amd_iommu.c 34.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
#include <linux/scatterlist.h>
#include <linux/iommu-helper.h>
#include <asm/proto.h>
26
#include <asm/iommu.h>
27
#include <asm/gart.h>
28
#include <asm/amd_iommu_types.h>
29
#include <asm/amd_iommu.h>
30 31 32

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

33 34
#define EXIT_LOOP_COUNT 10000000

35 36
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

37 38 39 40
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

41 42 43
/*
 * general struct to manage commands send to an IOMMU
 */
44
struct iommu_cmd {
45 46 47
	u32 data[4];
};

48 49 50
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e);

51
/* returns !0 if the IOMMU is caching non-present entries in its TLB */
52 53
static int iommu_has_npcache(struct amd_iommu *iommu)
{
54
	return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
55 56
}

57 58 59 60 61 62
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
static void iommu_print_event(void *__evt)
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

	printk(KERN_ERR "AMD IOMMU: Event logged [");

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
		iommu_print_event(iommu->evt_buf + head);
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

143 144
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
145 146 147 148 149 150
	struct amd_iommu *iommu;

	list_for_each_entry(iommu, &amd_iommu_list, list)
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
151 152
}

153 154 155 156 157 158 159 160 161 162
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
163
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
164 165 166 167 168
{
	u32 tail, head;
	u8 *target;

	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
169
	target = iommu->cmd_buf + tail;
170 171 172 173 174 175 176 177 178 179
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

180 181 182 183
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
184
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
185 186 187 188 189 190
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
191 192
	if (!ret)
		iommu->need_sync = 1;
193 194 195 196 197
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

	if (unlikely(i == EXIT_LOOP_COUNT))
		panic("AMD IOMMU: Completion wait loop failed\n");
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

	 memset(&cmd, 0, sizeof(cmd));
	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	 return __iommu_queue_command(iommu, &cmd);
}

238 239 240 241 242 243 244
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
245 246
static int iommu_completion_wait(struct amd_iommu *iommu)
{
247 248
	int ret = 0;
	unsigned long flags;
249

250 251
	spin_lock_irqsave(&iommu->lock, flags);

252 253 254
	if (!iommu->need_sync)
		goto out;

255
	ret = __iommu_completion_wait(iommu);
256

257
	iommu->need_sync = 0;
258 259

	if (ret)
260
		goto out;
261

262
	__iommu_wait_for_completion(iommu);
263

264 265
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
266 267 268 269

	return 0;
}

270 271 272
/*
 * Command send function for invalidating a device table entry
 */
273 274
static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
{
275
	struct iommu_cmd cmd;
276
	int ret;
277 278 279 280 281 282 283

	BUG_ON(iommu == NULL);

	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

284 285 286
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
287 288
}

289 290 291
/*
 * Generic command send function for invalidaing TLB entries
 */
292 293 294
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
295
	struct iommu_cmd cmd;
296
	int ret;
297 298 299 300 301

	memset(&cmd, 0, sizeof(cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(&cmd, CMD_INV_IOMMU_PAGES);
	cmd.data[1] |= domid;
302
	cmd.data[2] = lower_32_bits(address);
303
	cmd.data[3] = upper_32_bits(address);
304
	if (s) /* size bit - we flush more than one 4kb page */
305
		cmd.data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
306
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
307 308
		cmd.data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;

309 310 311
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
312 313
}

314 315 316 317 318
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
319 320 321
static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
		u64 address, size_t size)
{
322
	int s = 0;
323
	unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
324 325 326

	address &= PAGE_MASK;

327 328 329 330 331 332 333
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
334 335
	}

336 337
	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);

338 339
	return 0;
}
340

341 342 343 344 345 346 347 348
/* Flush the whole IO/TLB for a given protection domain */
static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
{
	u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;

	iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
363 364 365 366
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
			  int prot)
367 368 369 370
{
	u64 __pte, *pte, *page;

	bus_addr  = PAGE_ALIGN(bus_addr);
371
	phys_addr = PAGE_ALIGN(phys_addr);
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

	/* only support 512GB address spaces for now */
	if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
		return -EINVAL;

	pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!page)
			return -ENOMEM;
		*pte = IOMMU_L2_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];

	if (!IOMMU_PTE_PRESENT(*pte)) {
		page = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!page)
			return -ENOMEM;
		*pte = IOMMU_L1_PDE(virt_to_phys(page));
	}

	pte = IOMMU_PTE_PAGE(*pte);
	pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];

	if (IOMMU_PTE_PRESENT(*pte))
		return -EBUSY;

