allocated_count) { for (; i < adapter->rss_queues; i++) adapter->rx_ring[i]->reg_idx = rbase_offset + Q_IDX_82576(i); } case e1000_82575: case e1000_82580: case e1000_i350: case e1000_i210: case e1000_i211: default: for (; i < adapter->num_rx_queues; i++) adapter->rx_ring[i]->reg_idx = rbase_offset + i; for (; j < adapter->num_tx_queues; j++) adapter->tx_ring[j]->reg_idx = rbase_offset + j; break; } } /** * igb_write_ivar - configure ivar for given MSI-X vector * @hw: pointer to the HW structure * @msix_vector: vector number we are allocating to a given ring * @index: row index of IVAR register to write within IVAR table * @offset: column offset of in IVAR, should be multiple of 8 * * This function is intended to handle the writing of the IVAR register * for adapters 82576 and newer. The IVAR table consists of 2 columns, * each containing an cause allocation for an Rx and Tx ring, and a * variable number of rows depending on the number of queues supported. **/ static void igb_write_ivar(struct e1000_hw *hw, int msix_vector, int index, int offset) { u32 ivar = array_rd32(E1000_IVAR0, index); /* clear any bits that are currently set */ ivar &= ~((u32)0xFF << offset); /* write vector and valid bit */ ivar |= (msix_vector | E1000_IVAR_VALID) << offset; array_wr32(E1000_IVAR0, index, ivar); } #define IGB_N0_QUEUE -1 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) { struct igb_adapter *adapter = q_vector->adapter; struct e1000_hw *hw = &adapter->hw; int rx_queue = IGB_N0_QUEUE; int tx_queue = IGB_N0_QUEUE; u32 msixbm = 0; if (q_vector->rx.ring) rx_queue = q_vector->rx.ring->reg_idx; if (q_vector->tx.ring) tx_queue = q_vector->tx.ring->reg_idx; switch (hw->mac.type) { case e1000_82575: /* The 82575 assigns vectors using a bitmask, which matches the bitmask for the EICR/EIMS/EIMC registers. To assign one or more queues to a vector, we write the appropriate bits into the MSIXBM register for that vector. */ if (rx_queue > IGB_N0_QUEUE) msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; if (tx_queue > IGB_N0_QUEUE) msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; if (!adapter->msix_entries && msix_vector == 0) msixbm |= E1000_EIMS_OTHER; array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); q_vector->eims_value = msixbm; break; case e1000_82576: /* * 82576 uses a table that essentially consists of 2 columns * with 8 rows. The ordering is column-major so we use the * lower 3 bits as the row index, and the 4th bit as the * column offset. */ if (rx_queue > IGB_N0_QUEUE) igb_write_ivar(hw, msix_vector, rx_queue & 0x7, (rx_queue & 0x8) << 1); if (tx_queue > IGB_N0_QUEUE) igb_write_ivar(hw, msix_vector, tx_queue & 0x7, ((tx_queue & 0x8) << 1) + 8); q_vector->eims_value = 1 << msix_vector; break; case e1000_82580: case e1000_i350: case e1000_i210: case e1000_i211: /* * On 82580 and newer adapters the scheme is similar to 82576 * however instead of ordering column-major we have things * ordered row-major. So we traverse the table by using * bit 0 as the column offset, and the remaining bits as the * row index. */ if (rx_queue > IGB_N0_QUEUE) igb_write_ivar(hw, msix_vector, rx_queue >> 1, (rx_queue & 0x1) << 4); if (tx_queue > IGB_N0_QUEUE) igb_write_ivar(hw, msix_vector, tx_queue >> 1, ((tx_queue & 0x1) << 4) + 8); q_vector->eims_value = 1 << msix_vector; break; default: BUG(); break; } /* add q_vector eims value to global eims_enable_mask */ adapter->eims_enable_mask |= q_vector->eims_value; /* configure q_vector to set itr on first interrupt */ q_vector->set_itr = 1; } /** * igb_configure_msix - Configure MSI-X hardware * * igb_configure_msix sets up the hardware to properly * generate MSI-X interrupts. **/ static void igb_configure_msix(struct igb_adapter *adapter) { u32 tmp; int i, vector = 0; struct e1000_hw *hw = &adapter->hw; adapter->eims_enable_mask = 0; /* set vector for other causes, i.e. link changes */ switch (hw->mac.type) { case e1000_82575: tmp = rd32(E1000_CTRL_EXT); /* enable MSI-X PBA support*/ tmp |= E1000_CTRL_EXT_PBA_CLR; /* Auto-Mask interrupts upon ICR read. */ tmp |= E1000_CTRL_EXT_EIAME; tmp |= E1000_CTRL_EXT_IRCA; wr32(E1000_CTRL_EXT, tmp); /* enable msix_other interrupt */ array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER); adapter->eims_other = E1000_EIMS_OTHER; break; case e1000_82576: case e1000_82580: case e1000_i350: case e1000_i210: case e1000_i211: /* Turn on MSI-X capability first, or our settings * won't stick. And it will take days to debug. */ wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | E1000_GPIE_PBA | E1000_GPIE_EIAME | E1000_GPIE_NSICR); /* enable msix_other interrupt */ adapter->eims_other = 1 << vector; tmp = (vector++ | E1000_IVAR_VALID) << 8; wr32(E1000_IVAR_MISC, tmp); break; default: /* do nothing, since nothing else supports MSI-X */ break; } /* switch (hw->mac.type) */ adapter->eims_enable_mask |= adapter->eims_other; for (i = 0; i < adapter->num_q_vectors; i++) igb_assign_vector(adapter->q_vector[i], vector++); wrfl(); } /** * igb_request_msix - Initialize MSI-X interrupts * * igb_request_msix allocates MSI-X vectors and requests interrupts from the * kernel. **/ static int igb_request_msix(struct igb_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct e1000_hw *hw = &adapter->hw; int i, err = 0, vector = 0, free_vector = 0; err = request_irq(adapter->msix_entries[vector].vector, igb_msix_other, 0, netdev->name, adapter); if (err) goto err_out; for (i = 0; i < adapter->num_q_vectors; i++) { struct igb_q_vector *q_vector = adapter->q_vector[i]; vector++; q_vector->itr_register = hw->hw_addr + E1000_EITR(vector); if (q_vector->rx.ring && q_vector->tx.ring) sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, q_vector->rx.ring->queue_index); else if (q_vector->tx.ring) sprintf(q_vector->name, "%s-tx-%u", netdev->name, q_vector->tx.ring->queue_index); else if (q_vector->rx.ring) sprintf(q_vector->name, "%s-rx-%u", netdev->name, q_vector->rx.ring->queue_index); else sprintf(q_vector->name, "%s-unused", netdev->name); err = request_irq(adapter->msix_entries[vector].vector, igb_msix_ring, 0, q_vector->name, q_vector); if (err) goto err_free; } igb_configure_msix(adapter); return 0; err_free: /* free already assigned IRQs */ free_irq(adapter->msix_entries[free_vector++].vector, adapter); vector--; for (i = 0; i < vector; i++) { free_irq(adapter->msix_entries[free_vector++].vector, adapter->q_vector[i]); } err_out: return err; } static void igb_reset_interrupt_capability(struct igb_adapter *adapter) { if (adapter->msix_entries) { pci_disable_msix(adapter->pdev); kfree(adapter->msix_entries); adapter->msix_entries = NULL; } else if (adapter->flags & IGB_FLAG_HAS_MSI) { pci_disable_msi(adapter->pdev); } } /** * igb_free_q_vector - Free memory allocated for specific interrupt vector * @adapter: board private structure to initialize * @v_idx: Index of vector to be freed * * This function frees the memory allocated to the q_vector. In addition if * NAPI is enabled it will delete any references to the NAPI struct prior * to freeing the q_vector. **/ static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx) { struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; if (q_vector->tx.ring) adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; if (q_vector->rx.ring) adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL; adapter->q_vector[v_idx] = NULL; netif_napi_del(&q_vector->napi); /* * ixgbe_get_stats64() might access the rings on this vector, * we must wait a grace period before freeing it. */ kfree_rcu(q_vector, rcu); } /** * igb_free_q_vectors - Free memory allocated for interrupt vectors * @adapter: board private structure to initialize * * This function frees the memory allocated to the q_vectors. In addition if * NAPI is enabled it will delete any references to the NAPI struct prior * to freeing the q_vector. **/ static void igb_free_q_vectors(struct igb_adapter *adapter) { int v_idx = adapter->num_q_vectors; adapter->num_tx_queues = 0; adapter->num_rx_queues = 0; adapter->num_q_vectors = 0; while (v_idx--) igb_free_q_vector(adapter, v_idx); } /** * igb_clear_interrupt_scheme - reset the device to a state of no interrupts * * This function resets the device so that it has 0 rx queues, tx queues, and * MSI-X interrupts allocated. */ static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) { igb_free_q_vectors(adapter); igb_reset_interrupt_capability(adapter); } /** * igb_set_interrupt_capability - set MSI or MSI-X if supported * * Attempt to configure interrupts using the best available * capabilities of the hardware and kernel. **/ static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix) { int err; int numvecs, i; if (!msix) goto msi_only; /* Number of supported queues. */ adapter->num_rx_queues = adapter->rss_queues; if (adapter->vfs_allocated_count) adapter->num_tx_queues = 1; else adapter->num_tx_queues = adapter->rss_queues; /* start with one vector for every rx queue */ numvecs = adapter->num_rx_queues; /* if tx handler is separate add 1 for every tx queue */ if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) numvecs += adapter->num_tx_queues; /* store the number of vectors reserved for queues */ adapter->num_q_vectors = numvecs; /* add 1 vector for link status interrupts */ numvecs++; adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), GFP_KERNEL); if (!adapter->msix_entries) goto msi_only; for (i = 0; i < numvecs; i++) adapter->msix_entries[i].entry = i; err = pci_enable_msix(adapter->pdev, adapter->msix_entries, numvecs); if (err == 0) return; igb_reset_interrupt_capability(adapter); /* If we can't do MSI-X, try MSI */ msi_only: #ifdef CONFIG_PCI_IOV /* disable SR-IOV for non MSI-X configurations */ if (adapter->vf_data) { struct e1000_hw *hw = &adapter->hw; /* disable iov and allow time for transactions to clear */ pci_disable_sriov(adapter->pdev); msleep(500); kfree(adapter->vf_data); adapter->vf_data = NULL; wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); wrfl(); msleep(100); dev_info(&adapter->pdev->dev, "IOV Disabled\n"); } #endif adapter->vfs_allocated_count = 0; adapter->rss_queues = 1; adapter->flags |= IGB_FLAG_QUEUE_PAIRS; adapter->num_rx_queues = 1; adapter->num_tx_queues = 1; adapter->num_q_vectors = 1; if (!pci_enable_msi(adapter->pdev)) adapter->flags |= IGB_FLAG_HAS_MSI; } static void igb_add_ring(struct igb_ring *ring, struct igb_ring_container *head) { head->ring = ring; head->count++; } /** * igb_alloc_q_vector - Allocate memory for a single interrupt vector * @adapter: board private structure to initialize * @v_count: q_vectors allocated on adapter, used for ring interleaving * @v_idx: index of vector in adapter struct * @txr_count: total number of Tx rings to allocate * @txr_idx: index of first Tx ring to allocate * @rxr_count: total number of Rx rings to allocate * @rxr_idx: index of first Rx ring to allocate * * We allocate one q_vector. If allocation fails we return -ENOMEM. **/ static int igb_alloc_q_vector(struct igb_adapter *adapter, int v_count, int v_idx, int txr_count, int txr_idx, int rxr_count, int rxr_idx) { struct igb_q_vector *q_vector; struct igb_ring *ring; int ring_count, size; /* igb only supports 1 Tx and/or 1 Rx queue per vector */ if (txr_count > 1 || rxr_count > 1) return -ENOMEM; ring_count = txr_count + rxr_count; size = sizeof(struct igb_q_vector) + (sizeof(struct igb_ring) * ring_count); /* allocate q_vector and rings */ q_vector = kzalloc(size, GFP_KERNEL); if (!q_vector) return -ENOMEM; /* initialize NAPI */ netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64); /* tie q_vector and adapter together */ adapter->q_vector[v_idx] = q_vector; q_vector->adapter = adapter; /* initialize work limits */ q_vector->tx.work_limit = adapter->tx_work_limit; /* initialize ITR configuration */ q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0); q_vector->itr_val = IGB_START_ITR; /* initialize pointer to rings */ ring = q_vector->ring; if (txr_count) { /* assign generic ring traits */ ring->dev = &adapter->pdev->dev; ring->netdev = adapter->netdev; /* configure backlink on ring */ ring->q_vector = q_vector; /* update q_vector Tx values */ igb_add_ring(ring, &q_vector->tx); /* For 82575, context index must be unique per ring. */ if (adapter->hw.mac.type == e1000_82575) set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags); /* apply Tx specific ring traits */ ring->count = adapter->tx_ring_count; ring->queue_index = txr_idx; /* assign ring to adapter */ adapter->tx_ring[txr_idx] = ring; /* push pointer to next ring */ ring++; } if (rxr_count) { /* assign generic ring traits */ ring->dev = &adapter->pdev->dev; ring->netdev = adapter->netdev; /* configure backlink on ring */ ring->q_vector = q_vector; /* update q_vector Rx values */ igb_add_ring(ring, &q_vector->rx); /* set flag indicating ring supports SCTP checksum offload */ if (adapter->hw.mac.type >= e1000_82576) set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags); /* * On i350, i210, and i211, loopback VLAN packets * have the tag byte-swapped. * */ if (adapter->hw.mac.type >= e1000_i350) set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags); /* apply Rx specific ring traits */ ring->count = adapter->rx_ring_count; ring->queue_index = rxr_idx; /* assign ring to adapter */ adapter->rx_ring[rxr_idx] = ring; } return 0; } /** * igb_alloc_q_vectors - Allocate memory for interrupt vectors * @adapter: board private structure to initialize * * We allocate one q_vector per queue interrupt. If allocation fails we * return -ENOMEM. **/ static int igb_alloc_q_vectors(struct igb_adapter *adapter) { int q_vectors = adapter->num_q_vectors; int rxr_remaining = adapter->num_rx_queues; int txr_remaining = adapter->num_tx_queues; int rxr_idx = 0, txr_idx = 0, v_idx = 0; int err; if (q_vectors >= (rxr_remaining + txr_remaining)) { for (; rxr_remaining; v_idx++) { err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 0, 0, 1, rxr_idx); if (err) goto err_out; /* update counts and index */ rxr_remaining--; rxr_idx++; } } for (; v_idx < q_vectors; v_idx++) { int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); err = igb_alloc_q_vector(adapter, q_vectors, v_idx, tqpv, txr_idx, rqpv, rxr_idx); if (err) goto err_out; /* update counts and index */ rxr_remaining -= rqpv; txr_remaining -= tqpv; rxr_idx++; txr_idx++; } return 0; err_out: adapter->num_tx_queues = 0; adapter->num_rx_queues = 0; adapter->num_q_vectors = 0; while (v_idx--) igb_free_q_vector(adapter, v_idx); return -ENOMEM; } /** * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors * * This function initializes the interrupts and allocates all of the queues. **/ static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix) { struct pci_dev *pdev = adapter->pdev; int err; igb_set_interrupt_capability(adapter, msix); err = igb_alloc_q_vectors(adapter); if (err) { dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); goto err_alloc_q_vectors; } igb_cache_ring_register(adapter); return 0; err_alloc_q_vectors: igb_reset_interrupt_capability(adapter); return err; } /** * igb_request_irq - initialize interrupts * * Attempts to configure interrupts using the best available * capabilities of the hardware and kernel. **/ static int igb_request_irq(struct igb_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; int err = 0; if (adapter->msix_entries) { err = igb_request_msix(adapter); if (!err) goto request_done; /* fall back to MSI */ igb_free_all_tx_resources(adapter); igb_free_all_rx_resources(adapter); igb_clear_interrupt_scheme(adapter); err = igb_init_interrupt_scheme(adapter, false); if (err) goto request_done; igb_setup_all_tx_resources(adapter); igb_setup_all_rx_resources(adapter); igb_configure(adapter); } igb_assign_vector(adapter->q_vector[0], 0); if (adapter->flags & IGB_FLAG_HAS_MSI) { err = request_irq(pdev->irq, igb_intr_msi, 0, netdev->name, adapter); if (!err) goto request_done; /* fall back to legacy interrupts */ igb_reset_interrupt_capability(adapter); adapter->flags &= ~IGB_FLAG_HAS_MSI; } err = request_irq(pdev->irq, igb_intr, IRQF_SHARED, netdev->name, adapter); if (err) dev_err(&pdev->dev, "Error %d getting interrupt\n", err); request_done: return err; } static void igb_free_irq(struct igb_adapter *adapter) { if (adapter->msix_entries) { int vector = 0, i; free_irq(adapter->msix_entries[vector++].vector, adapter); for (i = 0; i < adapter->num_q_vectors; i++) free_irq(adapter->msix_entries[vector++].vector, adapter->q_vector[i]); } else { free_irq(adapter->pdev->irq, adapter); } } /** * igb_irq_disable - Mask off interrupt generation on the NIC * @adapter: board private structure **/ static void igb_irq_disable(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; /* * we need to be careful when disabling interrupts. The VFs are also * mapped into these registers and so clearing the bits can cause * issues on the VF drivers so we only need to clear what we set */ if (adapter->msix_entries) { u32 regval = rd32(E1000_EIAM); wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); wr32(E1000_EIMC, adapter->eims_enable_mask); regval = rd32(E1000_EIAC); wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); } wr32(E1000_IAM, 0); wr32(E1000_IMC, ~0); wrfl(); if (adapter->msix_entries) { int i; for (i = 0; i < adapter->num_q_vectors; i++) synchronize_irq(adapter->msix_entries[i].vector); } else { synchronize_irq(adapter->pdev->irq); } } /** * igb_irq_enable - Enable default interrupt generation settings * @adapter: board private structure **/ static void igb_irq_enable(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; if (adapter->msix_entries) { u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA; u32 regval = rd32(E1000_EIAC); wr32(E1000_EIAC, regval | adapter->eims_enable_mask); regval = rd32(E1000_EIAM); wr32(E1000_EIAM, regval | adapter->eims_enable_mask); wr32(E1000_EIMS, adapter->eims_enable_mask); if (adapter->vfs_allocated_count) { wr32(E1000_MBVFIMR, 0xFF); ims |= E1000_IMS_VMMB; } wr32(E1000_IMS, ims); } else { wr32(E1000_IMS, IMS_ENABLE_MASK | E1000_IMS_DRSTA); wr32(E1000_IAM, IMS_ENABLE_MASK | E1000_IMS_DRSTA); } } static void igb_update_mng_vlan(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u16 vid = adapter->hw.mng_cookie.vlan_id; u16 old_vid = adapter->mng_vlan_id; if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { /* add VID to filter table */ igb_vfta_set(hw, vid, true); adapter->mng_vlan_id = vid; } else { adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; } if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && (vid != old_vid) && !test_bit(old_vid, adapter->active_vlans)) { /* remove VID from filter table */ igb_vfta_set(hw, old_vid, false); } } /** * igb_release_hw_control - release control of the h/w to f/w * @adapter: address of board private structure * * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means that the * driver is no longer loaded. * **/ static void igb_release_hw_control(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 ctrl_ext; /* Let firmware take over control of h/w */ ctrl_ext = rd32(E1000_CTRL_EXT); wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); } /** * igb_get_hw_control - get control of the h/w from f/w * @adapter: address of board private structure * * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means that * the driver is loaded. * **/ static void igb_get_hw_control(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 ctrl_ext; /* Let firmware know the driver has taken over */ ctrl_ext = rd32(E1000_CTRL_EXT); wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); } /** * igb_configure - configure the hardware for RX and TX * @adapter: private board structure **/ static void igb_configure(struct igb_adapter *adapter) { struct net_device *netdev = adapter->netdev; int i; igb_get_hw_control(adapter); igb_set_rx_mode(netdev); igb_restore_vlan(adapter); igb_setup_tctl(adapter); igb_setup_mrqc(adapter); igb_setup_rctl(adapter); igb_configure_tx(adapter); igb_configure_rx(adapter); igb_rx_fifo_flush_82575(&adapter->hw); /* call igb_desc_unused which always leaves * at least 1 descriptor unused to make sure * next_to_use != next_to_clean */ for (i = 0; i < adapter->num_rx_queues; i++) { struct igb_ring *ring = adapter->rx_ring[i]; igb_alloc_rx_buffers(ring, igb_desc_unused(ring)); } } /** * igb_power_up_link - Power up the phy/serdes link * @adapter: address of board private structure **/ void igb_power_up_link(struct igb_adapter *adapter) { igb_reset_phy(&adapter->hw); if (adapter->hw.phy.media_type == e1000_media_type_copper) igb_power_up_phy_copper(&adapter->hw); else igb_power_up_serdes_link_82575(&adapter->hw); } /** * igb_power_down_link - Power down the phy/serdes link * @adapter: address of board private structure */ static void igb_power_down_link(struct igb_adapter *adapter) { if (adapter->hw.phy.media_type == e1000_media_type_copper) igb_power_down_phy_copper_82575(&adapter->hw); else igb_shutdown_serdes_link_82575(&adapter->hw); } /** * igb_up - Open the interface and prepare it to handle traffic * @adapter: board private structure **/ int igb_up(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; int i; /* hardware has been reset, we need to reload some things */ igb_configure(adapter); clear_bit(__IGB_DOWN, &adapter->state); for (i = 0; i < adapter->num_q_vectors; i++) napi_enable(&(adapter->q_vector[i]->napi)); if (adapter->msix_entries) igb_configure_msix(adapter); else igb_assign_vector(adapter->q_vector[0], 0); /* Clear any pending interrupts. */ rd32(E1000_ICR); igb_irq_enable(adapter); /* notify VFs that reset has been