fs-writeback.c 72.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
11
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
12 13 14 15 16
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
17
#include <linux/export.h>
L
Linus Torvalds 已提交
18
#include <linux/spinlock.h>
19
#include <linux/slab.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
23
#include <linux/pagemap.h>
24
#include <linux/kthread.h>
L
Linus Torvalds 已提交
25 26 27
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
28
#include <linux/tracepoint.h>
29
#include <linux/device.h>
30
#include <linux/memcontrol.h>
31
#include "internal.h"
L
Linus Torvalds 已提交
32

33 34 35
/*
 * 4MB minimal write chunk size
 */
36
#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
37

38 39 40 41
struct wb_completion {
	atomic_t		cnt;
};

42 43 44
/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
45
struct wb_writeback_work {
46 47
	long nr_pages;
	struct super_block *sb;
48
	unsigned long *older_than_this;
49
	enum writeback_sync_modes sync_mode;
50
	unsigned int tagged_writepages:1;
51 52 53
	unsigned int for_kupdate:1;
	unsigned int range_cyclic:1;
	unsigned int for_background:1;
54
	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55
	unsigned int auto_free:1;	/* free on completion */
56
	enum wb_reason reason;		/* why was writeback initiated? */
57

58
	struct list_head list;		/* pending work list */
59
	struct wb_completion *done;	/* set if the caller waits */
60 61
};

62 63 64 65 66 67 68 69 70 71 72 73 74
/*
 * If one wants to wait for one or more wb_writeback_works, each work's
 * ->done should be set to a wb_completion defined using the following
 * macro.  Once all work items are issued with wb_queue_work(), the caller
 * can wait for the completion of all using wb_wait_for_completion().  Work
 * items which are waited upon aren't freed automatically on completion.
 */
#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
	struct wb_completion cmpl = {					\
		.cnt		= ATOMIC_INIT(1),			\
	}


75 76 77 78 79 80 81 82 83 84 85 86
/*
 * If an inode is constantly having its pages dirtied, but then the
 * updates stop dirtytime_expire_interval seconds in the past, it's
 * possible for the worst case time between when an inode has its
 * timestamps updated and when they finally get written out to be two
 * dirtytime_expire_intervals.  We set the default to 12 hours (in
 * seconds), which means most of the time inodes will have their
 * timestamps written to disk after 12 hours, but in the worst case a
 * few inodes might not their timestamps updated for 24 hours.
 */
unsigned int dirtytime_expire_interval = 12 * 60 * 60;

N
Nick Piggin 已提交
87 88
static inline struct inode *wb_inode(struct list_head *head)
{
89
	return list_entry(head, struct inode, i_io_list);
N
Nick Piggin 已提交
90 91
}

92 93 94 95 96 97 98 99
/*
 * Include the creation of the trace points after defining the
 * wb_writeback_work structure and inline functions so that the definition
 * remains local to this file.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/writeback.h>

100 101
EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);

102 103 104 105 106 107
static bool wb_io_lists_populated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb)) {
		return false;
	} else {
		set_bit(WB_has_dirty_io, &wb->state);
108
		WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 110
		atomic_long_add(wb->avg_write_bandwidth,
				&wb->bdi->tot_write_bandwidth);
111 112 113 114 115 116 117
		return true;
	}
}

static void wb_io_lists_depopulated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118
	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119
		clear_bit(WB_has_dirty_io, &wb->state);
120 121
		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
					&wb->bdi->tot_write_bandwidth) < 0);
122
	}
123 124 125
}

/**
126
 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 128
 * @inode: inode to be moved
 * @wb: target bdi_writeback
129
 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
130
 *
131
 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 133 134
 * Returns %true if @inode is the first occupant of the !dirty_time IO
 * lists; otherwise, %false.
 */
135
static bool inode_io_list_move_locked(struct inode *inode,
136 137 138 139 140
				      struct bdi_writeback *wb,
				      struct list_head *head)
{
	assert_spin_locked(&wb->list_lock);