	__pte = phys_addr | IOMMU_PTE_P;
	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

	*pte = __pte;

	return 0;
}

413 414 415 416
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
417 418 419 420 421 422 423 424 425 426 427 428 429 430
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

431 432 433 434 435 436
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

453 454 455 456
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
457 458 459 460 461 462 463 464
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
465
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
466 467 468 469 470 471 472 473 474 475 476 477 478
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
	}

	return 0;
}

479 480 481
/*
 * Inits the unity mappings required for a specific device
 */
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

499 500 501 502 503 504 505 506 507
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
508

509 510 511 512 513
/*
 * The address allocator core function.
 *
 * called with domain->lock held
 */
514 515
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
516
					     unsigned int pages,
517 518
					     unsigned long align_mask,
					     u64 dma_mask)
519
{
520
	unsigned long limit;
521 522 523 524 525
	unsigned long address;
	unsigned long boundary_size;

	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;
526 527
	limit = iommu_device_max_index(dom->aperture_size >> PAGE_SHIFT, 0,
				       dma_mask >> PAGE_SHIFT);
528

529
	if (dom->next_bit >= limit) {
530
		dom->next_bit = 0;
531 532
		dom->need_flush = true;
	}
533 534

	address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
535
				   0 , boundary_size, align_mask);
536
	if (address == -1) {
537
		address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
538
				0, boundary_size, align_mask);
539 540
		dom->need_flush = true;
	}
541 542 543 544 545 546 547 548 549 550 551 552

	if (likely(address != -1)) {
		dom->next_bit = address + pages;
		address <<= PAGE_SHIFT;
	} else
		address = bad_dma_address;

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

553 554 555 556 557
/*
 * The address free function.
 *
 * called with domain->lock held
 */
558 559 560 561 562 563
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
	address >>= PAGE_SHIFT;
	iommu_area_free(dom->bitmap, address, pages);
564

565
	if (address >= dom->next_bit)
566
		dom->need_flush = true;
567 568
}

569 570 571 572 573 574 575 576 577 578
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

596 597 598 599 600 601 602 603 604 605 606 607
#ifdef CONFIG_IOMMU_API
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
#endif

608 609 610 611
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
612 613 614 615 616 617 618 619 620
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

621
	iommu_area_reserve(dom->bitmap, start_page, pages);
622 623
}

624
static void free_pagetable(struct protection_domain *domain)
625 626 627 628
{
	int i, j;
	u64 *p1, *p2, *p3;

629
	p1 = domain->pt_root;
630 631 632 633 634 635 636 637 638

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
639
		for (j = 0; j < 512; ++j) {
640 641 642 643 644 645 646 647 648 649
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
650 651

	domain->pt_root = NULL;
652 653
}

654 655 656 657
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
658 659 660 661 662
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

663
	free_pagetable(&dom->domain);
664 665 666 667 668 669 670 671

	kfree(dom->pte_pages);

	kfree(dom->bitmap);

	kfree(dom);
}

672 673 674 675 676
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
						   unsigned order)
{
	struct dma_ops_domain *dma_dom;
	unsigned i, num_pte_pages;
	u64 *l2_pde;
	u64 address;

	/*
	 * Currently the DMA aperture must be between 32 MB and 1GB in size
	 */
	if ((order < 25) || (order > 30))
		return NULL;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;
	dma_dom->aperture_size = (1ULL << order);
	dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
				  GFP_KERNEL);
	if (!dma_dom->bitmap)
		goto free_dma_dom;
	/*
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
	 */
	dma_dom->bitmap[0] = 1;
	dma_dom->next_bit = 0;

717
	dma_dom->need_flush = false;
718
	dma_dom->target_dev = 0xffff;
719

720
	/* Intialize the exclusion range if necessary */
721 722 723
	if (iommu->exclusion_start &&
	    iommu->exclusion_start < dma_dom->aperture_size) {
		unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
724 725 726
		int pages = iommu_num_pages(iommu->exclusion_start,
					    iommu->exclusion_length,
					    PAGE_SIZE);
727 728 729
		dma_ops_reserve_addresses(dma_dom, startpage, pages);
	}