completed */ if (adapter->vfs_allocated_count) { u32 reg_data = rd32(E1000_CTRL_EXT); reg_data |= E1000_CTRL_EXT_PFRSTD; wr32(E1000_CTRL_EXT, reg_data); } netif_tx_start_all_queues(adapter->netdev); /* start the watchdog. */ hw->mac.get_link_status = 1; schedule_work(&adapter->watchdog_task); return 0; } void igb_down(struct igb_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct e1000_hw *hw = &adapter->hw; u32 tctl, rctl; int i; /* signal that we're down so the interrupt handler does not * reschedule our watchdog timer */ set_bit(__IGB_DOWN, &adapter->state); /* disable receives in the hardware */ rctl = rd32(E1000_RCTL); wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); /* flush and sleep below */ netif_tx_stop_all_queues(netdev); /* disable transmits in the hardware */ tctl = rd32(E1000_TCTL); tctl &= ~E1000_TCTL_EN; wr32(E1000_TCTL, tctl); /* flush both disables and wait for them to finish */ wrfl(); msleep(10); for (i = 0; i < adapter->num_q_vectors; i++) napi_disable(&(adapter->q_vector[i]->napi)); igb_irq_disable(adapter); del_timer_sync(&adapter->watchdog_timer); del_timer_sync(&adapter->phy_info_timer); netif_carrier_off(netdev); /* record the stats before reset*/ spin_lock(&adapter->stats64_lock); igb_update_stats(adapter, &adapter->stats64); spin_unlock(&adapter->stats64_lock); adapter->link_speed = 0; adapter->link_duplex = 0; if (!pci_channel_offline(adapter->pdev)) igb_reset(adapter); igb_clean_all_tx_rings(adapter); igb_clean_all_rx_rings(adapter); #ifdef CONFIG_IGB_DCA /* since we reset the hardware DCA settings were cleared */ igb_setup_dca(adapter); #endif } void igb_reinit_locked(struct igb_adapter *adapter) { WARN_ON(in_interrupt()); while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) msleep(1); igb_down(adapter); igb_up(adapter); clear_bit(__IGB_RESETTING, &adapter->state); } void igb_reset(struct igb_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; struct e1000_hw *hw = &adapter->hw; struct e1000_mac_info *mac = &hw->mac; struct e1000_fc_info *fc = &hw->fc; u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm; /* Repartition Pba for greater than 9k mtu * To take effect CTRL.RST is required. */ switch (mac->type) { case e1000_i350: case e1000_82580: pba = rd32(E1000_RXPBS); pba = igb_rxpbs_adjust_82580(pba); break; case e1000_82576: pba = rd32(E1000_RXPBS); pba &= E1000_RXPBS_SIZE_MASK_82576; break; case e1000_82575: case e1000_i210: case e1000_i211: default: pba = E1000_PBA_34K; break; } if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) && (mac->type < e1000_82576)) { /* adjust PBA for jumbo frames */ wr32(E1000_PBA, pba); /* To maintain wire speed transmits, the Tx FIFO should be * large enough to accommodate two full transmit packets, * rounded up to the next 1KB and expressed in KB. Likewise, * the Rx FIFO should be large enough to accommodate at least * one full receive packet and is similarly rounded up and * expressed in KB. */ pba = rd32(E1000_PBA); /* upper 16 bits has Tx packet buffer allocation size in KB */ tx_space = pba >> 16; /* lower 16 bits has Rx packet buffer allocation size in KB */ pba &= 0xffff; /* the tx fifo also stores 16 bytes of information about the tx * but don't include ethernet FCS because hardware appends it */ min_tx_space = (adapter->max_frame_size + sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN) * 2; min_tx_space = ALIGN(min_tx_space, 1024); min_tx_space >>= 10; /* software strips receive CRC, so leave room for it */ min_rx_space = adapter->max_frame_size; min_rx_space = ALIGN(min_rx_space, 1024); min_rx_space >>= 10; /* If current Tx allocation is less than the min Tx FIFO size, * and the min Tx FIFO size is less than the current Rx FIFO * allocation, take space away from current Rx allocation */ if (tx_space < min_tx_space && ((min_tx_space - tx_space) < pba)) { pba = pba - (min_tx_space - tx_space); /* if short on rx space, rx wins and must trump tx * adjustment */ if (pba < min_rx_space) pba = min_rx_space; } wr32(E1000_PBA, pba); } /* flow control settings */ /* The high water mark must be low enough to fit one full frame * (or the size used for early receive) above it in the Rx FIFO. * Set it to the lower of: * - 90% of the Rx FIFO size, or * - the full Rx FIFO size minus one full frame */ hwm = min(((pba << 10) * 9 / 10), ((pba << 10) - 2 * adapter->max_frame_size)); fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ fc->low_water = fc->high_water - 16; fc->pause_time = 0xFFFF; fc->send_xon = 1; fc->current_mode = fc->requested_mode; /* disable receive for all VFs and wait one second */ if (adapter->vfs_allocated_count) { int i; for (i = 0 ; i < adapter->vfs_allocated_count; i++) adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; /* ping all the active vfs to let them know we are going down */ igb_ping_all_vfs(adapter); /* disable transmits and receives */ wr32(E1000_VFRE, 0); wr32(E1000_VFTE, 0); } /* Allow time for pending master requests to run */ hw->mac.ops.reset_hw(hw); wr32(E1000_WUC, 0); if (hw->mac.ops.init_hw(hw)) dev_err(&pdev->dev, "Hardware Error\n"); /* * Flow control settings reset on hardware reset, so guarantee flow * control is off when forcing speed. */ if (!hw->mac.autoneg) igb_force_mac_fc(hw); igb_init_dmac(adapter, pba); #ifdef CONFIG_IGB_HWMON /* Re-initialize the thermal sensor on i350 devices. */ if (!test_bit(__IGB_DOWN, &adapter->state)) { if (mac->type == e1000_i350 && hw->bus.func == 0) { /* If present, re-initialize the external thermal sensor * interface. */ if (adapter->ets) mac->ops.init_thermal_sensor_thresh(hw); } } #endif if (!netif_running(adapter->netdev)) igb_power_down_link(adapter); igb_update_mng_vlan(adapter); /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); /* Re-enable PTP, where applicable. */ igb_ptp_reset(adapter); igb_get_phy_info(hw); } static netdev_features_t igb_fix_features(struct net_device *netdev, netdev_features_t features) { /* * Since there is no support for separate rx/tx vlan accel * enable/disable make sure tx flag is always in same state as rx. */ if (features & NETIF_F_HW_VLAN_RX) features |= NETIF_F_HW_VLAN_TX; else features &= ~NETIF_F_HW_VLAN_TX; return features; } static int igb_set_features(struct net_device *netdev, netdev_features_t features) { netdev_features_t changed = netdev->features ^ features; struct igb_adapter *adapter = netdev_priv(netdev); if (changed & NETIF_F_HW_VLAN_RX) igb_vlan_mode(netdev, features); if (!(changed & NETIF_F_RXALL)) return 0; netdev->features = features; if (netif_running(netdev)) igb_reinit_locked(adapter); else igb_reset(adapter); return 0; } static const struct net_device_ops igb_netdev_ops = { .ndo_open = igb_open, .ndo_stop = igb_close, .ndo_start_xmit = igb_xmit_frame, .ndo_get_stats64 = igb_get_stats64, .ndo_set_rx_mode = igb_set_rx_mode, .ndo_set_mac_address = igb_set_mac, .ndo_change_mtu = igb_change_mtu, .ndo_do_ioctl = igb_ioctl, .ndo_tx_timeout = igb_tx_timeout, .ndo_validate_addr = eth_validate_addr, .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, .ndo_set_vf_mac = igb_ndo_set_vf_mac, .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw, .ndo_get_vf_config = igb_ndo_get_vf_config, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = igb_netpoll, #endif .ndo_fix_features = igb_fix_features, .ndo_set_features = igb_set_features, }; /** * igb_set_fw_version - Configure version string for ethtool * @adapter: adapter struct * **/ void igb_set_fw_version(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; struct e1000_fw_version fw; igb_get_fw_version(hw, &fw); switch (hw->mac.type) { case e1000_i211: snprintf(adapter->fw_version, sizeof(adapter->fw_version), "%2d.%2d-%d", fw.invm_major, fw.invm_minor, fw.invm_img_type); break; default: /* if option is rom valid, display its version too */ if (fw.or_valid) { snprintf(adapter->fw_version, sizeof(adapter->fw_version), "%d.%d, 0x%08x, %d.%d.%d", fw.eep_major, fw.eep_minor, fw.etrack_id, fw.or_major, fw.or_build, fw.or_patch); /* no option rom */ } else { snprintf(adapter->fw_version, sizeof(adapter->fw_version), "%d.%d, 0x%08x", fw.eep_major, fw.eep_minor, fw.etrack_id); } break; } return; } static const struct i2c_board_info i350_sensor_info = { I2C_BOARD_INFO("i350bb", 0Xf8), }; /* igb_init_i2c - Init I2C interface * @adapter: pointer to adapter structure * */ static s32 igb_init_i2c(struct igb_adapter *adapter) { s32 status = E1000_SUCCESS; /* I2C interface supported on i350 devices */ if (adapter->hw.mac.type != e1000_i350) return E1000_SUCCESS; /* Initialize the i2c bus which is controlled by the registers. * This bus will use the i2c_algo_bit structue that implements * the protocol through toggling of the 4 bits in the register. */ adapter->i2c_adap.owner = THIS_MODULE; adapter->i2c_algo = igb_i2c_algo; adapter->i2c_algo.data = adapter; adapter->i2c_adap.algo_data = &adapter->i2c_algo; adapter->i2c_adap.dev.parent = &adapter->pdev->dev; strlcpy(adapter->i2c_adap.name, "igb BB", sizeof(adapter->i2c_adap.name)); status = i2c_bit_add_bus(&adapter->i2c_adap); return status; } /** * igb_probe - Device Initialization Routine * @pdev: PCI device information struct * @ent: entry in igb_pci_tbl * * Returns 0 on success, negative on failure * * igb_probe initializes an adapter identified by a pci_dev structure. * The OS initialization, configuring of the adapter private structure, * and a hardware reset occur. **/ static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct igb_adapter *adapter; struct e1000_hw *hw; u16 eeprom_data = 0; s32 ret_val; static int global_quad_port_a; /* global quad port a indication */ const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; unsigned long mmio_start, mmio_len; int err, pci_using_dac; u8 part_str[E1000_PBANUM_LENGTH]; /* Catch broken hardware that put the wrong VF device ID in * the PCIe SR-IOV capability. */ if (pdev->is_virtfn) { WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n", pci_name(pdev), pdev->vendor, pdev->device); return -EINVAL; } err = pci_enable_device_mem(pdev); if (err) return err; pci_using_dac = 0; err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); if (!err) { err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); if (!err) pci_using_dac = 1; } else { err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); if (err) { err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "No usable DMA " "configuration, aborting\n"); goto err_dma; } } } err = pci_request_selected_regions(pdev, pci_select_bars(pdev, IORESOURCE_MEM), igb_driver_name); if (err) goto err_pci_reg; pci_enable_pcie_error_reporting(pdev); pci_set_master(pdev); pci_save_state(pdev); err = -ENOMEM; netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES); if (!netdev) goto err_alloc_etherdev; SET_NETDEV_DEV(netdev, &pdev->dev); pci_set_drvdata(pdev, netdev); adapter = netdev_priv(netdev); adapter->netdev = netdev; adapter->pdev = pdev; hw = &adapter->hw; hw->back = adapter; adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); mmio_start = pci_resource_start(pdev, 0); mmio_len = pci_resource_len(pdev, 0); err = -EIO; hw->hw_addr = ioremap(mmio_start, mmio_len); if (!hw->hw_addr) goto err_ioremap; netdev->netdev_ops = &igb_netdev_ops; igb_set_ethtool_ops(netdev); netdev->watchdog_timeo = 5 * HZ; strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); netdev->mem_start = mmio_start; netdev->mem_end = mmio_start + mmio_len; /* PCI config space info */ hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; hw->revision_id = pdev->revision; hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_device_id = pdev->subsystem_device; /* Copy the default MAC, PHY and NVM function pointers */ memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); /* Initialize skew-specific constants */ err = ei->get_invariants(hw); if (err) goto err_sw_init; /* setup the private structure */ err = igb_sw_init(adapter); if (err) goto err_sw_init; igb_get_bus_info_pcie(hw); hw->phy.autoneg_wait_to_complete = false; /* Copper options */ if (hw->phy.media_type == e1000_media_type_copper) { hw->phy.mdix = AUTO_ALL_MODES; hw->phy.disable_polarity_correction = false; hw->phy.ms_type = e1000_ms_hw_default; } if (igb_check_reset_block(hw)) dev_info(&pdev->dev, "PHY reset is blocked due to SOL/IDER session.\n"); /* * features is initialized to 0 in allocation, it might have bits * set by igb_sw_init so we should use an or instead of an * assignment. */ netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_RXHASH | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX; /* copy netdev features into list of user selectable features */ netdev->hw_features |= netdev->features; netdev->hw_features |= NETIF_F_RXALL; /* set this bit last since it cannot be part of hw_features */ netdev->features |= NETIF_F_HW_VLAN_FILTER; netdev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG; netdev->priv_flags |= IFF_SUPP_NOFCS; if (pci_using_dac) { netdev->features |= NETIF_F_HIGHDMA; netdev->vlan_features |= NETIF_F_HIGHDMA; } if (hw->mac.type >= e1000_82576) { netdev->hw_features |= NETIF_F_SCTP_CSUM; netdev->features |= NETIF_F_SCTP_CSUM; } netdev->priv_flags |= IFF_UNICAST_FLT; adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); /* before reading the NVM, reset the controller to put the device in a * known good starting state */ hw->mac.ops.reset_hw(hw); /* * make sure the NVM is good , i211 parts have special NVM that * doesn't contain a checksum */ if (hw->mac.type != e1000_i211) { if (hw->nvm.ops.validate(hw) < 0) { dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); err = -EIO; goto err_eeprom; } } /* copy the MAC address out of the NVM */ if (hw->mac.ops.read_mac_addr(hw)) dev_err(&pdev->dev, "NVM Read Error\n"); memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); if (!is_valid_ether_addr(netdev->dev_addr)) { dev_err(&pdev->dev, "Invalid MAC Address\n"); err = -EIO; goto err_eeprom; } /* get firmware version for ethtool -i */ igb_set_fw_version(adapter); setup_timer(&adapter->watchdog_timer, igb_watchdog, (unsigned long) adapter); setup_timer(&adapter->phy_info_timer, igb_update_phy_info, (unsigned long) adapter); INIT_WORK(&adapter->reset_task, igb_reset_task); INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); /* Initialize link properties that are user-changeable */ adapter->fc_autoneg = true; hw->mac.autoneg = true; hw->phy.autoneg_advertised = 0x2f; hw->fc.requested_mode = e1000_fc_default; hw->fc.current_mode = e1000_fc_default; igb_validate_mdi_setting(hw); /* By default, support wake on port A */ if (hw->bus.func == 0) adapter->flags |= IGB_FLAG_WOL_SUPPORTED; /* Check the NVM for wake support on non-port A ports */ if (hw->mac.type >= e1000_82580) hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, &eeprom_data); else if (hw->bus.func == 1) hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); if (eeprom_data & IGB_EEPROM_APME) adapter->flags |= IGB_FLAG_WOL_SUPPORTED; /* now that we have the eeprom settings, apply the special cases where * the eeprom may be wrong or the board simply won't support wake on * lan on a particular port */ switch (pdev->device) { case E1000_DEV_ID_82575GB_QUAD_COPPER: adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; break; case E1000_DEV_ID_82575EB_FIBER_SERDES: case E1000_DEV_ID_82576_FIBER: case E1000_DEV_ID_82576_SERDES: /* Wake events only supported on port A for dual fiber * regardless of eeprom setting */ if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; break; case E1000_DEV_ID_82576_QUAD_COPPER: case E1000_DEV_ID_82576_QUAD_COPPER_ET2: /* if quad port adapter, disable WoL on all but port A */ if (global_quad_port_a != 0) adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; else adapter->flags |= IGB_FLAG_QUAD_PORT_A; /* Reset for multiple quad port adapters */ if (++global_quad_port_a == 4) global_quad_port_a = 0; break; default: /* If the device can't wake, don't set software support */ if (!device_can_wakeup(&adapter->pdev->dev)) adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; } /* initialize the wol settings based on the eeprom settings */ if (adapter->flags & IGB_FLAG_WOL_SUPPORTED) adapter->wol |= E1000_WUFC_MAG; /* Some vendors want WoL disabled by default, but still supported */ if ((hw->mac.type == e1000_i350) && (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) { adapter->flags |= IGB_FLAG_WOL_SUPPORTED; adapter->wol = 0; } device_set_wakeup_enable(&adapter->pdev->dev, adapter->flags & IGB_FLAG_WOL_SUPPORTED); /* reset the hardware with the new settings */ igb_reset(adapter); /* Init the I2C interface */ err = igb_init_i2c(adapter); if (err) { dev_err(&pdev->dev, "failed to init i2c interface\n"); goto err_eeprom; } /* let the f/w know that the h/w is now under the control of the * driver. */ igb_get_hw_control(adapter); strcpy(netdev->name, "eth%d"); err = register_netdev(netdev); if (err) goto err_register; /* carrier off reporting is important to ethtool even BEFORE open */ netif_carrier_off(netdev); #ifdef CONFIG_IGB_DCA if (dca_add_requester(&pdev->dev) == 0) { adapter->flags |= IGB_FLAG_DCA_ENABLED; dev_info(&pdev->dev, "DCA enabled\n"); igb_setup_dca(adapter); } #endif #ifdef CONFIG_IGB_HWMON /* Initialize the thermal sensor on i350 devices. */ if (hw->mac.type == e1000_i350 && hw->bus.func == 0) { u16 ets_word; /* * Read the NVM to determine if this i350 device supports an * external thermal sensor. */ hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word); if (ets_word != 0x0000 && ets_word != 0xFFFF) adapter->ets = true; else adapter->ets = false; if (igb_sysfs_init(adapter)) dev_err(&pdev->dev, "failed to allocate sysfs resources\n"); } else { adapter->ets = false; } #endif /* do hw tstamp init after resetting */ igb_ptp_init(adapter); dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); /* print bus type/speed/width info */ dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", netdev->name, ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : "unknown"), ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" : (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" : "unknown"), netdev->dev_addr); ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH); if (ret_val) strcpy(part_str, "Unknown"); dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); dev_info(&pdev->dev, "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", adapter->msix_entries ? "MSI-X" : (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", adapter->num_rx_queues, adapter->num_tx_queues); switch (hw->mac.type) { case e1000_i350: case e1000_i210: case e1000_i211: igb_set_eee_i350(hw); break; default: break; } pm_runtime_put_noidle(&pdev->dev); return 0; err_register: igb_release_hw_control(adapter); memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap)); err_eeprom: if (!igb_check_reset_block(hw)) igb_reset_phy(hw); if (hw->flash_address) iounmap(hw->flash_address); err_sw_init: igb_clear_interrupt_scheme(adapter); iounmap(hw->hw_addr); err_ioremap: free_netdev(netdev); err_alloc_etherdev: pci_release_selected_regions(pdev, pci_select_bars(pdev, IORESOURCE_MEM)); err_pci_reg: err_dma: pci_disable_device(pdev); return err; } #ifdef CONFIG_PCI_IOV static int igb_disable_sriov(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; /* reclaim resources allocated to VFs */ if (adapter->vf_data) { /* disable iov and allow time for transactions to clear */ if (igb_vfs_are_assigned(adapter)) { dev_warn(&pdev->dev, "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n"); return -EPERM; } else { pci_disable_sriov(pdev); msleep(500); } kfree(adapter->vf_data); adapter->vf_data = NULL; adapter->vfs_allocated_count = 0; wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); wrfl(); msleep(100); dev_info(&pdev->dev, "IOV Disabled\n"); /* Re-enable DMA Coalescing flag since IOV is turned off */ adapter->flags |= IGB_FLAG_DMAC; } return 0; } static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs) { struct net_device *netdev = pci_get_drvdata(pdev); struct igb_adapter *adapter = netdev_priv(netdev); int old_vfs = pci_num_vf(pdev); int err = 0; int i; if (!num_vfs) goto out; else if (old_vfs && old_vfs == num_vfs) goto out; else if (old_vfs && old_vfs != num_vfs) err = igb_disable_sriov(pdev); if (err) goto out; if (num_vfs > 7) { err = -EPERM; goto out; } adapter->vfs_allocated_count = num_vfs; adapter->vf_data = kcalloc(adapter->vfs_allocated_count, sizeof(struct vf_data_storage), GFP_KERNEL); /* if allocation failed then we do not support SR-IOV */ if (!adapter->vf_data) { adapter->vfs_allocated_count = 0; dev_err(&pdev->dev, "Unable to allocate memory for VF Data Storage\n"); err = -ENOMEM; goto out; } err = pci_enable_sriov(pdev, adapter->vfs_allocated_count); if (err) goto err_out; dev_info(&pdev->dev, "%d VFs allocated\n", adapter->vfs_allocated_count); for (i = 0; i < adapter->vfs_allocated_count; i++) igb_vf_configure(adapter, i); /* DMA Coalescing is not supported in IOV mode. */ adapter->flags &= ~IGB_FLAG_DMAC; goto out; err_out: kfree(adapter->vf_data); adapter->vf_data = NULL; adapter->vfs_allocated_count = 0; out: return err; } #endif /* * igb_remove_i2c - Cleanup I2C interface * @adapter: pointer to adapter structure * */ static void igb_remove_i2c(struct igb_adapter *adapter) { /* free the adapter bus structure */ i2c_del_adapter(&adapter->i2c_adap); } /** * igb_remove - Device Removal Routine * @pdev: PCI device information struct * * igb_remove is called by the PCI subsystem to alert the driver * that it should release a PCI device. The could be caused by a * Hot-Plug event, or because the driver is going