time.c 31.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
20
 * measurement at boot time.
L
Linus Torvalds 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
35
#include <linux/export.h>
L
Linus Torvalds 已提交
36
#include <linux/sched.h>
37
#include <linux/sched/clock.h>
L
Linus Torvalds 已提交
38 39 40 41 42 43 44 45
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
46
#include <linux/clockchips.h>
L
Linus Torvalds 已提交
47 48 49 50
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
51 52
#include <linux/percpu.h>
#include <linux/rtc.h>
53
#include <linux/jiffies.h>
54
#include <linux/posix-timers.h>
55
#include <linux/irq.h>
56
#include <linux/delay.h>
57
#include <linux/irq_work.h>
58
#include <linux/clk-provider.h>
59
#include <linux/suspend.h>
60
#include <linux/rtc.h>
61
#include <linux/sched/cputime.h>
62
#include <linux/processor.h>
63
#include <asm/trace.h>
L
Linus Torvalds 已提交
64 65 66 67 68

#include <asm/io.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
69
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
70 71
#include <asm/time.h>
#include <asm/prom.h>
72 73
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
74
#include <asm/smp.h>
75
#include <asm/vdso_datapage.h>
76
#include <asm/firmware.h>
77
#include <asm/asm-prototypes.h>
L
Linus Torvalds 已提交
78

79 80
/* powerpc clocksource/clockevent code */

81
#include <linux/clockchips.h>
82
#include <linux/timekeeper_internal.h>
83

84
static u64 rtc_read(struct clocksource *);
85 86 87 88 89 90 91 92
static struct clocksource clocksource_rtc = {
	.name         = "rtc",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = rtc_read,
};

93
static u64 timebase_read(struct clocksource *);
94 95 96 97 98 99 100 101
static struct clocksource clocksource_timebase = {
	.name         = "timebase",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = timebase_read,
};

102 103
#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
104 105 106

static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev);
107
static int decrementer_shutdown(struct clock_event_device *evt);
108

109
struct clock_event_device decrementer_clockevent = {
110 111 112 113 114 115 116 117
	.name			= "decrementer",
	.rating			= 200,
	.irq			= 0,
	.set_next_event		= decrementer_set_next_event,
	.set_state_shutdown	= decrementer_shutdown,
	.tick_resume		= decrementer_shutdown,
	.features		= CLOCK_EVT_FEAT_ONESHOT |
				  CLOCK_EVT_FEAT_C3STOP,
118
};
119
EXPORT_SYMBOL(decrementer_clockevent);
120

121 122
DEFINE_PER_CPU(u64, decrementers_next_tb);
static DEFINE_PER_CPU(struct clock_event_device, decrementers);
123

L
Linus Torvalds 已提交
124 125
#define XSEC_PER_SEC (1024*1024)

126 127 128 129 130 131 132
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
133 134 135 136
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
137
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
138

L
Linus Torvalds 已提交
139
DEFINE_SPINLOCK(rtc_lock);
140
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
141

142 143
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
144
static u64 boot_tb __read_mostly;
L
Linus Torvalds 已提交
145 146

extern struct timezone sys_tz;
147
static long timezone_offset;
L
Linus Torvalds 已提交
148

149
unsigned long ppc_proc_freq;
150
EXPORT_SYMBOL_GPL(ppc_proc_freq);
151
unsigned long ppc_tb_freq;
152
EXPORT_SYMBOL_GPL(ppc_tb_freq);
153

154
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
155
/*
156 157
 * Factor for converting from cputime_t (timebase ticks) to
 * microseconds. This is stored as 0.64 fixed-point binary fraction.
158
 */
159 160
u64 __cputime_usec_factor;
EXPORT_SYMBOL(__cputime_usec_factor);
161

162
#ifdef CONFIG_PPC_SPLPAR
163
void (*dtl_consumer)(struct dtl_entry *, u64);
164 165
#endif

166 167 168 169
static void calc_cputime_factors(void)
{
	struct div_result res;