730 731 732 733 734
	/*
	 * At the last step, build the page tables so we don't need to
	 * allocate page table pages in the dma_ops mapping/unmapping
	 * path.
	 */
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
	num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
	dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
			GFP_KERNEL);
	if (!dma_dom->pte_pages)
		goto free_dma_dom;

	l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
	if (l2_pde == NULL)
		goto free_dma_dom;

	dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));

	for (i = 0; i < num_pte_pages; ++i) {
		dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
		if (!dma_dom->pte_pages[i])
			goto free_dma_dom;
		address = virt_to_phys(dma_dom->pte_pages[i]);
		l2_pde[i] = IOMMU_L1_PDE(address);
	}

	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

763 764 765 766
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
767 768 769 770 771 772 773 774 775 776 777 778
static struct protection_domain *domain_for_device(u16 devid)
{
	struct protection_domain *dom;
	unsigned long flags;

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
	dom = amd_iommu_pd_table[devid];
	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

779 780 781 782
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
783 784 785 786 787 788 789 790
static void set_device_domain(struct amd_iommu *iommu,
			      struct protection_domain *domain,
			      u16 devid)
{
	unsigned long flags;

	u64 pte_root = virt_to_phys(domain->pt_root);

791 792 793
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
794 795

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
796 797
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
798 799 800 801 802 803 804 805
	amd_iommu_dev_table[devid].data[2] = domain->id;

	amd_iommu_pd_table[devid] = domain;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	iommu_queue_inv_dev_entry(iommu, devid);
}

806 807 808 809 810 811
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

812 813 814 815 816 817 818 819 820 821 822 823
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	if (!dev || !dev->dma_mask)
		return false;

	return true;
}

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid) {
			ret = entry;
			list_del(&ret->list);
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

851 852 853 854 855 856 857
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
858 859 860 861 862 863 864 865 866
static int get_device_resources(struct device *dev,
				struct amd_iommu **iommu,
				struct protection_domain **domain,
				u16 *bdf)
{
	struct dma_ops_domain *dma_dom;
	struct pci_dev *pcidev;
	u16 _bdf;

867 868 869 870 871 872
	*iommu = NULL;
	*domain = NULL;
	*bdf = 0xffff;

	if (dev->bus != &pci_bus_type)
		return 0;
873 874

	pcidev = to_pci_dev(dev);
875
	_bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
876

877
	/* device not translated by any IOMMU in the system? */
878
	if (_bdf > amd_iommu_last_bdf)
879 880 881 882 883 884 885 886 887
		return 0;

	*bdf = amd_iommu_alias_table[_bdf];

	*iommu = amd_iommu_rlookup_table[*bdf];
	if (*iommu == NULL)
		return 0;
	*domain = domain_for_device(*bdf);
	if (*domain == NULL) {
888 889 890
		dma_dom = find_protection_domain(*bdf);
		if (!dma_dom)
			dma_dom = (*iommu)->default_dom;
891 892 893 894 895 896 897
		*domain = &dma_dom->domain;
		set_device_domain(*iommu, *domain, *bdf);
		printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
				"device ", (*domain)->id);
		print_devid(_bdf, 1);
	}

898 899 900
	if (domain_for_device(_bdf) == NULL)
		set_device_domain(*iommu, *domain, _bdf);

901 902 903
	return 1;
}

904 905 906 907
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
				     struct dma_ops_domain *dom,
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

	pte  = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
	pte += IOMMU_PTE_L0_INDEX(address);

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

939 940 941
/*
 * The generic unmapping function for on page in the DMA address space.
 */
942 943 944 945 946 947 948 949 950
static void dma_ops_domain_unmap(struct amd_iommu *iommu,
				 struct dma_ops_domain *dom,
				 unsigned long address)
{
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

951
	WARN_ON(address & ~PAGE_MASK || address >= dom->aperture_size);
952 953 954 955 956 957 958 959 960

	pte  = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
	pte += IOMMU_PTE_L0_INDEX(address);

	WARN_ON(!*pte);

	*pte = 0ULL;
}

961 962
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
963 964
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
965 966
 * Must be called with the domain lock held.
 */
967 968 969 970 971
static dma_addr_t __map_single(struct device *dev,
			       struct amd_iommu *iommu,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
972
			       int dir,
973 974
			       bool align,
			       u64 dma_mask)
975 976 977 978
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
	dma_addr_t address, start;
	unsigned int pages;
979
	unsigned long align_mask = 0;
980 981
	int i;