to be removed from * memory. **/ static void igb_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; pm_runtime_get_noresume(&pdev->dev); #ifdef CONFIG_IGB_HWMON igb_sysfs_exit(adapter); #endif igb_remove_i2c(adapter); igb_ptp_stop(adapter); /* * The watchdog timer may be rescheduled, so explicitly * disable watchdog from being rescheduled. */ set_bit(__IGB_DOWN, &adapter->state); del_timer_sync(&adapter->watchdog_timer); del_timer_sync(&adapter->phy_info_timer); cancel_work_sync(&adapter->reset_task); cancel_work_sync(&adapter->watchdog_task); #ifdef CONFIG_IGB_DCA if (adapter->flags & IGB_FLAG_DCA_ENABLED) { dev_info(&pdev->dev, "DCA disabled\n"); dca_remove_requester(&pdev->dev); adapter->flags &= ~IGB_FLAG_DCA_ENABLED; wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); } #endif /* Release control of h/w to f/w. If f/w is AMT enabled, this * would have already happened in close and is redundant. */ igb_release_hw_control(adapter); unregister_netdev(netdev); igb_clear_interrupt_scheme(adapter); #ifdef CONFIG_PCI_IOV igb_disable_sriov(pdev); #endif iounmap(hw->hw_addr); if (hw->flash_address) iounmap(hw->flash_address); pci_release_selected_regions(pdev, pci_select_bars(pdev, IORESOURCE_MEM)); kfree(adapter->shadow_vfta); free_netdev(netdev); pci_disable_pcie_error_reporting(pdev); pci_disable_device(pdev); } /** * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space * @adapter: board private structure to initialize * * This function initializes the vf specific data storage and then attempts to * allocate the VFs. The reason for ordering it this way is because it is much * mor expensive time wise to disable SR-IOV than it is to allocate and free * the memory for the VFs. **/ static void igb_probe_vfs(struct igb_adapter *adapter) { #ifdef CONFIG_PCI_IOV struct pci_dev *pdev = adapter->pdev; struct e1000_hw *hw = &adapter->hw; /* Virtualization features not supported on i210 family. */ if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) return; igb_enable_sriov(pdev, max_vfs); pci_sriov_set_totalvfs(pdev, 7); #endif /* CONFIG_PCI_IOV */ } static void igb_init_queue_configuration(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 max_rss_queues; /* Determine the maximum number of RSS queues supported. */ switch (hw->mac.type) { case e1000_i211: max_rss_queues = IGB_MAX_RX_QUEUES_I211; break; case e1000_82575: case e1000_i210: max_rss_queues = IGB_MAX_RX_QUEUES_82575; break; case e1000_i350: /* I350 cannot do RSS and SR-IOV at the same time */ if (!!adapter->vfs_allocated_count) { max_rss_queues = 1; break; } /* fall through */ case e1000_82576: if (!!adapter->vfs_allocated_count) { max_rss_queues = 2; break; } /* fall through */ case e1000_82580: default: max_rss_queues = IGB_MAX_RX_QUEUES; break; } adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); /* Determine if we need to pair queues. */ switch (hw->mac.type) { case e1000_82575: case e1000_i211: /* Device supports enough interrupts without queue pairing. */ break; case e1000_82576: /* * If VFs are going to be allocated with RSS queues then we * should pair the queues in order to conserve interrupts due * to limited supply. */ if ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)) adapter->flags |= IGB_FLAG_QUEUE_PAIRS; /* fall through */ case e1000_82580: case e1000_i350: case e1000_i210: default: /* * If rss_queues > half of max_rss_queues, pair the queues in * order to conserve interrupts due to limited supply. */ if (adapter->rss_queues > (max_rss_queues / 2)) adapter->flags |= IGB_FLAG_QUEUE_PAIRS; break; } } /** * igb_sw_init - Initialize general software structures (struct igb_adapter) * @adapter: board private structure to initialize * * igb_sw_init initializes the Adapter private data structure. * Fields are initialized based on PCI device information and * OS network device settings (MTU size). **/ static int igb_sw_init(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); /* set default ring sizes */ adapter->tx_ring_count = IGB_DEFAULT_TXD; adapter->rx_ring_count = IGB_DEFAULT_RXD; /* set default ITR values */ adapter->rx_itr_setting = IGB_DEFAULT_ITR; adapter->tx_itr_setting = IGB_DEFAULT_ITR; /* set default work limits */ adapter->tx_work_limit = IGB_DEFAULT_TX_WORK; adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; spin_lock_init(&adapter->stats64_lock); #ifdef CONFIG_PCI_IOV switch (hw->mac.type) { case e1000_82576: case e1000_i350: if (max_vfs > 7) { dev_warn(&pdev->dev, "Maximum of 7 VFs per PF, using max\n"); adapter->vfs_allocated_count = 7; } else adapter->vfs_allocated_count = max_vfs; if (adapter->vfs_allocated_count) dev_warn(&pdev->dev, "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n"); break; default: break; } #endif /* CONFIG_PCI_IOV */ igb_init_queue_configuration(adapter); /* Setup and initialize a copy of the hw vlan table array */ adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32), GFP_ATOMIC); /* This call may decrease the number of queues */ if (igb_init_interrupt_scheme(adapter, true)) { dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); return -ENOMEM; } igb_probe_vfs(adapter); /* Explicitly disable IRQ since the NIC can be in any state. */ igb_irq_disable(adapter); if (hw->mac.type >= e1000_i350) adapter->flags &= ~IGB_FLAG_DMAC; set_bit(__IGB_DOWN, &adapter->state); return 0; } /** * igb_open - Called when a network interface is made active * @netdev: network interface device structure * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog timer is started, * and the stack is notified that the interface is ready. **/ static int __igb_open(struct net_device *netdev, bool resuming) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; struct pci_dev *pdev = adapter->pdev; int err; int i; /* disallow open during test */ if (test_bit(__IGB_TESTING, &adapter->state)) { WARN_ON(resuming); return -EBUSY; } if (!resuming) pm_runtime_get_sync(&pdev->dev); netif_carrier_off(netdev); /* allocate transmit descriptors */ err = igb_setup_all_tx_resources(adapter); if (err) goto err_setup_tx; /* allocate receive descriptors */ err = igb_setup_all_rx_resources(adapter); if (err) goto err_setup_rx; igb_power_up_link(adapter); /* before we allocate an interrupt, we must be ready to handle it. * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt * as soon as we call pci_request_irq, so we have to setup our * clean_rx handler before we do so. */ igb_configure(adapter); err = igb_request_irq(adapter); if (err) goto err_req_irq; /* Notify the stack of the actual queue counts. */ err = netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues); if (err) goto err_set_queues; err = netif_set_real_num_rx_queues(adapter->netdev, adapter->num_rx_queues); if (err) goto err_set_queues; /* From here on the code is the same as igb_up() */ clear_bit(__IGB_DOWN, &adapter->state); for (i = 0; i < adapter->num_q_vectors; i++) napi_enable(&(adapter->q_vector[i]->napi)); /* Clear any pending interrupts. */ rd32(E1000_ICR); igb_irq_enable(adapter); /* notify VFs that reset has been completed */ if (adapter->vfs_allocated_count) { u32 reg_data = rd32(E1000_CTRL_EXT); reg_data |= E1000_CTRL_EXT_PFRSTD; wr32(E1000_CTRL_EXT, reg_data); } netif_tx_start_all_queues(netdev); if (!resuming) pm_runtime_put(&pdev->dev); /* start the watchdog. */ hw->mac.get_link_status = 1; schedule_work(&adapter->watchdog_task); return 0; err_set_queues: igb_free_irq(adapter); err_req_irq: igb_release_hw_control(adapter); igb_power_down_link(adapter); igb_free_all_rx_resources(adapter); err_setup_rx: igb_free_all_tx_resources(adapter); err_setup_tx: igb_reset(adapter); if (!resuming) pm_runtime_put(&pdev->dev); return err; } static int igb_open(struct net_device *netdev) { return __igb_open(netdev, false); } /** * igb_close - Disables a network interface * @netdev: network interface device structure * * Returns 0, this is not allowed to fail * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the driver's control, but * needs to be disabled. A global MAC reset is issued to stop the * hardware, and all transmit and receive resources are freed. **/ static int __igb_close(struct net_device *netdev, bool suspending) { struct igb_adapter *adapter = netdev_priv(netdev); struct pci_dev *pdev = adapter->pdev; WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); if (!suspending) pm_runtime_get_sync(&pdev->dev); igb_down(adapter); igb_free_irq(adapter); igb_free_all_tx_resources(adapter); igb_free_all_rx_resources(adapter); if (!suspending) pm_runtime_put_sync(&pdev->dev); return 0; } static int igb_close(struct net_device *netdev) { return __igb_close(netdev, false); } /** * igb_setup_tx_resources - allocate Tx resources (Descriptors) * @tx_ring: tx descriptor ring (for a specific queue) to setup * * Return 0 on success, negative on failure **/ int igb_setup_tx_resources(struct igb_ring *tx_ring) { struct device *dev = tx_ring->dev; int size; size = sizeof(struct igb_tx_buffer) * tx_ring->count; tx_ring->tx_buffer_info = vzalloc(size); if (!tx_ring->tx_buffer_info) goto err; /* round up to nearest 4K */ tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); tx_ring->size = ALIGN(tx_ring->size, 4096); tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, GFP_KERNEL); if (!tx_ring->desc) goto err; tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; return 0; err: vfree(tx_ring->tx_buffer_info); tx_ring->tx_buffer_info = NULL; dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); return -ENOMEM; } /** * igb_setup_all_tx_resources - wrapper to allocate Tx resources * (Descriptors) for all queues * @adapter: board private structure * * Return 0 on success, negative on failure **/ static int igb_setup_all_tx_resources(struct igb_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; int i, err = 0; for (i = 0; i < adapter->num_tx_queues; i++) { err = igb_setup_tx_resources(adapter->tx_ring[i]); if (err) { dev_err(&pdev->dev, "Allocation for Tx Queue %u failed\n", i); for (i--; i >= 0; i--) igb_free_tx_resources(adapter->tx_ring[i]); break; } } return err; } /** * igb_setup_tctl - configure the transmit control registers * @adapter: Board private structure **/ void igb_setup_tctl(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 tctl; /* disable queue 0 which is enabled by default on 82575 and 82576 */ wr32(E1000_TXDCTL(0), 0); /* Program the Transmit Control Register */ tctl = rd32(E1000_TCTL); tctl &= ~E1000_TCTL_CT; tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); igb_config_collision_dist(hw); /* Enable transmits */ tctl |= E1000_TCTL_EN; wr32(E1000_TCTL, tctl); } /** * igb_configure_tx_ring - Configure transmit ring after Reset * @adapter: board private structure * @ring: tx ring to configure * * Configure a transmit ring after a reset. **/ void igb_configure_tx_ring(struct igb_adapter *adapter, struct igb_ring *ring) { struct e1000_hw *hw = &adapter->hw; u32 txdctl = 0; u64 tdba = ring->dma; int reg_idx = ring->reg_idx; /* disable the queue */ wr32(E1000_TXDCTL(reg_idx), 0); wrfl(); mdelay(10); wr32(E1000_TDLEN(reg_idx), ring->count * sizeof(union e1000_adv_tx_desc)); wr32(E1000_TDBAL(reg_idx), tdba & 0x00000000ffffffffULL); wr32(E1000_TDBAH(reg_idx), tdba >> 32); ring->tail = hw->hw_addr + E1000_TDT(reg_idx); wr32(E1000_TDH(reg_idx), 0); writel(0, ring->tail); txdctl |= IGB_TX_PTHRESH; txdctl |= IGB_TX_HTHRESH << 8; txdctl |= IGB_TX_WTHRESH << 16; txdctl |= E1000_TXDCTL_QUEUE_ENABLE; wr32(E1000_TXDCTL(reg_idx), txdctl); } /** * igb_configure_tx - Configure transmit Unit after Reset * @adapter: board private structure * * Configure the Tx unit of the MAC after a reset. **/ static void igb_configure_tx(struct igb_adapter *adapter) { int i; for (i = 0; i < adapter->num_tx_queues; i++) igb_configure_tx_ring(adapter, adapter->tx_ring[i]); } /** * igb_setup_rx_resources - allocate Rx resources (Descriptors) * @rx_ring: rx descriptor ring (for a specific queue) to setup * * Returns 0 on success, negative on failure **/ int igb_setup_rx_resources(struct igb_ring *rx_ring) { struct device *dev = rx_ring->dev; int size; size = sizeof(struct igb_rx_buffer) * rx_ring->count; rx_ring->rx_buffer_info = vzalloc(size); if (!rx_ring->rx_buffer_info) goto err; /* Round up to nearest 4K */ rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc); rx_ring->size = ALIGN(rx_ring->size, 4096); rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, GFP_KERNEL); if (!rx_ring->desc) goto err; rx_ring->next_to_alloc = 0; rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; return 0; err: vfree(rx_ring->rx_buffer_info); rx_ring->rx_buffer_info = NULL; dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); return -ENOMEM; } /** * igb_setup_all_rx_resources - wrapper to allocate Rx resources * (Descriptors) for all queues * @adapter: board private structure * * Return 0 on success, negative on failure **/ static int igb_setup_all_rx_resources(struct igb_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; int i, err = 0; for (i = 0; i < adapter->num_rx_queues; i++) { err = igb_setup_rx_resources(adapter->rx_ring[i]); if (err) { dev_err(&pdev->dev, "Allocation for Rx Queue %u failed\n", i); for (i--; i >= 0; i--) igb_free_rx_resources(adapter->rx_ring[i]); break; } } return err; } /** * igb_setup_mrqc - configure the multiple receive queue control registers * @adapter: Board private structure **/ static void igb_setup_mrqc(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 mrqc, rxcsum; u32 j, num_rx_queues, shift = 0; static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741, 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE, 0xA32DCB77, 0x0CF23080, 0x3BB7426A, 0xFA01ACBE }; /* Fill out hash function seeds */ for (j = 0; j < 10; j++) wr32(E1000_RSSRK(j), rsskey[j]); num_rx_queues = adapter->rss_queues; switch (hw->mac.type) { case e1000_82575: shift = 6; break; case e1000_82576: /* 82576 supports 2 RSS queues for SR-IOV */ if (adapter->vfs_allocated_count) { shift = 3; num_rx_queues = 2; } break; default: break; } /* * Populate the indirection table 4 entries at a time. To do this * we are generating the results for n and n+2 and then interleaving * those with the results with n+1 and n+3. */ for (j = 0; j < 32; j++) { /* first pass generates n and n+2 */ u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues; u32 reta = (base & 0x07800780) >> (7 - shift); /* second pass generates n+1 and n+3 */ base += 0x00010001 * num_rx_queues; reta |= (base & 0x07800780) << (1 + shift); wr32(E1000_RETA(j), reta); } /* * Disable raw packet checksumming so that RSS hash is placed in * descriptor on writeback. No need to enable TCP/UDP/IP checksum * offloads as they are enabled by default */ rxcsum = rd32(E1000_RXCSUM); rxcsum |= E1000_RXCSUM_PCSD; if (adapter->hw.mac.type >= e1000_82576) /* Enable Receive Checksum Offload for SCTP */ rxcsum |= E1000_RXCSUM_CRCOFL; /* Don't need to set TUOFL or IPOFL, they default to 1 */ wr32(E1000_RXCSUM, rxcsum); /* Generate RSS hash based on packet types, TCP/UDP * port numbers and/or IPv4/v6 src and dst addresses */ mrqc = E1000_MRQC_RSS_FIELD_IPV4 | E1000_MRQC_RSS_FIELD_IPV4_TCP | E1000_MRQC_RSS_FIELD_IPV6 | E1000_MRQC_RSS_FIELD_IPV6_TCP | E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; /* If VMDq is enabled then we set the appropriate mode for that, else * we default to RSS so that an RSS hash is calculated per packet even * if we are only using one queue */ if (adapter->vfs_allocated_count) { if (hw->mac.type > e1000_82575) { /* Set the default pool for the PF's first queue */ u32 vtctl = rd32(E1000_VT_CTL); vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | E1000_VT_CTL_DISABLE_DEF_POOL); vtctl |= adapter->vfs_allocated_count << E1000_VT_CTL_DEFAULT_POOL_SHIFT; wr32(E1000_VT_CTL, vtctl); } if (adapter->rss_queues > 1) mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q; else mrqc |= E1000_MRQC_ENABLE_VMDQ; } else { if (hw->mac.type != e1000_i211) mrqc |= E1000_MRQC_ENABLE_RSS_4Q; } igb_vmm_control(adapter); wr32(E1000_MRQC, mrqc); } /** * igb_setup_rctl - configure the receive control registers * @adapter: Board private structure **/ void igb_setup_rctl(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 rctl; rctl = rd32(E1000_RCTL); rctl &= ~(3 << E1000_RCTL_MO_SHIFT); rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); /* * enable stripping of CRC. It's unlikely this will break BMC * redirection as it did with e1000. Newer features require * that the HW strips the CRC. */ rctl |= E1000_RCTL_SECRC; /* disable store bad packets and clear size bits. */ rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); /* enable LPE to prevent packets larger than max_frame_size */ rctl |= E1000_RCTL_LPE; /* disable queue 0 to prevent tail write w/o re-config */ wr32(E1000_RXDCTL(0), 0); /* Attention!!! For SR-IOV PF driver operations you must enable * queue drop for all VF and PF queues to prevent head of line blocking * if an un-trusted VF does not provide descriptors to hardware. */ if (adapter->vfs_allocated_count) { /* set all queue drop enable bits */ wr32(E1000_QDE, ALL_QUEUES); } /* This is useful for sniffing bad packets. */ if (adapter->netdev->features & NETIF_F_RXALL) { /* UPE and MPE will be handled by normal PROMISC logic * in e1000e_set_rx_mode */ rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ E1000_RCTL_BAM | /* RX All Bcast Pkts */ E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ E1000_RCTL_DPF | /* Allow filtered pause */ E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ /* Do not mess with E1000_CTRL_VME, it affects transmit as well, * and that breaks VLANs. */ } wr32(E1000_RCTL, rctl); } static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, int vfn) { struct e1000_hw *hw = &adapter->hw; u32 vmolr; /* if it isn't the PF check to see if VFs are enabled and * increase the size to support vlan tags */ if (vfn < adapter->vfs_allocated_count && adapter->vf_data[vfn].vlans_enabled) size += VLAN_TAG_SIZE; vmolr = rd32(E1000_VMOLR(vfn)); vmolr &= ~E1000_VMOLR_RLPML_MASK; vmolr |= size | E1000_VMOLR_LPE; wr32(E1000_VMOLR(vfn), vmolr); return 0; } /** * igb_rlpml_set - set maximum receive packet size * @adapter: board private structure * * Configure maximum receivable packet size. **/ static void igb_rlpml_set(struct igb_adapter *adapter) { u32 max_frame_size = adapter->max_frame_size; struct e1000_hw *hw = &adapter->hw; u16 pf_id = adapter->vfs_allocated_count; if (pf_id) { igb_set_vf_rlpml(adapter, max_frame_size, pf_id); /* * If we're in VMDQ or SR-IOV mode, then set global RLPML * to our max jumbo frame size, in case we need to enable * jumbo frames on one of the rings later. * This will not pass over-length frames into the default * queue because it's gated by the VMOLR.RLPML. */ max_frame_size = MAX_JUMBO_FRAME_SIZE; } wr32(E1000_RLPML, max_frame_size); } static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn, bool aupe) { struct e1000_hw *hw = &adapter->hw; u32 vmolr; /* * This register exists only on 82576 and newer so if we are older then * we should exit and do nothing */ if (hw->mac.type < e1000_82576) return; vmolr = rd32(E1000_VMOLR(vfn)); vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */ if (aupe) vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ else vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ /* clear all bits that might not be set */ vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ /* * for VMDq only allow the VFs and pool 0 to accept broadcast and * multicast packets */ if (vfn <= adapter->vfs_allocated_count) vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ wr32(E1000_VMOLR(vfn), vmolr); } /** * igb_configure_rx_ring - Configure a receive ring after Reset * @adapter: board private structure * @ring: receive ring to be configured * * Configure the Rx unit of the MAC after a reset. **/ void igb_configure_rx_ring(struct igb_adapter *adapter, struct igb_ring *ring) { struct e1000_hw *hw = &adapter->hw; u64 rdba = ring->dma; int reg_idx = ring->reg_idx; u32 srrctl = 0, rxdctl = 0; /* disable the queue */ wr32(E1000_RXDCTL(reg_idx), 0); /* Set DMA base address registers */ wr32(E1000_RDBAL(reg_idx), rdba & 0x00000000ffffffffULL); wr32(E1000_RDBAH(reg_idx), rdba >> 32); wr32(E1000_RDLEN(reg_idx), ring->count * sizeof(union e1000_adv_rx_desc)); /* initialize head and tail */ ring->tail = hw->hw_addr + E1000_RDT(reg_idx); wr32(E1000_RDH(reg_idx), 0); writel(0, ring->tail); /* set descriptor configuration */ srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT; srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; if (hw->mac.type >= e1000_82580) srrctl |= E1000_SRRCTL_TIMESTAMP; /* Only set Drop Enable if we are supporting multiple queues */ if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1) srrctl |= E1000_SRRCTL_DROP_EN; wr32(E1000_SRRCTL(reg_idx), srrctl); /* set filtering for VMDQ pools */ igb_set_vmolr(adapter, reg_idx & 0x7, true); rxdctl |= IGB_RX_PTHRESH; rxdctl |= IGB_RX_HTHRESH << 8; rxdctl |= IGB_RX_WTHRESH << 16; /* enable receive descriptor fetching */ rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; wr32(E1000_RXDCTL(reg_idx), rxdctl); } static void igb_set_rx_buffer_len(struct igb_adapter *adapter, struct igb_ring *rx_ring) { #define IGB_MAX_BUILD_SKB_SIZE \ (SKB_WITH_OVERHEAD(IGB_RX_BUFSZ) - \ (NET_SKB_PAD + NET_IP_ALIGN + IGB_TS_HDR_LEN)) /* set build_skb flag */ if (adapter->max_frame_size <= IGB_MAX_BUILD_SKB_SIZE) set_ring_build_skb_enabled(rx_ring); else clear_ring_build_skb_enabled(rx_ring); } /** * igb_configure_rx - Configure receive Unit after Reset * @adapter: board private