170 171
	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
	__cputime_usec_factor = res.result_low;
172 173 174
}

/*
175 176
 * Read the SPURR on systems that have it, otherwise the PURR,
 * or if that doesn't exist return the timebase value passed in.
177
 */
178
static unsigned long read_spurr(unsigned long tb)
179
{
180 181
	if (cpu_has_feature(CPU_FTR_SPURR))
		return mfspr(SPRN_SPURR);
182 183
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
184
	return tb;
185 186
}

187 188
#ifdef CONFIG_PPC_SPLPAR

189
/*
190 191
 * Scan the dispatch trace log and count up the stolen time.
 * Should be called with interrupts disabled.
192
 */
193
static u64 scan_dispatch_log(u64 stop_tb)
194
{
195
	u64 i = local_paca->dtl_ridx;
196 197 198 199 200 201 202
	struct dtl_entry *dtl = local_paca->dtl_curr;
	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
	struct lppaca *vpa = local_paca->lppaca_ptr;
	u64 tb_delta;
	u64 stolen = 0;
	u64 dtb;

203 204 205
	if (!dtl)
		return 0;

206
	if (i == be64_to_cpu(vpa->dtl_idx))
207
		return 0;
208 209 210 211
	while (i < be64_to_cpu(vpa->dtl_idx)) {
		dtb = be64_to_cpu(dtl->timebase);
		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
			be32_to_cpu(dtl->ready_to_enqueue_time);
212
		barrier();
213
		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
214
			/* buffer has overflowed */
215
			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
216 217 218 219 220
			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
			continue;
		}
		if (dtb > stop_tb)
			break;
221 222
		if (dtl_consumer)
			dtl_consumer(dtl, i);
223 224 225 226 227 228 229 230 231
		stolen += tb_delta;
		++i;
		++dtl;
		if (dtl == dtl_end)
			dtl = local_paca->dispatch_log;
	}
	local_paca->dtl_ridx = i;
	local_paca->dtl_curr = dtl;
	return stolen;
232 233
}

234 235 236 237 238 239 240
/*
 * Accumulate stolen time by scanning the dispatch trace log.
 * Called on entry from user mode.
 */
void accumulate_stolen_time(void)
{
	u64 sst, ust;
241
	unsigned long save_irq_soft_mask = irq_soft_mask_return();
242
	struct cpu_accounting_data *acct = &local_paca->accounting;
243 244 245 246 247 248 249

	/* We are called early in the exception entry, before
	 * soft/hard_enabled are sync'ed to the expected state
	 * for the exception. We are hard disabled but the PACA
	 * needs to reflect that so various debug stuff doesn't
	 * complain
	 */
250
	irq_soft_mask_set(IRQS_DISABLED);
251

252 253
	sst = scan_dispatch_log(acct->starttime_user);
	ust = scan_dispatch_log(acct->starttime);
254 255
	acct->stime -= sst;
	acct->utime -= ust;
256
	acct->steal_time += ust + sst;
257

258
	irq_soft_mask_set(save_irq_soft_mask);
259 260 261 262
}

static inline u64 calculate_stolen_time(u64 stop_tb)
{
263 264 265
	if (!firmware_has_feature(FW_FEATURE_SPLPAR))
		return 0;

266 267
	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
		return scan_dispatch_log(stop_tb);
268

269
	return 0;
270 271
}

272 273 274 275 276 277 278 279
#else /* CONFIG_PPC_SPLPAR */
static inline u64 calculate_stolen_time(u64 stop_tb)
{
	return 0;
}

#endif /* CONFIG_PPC_SPLPAR */

280 281 282 283
/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
284
static unsigned long vtime_delta(struct task_struct *tsk,
285 286
				 unsigned long *stime_scaled,
				 unsigned long *steal_time)
287
{
288
	unsigned long now, nowscaled, deltascaled;
289 290
	unsigned long stime;
	unsigned long utime, utime_scaled;
291
	struct cpu_accounting_data *acct = get_accounting(tsk);
292

293 294
	WARN_ON_ONCE(!irqs_disabled());