141
	list_move(&inode->i_io_list, head);
142 143 144 145 146 147 148 149 150 151

	/* dirty_time doesn't count as dirty_io until expiration */
	if (head != &wb->b_dirty_time)
		return wb_io_lists_populated(wb);

	wb_io_lists_depopulated(wb);
	return false;
}

/**
152
 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 154 155 156 157 158
 * @inode: inode to be removed
 * @wb: bdi_writeback @inode is being removed from
 *
 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 * clear %WB_has_dirty_io if all are empty afterwards.
 */
159
static void inode_io_list_del_locked(struct inode *inode,
160 161 162 163
				     struct bdi_writeback *wb)
{
	assert_spin_locked(&wb->list_lock);

164
	list_del_init(&inode->i_io_list);
165 166 167
	wb_io_lists_depopulated(wb);
}

168
static void wb_wakeup(struct bdi_writeback *wb)
J
Jan Kara 已提交
169
{
170 171 172 173
	spin_lock_bh(&wb->work_lock);
	if (test_bit(WB_registered, &wb->state))
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	spin_unlock_bh(&wb->work_lock);
J
Jan Kara 已提交
174 175
}

176 177 178 179 180 181 182 183 184 185 186
static void finish_writeback_work(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
{
	struct wb_completion *done = work->done;

	if (work->auto_free)
		kfree(work);
	if (done && atomic_dec_and_test(&done->cnt))
		wake_up_all(&wb->bdi->wb_waitq);
}

187 188
static void wb_queue_work(struct bdi_writeback *wb,
			  struct wb_writeback_work *work)
189
{
190
	trace_writeback_queue(wb, work);
191

192 193
	if (work->done)
		atomic_inc(&work->done->cnt);
194 195 196 197 198 199 200 201 202

	spin_lock_bh(&wb->work_lock);

	if (test_bit(WB_registered, &wb->state)) {
		list_add_tail(&work->list, &wb->work_list);
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	} else
		finish_writeback_work(wb, work);

203
	spin_unlock_bh(&wb->work_lock);
L
Linus Torvalds 已提交
204 205
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
/**
 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 * @bdi: bdi work items were issued to
 * @done: target wb_completion
 *
 * Wait for one or more work items issued to @bdi with their ->done field
 * set to @done, which should have been defined with
 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 * work items are completed.  Work items which are waited upon aren't freed
 * automatically on completion.
 */
static void wb_wait_for_completion(struct backing_dev_info *bdi,
				   struct wb_completion *done)
{
	atomic_dec(&done->cnt);		/* put down the initial count */
	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
}

224 225
#ifdef CONFIG_CGROUP_WRITEBACK

226 227 228 229 230 231 232 233 234 235 236 237 238 239
/* parameters for foreign inode detection, see wb_detach_inode() */
#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */

#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
					/* each slot's duration is 2s / 16 */
#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
					/* if foreign slots >= 8, switch */
#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
					/* one round can affect upto 5 slots */

240 241 242
static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
static struct workqueue_struct *isw_wq;

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
void __inode_attach_wb(struct inode *inode, struct page *page)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;

	if (inode_cgwb_enabled(inode)) {
		struct cgroup_subsys_state *memcg_css;

		if (page) {
			memcg_css = mem_cgroup_css_from_page(page);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
		} else {
			/* must pin memcg_css, see wb_get_create() */
			memcg_css = task_get_css(current, memory_cgrp_id);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
			css_put(memcg_css);
		}
	}

	if (!wb)
		wb = &bdi->wb;

	/*
	 * There may be multiple instances of this function racing to
	 * update the same inode.  Use cmpxchg() to tell the winner.
	 */
	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
		wb_put(wb);
}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
/**
 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 * @inode: inode of interest with i_lock held
 *
 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 * held on entry and is released on return.  The returned wb is guaranteed
 * to stay @inode's associated wb until its list_lock is released.
 */
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	while (true) {
		struct bdi_writeback *wb = inode_to_wb(inode);