structure * * Configure the Rx unit of the MAC after a reset. **/ static void igb_configure_rx(struct igb_adapter *adapter) { int i; /* set UTA to appropriate mode */ igb_set_uta(adapter); /* set the correct pool for the PF default MAC address in entry 0 */ igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0, adapter->vfs_allocated_count); /* Setup the HW Rx Head and Tail Descriptor Pointers and * the Base and Length of the Rx Descriptor Ring */ for (i = 0; i < adapter->num_rx_queues; i++) { struct igb_ring *rx_ring = adapter->rx_ring[i]; igb_set_rx_buffer_len(adapter, rx_ring); igb_configure_rx_ring(adapter, rx_ring); } } /** * igb_free_tx_resources - Free Tx Resources per Queue * @tx_ring: Tx descriptor ring for a specific queue * * Free all transmit software resources **/ void igb_free_tx_resources(struct igb_ring *tx_ring) { igb_clean_tx_ring(tx_ring); vfree(tx_ring->tx_buffer_info); tx_ring->tx_buffer_info = NULL; /* if not set, then don't free */ if (!tx_ring->desc) return; dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, tx_ring->dma); tx_ring->desc = NULL; } /** * igb_free_all_tx_resources - Free Tx Resources for All Queues * @adapter: board private structure * * Free all transmit software resources **/ static void igb_free_all_tx_resources(struct igb_adapter *adapter) { int i; for (i = 0; i < adapter->num_tx_queues; i++) igb_free_tx_resources(adapter->tx_ring[i]); } void igb_unmap_and_free_tx_resource(struct igb_ring *ring, struct igb_tx_buffer *tx_buffer) { if (tx_buffer->skb) { dev_kfree_skb_any(tx_buffer->skb); if (dma_unmap_len(tx_buffer, len)) dma_unmap_single(ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); } else if (dma_unmap_len(tx_buffer, len)) { dma_unmap_page(ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); } tx_buffer->next_to_watch = NULL; tx_buffer->skb = NULL; dma_unmap_len_set(tx_buffer, len, 0); /* buffer_info must be completely set up in the transmit path */ } /** * igb_clean_tx_ring - Free Tx Buffers * @tx_ring: ring to be cleaned **/ static void igb_clean_tx_ring(struct igb_ring *tx_ring) { struct igb_tx_buffer *buffer_info; unsigned long size; u16 i; if (!tx_ring->tx_buffer_info) return; /* Free all the Tx ring sk_buffs */ for (i = 0; i < tx_ring->count; i++) { buffer_info = &tx_ring->tx_buffer_info[i]; igb_unmap_and_free_tx_resource(tx_ring, buffer_info); } netdev_tx_reset_queue(txring_txq(tx_ring)); size = sizeof(struct igb_tx_buffer) * tx_ring->count; memset(tx_ring->tx_buffer_info, 0, size); /* Zero out the descriptor ring */ memset(tx_ring->desc, 0, tx_ring->size); tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; } /** * igb_clean_all_tx_rings - Free Tx Buffers for all queues * @adapter: board private structure **/ static void igb_clean_all_tx_rings(struct igb_adapter *adapter) { int i; for (i = 0; i < adapter->num_tx_queues; i++) igb_clean_tx_ring(adapter->tx_ring[i]); } /** * igb_free_rx_resources - Free Rx Resources * @rx_ring: ring to clean the resources from * * Free all receive software resources **/ void igb_free_rx_resources(struct igb_ring *rx_ring) { igb_clean_rx_ring(rx_ring); vfree(rx_ring->rx_buffer_info); rx_ring->rx_buffer_info = NULL; /* if not set, then don't free */ if (!rx_ring->desc) return; dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, rx_ring->dma); rx_ring->desc = NULL; } /** * igb_free_all_rx_resources - Free Rx Resources for All Queues * @adapter: board private structure * * Free all receive software resources **/ static void igb_free_all_rx_resources(struct igb_adapter *adapter) { int i; for (i = 0; i < adapter->num_rx_queues; i++) igb_free_rx_resources(adapter->rx_ring[i]); } /** * igb_clean_rx_ring - Free Rx Buffers per Queue * @rx_ring: ring to free buffers from **/ static void igb_clean_rx_ring(struct igb_ring *rx_ring) { unsigned long size; u16 i; if (rx_ring->skb) dev_kfree_skb(rx_ring->skb); rx_ring->skb = NULL; if (!rx_ring->rx_buffer_info) return; /* Free all the Rx ring sk_buffs */ for (i = 0; i < rx_ring->count; i++) { struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; if (!buffer_info->page) continue; dma_unmap_page(rx_ring->dev, buffer_info->dma, PAGE_SIZE, DMA_FROM_DEVICE); __free_page(buffer_info->page); buffer_info->page = NULL; } size = sizeof(struct igb_rx_buffer) * rx_ring->count; memset(rx_ring->rx_buffer_info, 0, size); /* Zero out the descriptor ring */ memset(rx_ring->desc, 0, rx_ring->size); rx_ring->next_to_alloc = 0; rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; } /** * igb_clean_all_rx_rings - Free Rx Buffers for all queues * @adapter: board private structure **/ static void igb_clean_all_rx_rings(struct igb_adapter *adapter) { int i; for (i = 0; i < adapter->num_rx_queues; i++) igb_clean_rx_ring(adapter->rx_ring[i]); } /** * igb_set_mac - Change the Ethernet Address of the NIC * @netdev: network interface device structure * @p: pointer to an address structure * * Returns 0 on success, negative on failure **/ static int igb_set_mac(struct net_device *netdev, void *p) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); /* set the correct pool for the new PF MAC address in entry 0 */ igb_rar_set_qsel(adapter, hw->mac.addr, 0, adapter->vfs_allocated_count); return 0; } /** * igb_write_mc_addr_list - write multicast addresses to MTA * @netdev: network interface device structure * * Writes multicast address list to the MTA hash table. * Returns: -ENOMEM on failure * 0 on no addresses written * X on writing X addresses to MTA **/ static int igb_write_mc_addr_list(struct net_device *netdev) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; struct netdev_hw_addr *ha; u8 *mta_list; int i; if (netdev_mc_empty(netdev)) { /* nothing to program, so clear mc list */ igb_update_mc_addr_list(hw, NULL, 0); igb_restore_vf_multicasts(adapter); return 0; } mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); if (!mta_list) return -ENOMEM; /* The shared function expects a packed array of only addresses. */ i = 0; netdev_for_each_mc_addr(ha, netdev) memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); igb_update_mc_addr_list(hw, mta_list, i); kfree(mta_list); return netdev_mc_count(netdev); } /** * igb_write_uc_addr_list - write unicast addresses to RAR table * @netdev: network interface device structure * * Writes unicast address list to the RAR table. * Returns: -ENOMEM on failure/insufficient address space * 0 on no addresses written * X on writing X addresses to the RAR table **/ static int igb_write_uc_addr_list(struct net_device *netdev) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; unsigned int vfn = adapter->vfs_allocated_count; unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1); int count = 0; /* return ENOMEM indicating insufficient memory for addresses */ if (netdev_uc_count(netdev) > rar_entries) return -ENOMEM; if (!netdev_uc_empty(netdev) && rar_entries) { struct netdev_hw_addr *ha; netdev_for_each_uc_addr(ha, netdev) { if (!rar_entries) break; igb_rar_set_qsel(adapter, ha->addr, rar_entries--, vfn); count++; } } /* write the addresses in reverse order to avoid write combining */ for (; rar_entries > 0 ; rar_entries--) { wr32(E1000_RAH(rar_entries), 0); wr32(E1000_RAL(rar_entries), 0); } wrfl(); return count; } /** * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set * @netdev: network interface device structure * * The set_rx_mode entry point is called whenever the unicast or multicast * address lists or the network interface flags are updated. This routine is * responsible for configuring the hardware for proper unicast, multicast, * promiscuous mode, and all-multi behavior. **/ static void igb_set_rx_mode(struct net_device *netdev) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; unsigned int vfn = adapter->vfs_allocated_count; u32 rctl, vmolr = 0; int count; /* Check for Promiscuous and All Multicast modes */ rctl = rd32(E1000_RCTL); /* clear the effected bits */ rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE); if (netdev->flags & IFF_PROMISC) { rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME); } else { if (netdev->flags & IFF_ALLMULTI) { rctl |= E1000_RCTL_MPE; vmolr |= E1000_VMOLR_MPME; } else { /* * Write addresses to the MTA, if the attempt fails * then we should just turn on promiscuous mode so * that we can at least receive multicast traffic */ count = igb_write_mc_addr_list(netdev); if (count < 0) { rctl |= E1000_RCTL_MPE; vmolr |= E1000_VMOLR_MPME; } else if (count) { vmolr |= E1000_VMOLR_ROMPE; } } /* * Write addresses to available RAR registers, if there is not * sufficient space to store all the addresses then enable * unicast promiscuous mode */ count = igb_write_uc_addr_list(netdev); if (count < 0) { rctl |= E1000_RCTL_UPE; vmolr |= E1000_VMOLR_ROPE; } rctl |= E1000_RCTL_VFE; } wr32(E1000_RCTL, rctl); /* * In order to support SR-IOV and eventually VMDq it is necessary to set * the VMOLR to enable the appropriate modes. Without this workaround * we will have issues with VLAN tag stripping not being done for frames * that are only arriving because we are the default pool */ if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350)) return; vmolr |= rd32(E1000_VMOLR(vfn)) & ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); wr32(E1000_VMOLR(vfn), vmolr); igb_restore_vf_multicasts(adapter); } static void igb_check_wvbr(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 wvbr = 0; switch (hw->mac.type) { case e1000_82576: case e1000_i350: if (!(wvbr = rd32(E1000_WVBR))) return; break; default: break; } adapter->wvbr |= wvbr; } #define IGB_STAGGERED_QUEUE_OFFSET 8 static void igb_spoof_check(struct igb_adapter *adapter) { int j; if (!adapter->wvbr) return; for(j = 0; j < adapter->vfs_allocated_count; j++) { if (adapter->wvbr & (1 << j) || adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) { dev_warn(&adapter->pdev->dev, "Spoof event(s) detected on VF %d\n", j); adapter->wvbr &= ~((1 << j) | (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))); } } } /* Need to wait a few seconds after link up to get diagnostic information from * the phy */ static void igb_update_phy_info(unsigned long data) { struct igb_adapter *adapter = (struct igb_adapter *) data; igb_get_phy_info(&adapter->hw); } /** * igb_has_link - check shared code for link and determine up/down * @adapter: pointer to driver private info **/ bool igb_has_link(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; bool link_active = false; s32 ret_val = 0; /* get_link_status is set on LSC (link status) interrupt or * rx sequence error interrupt. get_link_status will stay * false until the e1000_check_for_link establishes link * for copper adapters ONLY */ switch (hw->phy.media_type) { case e1000_media_type_copper: if (hw->mac.get_link_status) { ret_val = hw->mac.ops.check_for_link(hw); link_active = !hw->mac.get_link_status; } else { link_active = true; } break; case e1000_media_type_internal_serdes: ret_val = hw->mac.ops.check_for_link(hw); link_active = hw->mac.serdes_has_link; break; default: case e1000_media_type_unknown: break; } return link_active; } static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) { bool ret = false; u32 ctrl_ext, thstat; /* check for thermal sensor event on i350 copper only */ if (hw->mac.type == e1000_i350) { thstat = rd32(E1000_THSTAT); ctrl_ext = rd32(E1000_CTRL_EXT); if ((hw->phy.media_type == e1000_media_type_copper) && !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) { ret = !!(thstat & event); } } return ret; } /** * igb_watchdog - Timer Call-back * @data: pointer to adapter cast into an unsigned long **/ static void igb_watchdog(unsigned long data) { struct igb_adapter *adapter = (struct igb_adapter *)data; /* Do the rest outside of interrupt context */ schedule_work(&adapter->watchdog_task); } static void igb_watchdog_task(struct work_struct *work) { struct igb_adapter *adapter = container_of(work, struct igb_adapter, watchdog_task); struct e1000_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; u32 link; int i; link = igb_has_link(adapter); if (link) { /* Cancel scheduled suspend requests. */ pm_runtime_resume(netdev->dev.parent); if (!netif_carrier_ok(netdev)) { u32 ctrl; hw->mac.ops.get_speed_and_duplex(hw, &adapter->link_speed, &adapter->link_duplex); ctrl = rd32(E1000_CTRL); /* Links status message must follow this format */ printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s " "Duplex, Flow Control: %s\n", netdev->name, adapter->link_speed, adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half", (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "RX/TX" : (ctrl & E1000_CTRL_RFCE) ? "RX" : (ctrl & E1000_CTRL_TFCE) ? "TX" : "None"); /* check for thermal sensor event */ if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) { netdev_info(netdev, "The network adapter link " "speed was downshifted because it " "overheated\n"); } /* adjust timeout factor according to speed/duplex */ adapter->tx_timeout_factor = 1; switch (adapter->link_speed) { case SPEED_10: adapter->tx_timeout_factor = 14; break; case SPEED_100: /* maybe add some timeout factor ? */ break; } netif_carrier_on(netdev); igb_ping_all_vfs(adapter); igb_check_vf_rate_limit(adapter); /* link state has changed, schedule phy info update */ if (!test_bit(__IGB_DOWN, &adapter->state)) mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ)); } } else { if (netif_carrier_ok(netdev)) { adapter->link_speed = 0; adapter->link_duplex = 0; /* check for thermal sensor event */ if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) { netdev_err(netdev, "The network adapter was " "stopped because it overheated\n"); } /* Links status message must follow this format */ printk(KERN_INFO "igb: %s NIC Link is Down\n", netdev->name); netif_carrier_off(netdev); igb_ping_all_vfs(adapter); /* link state has changed, schedule phy info update */ if (!test_bit(__IGB_DOWN, &adapter->state)) mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ)); pm_schedule_suspend(netdev->dev.parent, MSEC_PER_SEC * 5); } } spin_lock(&adapter->stats64_lock); igb_update_stats(adapter, &adapter->stats64); spin_unlock(&adapter->stats64_lock); for (i = 0; i < adapter->num_tx_queues; i++) { struct igb_ring *tx_ring = adapter->tx_ring[i]; if (!netif_carrier_ok(netdev)) { /* We've lost link, so the controller stops DMA, * but we've got queued Tx work that's never going * to get done, so reset controller to flush Tx. * (Do the reset outside of interrupt context). */ if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { adapter->tx_timeout_count++; schedule_work(&adapter->reset_task); /* return immediately since reset is imminent */ return; } } /* Force detection of hung controller every watchdog period */ set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); } /* Cause software interrupt to ensure rx ring is cleaned */ if (adapter->msix_entries) { u32 eics = 0; for (i = 0; i < adapter->num_q_vectors; i++) eics |= adapter->q_vector[i]->eims_value; wr32(E1000_EICS, eics); } else { wr32(E1000_ICS, E1000_ICS_RXDMT0); } igb_spoof_check(adapter); igb_ptp_rx_hang(adapter); /* Reset the timer */ if (!test_bit(__IGB_DOWN, &adapter->state)) mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ)); } enum latency_range { lowest_latency = 0, low_latency = 1, bulk_latency = 2, latency_invalid = 255 }; /** * igb_update_ring_itr - update the dynamic ITR value based on packet size * * Stores a new ITR value based on strictly on packet size. This * algorithm is less sophisticated than that used in igb_update_itr, * due to the difficulty of synchronizing statistics across multiple * receive rings. The divisors and thresholds used by this function * were determined based on theoretical maximum wire speed and testing * data, in order to minimize response time while increasing bulk * throughput. * This functionality is controlled by the InterruptThrottleRate module * parameter (see igb_param.c) * NOTE: This function is called only when operating in a multiqueue * receive environment. * @q_vector: pointer to q_vector **/ static void igb_update_ring_itr(struct igb_q_vector *q_vector) { int new_val = q_vector->itr_val; int avg_wire_size = 0; struct igb_adapter *adapter = q_vector->adapter; unsigned int packets; /* For non-gigabit speeds, just fix the interrupt rate at 4000 * ints/sec - ITR timer value of 120 ticks. */ if (adapter->link_speed != SPEED_1000) { new_val = IGB_4K_ITR; goto set_itr_val; } packets = q_vector->rx.total_packets; if (packets) avg_wire_size = q_vector->rx.total_bytes / packets; packets = q_vector->tx.total_packets; if (packets) avg_wire_size = max_t(u32, avg_wire_size, q_vector->tx.total_bytes / packets); /* if avg_wire_size isn't set no work was done */ if (!avg_wire_size) goto clear_counts; /* Add 24 bytes to size to account for CRC, preamble, and gap */ avg_wire_size += 24; /* Don't starve jumbo frames */ avg_wire_size = min(avg_wire_size, 3000); /* Give a little boost to mid-size frames */ if ((avg_wire_size > 300) && (avg_wire_size < 1200)) new_val = avg_wire_size / 3; else new_val = avg_wire_size / 2; /* conservative mode (itr 3) eliminates the lowest_latency setting */ if (new_val < IGB_20K_ITR && ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) new_val = IGB_20K_ITR; set_itr_val: if (new_val != q_vector->itr_val) { q_vector->itr_val = new_val; q_vector->set_itr = 1; } clear_counts: q_vector->rx.total_bytes = 0; q_vector->rx.total_packets = 0; q_vector->tx.total_bytes = 0; q_vector->tx.total_packets = 0; } /** * igb_update_itr - update the dynamic ITR value based on statistics * Stores a new ITR value based on packets and byte * counts during the last interrupt. The advantage of per interrupt * computation is faster updates and more accurate ITR for the current * traffic pattern. Constants in this function were computed * based on theoretical maximum wire speed and thresholds were set based * on testing data as well as attempting to minimize response time * while increasing bulk throughput. * this functionality is controlled by the InterruptThrottleRate module * parameter (see igb_param.c) * NOTE: These calculations are only valid when operating in a single- * queue environment. * @q_vector: pointer to q_vector * @ring_container: ring info to update the itr for **/ static void igb_update_itr(struct igb_q_vector *q_vector, struct igb_ring_container *ring_container) { unsigned int packets = ring_container->total_packets; unsigned int bytes = ring_container->total_bytes; u8 itrval = ring_container->itr; /* no packets, exit with status unchanged */ if (packets == 0) return; switch (itrval) { case lowest_latency: /* handle TSO and jumbo frames */ if (bytes/packets > 8000) itrval = bulk_latency; else if ((packets < 5) && (bytes > 512)) itrval = low_latency; break; case low_latency: /* 50 usec aka 20000 ints/s */ if (bytes > 10000) { /* this if handles the TSO accounting */ if (bytes/packets > 8000) { itrval = bulk_latency; } else if ((packets < 10) || ((bytes/packets) > 1200)) { itrval = bulk_latency; } else if ((packets > 35)) { itrval = lowest_latency; } } else if (bytes/packets > 2000) { itrval = bulk_latency; } else if (packets <= 2 && bytes < 512) { itrval = lowest_latency; } break; case bulk_latency: /* 250 usec aka 4000 ints/s */ if (bytes > 25000) { if (packets > 35) itrval = low_latency; } else if (bytes < 1500) { itrval = low_latency; } break; } /* clear work counters since we have the values we need */ ring_container->total_bytes = 0; ring_container->total_packets = 0; /* write updated itr to ring container */ ring_container->itr = itrval; } static void igb_set_itr(struct igb_q_vector *q_vector) { struct igb_adapter *adapter = q_vector->adapter; u32 new_itr = q_vector->itr_val; u8 current_itr = 0; /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ if (adapter->link_speed != SPEED_1000) { current_itr = 0; new_itr = IGB_4K_ITR; goto set_itr_now; } igb_update_itr(q_vector, &q_vector->tx); igb_update_itr(q_vector, &q_vector->rx); current_itr = max(q_vector->rx.itr, q_vector->tx.itr); /* conservative mode (itr 3) eliminates the lowest_latency setting */ if (current_itr == lowest_latency && ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) current_itr = low_latency; switch (current_itr) { /* counts and packets in update_itr are dependent on these numbers */ case lowest_latency: new_itr = IGB_70K_ITR; /* 70,000 ints/sec */ break; case low_latency: new_itr = IGB_20K_ITR; /* 20,000 ints/sec */ break; case bulk_latency: new_itr = IGB_4K_ITR; /* 4,000 ints/sec */ break; default: break; } set_itr_now: if (new_itr != q_vector->itr_val) { /* this attempts to bias the interrupt rate towards Bulk * by adding intermediate steps when interrupt rate is * increasing */ new_itr = new_itr > q_vector->itr_val ? max((new_itr * q_vector->itr_val) / (new_itr + (q_vector->itr_val >> 2)), new_itr) : new_itr; /* Don't write the value here; it resets the adapter's * internal timer, and causes us to delay far longer than * we should between interrupts. Instead, we write the ITR * value at the beginning of the next interrupt so the timing * ends up being correct. */ q_vector->itr_val = new_itr; q_vector->set_itr = 1; } } static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens, u32 type_tucmd, u32 mss_l4len_idx) { struct e1000_adv_tx_context_desc *context_desc; u16 i = tx_ring->next_to_use; context_desc = IGB_TX_CTXTDESC(tx_ring, i); i++; tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; /* set bits to identify this as an advanced context descriptor */ type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; /* For 82575, context index must be unique per ring. */ if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) mss_l4len_idx |= tx_ring->reg_idx << 4; context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); context_desc->seqnum_seed = 0; context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); } static int igb_tso(struct igb_ring *tx_ring, struct igb_tx_buffer *first, u8 *hdr_len) { struct sk_buff *skb = first->skb; u32 vlan_macip_lens, type_tucmd; u32 mss_l4len_idx, l4len; if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; if (!skb_is_gso(skb)) return 0; if (skb_header_cloned(skb)) { int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); if (err) return err; } /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; if (first->protocol == __constant_htons(ETH_P_IP)) { struct iphdr *iph = ip_hdr(skb); iph->tot_len = 0; iph->check = 0; tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0, IPPROTO_TCP, 0); type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; first->tx_flags |= IGB_TX_FLAGS_TSO | IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_IPV4; } else if (skb_is_gso_v6(skb)) { ipv6_hdr(skb)->payload_len = 0; tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); first->tx_flags |= IGB_TX_FLAGS_TSO | IGB_TX_FLAGS_CSUM; } /* compute header lengths */ l4len = tcp_hdrlen(skb); *hdr_len = skb_transport_offset(skb) + l4len; /* update gso size and bytecount with header size */ first->gso_segs = skb_shinfo(skb)->gso_segs; first->bytecount += (first->gso_segs - 1) * *hdr_len; /* MSS L4LEN IDX */ mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT; mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; /* VLAN MACLEN IPLEN */ vlan_macip_lens = skb_network_header_len(skb); vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); return 1; } static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first) { struct sk_buff *skb = first->skb; u32 vlan_macip_lens = 0; u32 mss_l4len_idx = 0; u32 type_tucmd = 0; if (skb->ip_summed != CHECKSUM_PARTIAL) { if (!