295
	now = mftb();
296
	nowscaled = read_spurr(now);
297
	stime = now - acct->starttime;
298 299 300
	acct->starttime = now;
	deltascaled = nowscaled - acct->startspurr;
	acct->startspurr = nowscaled;
301

302
	*steal_time = calculate_stolen_time(now);
303

304
	utime = acct->utime - acct->utime_sspurr;
305
	acct->utime_sspurr = acct->utime;
306 307 308 309 310 311 312 313 314 315 316

	/*
	 * Because we don't read the SPURR on every kernel entry/exit,
	 * deltascaled includes both user and system SPURR ticks.
	 * Apportion these ticks to system SPURR ticks and user
	 * SPURR ticks in the same ratio as the system time (delta)
	 * and user time (udelta) values obtained from the timebase
	 * over the same interval.  The system ticks get accounted here;
	 * the user ticks get saved up in paca->user_time_scaled to be
	 * used by account_process_tick.
	 */
317 318 319 320 321 322
	*stime_scaled = stime;
	utime_scaled = utime;
	if (deltascaled != stime + utime) {
		if (utime) {
			*stime_scaled = deltascaled * stime / (stime + utime);
			utime_scaled = deltascaled - *stime_scaled;
323
		} else {
324
			*stime_scaled = deltascaled;
325 326
		}
	}
327
	acct->utime_scaled += utime_scaled;
328

329
	return stime;
330 331
}

332
void vtime_account_system(struct task_struct *tsk)
333
{
334 335 336 337 338 339 340
	unsigned long stime, stime_scaled, steal_time;
	struct cpu_accounting_data *acct = get_accounting(tsk);

	stime = vtime_delta(tsk, &stime_scaled, &steal_time);

	stime -= min(stime, steal_time);
	acct->steal_time += steal_time;
341

342 343 344 345 346 347 348 349 350 351 352 353 354
	if ((tsk->flags & PF_VCPU) && !irq_count()) {
		acct->gtime += stime;
		acct->utime_scaled += stime_scaled;
	} else {
		if (hardirq_count())
			acct->hardirq_time += stime;
		else if (in_serving_softirq())
			acct->softirq_time += stime;
		else
			acct->stime += stime;

		acct->stime_scaled += stime_scaled;
	}
355
}
356
EXPORT_SYMBOL_GPL(vtime_account_system);
357

358
void vtime_account_idle(struct task_struct *tsk)
359
{
360 361
	unsigned long stime, stime_scaled, steal_time;
	struct cpu_accounting_data *acct = get_accounting(tsk);
362

363 364
	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
	acct->idle_time += stime + steal_time;
365 366 367
}

/*
368
 * Account the whole cputime accumulated in the paca
369
 * Must be called with interrupts disabled.
370 371
 * Assumes that vtime_account_system/idle() has been called
 * recently (i.e. since the last entry from usermode) so that
372
 * get_paca()->user_time_scaled is up to date.
373
 */
374
void vtime_flush(struct task_struct *tsk)
375
{
376
	struct cpu_accounting_data *acct = get_accounting(tsk);
377

378
	if (acct->utime)
379
		account_user_time(tsk, cputime_to_nsecs(acct->utime));
380 381

	if (acct->utime_scaled)
382
		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
383 384

	if (acct->gtime)
385
		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
386 387

	if (acct->steal_time)
388
		account_steal_time(cputime_to_nsecs(acct->steal_time));
389 390

	if (acct->idle_time)
391
		account_idle_time(cputime_to_nsecs(acct->idle_time));
392 393

	if (acct->stime)
394 395
		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
					  CPUTIME_SYSTEM);
396
	if (acct->stime_scaled)
397
		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
398 399

	if (acct->hardirq_time)
400 401
		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
					  CPUTIME_IRQ);
402
	if (acct->softirq_time)
403 404
		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
					  CPUTIME_SOFTIRQ);
405