982
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
983 984
	paddr &= PAGE_MASK;

985 986 987
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

988 989
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
990 991 992 993 994 995 996 997 998 999 1000
	if (unlikely(address == bad_dma_address))
		goto out;

	start = address;
	for (i = 0; i < pages; ++i) {
		dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1001
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1002 1003 1004
		iommu_flush_tlb(iommu, dma_dom->domain.id);
		dma_dom->need_flush = false;
	} else if (unlikely(iommu_has_npcache(iommu)))
1005 1006
		iommu_flush_pages(iommu, dma_dom->domain.id, address, size);

1007 1008 1009 1010
out:
	return address;
}

1011 1012 1013 1014
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1015 1016 1017 1018 1019 1020 1021 1022 1023
static void __unmap_single(struct amd_iommu *iommu,
			   struct dma_ops_domain *dma_dom,
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

1024 1025
	if ((dma_addr == bad_dma_address) ||
	    (dma_addr + size > dma_dom->aperture_size))
1026 1027
		return;

1028
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1029 1030 1031 1032 1033 1034 1035 1036 1037
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
		dma_ops_domain_unmap(iommu, dma_dom, start);
		start += PAGE_SIZE;
	}

	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1038

1039
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1040
		iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1041 1042
		dma_dom->need_flush = false;
	}
1043 1044
}

1045 1046 1047
/*
 * The exported map_single function for dma_ops.
 */
1048 1049 1050 1051 1052 1053 1054 1055
static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
			     size_t size, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	dma_addr_t addr;
1056
	u64 dma_mask;
1057

1058 1059 1060
	if (!check_device(dev))
		return bad_dma_address;

1061
	dma_mask = *dev->dma_mask;
1062 1063 1064 1065

	get_device_resources(dev, &iommu, &domain, &devid);

	if (iommu == NULL || domain == NULL)
1066
		/* device not handled by any AMD IOMMU */
1067 1068 1069
		return (dma_addr_t)paddr;

	spin_lock_irqsave(&domain->lock, flags);
1070 1071
	addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
			    dma_mask);
1072 1073 1074
	if (addr == bad_dma_address)
		goto out;

1075
	iommu_completion_wait(iommu);
1076 1077 1078 1079 1080 1081 1082

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

1083 1084 1085
/*
 * The exported unmap_single function for dma_ops.
 */
1086 1087 1088 1089 1090 1091 1092 1093
static void unmap_single(struct device *dev, dma_addr_t dma_addr,
			 size_t size, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1094 1095
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1096
		/* device not handled by any AMD IOMMU */
1097 1098 1099 1100 1101 1102
		return;

	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, dir);

1103
	iommu_completion_wait(iommu);
1104 1105 1106 1107

	spin_unlock_irqrestore(&domain->lock, flags);
}

1108 1109 1110 1111
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

1126 1127 1128 1129
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
static int map_sg(struct device *dev, struct scatterlist *sglist,
		  int nelems, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
1141
	u64 dma_mask;
1142

1143 1144 1145
	if (!check_device(dev))
		return 0;

1146
	dma_mask = *dev->dma_mask;
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		return map_sg_no_iommu(dev, sglist, nelems, dir);

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

		s->dma_address = __map_single(dev, iommu, domain->priv,
1159 1160
					      paddr, s->length, dir, false,
					      dma_mask);
1161 1162 1163 1164 1165 1166 1167 1168

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

1169
	iommu_completion_wait(iommu);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
			__unmap_single(iommu, domain->priv, s->dma_address,
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

1188 1189 1190 1191
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
		     int nelems, int dir)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	struct scatterlist *s;
	u16 devid;
	int i;

1202 1203
	if (!check_device(dev) ||
	    !get_device_resources(dev, &iommu, &domain, &devid))
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		return;

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		__unmap_single(iommu, domain->priv, s->dma_address,
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

1214
	iommu_completion_wait(iommu);
1215 1216 1217 1218

	spin_unlock_irqrestore(&domain->lock, flags);
}

1219 1220 1221
/*
 * The exported alloc_coherent function for dma_ops.
 */
1222 1223 1224 1225 1226 1227 1228 1229 1230
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;
	phys_addr_t paddr;
1231
	u64 dma_mask = dev->coherent_dma_mask;
1232