(first->tx_flags & IGB_TX_FLAGS_VLAN)) return; } else { u8 l4_hdr = 0; switch (first->protocol) { case __constant_htons(ETH_P_IP): vlan_macip_lens |= skb_network_header_len(skb); type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; l4_hdr = ip_hdr(skb)->protocol; break; case __constant_htons(ETH_P_IPV6): vlan_macip_lens |= skb_network_header_len(skb); l4_hdr = ipv6_hdr(skb)->nexthdr; break; default: if (unlikely(net_ratelimit())) { dev_warn(tx_ring->dev, "partial checksum but proto=%x!\n", first->protocol); } break; } switch (l4_hdr) { case IPPROTO_TCP: type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP; mss_l4len_idx = tcp_hdrlen(skb) << E1000_ADVTXD_L4LEN_SHIFT; break; case IPPROTO_SCTP: type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; mss_l4len_idx = sizeof(struct sctphdr) << E1000_ADVTXD_L4LEN_SHIFT; break; case IPPROTO_UDP: mss_l4len_idx = sizeof(struct udphdr) << E1000_ADVTXD_L4LEN_SHIFT; break; default: if (unlikely(net_ratelimit())) { dev_warn(tx_ring->dev, "partial checksum but l4 proto=%x!\n", l4_hdr); } break; } /* update TX checksum flag */ first->tx_flags |= IGB_TX_FLAGS_CSUM; } vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); } #define IGB_SET_FLAG(_input, _flag, _result) \ ((_flag <= _result) ? \ ((u32)(_input & _flag) * (_result / _flag)) : \ ((u32)(_input & _flag) / (_flag / _result))) static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) { /* set type for advanced descriptor with frame checksum insertion */ u32 cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DCMD_IFCS; /* set HW vlan bit if vlan is present */ cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN, (E1000_ADVTXD_DCMD_VLE)); /* set segmentation bits for TSO */ cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO, (E1000_ADVTXD_DCMD_TSE)); /* set timestamp bit if present */ cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP, (E1000_ADVTXD_MAC_TSTAMP)); /* insert frame checksum */ cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS); return cmd_type; } static void igb_tx_olinfo_status(struct igb_ring *tx_ring, union e1000_adv_tx_desc *tx_desc, u32 tx_flags, unsigned int paylen) { u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT; /* 82575 requires a unique index per ring */ if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) olinfo_status |= tx_ring->reg_idx << 4; /* insert L4 checksum */ olinfo_status |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_CSUM, (E1000_TXD_POPTS_TXSM << 8)); /* insert IPv4 checksum */ olinfo_status |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_IPV4, (E1000_TXD_POPTS_IXSM << 8)); tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); } static void igb_tx_map(struct igb_ring *tx_ring, struct igb_tx_buffer *first, const u8 hdr_len) { struct sk_buff *skb = first->skb; struct igb_tx_buffer *tx_buffer; union e1000_adv_tx_desc *tx_desc; struct skb_frag_struct *frag; dma_addr_t dma; unsigned int data_len, size; u32 tx_flags = first->tx_flags; u32 cmd_type = igb_tx_cmd_type(skb, tx_flags); u16 i = tx_ring->next_to_use; tx_desc = IGB_TX_DESC(tx_ring, i); igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); size = skb_headlen(skb); data_len = skb->data_len; dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); tx_buffer = first; for (frag = &skb_shinfo(skb)->frags[0];; frag++) { if (dma_mapping_error(tx_ring->dev, dma)) goto dma_error; /* record length, and DMA address */ dma_unmap_len_set(tx_buffer, len, size); dma_unmap_addr_set(tx_buffer, dma, dma); tx_desc->read.buffer_addr = cpu_to_le64(dma); while (unlikely(size > IGB_MAX_DATA_PER_TXD)) { tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD); i++; tx_desc++; if (i == tx_ring->count) { tx_desc = IGB_TX_DESC(tx_ring, 0); i = 0; } tx_desc->read.olinfo_status = 0; dma += IGB_MAX_DATA_PER_TXD; size -= IGB_MAX_DATA_PER_TXD; tx_desc->read.buffer_addr = cpu_to_le64(dma); } if (likely(!data_len)) break; tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); i++; tx_desc++; if (i == tx_ring->count) { tx_desc = IGB_TX_DESC(tx_ring, 0); i = 0; } tx_desc->read.olinfo_status = 0; size = skb_frag_size(frag); data_len -= size; dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, DMA_TO_DEVICE); tx_buffer = &tx_ring->tx_buffer_info[i]; } /* write last descriptor with RS and EOP bits */ cmd_type |= size | IGB_TXD_DCMD; tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); /* set the timestamp */ first->time_stamp = jiffies; /* * Force memory writes to complete before letting h/w know there * are new descriptors to fetch. (Only applicable for weak-ordered * memory model archs, such as IA-64). * * We also need this memory barrier to make certain all of the * status bits have been updated before next_to_watch is written. */ wmb(); /* set next_to_watch value indicating a packet is present */ first->next_to_watch = tx_desc; i++; if (i == tx_ring->count) i = 0; tx_ring->next_to_use = i; writel(i, tx_ring->tail); /* we need this if more than one processor can write to our tail * at a time, it syncronizes IO on IA64/Altix systems */ mmiowb(); return; dma_error: dev_err(tx_ring->dev, "TX DMA map failed\n"); /* clear dma mappings for failed tx_buffer_info map */ for (;;) { tx_buffer = &tx_ring->tx_buffer_info[i]; igb_unmap_and_free_tx_resource(tx_ring, tx_buffer); if (tx_buffer == first) break; if (i == 0) i = tx_ring->count; i--; } tx_ring->next_to_use = i; } static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) { struct net_device *netdev = tx_ring->netdev; netif_stop_subqueue(netdev, tx_ring->queue_index); /* Herbert's original patch had: * smp_mb__after_netif_stop_queue(); * but since that doesn't exist yet, just open code it. */ smp_mb(); /* We need to check again in a case another CPU has just * made room available. */ if (igb_desc_unused(tx_ring) < size) return -EBUSY; /* A reprieve! */ netif_wake_subqueue(netdev, tx_ring->queue_index); u64_stats_update_begin(&tx_ring->tx_syncp2); tx_ring->tx_stats.restart_queue2++; u64_stats_update_end(&tx_ring->tx_syncp2); return 0; } static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) { if (igb_desc_unused(tx_ring) >= size) return 0; return __igb_maybe_stop_tx(tx_ring, size); } netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb, struct igb_ring *tx_ring) { struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); struct igb_tx_buffer *first; int tso; u32 tx_flags = 0; u16 count = TXD_USE_COUNT(skb_headlen(skb)); __be16 protocol = vlan_get_protocol(skb); u8 hdr_len = 0; /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD, * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD, * + 2 desc gap to keep tail from touching head, * + 1 desc for context descriptor, * otherwise try next time */ if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) { unsigned short f; for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); } else { count += skb_shinfo(skb)->nr_frags; } if (igb_maybe_stop_tx(tx_ring, count + 3)) { /* this is a hard error */ return NETDEV_TX_BUSY; } /* record the location of the first descriptor for this packet */ first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; first->skb = skb; first->bytecount = skb->len; first->gso_segs = 1; skb_tx_timestamp(skb); if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && !(adapter->ptp_tx_skb))) { skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; tx_flags |= IGB_TX_FLAGS_TSTAMP; adapter->ptp_tx_skb = skb_get(skb); adapter->ptp_tx_start = jiffies; if (adapter->hw.mac.type == e1000_82576) schedule_work(&adapter->ptp_tx_work); } if (vlan_tx_tag_present(skb)) { tx_flags |= IGB_TX_FLAGS_VLAN; tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); } /* record initial flags and protocol */ first->tx_flags = tx_flags; first->protocol = protocol; tso = igb_tso(tx_ring, first, &hdr_len); if (tso < 0) goto out_drop; else if (!tso) igb_tx_csum(tx_ring, first); igb_tx_map(tx_ring, first, hdr_len); /* Make sure there is space in the ring for the next send. */ igb_maybe_stop_tx(tx_ring, DESC_NEEDED); return NETDEV_TX_OK; out_drop: igb_unmap_and_free_tx_resource(tx_ring, first); return NETDEV_TX_OK; } static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter, struct sk_buff *skb) { unsigned int r_idx = skb->queue_mapping; if (r_idx >= adapter->num_tx_queues) r_idx = r_idx % adapter->num_tx_queues; return adapter->tx_ring[r_idx]; } static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct igb_adapter *adapter = netdev_priv(netdev); if (test_bit(__IGB_DOWN, &adapter->state)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } if (skb->len <= 0) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /* * The minimum packet size with TCTL.PSP set is 17 so pad the skb * in order to meet this minimum size requirement. */ if (unlikely(skb->len < 17)) { if (skb_pad(skb, 17 - skb->len)) return NETDEV_TX_OK; skb->len = 17; skb_set_tail_pointer(skb, 17); } return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb)); } /** * igb_tx_timeout - Respond to a Tx Hang * @netdev: network interface device structure **/ static void igb_tx_timeout(struct net_device *netdev) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; /* Do the reset outside of interrupt context */ adapter->tx_timeout_count++; if (hw->mac.type >= e1000_82580) hw->dev_spec._82575.global_device_reset = true; schedule_work(&adapter->reset_task); wr32(E1000_EICS, (adapter->eims_enable_mask & ~adapter->eims_other)); } static void igb_reset_task(struct work_struct *work) { struct igb_adapter *adapter; adapter = container_of(work, struct igb_adapter, reset_task); igb_dump(adapter); netdev_err(adapter->netdev, "Reset adapter\n"); igb_reinit_locked(adapter); } /** * igb_get_stats64 - Get System Network Statistics * @netdev: network interface device structure * @stats: rtnl_link_stats64 pointer * **/ static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct igb_adapter *adapter = netdev_priv(netdev); spin_lock(&adapter->stats64_lock); igb_update_stats(adapter, &adapter->stats64); memcpy(stats, &adapter->stats64, sizeof(*stats)); spin_unlock(&adapter->stats64_lock); return stats; } /** * igb_change_mtu - Change the Maximum Transfer Unit * @netdev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure **/ static int igb_change_mtu(struct net_device *netdev, int new_mtu) { struct igb_adapter *adapter = netdev_priv(netdev); struct pci_dev *pdev = adapter->pdev; int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { dev_err(&pdev->dev, "Invalid MTU setting\n"); return -EINVAL; } #define MAX_STD_JUMBO_FRAME_SIZE 9238 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { dev_err(&pdev->dev, "MTU > 9216 not supported.\n"); return -EINVAL; } while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) msleep(1); /* igb_down has a dependency on max_frame_size */ adapter->max_frame_size = max_frame; if (netif_running(netdev)) igb_down(adapter); dev_info(&pdev->dev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); netdev->mtu = new_mtu; if (netif_running(netdev)) igb_up(adapter); else igb_reset(adapter); clear_bit(__IGB_RESETTING, &adapter->state); return 0; } /** * igb_update_stats - Update the board statistics counters * @adapter: board private structure **/ void igb_update_stats(struct igb_adapter *adapter, struct rtnl_link_stats64 *net_stats) { struct e1000_hw *hw = &adapter->hw; struct pci_dev *pdev = adapter->pdev; u32 reg, mpc; u16 phy_tmp; int i; u64 bytes, packets; unsigned int start; u64 _bytes, _packets; #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF /* * Prevent stats update while adapter is being reset, or if the pci * connection is down. */ if (adapter->link_speed == 0) return; if (pci_channel_offline(pdev)) return; bytes = 0; packets = 0; for (i = 0; i < adapter->num_rx_queues; i++) { u32 rqdpc = rd32(E1000_RQDPC(i)); struct igb_ring *ring = adapter->rx_ring[i]; if (rqdpc) { ring->rx_stats.drops += rqdpc; net_stats->rx_fifo_errors += rqdpc; } do { start = u64_stats_fetch_begin_bh(&ring->rx_syncp); _bytes = ring->rx_stats.bytes; _packets = ring->rx_stats.packets; } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start)); bytes += _bytes; packets += _packets; } net_stats->rx_bytes = bytes; net_stats->rx_packets = packets; bytes = 0; packets = 0; for (i = 0; i < adapter->num_tx_queues; i++) { struct igb_ring *ring = adapter->tx_ring[i]; do { start = u64_stats_fetch_begin_bh(&ring->tx_syncp); _bytes = ring->tx_stats.bytes; _packets = ring->tx_stats.packets; } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start)); bytes += _bytes; packets += _packets; } net_stats->tx_bytes = bytes; net_stats->tx_packets = packets; /* read stats registers */ adapter->stats.crcerrs += rd32(E1000_CRCERRS); adapter->stats.gprc += rd32(E1000_GPRC); adapter->stats.gorc += rd32(E1000_GORCL); rd32(E1000_GORCH); /* clear GORCL */ adapter->stats.bprc += rd32(E1000_BPRC); adapter->stats.mprc += rd32(E1000_MPRC); adapter->stats.roc += rd32(E1000_ROC); adapter->stats.prc64 += rd32(E1000_PRC64); adapter->stats.prc127 += rd32(E1000_PRC127); adapter->stats.prc255 += rd32(E1000_PRC255); adapter->stats.prc511 += rd32(E1000_PRC511); adapter->stats.prc1023 += rd32(E1000_PRC1023); adapter->stats.prc1522 += rd32(E1000_PRC1522); adapter->stats.symerrs += rd32(E1000_SYMERRS); adapter->stats.sec += rd32(E1000_SEC); mpc = rd32(E1000_MPC); adapter->stats.mpc += mpc; net_stats->rx_fifo_errors += mpc; adapter->stats.scc += rd32(E1000_SCC); adapter->stats.ecol += rd32(E1000_ECOL); adapter->stats.mcc += rd32(E1000_MCC); adapter->stats.latecol += rd32(E1000_LATECOL); adapter->stats.dc += rd32(E1000_DC); adapter->stats.rlec += rd32(E1000_RLEC); adapter->stats.xonrxc += rd32(E1000_XONRXC); adapter->stats.xontxc += rd32(E1000_XONTXC); adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); adapter->stats.xofftxc += rd32(E1000_XOFFTXC); adapter->stats.fcruc += rd32(E1000_FCRUC); adapter->stats.gptc += rd32(E1000_GPTC); adapter->stats.gotc += rd32(E1000_GOTCL); rd32(E1000_GOTCH); /* clear GOTCL */ adapter->stats.rnbc += rd32(E1000_RNBC); adapter->stats.ruc += rd32(E1000_RUC); adapter->stats.rfc += rd32(E1000_RFC); adapter->stats.rjc += rd32(E1000_RJC); adapter->stats.tor += rd32(E1000_TORH); adapter->stats.tot += rd32(E1000_TOTH); adapter->stats.tpr += rd32(E1000_TPR); adapter->stats.ptc64 += rd32(E1000_PTC64); adapter->stats.ptc127 += rd32(E1000_PTC127); adapter->stats.ptc255 += rd32(E1000_PTC255); adapter->stats.ptc511 += rd32(E1000_PTC511); adapter->stats.ptc1023 += rd32(E1000_PTC1023); adapter->stats.ptc1522 += rd32(E1000_PTC1522); adapter->stats.mptc += rd32(E1000_MPTC); adapter->stats.bptc += rd32(E1000_BPTC); adapter->stats.tpt += rd32(E1000_TPT); adapter->stats.colc += rd32(E1000_COLC); adapter->stats.algnerrc += rd32(E1000_ALGNERRC); /* read internal phy specific stats */ reg = rd32(E1000_CTRL_EXT); if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { adapter->stats.rxerrc += rd32(E1000_RXERRC); /* this stat has invalid values on i210/i211 */ if ((hw->mac.type != e1000_i210) && (hw->mac.type != e1000_i211)) adapter->stats.tncrs += rd32(E1000_TNCRS); } adapter->stats.tsctc += rd32(E1000_TSCTC); adapter->stats.tsctfc += rd32(E1000_TSCTFC); adapter->stats.iac += rd32(E1000_IAC); adapter->stats.icrxoc += rd32(E1000_ICRXOC); adapter->stats.icrxptc += rd32(E1000_ICRXPTC); adapter->stats.icrxatc += rd32(E1000_ICRXATC); adapter->stats.ictxptc += rd32(E1000_ICTXPTC); adapter->stats.ictxatc += rd32(E1000_ICTXATC); adapter->stats.ictxqec += rd32(E1000_ICTXQEC); adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); /* Fill out the OS statistics structure */ net_stats->multicast = adapter->stats.mprc; net_stats->collisions = adapter->stats.colc; /* Rx Errors */ /* RLEC on some newer hardware can be incorrect so build * our own version based on RUC and ROC */ net_stats->rx_errors = adapter->stats.rxerrc + adapter->stats.crcerrs + adapter->stats.algnerrc + adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; net_stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc; net_stats->rx_crc_errors = adapter->stats.crcerrs; net_stats->rx_frame_errors = adapter->stats.algnerrc; net_stats->rx_missed_errors = adapter->stats.mpc; /* Tx Errors */ net_stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol; net_stats->tx_aborted_errors = adapter->stats.ecol; net_stats->tx_window_errors = adapter->stats.latecol; net_stats->tx_carrier_errors = adapter->stats.tncrs; /* Tx Dropped needs to be maintained elsewhere */ /* Phy Stats */ if (hw->phy.media_type == e1000_media_type_copper) { if ((adapter->link_speed == SPEED_1000) && (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; adapter->phy_stats.idle_errors += phy_tmp; } } /* Management Stats */ adapter->stats.mgptc += rd32(E1000_MGTPTC); adapter->stats.mgprc += rd32(E1000_MGTPRC); adapter->stats.mgpdc += rd32(E1000_MGTPDC); /* OS2BMC Stats */ reg = rd32(E1000_MANC); if (reg & E1000_MANC_EN_BMC2OS) { adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); adapter->stats.o2bspc += rd32(E1000_O2BSPC); adapter->stats.b2ospc += rd32(E1000_B2OSPC); adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); } } static irqreturn_t igb_msix_other(int irq, void *data) { struct igb_adapter *adapter = data; struct e1000_hw *hw = &adapter->hw; u32 icr = rd32(E1000_ICR); /* reading ICR causes bit 31 of EICR to be cleared */ if (icr & E1000_ICR_DRSTA) schedule_work(&adapter->reset_task); if (icr & E1000_ICR_DOUTSYNC) { /* HW is reporting DMA is out of sync */ adapter->stats.doosync++; /* The DMA Out of Sync is also indication of a spoof event * in IOV mode. Check the Wrong VM Behavior register to * see if it is really a spoof event. */ igb_check_wvbr(adapter); } /* Check for a mailbox event */ if (icr & E1000_ICR_VMMB) igb_msg_task(adapter); if (icr & E1000_ICR_LSC) { hw->mac.get_link_status = 1; /* guard against interrupt when we're going down */ if (!test_bit(__IGB_DOWN, &adapter->state)) mod_timer(&adapter->watchdog_timer, jiffies + 1); } if (icr & E1000_ICR_TS) { u32 tsicr = rd32(E1000_TSICR); if (tsicr & E1000_TSICR_TXTS) { /* acknowledge the interrupt */ wr32(E1000_TSICR, E1000_TSICR_TXTS); /* retrieve hardware timestamp */ schedule_work(&adapter->ptp_tx_work); } } wr32(E1000_EIMS, adapter->eims_other); return IRQ_HANDLED; } static void igb_write_itr(struct igb_q_vector *q_vector) { struct igb_adapter *adapter = q_vector->adapter; u32 itr_val = q_vector->itr_val & 0x7FFC; if (!q_vector->set_itr) return; if (!itr_val) itr_val = 0x4; if (adapter->hw.mac.type == e1000_82575) itr_val |= itr_val << 16; else itr_val |= E1000_EITR_CNT_IGNR; writel(itr_val, q_vector->itr_register); q_vector->set_itr = 0; } static irqreturn_t igb_msix_ring(int irq, void *data) { struct igb_q_vector *q_vector = data; /* Write the ITR value calculated from the previous interrupt. */ igb_write_itr(q_vector); napi_schedule(&q_vector->napi); return IRQ_HANDLED; } #ifdef CONFIG_IGB_DCA static void igb_update_tx_dca(struct igb_adapter *adapter, struct igb_ring *tx_ring, int cpu) { struct e1000_hw *hw = &adapter->hw; u32 txctrl = dca3_get_tag(tx_ring->dev, cpu); if (hw->mac.type != e1000_82575) txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT; /* * We can enable relaxed ordering for reads, but not writes when * DCA is enabled. This is due to a known issue in some chipsets * which will cause the DCA tag to be cleared. */ txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN | E1000_DCA_TXCTRL_DATA_RRO_EN | E1000_DCA_TXCTRL_DESC_DCA_EN; wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl); } static void igb_update_rx_dca(struct igb_adapter *adapter, struct igb_ring *rx_ring, int cpu) { struct e1000_hw *hw = &adapter->hw; u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu); if (hw->mac.type != e1000_82575) rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT; /* * We can enable relaxed ordering for reads, but not writes when * DCA is enabled. This is due to a known issue in some chipsets * which will cause the DCA tag to be cleared. */ rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN | E1000_DCA_RXCTRL_DESC_DCA_EN; wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl); } static void igb_update_dca(struct igb_q_vector *q_vector) { struct igb_adapter *adapter = q_vector->adapter; int cpu = get_cpu(); if (q_vector->cpu == cpu) goto out_no_update; if (q_vector->tx.ring) igb_update_tx_dca(adapter, q_vector->tx.ring, cpu); if (q_vector->rx.ring) igb_update_rx_dca(adapter, q_vector->rx.ring, cpu); q_vector->cpu = cpu; out_no_update: put_cpu(); } static void igb_setup_dca(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; int i; if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) return; /* Always use CB2 mode, difference is masked in the CB driver. */ wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); for (i = 0; i < adapter->num_q_vectors; i++) { adapter->q_vector[i]->cpu = -1; igb_update_dca(adapter->q_vector[i]); } } static int __igb_notify_dca(struct device *dev, void *data) { struct net_device *netdev = dev_get_drvdata(dev); struct igb_adapter *adapter = netdev_priv(netdev); struct pci_dev *pdev = adapter->pdev; struct e1000_hw *hw = &adapter->hw; unsigned long event = *(unsigned long *)data; switch (event) { case DCA_PROVIDER_ADD: /* if already enabled, don't do it again */ if (adapter->flags & IGB_FLAG_DCA_ENABLED) break; if (dca_add_requester(dev) == 0) { adapter->flags |= IGB_FLAG_DCA_ENABLED; dev_info(&pdev->dev, "DCA enabled\n"); igb_setup_dca(adapter); break; } /* Fall Through since DCA is disabled. */ case DCA_PROVIDER_REMOVE: if (adapter->flags & IGB_FLAG_DCA_ENABLED) { /* without this a class_device is left * hanging around in the sysfs model */ dca_remove_requester(dev); dev_info(&pdev->dev, "DCA disabled\n"); adapter->flags &= ~IGB_FLAG_DCA_ENABLED; wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); } break; } return 0; } static int igb_notify_dca(struct notifier_block *nb, unsigned long event, void *p) { int ret_val; ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, __igb_notify_dca); return ret_val ? NOTIFY_BAD : NOTIFY_DONE; } #endif /* CONFIG_IGB_DCA */ #ifdef CONFIG_PCI_IOV static int igb_vf_configure(struct igb_adapter *adapter, int vf) { unsigned char mac_addr[ETH_ALEN]; eth_zero_addr(mac_addr); igb_set_vf_mac(adapter, vf, mac_addr); return 0; } static bool igb_vfs_are_assigned(struct igb_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; struct pci_dev *vfdev; int dev_id; switch (adapter->hw.mac.type) { case e1000_82576: dev_id = IGB_82576_VF_DEV_ID; break; case e1000_i350: dev_id = IGB_I350_VF_DEV_ID; break; default: return false; } /* loop through all the VFs to see if we own any that are assigned */ vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL); while (vfdev) { /* if we don't own it we don't care */ if (vfdev->is_virtfn && vfdev->physfn == pdev) { /* if it is assigned we cannot release it */ if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED) return true; } vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev); } return false; } #endif static void igb_ping_all_vfs(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 ping; int i; for (i = 0 ; i < adapter->vfs_allocated_count; i++) { ping = E1000_PF_CONTROL_MSG; if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) ping |= E1000_VT_MSGTYPE_CTS; igb_write_mbx(hw, &ping, 1, i); } } static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) { struct e1000_hw *hw = &adapter->hw; u32 vmolr = rd32(E1000_VMOLR(vf)); struct vf_data_storage *vf_data = &adapter->vf_data[vf]; vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | IGB_VF_FLAG_MULTI_PROMISC); vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { vmolr |= E1000_VMOLR_MPME; vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; } else { /* * if we have hashes and we are clearing a multicast promisc * flag we need to write the hashes to the MTA as this step * was previously skipped */ if (vf_data->num_vf_mc_hashes > 30) { vmolr |= E1000_VMOLR_MPME; } else if (vf_data->num_vf_mc_hashes) { int j; vmolr |= E1000_VMOLR_ROMPE; for (j = 0; j < vf_data->num_vf_mc_hashes; j++) igb_mta_set(hw, vf_data->vf_mc_hashes[j]); } } wr32(E1000_VMOLR(vf), vmolr); /* there are flags left unprocessed, likely not supported */ if (*msgbuf & E1000_VT_MSGINFO_MASK) return -EINVAL; return 0; } static int igb_set_vf_multicasts(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) { int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; u16 *hash_list = (u16 *)&msgbuf[1]; struct vf_data_storage *vf_data = &adapter->vf_data[vf]; int i; /* salt away the number of multicast addresses assigned * to this VF for later use to restore when the PF multi cast * list changes */ vf_data->num_vf_mc_hashes = n; /* only up to 30 hash values supported */ if (n > 30) n = 30; /* store the hashes for later use */ for (i = 0; i < n; i++) vf_data->vf_mc_hashes[i] = hash_list[i]; /* Flush and reset the mta with the new values */ igb_set_rx_mode(adapter->netdev); return 0; } static void igb_restore_vf_multicasts(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; struct vf_data_storage *vf_data; int i, j; for (i = 0; i < adapter->vfs_allocated_count; i++) { u32 vmolr = rd32(E1000_VMOLR(i)); vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); vf_data = &adapter->vf_data[i]; if ((vf_data->num_vf_mc_hashes > 30) || (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { vmolr |= E1000_VMOLR_MPME; } else if (vf_data->num_vf_mc_hashes) { vmolr |= E1000_VMOLR_ROMPE; for (j = 0; j < vf_data->num_vf_mc_hashes; j++) igb_mta_set(hw, vf_data->vf_mc_hashes[j]); } wr32(E1000_VMOLR(i), vmolr); } } static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) { struct e1000_hw *hw = &adapter->hw; u32 pool_mask, reg, vid; int i; pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); /* Find the vlan filter for this id */ for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { reg = rd32(E1000_VLVF(i)); /* remove the vf from the pool */ reg &= ~pool_mask; /* if pool is empty then remove entry from vfta */ if (!(reg & E1000_VLVF_POOLSEL_MASK) && (reg & E1000_VLVF_VLANID_ENABLE)) { reg = 0; vid = reg & E1000_VLVF_VLANID_MASK; igb_vfta_set(hw, vid, false); } wr32(E1000_VLVF(i), reg); } adapter->vf_data[vf].vlans_enabled = 0; } static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf) { struct e1000_hw *hw = &adapter->hw; u32 reg, i; /* The vlvf table only exists on 82576 hardware and newer */ if (hw->mac.type < e1000_82576) return -1; /* we only need to do this if VMDq is enabled */ if (!adapter->vfs_allocated_count) return -1; /* Find the vlan filter for this id */ for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { reg = rd32(E1000_VLVF(i)); if ((reg & E1000_VLVF_VLANID_ENABLE) && vid == (reg & E1000_VLVF_VLANID_MASK)) break; } if (add) { if (i == E1000_VLVF_ARRAY_SIZE) { /* Did not find a matching VLAN ID entry that was * enabled. Search for a free filter entry, i.e. * one without the enable bit set */ for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { reg = rd32(E1000_VLVF(i)); if (!(reg & E1000_VLVF_VLANID_ENABLE)) break; } } if (i < E1000_VLVF_ARRAY_SIZE) { /* Found an enabled/available entry */ reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); /* if !enabled we need to set this up in vfta */ if (!(reg & E1000_VLVF_VLANID_ENABLE)) { /* add VID to filter table */ igb_vfta_set(hw, vid, true); reg |= E1000_VLVF_VLANID_ENABLE; } reg &= ~E1000_VLVF_VLANID_MASK; reg |= vid; wr32(E1000_VLVF(i), reg); /* do not modify RLPML for PF devices */ if (vf >= adapter->vfs_allocated_count) return 0; if (!adapter->vf_data[vf].vlans_enabled) { u32 size; reg = rd32(E1000_VMOLR(vf)); size = reg & E1000_VMOLR_RLPML_MASK; size += 4; reg &= ~E1000_VMOLR_RLPML_MASK; reg |= size; wr32(E1000_VMOLR(vf), reg); } adapter->vf_data[vf].vlans_enabled++; } } else { if (i < E1000_VLVF_ARRAY_SIZE) { /* remove vf from the pool */ reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf)); /* if pool is empty then remove entry from vfta */ if (!(reg & E1000_VLVF_POOLSEL_MASK)) { reg = 0; igb_vfta_set(hw, vid, false); } wr32(E1000_VLVF(i), reg); /* do not modify RLPML for PF devices */ if (vf >= adapter->vfs_allocated_count) return 0; adapter->vf_data[vf].vlans_enabled--; if (!adapter->vf_data[vf].vlans_enabled) { u32 size; reg = rd32(E1000_VMOLR(vf)); size = reg & E1000_VMOLR_RLPML_MASK; size -= 4; reg &= ~E1000_VMOLR_RLPML_MASK; reg |= size; wr32(E1000_VMOLR(vf), reg); } } } return 0; } static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) { struct e1000_hw *hw = &adapter->hw; if (vid) wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); else wr32(E1000_VMVIR(vf), 0); } static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan, u8 qos) { int err = 0; struct igb_adapter *adapter = netdev_priv(netdev); if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) return -EINVAL; if (vlan || qos) { err = igb_vlvf_set(adapter, vlan, !!vlan, vf); if (err) goto out; igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); igb_set_vmolr(adapter, vf, !vlan); adapter->vf_data[vf].pf_vlan = vlan; adapter->vf_data[vf].pf_qos = qos; dev_info(&adapter->pdev->dev, "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); if (test_bit(__IGB_DOWN, &adapter->state)) { dev_warn(&adapter->pdev->dev, "The VF VLAN has been set," " but the PF device is not up.\n"); dev_warn(&adapter->pdev->dev, "Bring the PF device up before" " attempting to use the VF device.\n"); } } else { igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan, false, vf); igb_set_vmvir(adapter, vlan, vf); igb_set_vmolr(adapter, vf, true); adapter->vf_data[vf].pf_vlan = 0; adapter->vf_data[vf].pf_qos = 0; } out: return err; } static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) { int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); return igb_vlvf_set(adapter, vid, add, vf); } static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) { /* clear flags - except flag that indicates PF has set the MAC */ adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC; adapter->vf_data[vf].last_nack = jiffies; /* reset offloads to defaults */ igb_set_vmolr(adapter, vf, true); /* reset vlans for device */ igb_clear_vf_vfta(adapter, vf); if (adapter->vf_data[vf].pf_vlan) igb_ndo_set_vf_vlan(adapter->netdev, vf, adapter->vf_data[vf].pf_vlan, adapter->vf_data[vf].pf_qos); else igb_clear_vf_vfta(adapter, vf); /* reset multicast table array for vf */ adapter->vf_data[vf].num_vf_mc_hashes = 0; /* Flush and reset the mta with the new values */ igb_set_rx_mode(adapter->netdev); } static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) { unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; /* clear mac address as we were hotplug removed/added */ if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) eth_zero_addr(vf_mac); /* process remaining reset events */ igb_vf_reset(adapter, vf); } static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) { struct e1000_hw *hw = &adapter->hw; unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; int rar_entry = hw->mac.rar_entry_count - (vf + 1); u32 reg, msgbuf[3]; u8 *addr = (u8 *)(&msgbuf[1]); /* process all the same items cleared in a function level reset */ igb_vf_reset(adapter, vf); /* set vf mac address */ igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf); /* enable transmit and receive for vf */ reg = rd32(E1000_VFTE); wr32(E1000_VFTE, reg | (1 << vf)); reg = rd32(E1000_VFRE); wr32(E1000_VFRE, reg | (1 << vf)); adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; /* reply to reset with ack and vf mac address */ msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; memcpy(addr, vf_mac, 6); igb_write_mbx(hw, msgbuf, 3, vf); } static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) { /* * The VF MAC Address is stored in a packed array of bytes * starting at the second 32 bit word of the msg array */ unsigned char *addr = (char *)&msg[1]; int err = -1; if (is_valid_ether_addr(addr)) err = igb_set_vf_mac(adapter, vf, addr); return err; } static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) { struct e1000_hw *hw = &adapter->hw; struct vf_data_storage *vf_data = &adapter->vf_data[vf]; u32 msg = E1000_VT_MSGTYPE_NACK; /* if device isn't clear to send it shouldn't be reading either */ if (!(vf_data->flags & IGB_VF_FLAG_CTS) && time_after(jiffies, vf_data->last_nack + (2 * HZ))) { igb_write_mbx(hw, &msg, 1, vf); vf_data->last_nack = jiffies; } } static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) { struct pci_dev *pdev = adapter->pdev; u32 msgbuf[E1000_VFMAILBOX_SIZE]; struct e1000_hw *hw = &adapter->hw; struct vf_data_storage *vf_data = &adapter->vf_data[vf]; s32 retval; retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf); if (retval) { /* if receive failed revoke VF CTS stats and restart init */ dev_err(&pdev->dev, "Error receiving message from VF\n"); vf_data->flags &= ~IGB_VF_FLAG_CTS; if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) return; goto out; } /* this is a message we already processed, do nothing */ if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) return; /* * until the vf completes a reset it should not be * allowed to start any configuration. */ if (msgbuf[0] == E1000_VF_RESET) { igb_vf_reset_msg(adapter, vf); return; } if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) return; retval = -1; goto out; } switch ((msgbuf[0] & 0xFFFF)) { case E1000_VF_SET_MAC_ADDR: retval = -EINVAL; if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC)) retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); else dev_warn(&pdev->dev, "VF %d attempted to override administratively " "set MAC address\nReload the VF driver to " "resume operations\n", vf); break; case E1000_VF_SET_PROMISC: retval = igb_set_vf_promisc(adapter, msgbuf, vf); break; case E1000_VF_SET_MULTICAST: retval = igb_set_vf_multicasts(adapter, msgbuf, vf); break; case E1000_VF_SET_LPE: retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); break; case E1000_VF_SET_VLAN: retval = -1; if (vf_data->pf_vlan) dev_warn(&pdev->dev, "VF %d attempted to override administratively " "set VLAN tag\nReload the VF driver to " "resume operations\n", vf); else retval = igb_set_vf_vlan(adapter, msgbuf, vf); break; default: dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); retval = -1; break; } msgbuf[0] |= E1000_VT_MSGTYPE_CTS; out: /* notify the VF of the results of what it sent us */ if (retval) msgbuf[0] |= E1000_VT_MSGTYPE_NACK; else msgbuf[0] |= E1000_VT_MSGTYPE_ACK; igb_write_mbx(hw, msgbuf, 1, vf); } static void igb_msg_task(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 vf; for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { /* process any reset requests */ if (!igb_check_for_rst(hw, vf)) igb_vf_reset_event(adapter, vf); /* process any messages pending */ if (!igb_check_for_msg(hw, vf)) igb_rcv_msg_from_vf(adapter, vf); /* process any acks */ if (!igb_check_for_ack(hw, vf)) igb_rcv_ack_from_vf(adapter, vf); } } /** * igb_set_uta - Set unicast filter table address * @adapter: board private structure * * The unicast table address is a register array of 32-bit registers. * The table is meant to be used in a way similar to how the MTA is used * however due to certain limitations in the hardware it is necessary to * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous * enable bit to allow vlan tag stripping when promiscuous mode is enabled **/ static void igb_set_uta(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; int i; /* The UTA table only exists on 82576 hardware and newer */ if (hw->mac.type < e1000_82576) return; /* we only need to do this if VMDq is enabled */ if (!adapter->vfs_allocated_count) return; for (i = 0; i < hw->mac.uta_reg_count; i++) array_wr32(E1000_UTA, i, ~0); } /** * igb_intr_msi - Interrupt Handler * @irq: interrupt number * @data: pointer to a network interface device structure **/ static irqreturn_t igb_intr_msi(int irq, void *data) { struct igb_adapter *adapter = data; struct igb_q_vector *q_vector = adapter->q_vector[0]; struct e1000_hw *hw = &adapter->hw; /* read ICR disables interrupts using IAM */ u32 icr = rd32(E1000_ICR); igb_write_itr(q_vector); if (icr & E1000_ICR_DRSTA) schedule_work(&adapter->reset_task); if (icr & E1000_ICR_DOUTSYNC) { /* HW is reporting DMA is out of sync */ adapter->stats.doosync++; } if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { hw->mac.get_link_status = 1; if (!test_bit(__IGB_DOWN, &adapter->state)) mod_timer(&adapter->watchdog_timer, jiffies + 1); } if (icr & E1000_ICR_TS) { u32 tsicr = rd32(E1000_TSICR); if (tsicr & E1000_TSICR_TXTS) { /* acknowledge the interrupt */ wr32(E1000_TSICR, E1000_TSICR_TXTS); /* retrieve hardware timestamp */ schedule_work(&adapter->ptp_tx_work); } } napi_schedule(&q_vector->napi); return IRQ_HANDLED; } /** * igb_intr - Legacy Interrupt Handler * @irq: interrupt number * @data: pointer to a network interface device structure **/ static irqreturn_t igb_intr(int irq, void *data) { struct igb_adapter *adapter = data; struct igb_q_vector *q_vector = adapter->q_vector[0]; struct e1000_hw *hw = &adapter->hw; /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No * need for the IMC write */ u32 icr = rd32(E1000_ICR); /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is * not set, then the adapter didn't send an interrupt */ if (!(icr & E1000_ICR_INT_ASSERTED)) return IRQ_NONE; igb_write_itr(q_vector); if (icr & E1000_ICR_DRSTA) schedule_work(&adapter->reset_task); if (icr & E1000_ICR_DOUTSYNC) { /* HW is reporting DMA is out of sync */ adapter->stats.doosync++; } if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { hw->mac.get_link_status = 1; /* guard against interrupt when we're going down */ if (!test_bit(__IGB_DOWN, &adapter->state)) mod_timer(&adapter->watchdog_timer, jiffies + 1); } if (icr & E1000_ICR_TS) { u32 tsicr = rd32(E1000_TSICR); if (tsicr & E1000_TSICR_TXTS) { /* acknowledge the interrupt */ wr32(E1000_TSICR, E1000_TSICR_TXTS); /* retrieve hardware timestamp */ schedule_work(&adapter->ptp_tx_work); } } napi_schedule(&q_vector->napi); return IRQ_HANDLED; } static void igb_ring_irq_enable(struct igb_q_vector *q_vector) { struct igb_adapter *adapter = q_vector->adapter; struct e1000_hw *hw = &adapter->hw; if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { if ((adapter->num_q_vectors == 1) && !adapter->vf_data) igb_set_itr(q_vector); else igb_update_ring_itr(q_vector); } if (!test_bit(__IGB_DOWN, &adapter->state)) { if (adapter->msix_entries) wr32(E1000_EIMS, q_vector->eims_value); else igb_irq_enable(adapter); } } /** * igb_poll - NAPI Rx polling callback * @napi: napi polling structure * @budget: count of how many packets we should handle **/ static int igb_poll(struct napi_struct *napi, int budget) { struct igb_q_vector *q_vector = container_of(napi, struct igb_q_vector, napi); bool clean_complete = true; #ifdef CONFIG_IGB_DCA if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) igb_update_dca(q_vector); #endif if (q_vector->tx.ring) clean_complete = igb_clean_tx_irq(q_vector); if (q_vector->rx.ring) clean_complete &= igb_clean_rx_irq(q_vector, budget); /* If all work not completed, return budget and keep polling */ if (!clean_complete) return budget; /* If not enough Rx work done, exit the polling mode */ napi_complete(napi); igb_ring_irq_enable(q_vector); return 0; } /** * igb_clean_tx_irq - Reclaim resources after transmit completes * @q_vector: pointer to q_vector containing needed info * * returns true if ring is completely cleaned **/ static bool igb_clean_tx_irq(struct igb_q_vector *q_vector) { struct igb_adapter *adapter = q_vector->adapter; struct igb_ring *tx_ring = q_vector->tx.ring; struct igb_tx_buffer *tx_buffer; union e1000_adv_tx_desc *tx_desc; unsigned int total_bytes = 0, total_packets = 0; unsigned int budget = q_vector->tx.work_limit; unsigned int i = tx_ring->next_to_clean; if (test_bit(__IGB_DOWN, &adapter->state)) return true; tx_buffer = &tx_ring->tx_buffer_info[i]; tx_desc = IGB_TX_DESC(tx_ring, i); i -= tx_ring->count; do { union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; /* if next_to_watch is not set then there is no work pending */ if (!eop_desc) break; /* prevent any other reads prior to eop_desc */ read_barrier_depends(); /* if DD is not set pending work has not been completed */ if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) break; /* clear next_to_watch to prevent false hangs */ tx_buffer->next_to_watch = NULL; /* update the statistics for this packet */ total_bytes += tx_buffer->bytecount; total_packets += tx_buffer->gso_segs; /* free the skb */ dev_kfree_skb_any(tx_buffer->skb); /* unmap skb header data */ dma_unmap_single(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); /* clear tx_buffer data */ tx_buffer->skb = NULL; dma_unmap_len_set(tx_buffer, len, 0); /* clear last DMA location and unmap remaining buffers */ while (tx_desc != eop_desc) { tx_buffer++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buffer = tx_ring->tx_buffer_info; tx_desc = IGB_TX_DESC(tx_ring, 0); } /* unmap any remaining paged data */ if (dma_unmap_len(tx_buffer, len)) { dma_unmap_page(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buffer, len, 0); } } /* move us one more past the eop_desc for start of next pkt */ tx_buffer++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buffer = tx_ring->tx_buffer_info; tx_desc = IGB_TX_DESC(tx_ring, 0); } /* issue prefetch for next Tx descriptor */ prefetch(tx_desc); /* update budget accounting */ budget--; } while (likely(budget)); netdev_tx_completed_queue(txring_txq(tx_ring), total_packets, total_bytes); i += tx_ring->count; tx_ring->next_to_clean = i; u64_stats_update_begin(&tx_ring->tx_syncp); tx_ring->tx_stats.bytes += total_bytes; tx_ring->tx_stats.packets += total_packets; u64_stats_update_end(&tx_ring->tx_syncp); q_vector->tx.total_bytes += total_bytes; q_vector->tx.total_packets += total_packets; if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { struct e1000_hw *hw = &adapter->hw; /* Detect a transmit hang in hardware, this serializes the * check with the clearing of time_stamp and movement of i */ clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); if (tx_buffer->next_to_watch && time_after(jiffies, tx_buffer->time_stamp + (adapter->tx_timeout_factor * HZ)) && !