406 407
	acct->utime = 0;
	acct->utime_scaled = 0;
408
	acct->utime_sspurr = 0;
409 410 411 412 413 414 415
	acct->gtime = 0;
	acct->steal_time = 0;
	acct->idle_time = 0;
	acct->stime = 0;
	acct->stime_scaled = 0;
	acct->hardirq_time = 0;
	acct->softirq_time = 0;
416 417
}

418
#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
419 420 421
#define calc_cputime_factors()
#endif

422 423 424 425 426
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

427
	spin_begin();
428 429 430 431 432 433 434
	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
435
			spin_cpu_relax();
436 437 438 439
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
440
			spin_cpu_relax();
441
	}
442
	spin_end();
443 444 445 446 447 448 449 450 451
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

L
Linus Torvalds 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

465
#ifdef CONFIG_IRQ_WORK
466

467 468 469 470
/*
 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 */
#ifdef CONFIG_PPC64
471
static inline unsigned long test_irq_work_pending(void)
472
{
473 474 475 476
	unsigned long x;

	asm volatile("lbz %0,%1(13)"
		: "=r" (x)
477
		: "i" (offsetof(struct paca_struct, irq_work_pending)));
478 479 480
	return x;
}

481
static inline void set_irq_work_pending_flag(void)
482 483 484
{
	asm volatile("stb %0,%1(13)" : :
		"r" (1),
485
		"i" (offsetof(struct paca_struct, irq_work_pending)));
486 487
}

488
static inline void clear_irq_work_pending(void)
489 490 491
{
	asm volatile("stb %0,%1(13)" : :
		"r" (0),
492
		"i" (offsetof(struct paca_struct, irq_work_pending)));
493 494
}

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
void arch_irq_work_raise(void)
{
	preempt_disable();
	set_irq_work_pending_flag();
	/*
	 * Non-nmi code running with interrupts disabled will replay
	 * irq_happened before it re-enables interrupts, so setthe
	 * decrementer there instead of causing a hardware exception
	 * which would immediately hit the masked interrupt handler
	 * and have the net effect of setting the decrementer in
	 * irq_happened.
	 *
	 * NMI interrupts can not check this when they return, so the
	 * decrementer hardware exception is raised, which will fire
	 * when interrupts are next enabled.
	 *
	 * BookE does not support this yet, it must audit all NMI
	 * interrupt handlers to ensure they call nmi_enter() so this
	 * check would be correct.
	 */
	if (IS_ENABLED(CONFIG_BOOKE) || !irqs_disabled() || in_nmi()) {
		set_dec(1);
	} else {
		hard_irq_disable();
		local_paca->irq_happened |= PACA_IRQ_DEC;
	}
	preempt_enable();
}

524 525
#else /* 32-bit */

526
DEFINE_PER_CPU(u8, irq_work_pending);
527

528 529 530
#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
531

532
void arch_irq_work_raise(void)
533 534
{
	preempt_disable();
535
	set_irq_work_pending_flag();
536 537 538 539
	set_dec(1);
	preempt_enable();
}

540 541
#endif /* 32 vs 64 bit */

542
#else  /* CONFIG_IRQ_WORK */
543

544 545
#define test_irq_work_pending()	0
#define clear_irq_work_pending()
546

547
#endif /* CONFIG_IRQ_WORK */
548

L
Linus Torvalds 已提交
549 550 551 552
/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
553
void timer_interrupt(struct pt_regs *regs)
L
Linus Torvalds 已提交
554
{
555
	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
556
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
557 558
	struct pt_regs *old_regs;
	u64 now;
559

560
	/* Some implementations of hotplug will get timer interrupts while
561 562 563 564
	 * offline, just ignore these and we also need to set
	 * decrementers_next_tb as MAX to make sure __check_irq_replay
	 * don't replay timer interrupt when return, otherwise we'll trap
	 * here infinitely :(
565
	 */
566
	if (unlikely(!cpu_online(smp_processor_id()))) {
567
		*next_tb = ~(u64)0;
568
		set_dec(decrementer_max);
569
		return;
570
	}
571