		/*
		 * inode_to_wb() association is protected by both
		 * @inode->i_lock and @wb->list_lock but list_lock nests
		 * outside i_lock.  Drop i_lock and verify that the
		 * association hasn't changed after acquiring list_lock.
		 */
		wb_get(wb);
		spin_unlock(&inode->i_lock);
		spin_lock(&wb->list_lock);

299
		/* i_wb may have changed inbetween, can't use inode_to_wb() */
300 301 302 303
		if (likely(wb == inode->i_wb)) {
			wb_put(wb);	/* @inode already has ref */
			return wb;
		}
304 305

		spin_unlock(&wb->list_lock);
306
		wb_put(wb);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
		cpu_relax();
		spin_lock(&inode->i_lock);
	}
}

/**
 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 * @inode: inode of interest
 *
 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 * on entry.
 */
static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	spin_lock(&inode->i_lock);
	return locked_inode_to_wb_and_lock_list(inode);
}

326 327 328 329 330 331 332 333
struct inode_switch_wbs_context {
	struct inode		*inode;
	struct bdi_writeback	*new_wb;

	struct rcu_head		rcu_head;
	struct work_struct	work;
};

334 335 336 337 338 339 340 341 342 343
static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
{
	down_write(&bdi->wb_switch_rwsem);
}

static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
{
	up_write(&bdi->wb_switch_rwsem);
}

344 345 346 347 348
static void inode_switch_wbs_work_fn(struct work_struct *work)
{
	struct inode_switch_wbs_context *isw =
		container_of(work, struct inode_switch_wbs_context, work);
	struct inode *inode = isw->inode;
349
	struct backing_dev_info *bdi = inode_to_bdi(inode);
350 351
	struct address_space *mapping = inode->i_mapping;
	struct bdi_writeback *old_wb = inode->i_wb;
352
	struct bdi_writeback *new_wb = isw->new_wb;
353 354 355
	struct radix_tree_iter iter;
	bool switched = false;
	void **slot;
356

357 358 359 360 361 362
	/*
	 * If @inode switches cgwb membership while sync_inodes_sb() is
	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
	 */
	down_read(&bdi->wb_switch_rwsem);

363 364 365 366
	/*
	 * By the time control reaches here, RCU grace period has passed
	 * since I_WB_SWITCH assertion and all wb stat update transactions
	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
M
Matthew Wilcox 已提交
367
	 * synchronizing against the i_pages lock.
368
	 *
M
Matthew Wilcox 已提交
369
	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
370 371
	 * gives us exclusion against all wb related operations on @inode
	 * including IO list manipulations and stat updates.
372
	 */
373 374 375 376 377 378 379
	if (old_wb < new_wb) {
		spin_lock(&old_wb->list_lock);
		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
	} else {
		spin_lock(&new_wb->list_lock);
		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
	}
380
	spin_lock(&inode->i_lock);
M
Matthew Wilcox 已提交
381
	xa_lock_irq(&mapping->i_pages);
382 383 384

	/*
	 * Once I_FREEING is visible under i_lock, the eviction path owns
385
	 * the inode and we shouldn't modify ->i_io_list.
386 387 388 389 390 391 392
	 */
	if (unlikely(inode->i_state & I_FREEING))
		goto skip_switch;

	/*
	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
M
Matthew Wilcox 已提交
393
	 * pages actually under writeback.
394
	 */
M
Matthew Wilcox 已提交
395
	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
396 397
				   PAGECACHE_TAG_DIRTY) {
		struct page *page = radix_tree_deref_slot_protected(slot,
M
Matthew Wilcox 已提交
398
						&mapping->i_pages.xa_lock);
399
		if (likely(page) && PageDirty(page)) {
400 401
			dec_wb_stat(old_wb, WB_RECLAIMABLE);
			inc_wb_stat(new_wb, WB_RECLAIMABLE);
402 403 404
		}
	}