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { /* detected Tx unit hang */ dev_err(tx_ring->dev, "Detected Tx Unit Hang\n" " Tx Queue <%d>\n" " TDH <%x>\n" " TDT <%x>\n" " next_to_use <%x>\n" " next_to_clean <%x>\n" "buffer_info[next_to_clean]\n" " time_stamp <%lx>\n" " next_to_watch <%p>\n" " jiffies <%lx>\n" " desc.status <%x>\n", tx_ring->queue_index, rd32(E1000_TDH(tx_ring->reg_idx)), readl(tx_ring->tail), tx_ring->next_to_use, tx_ring->next_to_clean, tx_buffer->time_stamp, tx_buffer->next_to_watch, jiffies, tx_buffer->next_to_watch->wb.status); netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); /* we are about to reset, no point in enabling stuff */ return true; } } #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { /* Make sure that anybody stopping the queue after this * sees the new next_to_clean. */ smp_mb(); if (__netif_subqueue_stopped(tx_ring->netdev, tx_ring->queue_index) && !(test_bit(__IGB_DOWN, &adapter->state))) { netif_wake_subqueue(tx_ring->netdev, tx_ring->queue_index); u64_stats_update_begin(&tx_ring->tx_syncp); tx_ring->tx_stats.restart_queue++; u64_stats_update_end(&tx_ring->tx_syncp); } } return !!budget; } /** * igb_reuse_rx_page - page flip buffer and store it back on the ring * @rx_ring: rx descriptor ring to store buffers on * @old_buff: donor buffer to have page reused * * Synchronizes page for reuse by the adapter **/ static void igb_reuse_rx_page(struct igb_ring *rx_ring, struct igb_rx_buffer *old_buff) { struct igb_rx_buffer *new_buff; u16 nta = rx_ring->next_to_alloc; new_buff = &rx_ring->rx_buffer_info[nta]; /* update, and store next to alloc */ nta++; rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; /* transfer page from old buffer to new buffer */ memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer)); /* sync the buffer for use by the device */ dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, old_buff->page_offset, IGB_RX_BUFSZ, DMA_FROM_DEVICE); } static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer, struct page *page, unsigned int truesize) { /* avoid re-using remote pages */ if (unlikely(page_to_nid(page) != numa_node_id())) return false; #if (PAGE_SIZE < 8192) /* if we are only owner of page we can reuse it */ if (unlikely(page_count(page) != 1)) return false; /* flip page offset to other buffer */ rx_buffer->page_offset ^= IGB_RX_BUFSZ; /* since we are the only owner of the page and we need to * increment it, just set the value to 2 in order to avoid * an unnecessary locked operation */ atomic_set(&page->_count, 2); #else /* move offset up to the next cache line */ rx_buffer->page_offset += truesize; if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ)) return false; /* bump ref count on page before it is given to the stack */ get_page(page); #endif return true; } /** * igb_add_rx_frag - Add contents of Rx buffer to sk_buff * @rx_ring: rx descriptor ring to transact packets on * @rx_buffer: buffer containing page to add * @rx_desc: descriptor containing length of buffer written by hardware * @skb: sk_buff to place the data into * * This function will add the data contained in rx_buffer->page to the skb. * This is done either through a direct copy if the data in the buffer is * less than the skb header size, otherwise it will just attach the page as * a frag to the skb. * * The function will then update the page offset if necessary and return * true if the buffer can be reused by the adapter. **/ static bool igb_add_rx_frag(struct igb_ring *rx_ring, struct igb_rx_buffer *rx_buffer, union e1000_adv_rx_desc *rx_desc, struct sk_buff *skb) { struct page *page = rx_buffer->page; unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); #if (PAGE_SIZE < 8192) unsigned int truesize = IGB_RX_BUFSZ; #else unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); #endif if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) { unsigned char *va = page_address(page) + rx_buffer->page_offset; if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); va += IGB_TS_HDR_LEN; size -= IGB_TS_HDR_LEN; } memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); /* we can reuse buffer as-is, just make sure it is local */ if (likely(page_to_nid(page) == numa_node_id())) return true; /* this page cannot be reused so discard it */ put_page(page); return false; } skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, rx_buffer->page_offset, size, truesize); return igb_can_reuse_rx_page(rx_buffer, page, truesize); } static struct sk_buff *igb_build_rx_buffer(struct igb_ring *rx_ring, union e1000_adv_rx_desc *rx_desc) { struct igb_rx_buffer *rx_buffer; struct sk_buff *skb; struct page *page; void *page_addr; unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); #if (PAGE_SIZE < 8192) unsigned int truesize = IGB_RX_BUFSZ; #else unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + SKB_DATA_ALIGN(NET_SKB_PAD + NET_IP_ALIGN + size); #endif /* If we spanned a buffer we have a huge mess so test for it */ BUG_ON(unlikely(!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))); rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; page = rx_buffer->page; prefetchw(page); page_addr = page_address(page) + rx_buffer->page_offset; /* prefetch first cache line of first page */ prefetch(page_addr + NET_SKB_PAD + NET_IP_ALIGN); #if L1_CACHE_BYTES < 128 prefetch(page_addr + L1_CACHE_BYTES + NET_SKB_PAD + NET_IP_ALIGN); #endif /* build an skb to around the page buffer */ skb = build_skb(page_addr, truesize); if (unlikely(!skb)) { rx_ring->rx_stats.alloc_failed++; return NULL; } /* we are reusing so sync this buffer for CPU use */ dma_sync_single_range_for_cpu(rx_ring->dev, rx_buffer->dma, rx_buffer->page_offset, IGB_RX_BUFSZ, DMA_FROM_DEVICE); /* update pointers within the skb to store the data */ skb_reserve(skb, NET_IP_ALIGN + NET_SKB_PAD); __skb_put(skb, size); /* pull timestamp out of packet data */ if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb); __skb_pull(skb, IGB_TS_HDR_LEN); } if (igb_can_reuse_rx_page(rx_buffer, page, truesize)) { /* hand second half of page back to the ring */ igb_reuse_rx_page(rx_ring, rx_buffer); } else { /* we are not reusing the buffer so unmap it */ dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE, DMA_FROM_DEVICE); } /* clear contents of buffer_info */ rx_buffer->dma = 0; rx_buffer->page = NULL; return skb; } static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring, union e1000_adv_rx_desc *rx_desc, struct sk_buff *skb) { struct igb_rx_buffer *rx_buffer; struct page *page; rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; page = rx_buffer->page; prefetchw(page); if (likely(!skb)) { void *page_addr = page_address(page) + rx_buffer->page_offset; /* prefetch first cache line of first page */ prefetch(page_addr); #if L1_CACHE_BYTES < 128 prefetch(page_addr + L1_CACHE_BYTES); #endif /* allocate a skb to store the frags */ skb = netdev_alloc_skb_ip_align(rx_ring->netdev, IGB_RX_HDR_LEN); if (unlikely(!skb)) { rx_ring->rx_stats.alloc_failed++; return NULL; } /* * we will be copying header into skb->data in * pskb_may_pull so it is in our interest to prefetch * it now to avoid a possible cache miss */ prefetchw(skb->data); } /* we are reusing so sync this buffer for CPU use */ dma_sync_single_range_for_cpu(rx_ring->dev, rx_buffer->dma, rx_buffer->page_offset, IGB_RX_BUFSZ, DMA_FROM_DEVICE); /* pull page into skb */ if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) { /* hand second half of page back to the ring */ igb_reuse_rx_page(rx_ring, rx_buffer); } else { /* we are not reusing the buffer so unmap it */ dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE, DMA_FROM_DEVICE); } /* clear contents of rx_buffer */ rx_buffer->page = NULL; return skb; } static inline void igb_rx_checksum(struct igb_ring *ring, union e1000_adv_rx_desc *rx_desc, struct sk_buff *skb) { skb_checksum_none_assert(skb); /* Ignore Checksum bit is set */ if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM)) return; /* Rx checksum disabled via ethtool */ if (!(ring->netdev->features & NETIF_F_RXCSUM)) return; /* TCP/UDP checksum error bit is set */ if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { /* * work around errata with sctp packets where the TCPE aka * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) * packets, (aka let the stack check the crc32c) */ if (!((skb->len == 60) && test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { u64_stats_update_begin(&ring->rx_syncp); ring->rx_stats.csum_err++; u64_stats_update_end(&ring->rx_syncp); } /* let the stack verify checksum errors */ return; } /* It must be a TCP or UDP packet with a valid checksum */ if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) skb->ip_summed = CHECKSUM_UNNECESSARY; dev_dbg(ring->dev, "cksum success: bits %08X\n", le32_to_cpu(rx_desc->wb.upper.status_error)); } static inline void igb_rx_hash(struct igb_ring *ring, union e1000_adv_rx_desc *rx_desc, struct sk_buff *skb) { if (ring->netdev->features & NETIF_F_RXHASH) skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss); } /** * igb_is_non_eop - process handling of non-EOP buffers * @rx_ring: Rx ring being processed * @rx_desc: Rx descriptor for current buffer * @skb: current socket buffer containing buffer in progress * * This function updates next to clean. If the buffer is an EOP buffer * this function exits returning false, otherwise it will place the * sk_buff in the next buffer to be chained and return true indicating * that this is in fact a non-EOP buffer. **/ static bool igb_is_non_eop(struct igb_ring *rx_ring, union e1000_adv_rx_desc *rx_desc) { u32 ntc = rx_ring->next_to_clean + 1; /* fetch, update, and store next to clean */ ntc = (ntc < rx_ring->count) ? ntc : 0; rx_ring->next_to_clean = ntc; prefetch(IGB_RX_DESC(rx_ring, ntc)); if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))) return false; return true; } /** * igb_get_headlen - determine size of header for LRO/GRO * @data: pointer to the start of the headers * @max_len: total length of section to find headers in * * This function is meant to determine the length of headers that will * be recognized by hardware for LRO, and GRO offloads. The main * motivation of doing this is to only perform one pull for IPv4 TCP * packets so that we can do basic things like calculating the gso_size * based on the average data per packet. **/ static unsigned int igb_get_headlen(unsigned char *data, unsigned int max_len) { union { unsigned char *network; /* l2 headers */ struct ethhdr *eth; struct vlan_hdr *vlan; /* l3 headers */ struct iphdr *ipv4; struct ipv6hdr *ipv6; } hdr; __be16 protocol; u8 nexthdr = 0; /* default to not TCP */ u8 hlen; /* this should never happen, but better safe than sorry */ if (max_len < ETH_HLEN) return max_len; /* initialize network frame pointer */ hdr.network = data; /* set first protocol and move network header forward */ protocol = hdr.eth->h_proto; hdr.network += ETH_HLEN; /* handle any vlan tag if present */ if (protocol == __constant_htons(ETH_P_8021Q)) { if ((hdr.network - data) > (max_len - VLAN_HLEN)) return max_len; protocol = hdr.vlan->h_vlan_encapsulated_proto; hdr.network += VLAN_HLEN; } /* handle L3 protocols */ if (protocol == __constant_htons(ETH_P_IP)) { if ((hdr.network - data) > (max_len - sizeof(struct iphdr))) return max_len; /* access ihl as a u8 to avoid unaligned access on ia64 */ hlen = (hdr.network[0] & 0x0F) << 2; /* verify hlen meets minimum size requirements */ if (hlen < sizeof(struct iphdr)) return hdr.network - data; /* record next protocol if header is present */ if (!hdr.ipv4->frag_off) nexthdr = hdr.ipv4->protocol; } else if (protocol == __constant_htons(ETH_P_IPV6)) { if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr))) return max_len; /* record next protocol */ nexthdr = hdr.ipv6->nexthdr; hlen = sizeof(struct ipv6hdr); } else { return hdr.network - data; } /* relocate pointer to start of L4 header */ hdr.network += hlen; /* finally sort out TCP */ if (nexthdr == IPPROTO_TCP) { if ((hdr.network - data) > (max_len - sizeof(struct tcphdr))) return max_len; /* access doff as a u8 to avoid unaligned access on ia64 */ hlen = (hdr.network[12] & 0xF0) >> 2; /* verify hlen meets minimum size requirements */ if (hlen < sizeof(struct tcphdr)) return hdr.network - data; hdr.network += hlen; } else if (nexthdr == IPPROTO_UDP) { if ((hdr.network - data) > (max_len - sizeof(struct udphdr))) return max_len; hdr.network += sizeof(struct udphdr); } /* * If everything has gone correctly hdr.network should be the * data section of the packet and will be the end of the header. * If not then it probably represents the end of the last recognized * header. */ if ((hdr.network - data) < max_len) return hdr.network - data; else return max_len; } /** * igb_pull_tail - igb specific version of skb_pull_tail * @rx_ring: rx descriptor ring packet is being transacted on * @rx_desc: pointer to the EOP Rx descriptor * @skb: pointer to current skb being adjusted * * This function is an igb specific version of __pskb_pull_tail. The * main difference between this version and the original function is that * this function can make several assumptions about the state of things * that allow for significant optimizations versus the standard function. * As a result we can do things like drop a frag and maintain an accurate * truesize for the skb. */ static void igb_pull_tail(struct igb_ring *rx_ring, union e1000_adv_rx_desc *rx_desc, struct sk_buff *skb) { struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; unsigned char *va; unsigned int pull_len; /* * it is valid to use page_address instead of kmap since we are * working with pages allocated out of the lomem pool per * alloc_page(GFP_ATOMIC) */ va = skb_frag_address(frag); if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { /* retrieve timestamp from buffer */ igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); /* update pointers to remove timestamp header */ skb_frag_size_sub(frag, IGB_TS_HDR_LEN); frag->page_offset += IGB_TS_HDR_LEN; skb->data_len -= IGB_TS_HDR_LEN; skb->len -= IGB_TS_HDR_LEN; /* move va to start of packet data */ va += IGB_TS_HDR_LEN; } /* * we need the header to contain the greater of either ETH_HLEN or * 60 bytes if the skb->len is less than 60 for skb_pad. */ pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN); /* align pull length to size of long to optimize memcpy performance */ skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); /* update all of the pointers */ skb_frag_size_sub(frag, pull_len); frag->page_offset += pull_len; skb->data_len -= pull_len; skb->tail += pull_len; } /** * igb_cleanup_headers - Correct corrupted or empty headers * @rx_ring: rx descriptor ring packet is being transacted on * @rx_desc: pointer to the EOP Rx descriptor * @skb: pointer to current skb being fixed * * Address the case where we are pulling data in on pages only * and as such no data is present in the skb header. * * In addition if skb is not at least 60 bytes we need to pad it so that * it is large enough to qualify as a valid Ethernet frame. * * Returns true if an error was encountered and skb was freed. **/ static bool igb_cleanup_headers(struct igb_ring *rx_ring, union e1000_adv_rx_desc *rx_desc, struct sk_buff *skb) { if (unlikely((igb_test_staterr(rx_desc, E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) { struct net_device *netdev = rx_ring->netdev; if (!(netdev->features & NETIF_F_RXALL)) { dev_kfree_skb_any(skb); return true; } } /* place header in linear portion of buffer */ if (skb_is_nonlinear(skb)) igb_pull_tail(rx_ring, rx_desc, skb); /* if skb_pad returns an error the skb was freed */ if (unlikely(skb->len < 60)) { int pad_len = 60 - skb->len; if (skb_pad(skb, pad_len)) return true; __skb_put(skb, pad_len); } return false; } /** * igb_process_skb_fields - Populate skb header fields from Rx descriptor * @rx_ring: rx descriptor ring packet is being transacted on * @rx_desc: pointer to the EOP Rx descriptor * @skb: pointer to current skb being populated * * This function checks the ring, descriptor, and packet information in * order to populate the hash, checksum, VLAN, timestamp, protocol, and * other fields within the skb. **/ static void igb_process_skb_fields(struct igb_ring *rx_ring, union e1000_adv_rx_desc *rx_desc, struct sk_buff *skb) { struct net_device *dev = rx_ring->netdev; igb_rx_hash(rx_ring, rx_desc, skb); igb_rx_checksum(rx_ring, rx_desc, skb); igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb); if ((dev->features & NETIF_F_HW_VLAN_RX) && igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) { u16 vid; if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) && test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) vid = be16_to_cpu(rx_desc->wb.upper.vlan); else vid = le16_to_cpu(rx_desc->wb.upper.vlan); __vlan_hwaccel_put_tag(skb, vid); } skb_record_rx_queue(skb, rx_ring->queue_index); skb->protocol = eth_type_trans(skb, rx_ring->netdev); } static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget) { struct igb_ring *rx_ring = q_vector->rx.ring; struct sk_buff *skb = rx_ring->skb; unsigned int total_bytes = 0, total_packets = 0; u16 cleaned_count = igb_desc_unused(rx_ring); do { union e1000_adv_rx_desc *rx_desc; /* return some buffers to hardware, one at a time is too slow */ if (cleaned_count >= IGB_RX_BUFFER_WRITE) { igb_alloc_rx_buffers(rx_ring, cleaned_count); cleaned_count = 0; } rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean); if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) break; /* This memory barrier is needed to keep us from reading * any other fields out of the rx_desc until we know the * RXD_STAT_DD bit is set */ rmb(); /* retrieve a buffer from the ring */ if (ring_uses_build_skb(rx_ring)) skb = igb_build_rx_buffer(rx_ring, rx_desc); else skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb); /* exit if we failed to retrieve a buffer */ if (!skb) break; cleaned_count++; /* fetch next buffer in frame if non-eop */ if (igb_is_non_eop(rx_ring, rx_desc)) continue; /* verify the packet layout is correct */ if (igb_cleanup_headers(rx_ring, rx_desc, skb)) { skb = NULL; continue; } /* probably a little skewed due to removing CRC */ total_bytes += skb->len; /* populate checksum, timestamp, VLAN, and protocol */ igb_process_skb_fields(rx_ring, rx_desc, skb); napi_gro_receive(&q_vector->napi, skb); /* reset skb pointer */ skb = NULL; /* update budget accounting */ total_packets++; } while (likely(total_packets < budget)); /* place incomplete frames back on ring for completion */ rx_ring->skb = skb; u64_stats_update_begin(&rx_ring->rx_syncp); rx_ring->rx_stats.packets += total_packets; rx_ring->rx_stats.bytes += total_bytes; u64_stats_update_end(&rx_ring->rx_syncp); q_vector->rx.total_packets += total_packets; q_vector->rx.total_bytes += total_bytes; if (cleaned_count) igb_alloc_rx_buffers(rx_ring, cleaned_count); return (total_packets < budget); } static bool igb_alloc_mapped_page(struct igb_ring *rx_ring, struct igb_rx_buffer *bi) { struct page *page = bi->page; dma_addr_t dma; /* since we are recycling buffers we should seldom need to alloc */ if (likely(page)) return true; /* alloc new page for storage */ page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL); if (unlikely(!page)) { rx_ring->rx_stats.alloc_failed++; return false; } /* map page for use */ dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); /* * if mapping failed free memory back to system since * there isn't much point in holding memory we can't use */ if (dma_mapping_error(rx_ring->dev, dma)) { __free_page(page); rx_ring->rx_stats.alloc_failed++; return false; } bi->dma = dma; bi->page = page; bi->page_offset = 0; return true; } static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring) { if (ring_uses_build_skb(rx_ring)) return NET_SKB_PAD + NET_IP_ALIGN; else return 0; } /** * igb_alloc_rx_buffers - Replace used receive buffers; packet split * @adapter: address of board private structure **/ void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count) { union e1000_adv_rx_desc *rx_desc; struct igb_rx_buffer *bi; u16 i = rx_ring->next_to_use; /* nothing to do */ if (!cleaned_count) return; rx_desc = IGB_RX_DESC(rx_ring, i); bi = &rx_ring->rx_buffer_info[i]; i -= rx_ring->count; do { if (!igb_alloc_mapped_page(rx_ring, bi)) break; /* * Refresh the desc even if buffer_addrs didn't change * because each write-back erases this info. */ rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset + igb_rx_offset(rx_ring)); rx_desc++; bi++; i++; if (unlikely(!i)) { rx_desc = IGB_RX_DESC(rx_ring, 0); bi = rx_ring->rx_buffer_info; i -= rx_ring->count; } /* clear the hdr_addr for the next_to_use descriptor */ rx_desc->read.hdr_addr = 0; cleaned_count--; } while (cleaned_count); i += rx_ring->count; if (rx_ring->next_to_use != i) { /* record the next descriptor to use */ rx_ring->next_to_use = i; /* update next to alloc since we have filled the ring */ rx_ring->next_to_alloc = i; /* * Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); writel(i, rx_ring->tail); } } /** * igb_mii_ioctl - * @netdev: * @ifreq: * @cmd: **/ static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct igb_adapter *adapter = netdev_priv(netdev); struct mii_ioctl_data *data = if_mii(ifr); if (adapter->hw.phy.media_type != e1000_media_type_copper) return -EOPNOTSUPP; switch (cmd) { case SIOCGMIIPHY: data->phy_id = adapter->hw.phy.addr; break; case SIOCGMIIREG: if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, &data->val_out)) return -EIO; break; case SIOCSMIIREG: default: return -EOPNOTSUPP; } return 0; } /** * igb_ioctl - * @netdev: * @ifreq: * @cmd: **/ static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: return igb_mii_ioctl(netdev, ifr, cmd); case SIOCSHWTSTAMP: return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd); default: return -EOPNOTSUPP; } } s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) { struct igb_adapter *adapter = hw->back; if (pcie_capability_read_word(adapter->pdev, reg, value)) return -E1000_ERR_CONFIG; return 0; } s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) { struct igb_adapter *adapter = hw->back; if (pcie_capability_write_word(adapter->pdev, reg, *value)) return -E1000_ERR_CONFIG; return 0; } static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 ctrl, rctl; bool enable = !!