572 573 574 575 576 577 578 579 580 581 582
	/* Ensure a positive value is written to the decrementer, or else
	 * some CPUs will continue to take decrementer exceptions. When the
	 * PPC_WATCHDOG (decrementer based) is configured, keep this at most
	 * 31 bits, which is about 4 seconds on most systems, which gives
	 * the watchdog a chance of catching timer interrupt hard lockups.
	 */
	if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
		set_dec(0x7fffffff);
	else
		set_dec(decrementer_max);

583 584 585 586 587
	/* Conditionally hard-enable interrupts now that the DEC has been
	 * bumped to its maximum value
	 */
	may_hard_irq_enable();

588

P
Paul Bolle 已提交
589
#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
590 591 592
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
593

594
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
595
	irq_enter();
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
	trace_timer_interrupt_entry(regs);

	if (test_irq_work_pending()) {
		clear_irq_work_pending();
		irq_work_run();
	}

	now = get_tb_or_rtc();
	if (now >= *next_tb) {
		*next_tb = ~(u64)0;
		if (evt->event_handler)
			evt->event_handler(evt);
		__this_cpu_inc(irq_stat.timer_irqs_event);
	} else {
		now = *next_tb - now;
		if (now <= decrementer_max)
			set_dec(now);
		/* We may have raced with new irq work */
		if (test_irq_work_pending())
			set_dec(1);
		__this_cpu_inc(irq_stat.timer_irqs_others);
	}
L
Linus Torvalds 已提交
618

619
	trace_timer_interrupt_exit(regs);
L
Linus Torvalds 已提交
620
	irq_exit();
621
	set_irq_regs(old_regs);
L
Linus Torvalds 已提交
622
}
A
Al Viro 已提交
623
EXPORT_SYMBOL(timer_interrupt);
L
Linus Torvalds 已提交
624

625
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
626 627 628 629 630 631
void timer_broadcast_interrupt(void)
{
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);

	*next_tb = ~(u64)0;
	tick_receive_broadcast();
632
	__this_cpu_inc(irq_stat.broadcast_irqs_event);
633
}
634
#endif
635

636 637 638 639 640 641 642 643 644
/*
 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 * left pending on exit from a KVM guest.  We don't need to do anything
 * to clear them, as they are edge-triggered.
 */
void hdec_interrupt(struct pt_regs *regs)
{
}

645
#ifdef CONFIG_SUSPEND
646
static void generic_suspend_disable_irqs(void)
647 648 649 650 651
{
	/* Disable the decrementer, so that it doesn't interfere
	 * with suspending.
	 */

652
	set_dec(decrementer_max);
653
	local_irq_disable();
654
	set_dec(decrementer_max);
655 656
}

657
static void generic_suspend_enable_irqs(void)
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
{
	local_irq_enable();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_disable_irqs(void)
{
	if (ppc_md.suspend_disable_irqs)
		ppc_md.suspend_disable_irqs();
	generic_suspend_disable_irqs();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_enable_irqs(void)
{
	generic_suspend_enable_irqs();
	if (ppc_md.suspend_enable_irqs)
		ppc_md.suspend_enable_irqs();
}
#endif

679 680 681 682 683 684
unsigned long long tb_to_ns(unsigned long long ticks)
{
	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
}
EXPORT_SYMBOL_GPL(tb_to_ns);

L
Linus Torvalds 已提交
685 686 687 688 689 690 691
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
692
notrace unsigned long long sched_clock(void)
L
Linus Torvalds 已提交
693
{
694 695
	if (__USE_RTC())
		return get_rtc();
696
	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
L
Linus Torvalds 已提交
697 698
}

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726

#ifdef CONFIG_PPC_PSERIES

/*
 * Running clock - attempts to give a view of time passing for a virtualised
 * kernels.
 * Uses the VTB register if available otherwise a next best guess.
 */
unsigned long long running_clock(void)
{
	/*
	 * Don't read the VTB as a host since KVM does not switch in host
	 * timebase into the VTB when it takes a guest off the CPU, reading the
	 * VTB would result in reading 'last switched out' guest VTB.
	 *
	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
	 * would be unsafe to rely only on the #ifdef above.
	 */
	if (firmware_has_feature(FW_FEATURE_LPAR) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;