M
Matthew Wilcox 已提交
405
	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
406 407
				   PAGECACHE_TAG_WRITEBACK) {
		struct page *page = radix_tree_deref_slot_protected(slot,
M
Matthew Wilcox 已提交
408
						&mapping->i_pages.xa_lock);
409 410
		if (likely(page)) {
			WARN_ON_ONCE(!PageWriteback(page));
411 412
			dec_wb_stat(old_wb, WB_WRITEBACK);
			inc_wb_stat(new_wb, WB_WRITEBACK);
413 414 415 416 417 418 419 420 421 422 423
		}
	}

	wb_get(new_wb);

	/*
	 * Transfer to @new_wb's IO list if necessary.  The specific list
	 * @inode was on is ignored and the inode is put on ->b_dirty which
	 * is always correct including from ->b_dirty_time.  The transfer
	 * preserves @inode->dirtied_when ordering.
	 */
424
	if (!list_empty(&inode->i_io_list)) {
425 426
		struct inode *pos;

427
		inode_io_list_del_locked(inode, old_wb);
428
		inode->i_wb = new_wb;
429
		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
430 431 432
			if (time_after_eq(inode->dirtied_when,
					  pos->dirtied_when))
				break;
433
		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
434 435 436
	} else {
		inode->i_wb = new_wb;
	}
437

438
	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439 440 441
	inode->i_wb_frn_winner = 0;
	inode->i_wb_frn_avg_time = 0;
	inode->i_wb_frn_history = 0;
442 443
	switched = true;
skip_switch:
444 445 446 447 448 449
	/*
	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
	 */
	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);

M
Matthew Wilcox 已提交
450
	xa_unlock_irq(&mapping->i_pages);
451
	spin_unlock(&inode->i_lock);
452 453
	spin_unlock(&new_wb->list_lock);
	spin_unlock(&old_wb->list_lock);
454

455 456
	up_read(&bdi->wb_switch_rwsem);

457 458 459 460
	if (switched) {
		wb_wakeup(new_wb);
		wb_put(old_wb);
	}
461
	wb_put(new_wb);
462 463

	iput(inode);
464
	kfree(isw);
465 466

	atomic_dec(&isw_nr_in_flight);
467 468 469 470 471 472 473 474 475
}

static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
{
	struct inode_switch_wbs_context *isw = container_of(rcu_head,
				struct inode_switch_wbs_context, rcu_head);

	/* needs to grab bh-unsafe locks, bounce to work item */
	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
476
	queue_work(isw_wq, &isw->work);
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
}

/**
 * inode_switch_wbs - change the wb association of an inode
 * @inode: target inode
 * @new_wb_id: ID of the new wb
 *
 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 * switching is performed asynchronously and may fail silently.
 */
static void inode_switch_wbs(struct inode *inode, int new_wb_id)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct cgroup_subsys_state *memcg_css;
	struct inode_switch_wbs_context *isw;

	/* noop if seems to be already in progress */
	if (inode->i_state & I_WB_SWITCH)
		return;

497 498 499 500 501 502 503 504 505
	/*
	 * Avoid starting new switches while sync_inodes_sb() is in
	 * progress.  Otherwise, if the down_write protected issue path
	 * blocks heavily, we might end up starting a large number of
	 * switches which will block on the rwsem.
	 */
	if (!down_read_trylock(&bdi->wb_switch_rwsem))
		return;

506 507
	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
	if (!isw)
508
		goto out_unlock;
509 510 511 512 513 514 515 516 517 518 519 520

	/* find and pin the new wb */
	rcu_read_lock();
	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
	if (memcg_css)
		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
	rcu_read_unlock();
	if (!isw->new_wb)
		goto out_free;