(features & NETIF_F_HW_VLAN_RX); if (enable) { /* enable VLAN tag insert/strip */ ctrl = rd32(E1000_CTRL); ctrl |= E1000_CTRL_VME; wr32(E1000_CTRL, ctrl); /* Disable CFI check */ rctl = rd32(E1000_RCTL); rctl &= ~E1000_RCTL_CFIEN; wr32(E1000_RCTL, rctl); } else { /* disable VLAN tag insert/strip */ ctrl = rd32(E1000_CTRL); ctrl &= ~E1000_CTRL_VME; wr32(E1000_CTRL, ctrl); } igb_rlpml_set(adapter); } static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; int pf_id = adapter->vfs_allocated_count; /* attempt to add filter to vlvf array */ igb_vlvf_set(adapter, vid, true, pf_id); /* add the filter since PF can receive vlans w/o entry in vlvf */ igb_vfta_set(hw, vid, true); set_bit(vid, adapter->active_vlans); return 0; } static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; int pf_id = adapter->vfs_allocated_count; s32 err; /* remove vlan from VLVF table array */ err = igb_vlvf_set(adapter, vid, false, pf_id); /* if vid was not present in VLVF just remove it from table */ if (err) igb_vfta_set(hw, vid, false); clear_bit(vid, adapter->active_vlans); return 0; } static void igb_restore_vlan(struct igb_adapter *adapter) { u16 vid; igb_vlan_mode(adapter->netdev, adapter->netdev->features); for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) igb_vlan_rx_add_vid(adapter->netdev, vid); } int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) { struct pci_dev *pdev = adapter->pdev; struct e1000_mac_info *mac = &adapter->hw.mac; mac->autoneg = 0; /* Make sure dplx is at most 1 bit and lsb of speed is not set * for the switch() below to work */ if ((spd & 1) || (dplx & ~1)) goto err_inval; /* Fiber NIC's only allow 1000 Gbps Full duplex */ if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) && spd != SPEED_1000 && dplx != DUPLEX_FULL) goto err_inval; switch (spd + dplx) { case SPEED_10 + DUPLEX_HALF: mac->forced_speed_duplex = ADVERTISE_10_HALF; break; case SPEED_10 + DUPLEX_FULL: mac->forced_speed_duplex = ADVERTISE_10_FULL; break; case SPEED_100 + DUPLEX_HALF: mac->forced_speed_duplex = ADVERTISE_100_HALF; break; case SPEED_100 + DUPLEX_FULL: mac->forced_speed_duplex = ADVERTISE_100_FULL; break; case SPEED_1000 + DUPLEX_FULL: mac->autoneg = 1; adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; break; case SPEED_1000 + DUPLEX_HALF: /* not supported */ default: goto err_inval; } /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ adapter->hw.phy.mdix = AUTO_ALL_MODES; return 0; err_inval: dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); return -EINVAL; } static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake, bool runtime) { struct net_device *netdev = pci_get_drvdata(pdev); struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 ctrl, rctl, status; u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; #ifdef CONFIG_PM int retval = 0; #endif netif_device_detach(netdev); if (netif_running(netdev)) __igb_close(netdev, true); igb_clear_interrupt_scheme(adapter); #ifdef CONFIG_PM retval = pci_save_state(pdev); if (retval) return retval; #endif status = rd32(E1000_STATUS); if (status & E1000_STATUS_LU) wufc &= ~E1000_WUFC_LNKC; if (wufc) { igb_setup_rctl(adapter); igb_set_rx_mode(netdev); /* turn on all-multi mode if wake on multicast is enabled */ if (wufc & E1000_WUFC_MC) { rctl = rd32(E1000_RCTL); rctl |= E1000_RCTL_MPE; wr32(E1000_RCTL, rctl); } ctrl = rd32(E1000_CTRL); /* advertise wake from D3Cold */ #define E1000_CTRL_ADVD3WUC 0x00100000 /* phy power management enable */ #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 ctrl |= E1000_CTRL_ADVD3WUC; wr32(E1000_CTRL, ctrl); /* Allow time for pending master requests to run */ igb_disable_pcie_master(hw); wr32(E1000_WUC, E1000_WUC_PME_EN); wr32(E1000_WUFC, wufc); } else { wr32(E1000_WUC, 0); wr32(E1000_WUFC, 0); } *enable_wake = wufc || adapter->en_mng_pt; if (!*enable_wake) igb_power_down_link(adapter); else igb_power_up_link(adapter); /* Release control of h/w to f/w. If f/w is AMT enabled, this * would have already happened in close and is redundant. */ igb_release_hw_control(adapter); pci_disable_device(pdev); return 0; } #ifdef CONFIG_PM #ifdef CONFIG_PM_SLEEP static int igb_suspend(struct device *dev) { int retval; bool wake; struct pci_dev *pdev = to_pci_dev(dev); retval = __igb_shutdown(pdev, &wake, 0); if (retval) return retval; if (wake) { pci_prepare_to_sleep(pdev); } else { pci_wake_from_d3(pdev, false); pci_set_power_state(pdev, PCI_D3hot); } return 0; } #endif /* CONFIG_PM_SLEEP */ static int igb_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct net_device *netdev = pci_get_drvdata(pdev); struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; u32 err; pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); pci_save_state(pdev); err = pci_enable_device_mem(pdev); if (err) { dev_err(&pdev->dev, "igb: Cannot enable PCI device from suspend\n"); return err; } pci_set_master(pdev); pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); if (igb_init_interrupt_scheme(adapter, true)) { dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); return -ENOMEM; } igb_reset(adapter); /* let the f/w know that the h/w is now under the control of the * driver. */ igb_get_hw_control(adapter); wr32(E1000_WUS, ~0); if (netdev->flags & IFF_UP) { rtnl_lock(); err = __igb_open(netdev, true); rtnl_unlock(); if (err) return err; } netif_device_attach(netdev); return 0; } #ifdef CONFIG_PM_RUNTIME static int igb_runtime_idle(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct net_device *netdev = pci_get_drvdata(pdev); struct igb_adapter *adapter = netdev_priv(netdev); if (!igb_has_link(adapter)) pm_schedule_suspend(dev, MSEC_PER_SEC * 5); return -EBUSY; } static int igb_runtime_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); int retval; bool wake; retval = __igb_shutdown(pdev, &wake, 1); if (retval) return retval; if (wake) { pci_prepare_to_sleep(pdev); } else { pci_wake_from_d3(pdev, false); pci_set_power_state(pdev, PCI_D3hot); } return 0; } static int igb_runtime_resume(struct device *dev) { return igb_resume(dev); } #endif /* CONFIG_PM_RUNTIME */ #endif static void igb_shutdown(struct pci_dev *pdev) { bool wake; __igb_shutdown(pdev, &wake, 0); if (system_state == SYSTEM_POWER_OFF) { pci_wake_from_d3(pdev, wake); pci_set_power_state(pdev, PCI_D3hot); } } #ifdef CONFIG_PCI_IOV static int igb_sriov_reinit(struct pci_dev *dev) { struct net_device *netdev = pci_get_drvdata(dev); struct igb_adapter *adapter = netdev_priv(netdev); struct pci_dev *pdev = adapter->pdev; rtnl_lock(); if (netif_running(netdev)) igb_close(netdev); igb_clear_interrupt_scheme(adapter); igb_init_queue_configuration(adapter); if (igb_init_interrupt_scheme(adapter, true)) { dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); return -ENOMEM; } if (netif_running(netdev)) igb_open(netdev); rtnl_unlock(); return 0; } static int igb_pci_disable_sriov(struct pci_dev *dev) { int err = igb_disable_sriov(dev); if (!err) err = igb_sriov_reinit(dev); return err; } static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs) { int err = igb_enable_sriov(dev, num_vfs); if (err) goto out; err = igb_sriov_reinit(dev); if (!err) return num_vfs; out: return err; } #endif static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs) { #ifdef CONFIG_PCI_IOV if (num_vfs == 0) return igb_pci_disable_sriov(dev); else return igb_pci_enable_sriov(dev, num_vfs); #endif return 0; } #ifdef CONFIG_NET_POLL_CONTROLLER /* * Polling 'interrupt' - used by things like netconsole to send skbs * without having to re-enable interrupts. It's not called while * the interrupt routine is executing. */ static void igb_netpoll(struct net_device *netdev) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; struct igb_q_vector *q_vector; int i; for (i = 0; i < adapter->num_q_vectors; i++) { q_vector = adapter->q_vector[i]; if (adapter->msix_entries) wr32(E1000_EIMC, q_vector->eims_value); else igb_irq_disable(adapter); napi_schedule(&q_vector->napi); } } #endif /* CONFIG_NET_POLL_CONTROLLER */ /** * igb_io_error_detected - called when PCI error is detected * @pdev: Pointer to PCI device * @state: The current pci connection state * * This function is called after a PCI bus error affecting * this device has been detected. */ static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct igb_adapter *adapter = netdev_priv(netdev); netif_device_detach(netdev); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; if (netif_running(netdev)) igb_down(adapter); pci_disable_device(pdev); /* Request a slot slot reset. */ return PCI_ERS_RESULT_NEED_RESET; } /** * igb_io_slot_reset - called after the pci bus has been reset. * @pdev: Pointer to PCI device * * Restart the card from scratch, as if from a cold-boot. Implementation * resembles the first-half of the igb_resume routine. */ static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; pci_ers_result_t result; int err; if (pci_enable_device_mem(pdev)) { dev_err(&pdev->dev, "Cannot re-enable PCI device after reset.\n"); result = PCI_ERS_RESULT_DISCONNECT; } else { pci_set_master(pdev); pci_restore_state(pdev); pci_save_state(pdev); pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); igb_reset(adapter); wr32(E1000_WUS, ~0); result = PCI_ERS_RESULT_RECOVERED; } err = pci_cleanup_aer_uncorrect_error_status(pdev); if (err) { dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status " "failed 0x%0x\n", err); /* non-fatal, continue */ } return result; } /** * igb_io_resume - called when traffic can start flowing again. * @pdev: Pointer to PCI device * * This callback is called when the error recovery driver tells us that * its OK to resume normal operation. Implementation resembles the * second-half of the igb_resume routine. */ static void igb_io_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct igb_adapter *adapter = netdev_priv(netdev); if (netif_running(netdev)) { if (igb_up(adapter)) { dev_err(&pdev->dev, "igb_up failed after reset\n"); return; } } netif_device_attach(netdev); /* let the f/w know that the h/w is now under the control of the * driver. */ igb_get_hw_control(adapter); } static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index, u8 qsel) { u32 rar_low, rar_high; struct e1000_hw *hw = &adapter->hw; /* HW expects these in little endian so we reverse the byte order * from network order (big endian) to little endian */ rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); /* Indicate to hardware the Address is Valid. */ rar_high |= E1000_RAH_AV; if (hw->mac.type == e1000_82575) rar_high |= E1000_RAH_POOL_1 * qsel; else rar_high |= E1000_RAH_POOL_1 << qsel; wr32(E1000_RAL(index), rar_low); wrfl(); wr32(E1000_RAH(index), rar_high); wrfl(); } static int igb_set_vf_mac(struct igb_adapter *adapter, int vf, unsigned char *mac_addr) { struct e1000_hw *hw = &adapter->hw; /* VF MAC addresses start at end of receive addresses and moves * torwards the first, as a result a collision should not be possible */ int rar_entry = hw->mac.rar_entry_count - (vf + 1); memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN); igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf); return 0; } static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) { struct igb_adapter *adapter = netdev_priv(netdev); if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count)) return -EINVAL; adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf); dev_info(&adapter->pdev->dev, "Reload the VF driver to make this" " change effective."); if (test_bit(__IGB_DOWN, &adapter->state)) { dev_warn(&adapter->pdev->dev, "The VF MAC address has been set," " but the PF device is not up.\n"); dev_warn(&adapter->pdev->dev, "Bring the PF device up before" " attempting to use the VF device.\n"); } return igb_set_vf_mac(adapter, vf, mac); } static int igb_link_mbps(int internal_link_speed) { switch (internal_link_speed) { case SPEED_100: return 100; case SPEED_1000: return 1000; default: return 0; } } static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, int link_speed) { int rf_dec, rf_int; u32 bcnrc_val; if (tx_rate != 0) { /* Calculate the rate factor values to set */ rf_int = link_speed / tx_rate; rf_dec = (link_speed - (rf_int * tx_rate)); rf_dec = (rf_dec * (1<vf_rate_link_speed == 0) || (adapter->hw.mac.type != e1000_82576)) return; actual_link_speed = igb_link_mbps(adapter->link_speed); if (actual_link_speed != adapter->vf_rate_link_speed) { reset_rate = true; adapter->vf_rate_link_speed = 0; dev_info(&adapter->pdev->dev, "Link speed has been changed. VF Transmit " "rate is disabled\n"); } for (i = 0; i < adapter->vfs_allocated_count; i++) { if (reset_rate) adapter->vf_data[i].tx_rate = 0; igb_set_vf_rate_limit(&adapter->hw, i, adapter->vf_data[i].tx_rate, actual_link_speed); } } static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate) { struct igb_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; int actual_link_speed; if (hw->mac.type != e1000_82576) return -EOPNOTSUPP; actual_link_speed = igb_link_mbps(adapter->link_speed); if ((vf >= adapter->vfs_allocated_count) || (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || (tx_rate < 0) || (tx_rate > actual_link_speed)) return -EINVAL; adapter->vf_rate_link_speed = actual_link_speed; adapter->vf_data[vf].tx_rate = (u16)tx_rate; igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed); return 0; } static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, struct ifla_vf_info *ivi) { struct igb_adapter *adapter = netdev_priv(netdev); if (vf >= adapter->vfs_allocated_count) return -EINVAL; ivi->vf = vf; memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); ivi->tx_rate = adapter->vf_data[vf].tx_rate; ivi->vlan = adapter->vf_data[vf].pf_vlan; ivi->qos = adapter->vf_data[vf].pf_qos; return 0; } static void igb_vmm_control(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 reg; switch (hw->mac.type) { case e1000_82575: case e1000_i210: case e1000_i211: default: /* replication is not supported for 82575 */ return; case e1000_82576: /* notify HW that the MAC is adding vlan tags */ reg = rd32(E1000_DTXCTL); reg |= E1000_DTXCTL_VLAN_ADDED; wr32(E1000_DTXCTL, reg); case e1000_82580: /* enable replication vlan tag stripping */ reg = rd32(E1000_RPLOLR); reg |= E1000_RPLOLR_STRVLAN; wr32(E1000_RPLOLR, reg); case e1000_i350: /* none of the above registers are supported by i350 */ break; } if (adapter->vfs_allocated_count) { igb_vmdq_set_loopback_pf(hw, true); igb_vmdq_set_replication_pf(hw, true); igb_vmdq_set_anti_spoofing_pf(hw, true, adapter->vfs_allocated_count); } else { igb_vmdq_set_loopback_pf(hw, false); igb_vmdq_set_replication_pf(hw, false); } } static void igb_init_dmac(struct igb_adapter *adapter, u32 pba) { struct e1000_hw *hw = &adapter->hw; u32 dmac_thr; u16 hwm; if (hw->mac.type > e1000_82580) { if (adapter->flags & IGB_FLAG_DMAC) { u32 reg; /* force threshold to 0. */ wr32(E1000_DMCTXTH, 0); /* * DMA Coalescing high water mark needs to be greater * than the Rx threshold. Set hwm to PBA - max frame * size in 16B units, capping it at PBA - 6KB. */ hwm = 64 * pba - adapter->max_frame_size / 16; if (hwm < 64 * (pba - 6)) hwm = 64 * (pba - 6); reg = rd32(E1000_FCRTC); reg &= ~E1000_FCRTC_RTH_COAL_MASK; reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) & E1000_FCRTC_RTH_COAL_MASK); wr32(E1000_FCRTC, reg); /* * Set the DMA Coalescing Rx threshold to PBA - 2 * max * frame size, capping it at PBA - 10KB. */ dmac_thr = pba - adapter->max_frame_size / 512; if (dmac_thr < pba - 10) dmac_thr = pba - 10; reg = rd32(E1000_DMACR); reg &= ~E1000_DMACR_DMACTHR_MASK; reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT) & E1000_DMACR_DMACTHR_MASK); /* transition to L0x or L1 if available..*/ reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); /* watchdog timer= +-1000 usec in 32usec intervals */ reg |= (1000 >> 5); /* Disable BMC-to-OS Watchdog Enable */ reg &= ~E1000_DMACR_DC_BMC2OSW_EN; wr32(E1000_DMACR, reg); /* * no lower threshold to disable * coalescing(smart fifb)-UTRESH=0 */ wr32(E1000_DMCRTRH, 0); reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4); wr32(E1000_DMCTLX, reg); /* * free space in tx packet buffer to wake from * DMA coal */ wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE - (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6); /* * make low power state decision controlled * by DMA coal */ reg = rd32(E1000_PCIEMISC); reg &= ~E1000_PCIEMISC_LX_DECISION; wr32(E1000_PCIEMISC, reg); } /* endif adapter->dmac is not disabled */ } else if (hw->mac.type == e1000_82580) { u32 reg = rd32(E1000_PCIEMISC); wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION); wr32(E1000_DMACR, 0); } } static DEFINE_SPINLOCK(i2c_clients_lock); /* igb_get_i2c_client - returns matching client * in adapters's client list. * @adapter: adapter struct * @dev_addr: device address of i2c needed. */ static struct i2c_client * igb_get_i2c_client(struct igb_adapter *adapter, u8 dev_addr) { ulong flags; struct igb_i2c_client_list *client_list; struct i2c_client *client = NULL; struct i2c_board_info client_info = { I2C_BOARD_INFO("igb", 0x00), }; spin_lock_irqsave(&i2c_clients_lock, flags); client_list = adapter->i2c_clients; /* See if we already have an i2c_client */ while (client_list) { if (client_list->client->addr == (dev_addr >> 1)) { client = client_list->client; goto exit; } else { client_list = client_list->next; } } /* no client_list found, create a new one */ client_list = kzalloc(sizeof(*client_list), GFP_ATOMIC); if (client_list == NULL) goto exit; /* dev_addr passed to us is left-shifted by 1 bit * i2c_new_device call expects it to be flush to the right. */ client_info.addr = dev_addr >> 1; client_info.platform_data = adapter; client_list->client = i2c_new_device(&adapter->i2c_adap, &client_info); if (client_list->client == NULL) { dev_info(&adapter->pdev->dev, "Failed to create new i2c device..\n"); goto err_no_client; } /* insert new client at head of list */ client_list->next = adapter->i2c_clients; adapter->i2c_clients = client_list; client = client_list->client; goto exit; err_no_client: kfree(client_list); exit: spin_unlock_irqrestore(&i2c_clients_lock, flags); return client; } /* igb_read_i2c_byte - Reads 8 bit word over I2C * @hw: pointer to hardware structure * @byte_offset: byte offset to read * @dev_addr: device address * @data: value read * * Performs byte read operation over I2C interface at * a specified device address. */ s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset, u8 dev_addr, u8 *data) { struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr); s32 status; u16 swfw_mask = 0; if (!this_client) return E1000_ERR_I2C; swfw_mask = E1000_SWFW_PHY0_SM; if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) return E1000_ERR_SWFW_SYNC; status = i2c_smbus_read_byte_data(this_client, byte_offset); hw->mac.ops.release_swfw_sync(hw, swfw_mask); if (status < 0) return E1000_ERR_I2C; else { *data = status; return E1000_SUCCESS; } } /* igb_write_i2c_byte - Writes 8 bit word over I2C * @hw: pointer to hardware structure * @byte_offset: byte offset to write * @dev_addr: device address * @data: value to write * * Performs byte write operation over I2C interface at * a specified device address. */ s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset, u8 dev_addr, u8 data) { struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); struct i2c_client *this_client = igb_get_i2c_client(adapter, dev_addr); s32 status; u16 swfw_mask = E1000_SWFW_PHY0_SM; if (!this_client) return E1000_ERR_I2C; if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) return E1000_ERR_SWFW_SYNC; status = i2c_smbus_write_byte_data(this_client, byte_offset, data); hw->mac.ops.release_swfw_sync(hw, swfw_mask); if (status) return E1000_ERR_I2C; else return E1000_SUCCESS; } /* igb_main.c */