	/*
	 * This is a next best approximation without a VTB.
	 * On a host which is running bare metal there should never be any stolen
	 * time and on a host which doesn't do any virtualisation TB *should* equal
	 * VTB so it makes no difference anyway.
	 */
727
	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
728 729 730
}
#endif

731
static int __init get_freq(char *name, int cells, unsigned long *val)
732 733
{
	struct device_node *cpu;
734
	const __be32 *fp;
735
	int found = 0;
736

737
	/* The cpu node should have timebase and clock frequency properties */
738 739
	cpu = of_find_node_by_type(NULL, "cpu");

740
	if (cpu) {
741
		fp = of_get_property(cpu, name, NULL);
742
		if (fp) {
743
			found = 1;
744
			*val = of_read_ulong(fp, cells);
745
		}
746 747

		of_node_put(cpu);
748
	}
749 750 751 752

	return found;
}

753
static void start_cpu_decrementer(void)
754 755
{
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
756 757
	unsigned int tcr;

758 759 760
	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

761 762 763 764 765 766 767 768 769
	tcr = mfspr(SPRN_TCR);
	/*
	 * The watchdog may have already been enabled by u-boot. So leave
	 * TRC[WP] (Watchdog Period) alone.
	 */
	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
	tcr |= TCR_DIE;		/* Enable decrementer */
	mtspr(SPRN_TCR, tcr);
#endif
770 771
}

772 773 774 775 776 777 778
void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

779 780
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
781
	}
782

783 784 785 786 787 788 789
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
790 791 792
	}
}

793
int update_persistent_clock64(struct timespec64 now)
794 795 796
{
	struct rtc_time tm;

797
	if (!ppc_md.set_rtc_time)
798
		return -ENODEV;
799

800
	rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
801 802 803 804

	return ppc_md.set_rtc_time(&tm);
}

805
static void __read_persistent_clock(struct timespec64 *ts)
806 807 808 809
{
	struct rtc_time tm;
	static int first = 1;

810
	ts->tv_nsec = 0;
811 812 813 814 815 816 817
	/* XXX this is a litle fragile but will work okay in the short term */
	if (first) {
		first = 0;
		if (ppc_md.time_init)
			timezone_offset = ppc_md.time_init();

		/* get_boot_time() isn't guaranteed to be safe to call late */
818 819 820 821 822 823 824 825
		if (ppc_md.get_boot_time) {
			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
			return;
		}
	}
	if (!ppc_md.get_rtc_time) {
		ts->tv_sec = 0;
		return;
826
	}
827
	ppc_md.get_rtc_time(&tm);
828

829
	ts->tv_sec = rtc_tm_to_time64(&tm);
830 831
}

832
void read_persistent_clock64(struct timespec64 *ts)
833 834 835 836 837 838 839 840 841 842 843
{
	__read_persistent_clock(ts);

	/* Sanitize it in case real time clock is set below EPOCH */
	if (ts->tv_sec < 0) {
		ts->tv_sec = 0;
		ts->tv_nsec = 0;
	}
		
}

844
/* clocksource code */
845
static notrace u64 rtc_read(struct clocksource *cs)
846
{
847
	return (u64)get_rtc();
848 849
}

850
static notrace u64 timebase_read(struct clocksource *cs)
851
{
852
	return (u64)get_tb();
853 854
}

855 856

void update_vsyscall(struct timekeeper *tk)
857
{
858 859 860 861 862
	struct timespec xt;
	struct clocksource *clock = tk->tkr_mono.clock;
	u32 mult = tk->tkr_mono.mult;
	u32 shift = tk->tkr_mono.shift;
	u64 cycle_last = tk->tkr_mono.cycle_last;
J
John Stultz 已提交
863
	u64 new_tb_to_xs, new_stamp_xsec;
864
	u64 frac_sec;
865 866 867 868

	if (clock != &clocksource_timebase)
		return;