	/* while holding I_WB_SWITCH, no one else can update the association */
	spin_lock(&inode->i_lock);
521
	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
522 523 524 525 526
	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
	    inode_to_wb(inode) == isw->new_wb) {
		spin_unlock(&inode->i_lock);
		goto out_free;
	}
527
	inode->i_state |= I_WB_SWITCH;
528
	__iget(inode);
529 530 531 532 533 534
	spin_unlock(&inode->i_lock);

	isw->inode = inode;

	/*
	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
M
Matthew Wilcox 已提交
535 536
	 * the RCU protected stat update paths to grab the i_page
	 * lock so that stat transfer can synchronize against them.
537 538 539
	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
	 */
	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
540 541 542

	atomic_inc(&isw_nr_in_flight);

543
	goto out_unlock;
544 545 546 547 548

out_free:
	if (isw->new_wb)
		wb_put(isw->new_wb);
	kfree(isw);
549 550
out_unlock:
	up_read(&bdi->wb_switch_rwsem);
551 552
}

553 554 555 556 557 558 559 560 561 562 563 564 565
/**
 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 * @wbc: writeback_control of interest
 * @inode: target inode
 *
 * @inode is locked and about to be written back under the control of @wbc.
 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 * writeback completion, wbc_detach_inode() should be called.  This is used
 * to track the cgroup writeback context.
 */
void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
				 struct inode *inode)
{
566 567 568 569 570
	if (!inode_cgwb_enabled(inode)) {
		spin_unlock(&inode->i_lock);
		return;
	}

571
	wbc->wb = inode_to_wb(inode);
572 573 574 575 576 577 578 579 580
	wbc->inode = inode;

	wbc->wb_id = wbc->wb->memcg_css->id;
	wbc->wb_lcand_id = inode->i_wb_frn_winner;
	wbc->wb_tcand_id = 0;
	wbc->wb_bytes = 0;
	wbc->wb_lcand_bytes = 0;
	wbc->wb_tcand_bytes = 0;

581 582
	wb_get(wbc->wb);
	spin_unlock(&inode->i_lock);
583 584 585 586 587 588 589

	/*
	 * A dying wb indicates that the memcg-blkcg mapping has changed
	 * and a new wb is already serving the memcg.  Switch immediately.
	 */
	if (unlikely(wb_dying(wbc->wb)))
		inode_switch_wbs(inode, wbc->wb_id);
590 591 592
}

/**
593 594
 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 * @wbc: writeback_control of the just finished writeback
595 596 597
 *
 * To be called after a writeback attempt of an inode finishes and undoes
 * wbc_attach_and_unlock_inode().  Can be called under any context.
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
 *
 * As concurrent write sharing of an inode is expected to be very rare and
 * memcg only tracks page ownership on first-use basis severely confining
 * the usefulness of such sharing, cgroup writeback tracks ownership
 * per-inode.  While the support for concurrent write sharing of an inode
 * is deemed unnecessary, an inode being written to by different cgroups at
 * different points in time is a lot more common, and, more importantly,
 * charging only by first-use can too readily lead to grossly incorrect
 * behaviors (single foreign page can lead to gigabytes of writeback to be
 * incorrectly attributed).
 *
 * To resolve this issue, cgroup writeback detects the majority dirtier of
 * an inode and transfers the ownership to it.  To avoid unnnecessary
 * oscillation, the detection mechanism keeps track of history and gives
 * out the switch verdict only if the foreign usage pattern is stable over
 * a certain amount of time and/or writeback attempts.
 *
 * On each writeback attempt, @wbc tries to detect the majority writer
 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 * count from the majority voting, it also counts the bytes written for the
 * current wb and the last round's winner wb (max of last round's current
 * wb, the winner from two rounds ago, and the last round's majority
 * candidate).  Keeping track of the historical winner helps the algorithm
 * to semi-reliably detect the most active writer even when it's not the
 * absolute majority.
 *
 * Once the winner of the round is determined, whether the winner is
 * foreign or not and how much IO time the round consumed is recorded in
 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 * over a certain threshold, the switch verdict is given.
628 629 630
 */
void wbc_detach_inode(struct writeback_control *wbc)
{
631 632
	struct bdi_writeback *wb = wbc->wb;
	struct inode *inode = wbc->inode;
633 634
	unsigned long avg_time, max_bytes, max_time;
	u16 history;
635 636
	int max_id;