1233 1234
	if (!check_device(dev))
		return NULL;
1235

1236 1237
	if (!get_device_resources(dev, &iommu, &domain, &devid))
		flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1238

1239
	flag |= __GFP_ZERO;
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
		return 0;

	paddr = virt_to_phys(virt_addr);

	if (!iommu || !domain) {
		*dma_addr = (dma_addr_t)paddr;
		return virt_addr;
	}

1251 1252 1253
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

1254 1255 1256
	spin_lock_irqsave(&domain->lock, flags);

	*dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1257
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
1258 1259 1260 1261 1262 1263 1264

	if (*dma_addr == bad_dma_address) {
		free_pages((unsigned long)virt_addr, get_order(size));
		virt_addr = NULL;
		goto out;
	}

1265
	iommu_completion_wait(iommu);
1266 1267 1268 1269 1270 1271 1272

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
}

1273 1274 1275
/*
 * The exported free_coherent function for dma_ops.
 */
1276 1277 1278 1279 1280 1281 1282 1283
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct protection_domain *domain;
	u16 devid;

1284 1285 1286
	if (!check_device(dev))
		return;

1287 1288 1289 1290 1291 1292 1293 1294 1295
	get_device_resources(dev, &iommu, &domain, &devid);

	if (!iommu || !domain)
		goto free_mem;

	spin_lock_irqsave(&domain->lock, flags);

	__unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);

1296
	iommu_completion_wait(iommu);
1297 1298 1299 1300 1301 1302 1303

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
	u16 bdf;
	struct pci_dev *pcidev;

	/* No device or no PCI device */
	if (!dev || dev->bus != &pci_bus_type)
		return 0;

	pcidev = to_pci_dev(dev);

	bdf = calc_devid(pcidev->bus->number, pcidev->devfn);

	/* Out of our scope? */
	if (bdf > amd_iommu_last_bdf)
		return 0;

	return 1;
}

1328
/*
1329 1330
 * The function for pre-allocating protection domains.
 *
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
void prealloc_protection_domains(void)
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
	struct amd_iommu *iommu;
	int order = amd_iommu_aperture_order;
	u16 devid;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
		devid = (dev->bus->number << 8) | dev->devfn;
1345
		if (devid > amd_iommu_last_bdf)
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
			continue;
		devid = amd_iommu_alias_table[devid];
		if (domain_for_device(devid))
			continue;
		iommu = amd_iommu_rlookup_table[devid];
		if (!iommu)
			continue;
		dma_dom = dma_ops_domain_alloc(iommu, order);
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
1357 1358 1359
		dma_dom->target_dev = devid;

		list_add_tail(&dma_dom->list, &iommu_pd_list);
1360 1361 1362
	}
}

1363 1364 1365 1366 1367 1368 1369
static struct dma_mapping_ops amd_iommu_dma_ops = {
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
	.map_single = map_single,
	.unmap_single = unmap_single,
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
1370
	.dma_supported = amd_iommu_dma_supported,
1371 1372
};

1373 1374 1375
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
1376 1377 1378 1379 1380 1381
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int order = amd_iommu_aperture_order;
	int ret;

1382 1383 1384 1385 1386
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
1387 1388 1389 1390 1391 1392 1393 1394 1395
	list_for_each_entry(iommu, &amd_iommu_list, list) {
		iommu->default_dom = dma_ops_domain_alloc(iommu, order);
		if (iommu->default_dom == NULL)
			return -ENOMEM;
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

1396 1397 1398 1399
	/*
	 * If device isolation is enabled, pre-allocate the protection
	 * domains for each device.
	 */
1400 1401 1402 1403 1404 1405
	if (amd_iommu_isolate)
		prealloc_protection_domains();

	iommu_detected = 1;
	force_iommu = 1;
	bad_dma_address = 0;
I
Ingo Molnar 已提交
1406
#ifdef CONFIG_GART_IOMMU
1407 1408
	gart_iommu_aperture_disabled = 1;
	gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
1409
#endif
1410

1411
	/* Make the driver finally visible to the drivers */
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	dma_ops = &amd_iommu_dma_ops;

	return 0;

free_domains:

	list_for_each_entry(iommu, &amd_iommu_list, list) {
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}