869 870 871
	xt.tv_sec = tk->xtime_sec;
	xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);

872 873 874 875
	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
	/*
	 * This computes ((2^20 / 1e9) * mult) >> shift as a
	 * 0.64 fixed-point fraction.
	 * The computation in the else clause below won't overflow
	 * (as long as the timebase frequency is >= 1.049 MHz)
	 * but loses precision because we lose the low bits of the constant
	 * in the shift.  Note that 19342813113834067 ~= 2^(20+64) / 1e9.
	 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
	 * over a second.  (Shift values are usually 22, 23 or 24.)
	 * For high frequency clocks such as the 512MHz timebase clock
	 * on POWER[6789], the mult value is small (e.g. 32768000)
	 * and so we can shift the constant by 16 initially
	 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
	 * remaining shifts after the multiplication, which gives a
	 * more accurate result (e.g. with mult = 32768000, shift = 24,
	 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
	 */
	if (mult <= 62500000 && clock->shift >= 16)
		new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
	else
		new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);

	/*
	 * Compute the fractional second in units of 2^-32 seconds.
	 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
	 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
	 * it in units of 2^-32 seconds.
	 * We assume shift <= 32 because clocks_calc_mult_shift()
	 * generates shift values in the range 0 - 32.
	 */
	frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
	do_div(frac_sec, NSEC_PER_SEC);
J
John Stultz 已提交
908

909 910 911 912 913 914
	/*
	 * Work out new stamp_xsec value for any legacy users of systemcfg.
	 * stamp_xsec is in units of 2^-20 seconds.
	 */
	new_stamp_xsec = frac_sec >> 12;
	new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
915

J
John Stultz 已提交
916 917 918 919 920 921 922 923 924
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
	 */
925
	vdso_data->tb_orig_stamp = cycle_last;
J
John Stultz 已提交
926 927
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
928 929 930
	vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
	vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
	vdso_data->stamp_xtime = xt;
931
	vdso_data->stamp_sec_fraction = frac_sec;
J
John Stultz 已提交
932 933
	smp_wmb();
	++(vdso_data->tb_update_count);
934 935 936 937 938 939 940 941
}

void update_vsyscall_tz(void)
{
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
}

942
static void __init clocksource_init(void)
943 944 945 946 947 948 949 950
{
	struct clocksource *clock;

	if (__USE_RTC())
		clock = &clocksource_rtc;
	else
		clock = &clocksource_timebase;

951
	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
952 953 954 955 956 957 958 959 960
		printk(KERN_ERR "clocksource: %s is already registered\n",
		       clock->name);
		return;
	}

	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
	       clock->name, clock->mult, clock->shift);
}

961 962 963
static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev)
{
964
	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
965
	set_dec(evt);
966 967 968 969 970

	/* We may have raced with new irq work */
	if (test_irq_work_pending())
		set_dec(1);

971 972 973
	return 0;
}

974
static int decrementer_shutdown(struct clock_event_device *dev)
975
{
976
	decrementer_set_next_event(decrementer_max, dev);
977
	return 0;
978 979 980 981
}

static void register_decrementer_clockevent(int cpu)
{
982
	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
983 984

	*dec = decrementer_clockevent;
985
	dec->cpumask = cpumask_of(cpu);
986

987 988
	clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);

989 990
	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
		    dec->name, dec->mult, dec->shift, cpu);
991 992 993 994

	/* Set values for KVM, see kvm_emulate_dec() */
	decrementer_clockevent.mult = dec->mult;
	decrementer_clockevent.shift = dec->shift;
995 996
}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
static void enable_large_decrementer(void)
{
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return;

	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
		return;

	/*
	 * If we're running as the hypervisor we need to enable the LD manually
	 * otherwise firmware should have done it for us.
	 */
	if (cpu_has_feature(CPU_FTR_HVMODE))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
}

static void __init set_decrementer_max(void)
{
	struct device_node *cpu;
	u32 bits = 32;