637 638 639 640 641 642
	if (!wb)
		return;

	history = inode->i_wb_frn_history;
	avg_time = inode->i_wb_frn_avg_time;

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	/* pick the winner of this round */
	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_id;
		max_bytes = wbc->wb_bytes;
	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_lcand_id;
		max_bytes = wbc->wb_lcand_bytes;
	} else {
		max_id = wbc->wb_tcand_id;
		max_bytes = wbc->wb_tcand_bytes;
	}

	/*
	 * Calculate the amount of IO time the winner consumed and fold it
	 * into the running average kept per inode.  If the consumed IO
	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
	 * deciding whether to switch or not.  This is to prevent one-off
	 * small dirtiers from skewing the verdict.
	 */
	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
				wb->avg_write_bandwidth);
	if (avg_time)
		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
	else
		avg_time = max_time;	/* immediate catch up on first run */

	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
		int slots;

		/*
		 * The switch verdict is reached if foreign wb's consume
		 * more than a certain proportion of IO time in a
		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
		 * history mask where each bit represents one sixteenth of
		 * the period.  Determine the number of slots to shift into
		 * history from @max_time.
		 */
		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
		history <<= slots;
		if (wbc->wb_id != max_id)
			history |= (1U << slots) - 1;

		/*
		 * Switch if the current wb isn't the consistent winner.
		 * If there are multiple closely competing dirtiers, the
		 * inode may switch across them repeatedly over time, which
		 * is okay.  The main goal is avoiding keeping an inode on
		 * the wrong wb for an extended period of time.
		 */
695 696
		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
			inode_switch_wbs(inode, max_id);
697 698 699 700 701 702 703 704 705 706
	}

	/*
	 * Multiple instances of this function may race to update the
	 * following fields but we don't mind occassional inaccuracies.
	 */
	inode->i_wb_frn_winner = max_id;
	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
	inode->i_wb_frn_history = history;

707 708 709 710 711 712 713 714 715 716
	/*
	 * Without wb list lock i_wb can switch at any point, so it can
	 * judge on the wrong wb anyway.
	 *
	 * The wb is switched to the root memcg unconditionally. We expect
	 * the correct wb (best candidate) is picked up in next round.
	 */
	if (wb == inode->i_wb && wb_dying(wb) && !(inode->i_state & I_DIRTY_ALL))
		inode_switch_wbs(inode, root_mem_cgroup->css.id);

717 718 719 720
	wb_put(wbc->wb);
	wbc->wb = NULL;
}

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
/**
 * wbc_account_io - account IO issued during writeback
 * @wbc: writeback_control of the writeback in progress
 * @page: page being written out
 * @bytes: number of bytes being written out
 *
 * @bytes from @page are about to written out during the writeback
 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 * wbc_detach_inode().
 */
void wbc_account_io(struct writeback_control *wbc, struct page *page,
		    size_t bytes)
{
	int id;

	/*
	 * pageout() path doesn't attach @wbc to the inode being written
	 * out.  This is intentional as we don't want the function to block
	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
	 * regular writeback instead of writing things out itself.
	 */
	if (!wbc->wb)
		return;

	id = mem_cgroup_css_from_page(page)->id;

	if (id == wbc->wb_id) {
		wbc->wb_bytes += bytes;
		return;
	}

	if (id == wbc->wb_lcand_id)
		wbc->wb_lcand_bytes += bytes;

	/* Boyer-Moore majority vote algorithm */
	if (!wbc->wb_tcand_bytes)
		wbc->wb_tcand_id = id;
	if (id == wbc->wb_tcand_id)
		wbc->wb_tcand_bytes += bytes;
	else
		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
}
763
EXPORT_SYMBOL_GPL(wbc_account_io);
764