	/* Prior to ISAv3 the decrementer is always 32 bit */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return;

	cpu = of_find_node_by_type(NULL, "cpu");

	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
		if (bits > 64 || bits < 32) {
			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
			bits = 32;
		}

		/* calculate the signed maximum given this many bits */
		decrementer_max = (1ul << (bits - 1)) - 1;
	}

	of_node_put(cpu);

	pr_info("time_init: %u bit decrementer (max: %llx)\n",
		bits, decrementer_max);
}

1040
static void __init init_decrementer_clockevent(void)
1041
{
1042
	register_decrementer_clockevent(smp_processor_id());
1043 1044 1045 1046
}

void secondary_cpu_time_init(void)
{
1047 1048 1049
	/* Enable and test the large decrementer for this cpu */
	enable_large_decrementer();

1050 1051 1052 1053 1054
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

1055 1056 1057 1058 1059
	/* FIME: Should make unrelatred change to move snapshot_timebase
	 * call here ! */
	register_decrementer_clockevent(smp_processor_id());
}

1060
/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
1061 1062 1063
void __init time_init(void)
{
	struct div_result res;
1064
	u64 scale;
1065 1066
	unsigned shift;

1067 1068 1069 1070 1071 1072
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
1073
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1074
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1075
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1076 1077
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
	}
1078 1079

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1080
	tb_ticks_per_sec = ppc_tb_freq;
1081
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1082
	calc_cputime_factors();
1083

L
Linus Torvalds 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;
1102
	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1103
	boot_tb = get_tb_or_rtc();
L
Linus Torvalds 已提交
1104

1105
	/* If platform provided a timezone (pmac), we correct the time */
1106
	if (timezone_offset) {
1107 1108
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
1109
	}
1110

1111 1112
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
L
Linus Torvalds 已提交
1113

1114 1115 1116 1117
	/* initialise and enable the large decrementer (if we have one) */
	set_decrementer_max();
	enable_large_decrementer();

1118 1119 1120 1121 1122
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

1123 1124
	/* Register the clocksource */
	clocksource_init();
1125

1126
	init_decrementer_clockevent();
1127
	tick_setup_hrtimer_broadcast();
1128 1129 1130 1131

#ifdef CONFIG_COMMON_CLK
	of_clk_init(NULL);
#endif
L
Linus Torvalds 已提交
1132 1133 1134 1135 1136 1137
}

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
1138 1139
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
1140
{
1141 1142 1143
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
1144 1145 1146 1147 1148 1149

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

1150 1151 1152 1153 1154
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
1155

1156 1157 1158 1159 1160
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1161

1162 1163
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1164 1165

}
1166

1167 1168 1169 1170 1171 1172 1173 1174 1175
/* We don't need to calibrate delay, we use the CPU timebase for that */
void calibrate_delay(void)
{
	/* Some generic code (such as spinlock debug) use loops_per_jiffy
	 * as the number of __delay(1) in a jiffy, so make it so
	 */
	loops_per_jiffy = tb_ticks_per_jiffy;
}

1176 1177 1178 1179
#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
{
	ppc_md.get_rtc_time(tm);
1180
	return 0;
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
}

static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
{
	if (!ppc_md.set_rtc_time)
		return -EOPNOTSUPP;

	if (ppc_md.set_rtc_time(tm) < 0)
		return -EOPNOTSUPP;

	return 0;
}

static const struct rtc_class_ops rtc_generic_ops = {
	.read_time = rtc_generic_get_time,
	.set_time = rtc_generic_set_time,
};

1199 1200 1201 1202 1203 1204 1205
static int __init rtc_init(void)
{
	struct platform_device *pdev;

	if (!ppc_md.get_rtc_time)
		return -ENODEV;

1206 1207 1208
	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
					     &rtc_generic_ops,
					     sizeof(rtc_generic_ops));
1209

1210
	return PTR_ERR_OR_ZERO(pdev);
1211 1212
}

1213
device_initcall(rtc_init);
1214
#endif