765 766
/**
 * inode_congested - test whether an inode is congested
767
 * @inode: inode to test for congestion (may be NULL)
768 769 770 771 772 773 774 775 776
 * @cong_bits: mask of WB_[a]sync_congested bits to test
 *
 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 * bits to test and the return value is the mask of set bits.
 *
 * If cgroup writeback is enabled for @inode, the congestion state is
 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 * associated with @inode is congested; otherwise, the root wb's congestion
 * state is used.
777 778 779
 *
 * @inode is allowed to be NULL as this function is often called on
 * mapping->host which is NULL for the swapper space.
780 781 782
 */
int inode_congested(struct inode *inode, int cong_bits)
{
783 784 785 786
	/*
	 * Once set, ->i_wb never becomes NULL while the inode is alive.
	 * Start transaction iff ->i_wb is visible.
	 */
787
	if (inode && inode_to_wb_is_valid(inode)) {
788
		struct bdi_writeback *wb;
G
Greg Thelen 已提交
789 790
		struct wb_lock_cookie lock_cookie = {};
		bool congested;
791

G
Greg Thelen 已提交
792
		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
793
		congested = wb_congested(wb, cong_bits);
G
Greg Thelen 已提交
794
		unlocked_inode_to_wb_end(inode, &lock_cookie);
795
		return congested;
796 797 798 799 800 801
	}

	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
}
EXPORT_SYMBOL_GPL(inode_congested);

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
/**
 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 * @wb: target bdi_writeback to split @nr_pages to
 * @nr_pages: number of pages to write for the whole bdi
 *
 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 * @wb->bdi.
 */
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);

	if (nr_pages == LONG_MAX)
		return LONG_MAX;

	/*
	 * This may be called on clean wb's and proportional distribution
	 * may not make sense, just use the original @nr_pages in those
	 * cases.  In general, we wanna err on the side of writing more.
	 */
	if (!tot_bw || this_bw >= tot_bw)
		return nr_pages;
	else
		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
}

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
/**
 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 * @bdi: target backing_dev_info
 * @base_work: wb_writeback_work to issue
 * @skip_if_busy: skip wb's which already have writeback in progress
 *
 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 * distributed to the busy wbs according to each wb's proportion in the
 * total active write bandwidth of @bdi.
 */
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
845
	struct bdi_writeback *last_wb = NULL;
846 847
	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
					      struct bdi_writeback, bdi_node);
848 849 850 851

	might_sleep();
restart:
	rcu_read_lock();
852
	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
853 854 855 856 857
		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
		struct wb_writeback_work fallback_work;
		struct wb_writeback_work *work;
		long nr_pages;

858 859 860 861 862
		if (last_wb) {
			wb_put(last_wb);
			last_wb = NULL;
		}

863 864 865 866 867 868
		/* SYNC_ALL writes out I_DIRTY_TIME too */
		if (!wb_has_dirty_io(wb) &&
		    (base_work->sync_mode == WB_SYNC_NONE ||
		     list_empty(&wb->b_dirty_time)))
			continue;
		if (skip_if_busy && writeback_in_progress(wb))
869 870
			continue;

871 872 873 874 875 876 877 878 879
		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);

		work = kmalloc(sizeof(*work), GFP_ATOMIC);
		if (work) {
			*work = *base_work;
			work->nr_pages = nr_pages;
			work->auto_free = 1;
			wb_queue_work(wb, work);
			continue;
880
		}
881 882 883 884 885 886 887 888 889 890

		/* alloc failed, execute synchronously using on-stack fallback */
		work = &fallback_work;
		*work = *base_work;
		work->nr_pages = nr_pages;
		work->auto_free = 0;
		work->done = &fallback_work_done;

		wb_queue_work(wb, work);

891 892 893 894 895 896 897 898
		/*
		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
		 * continuing iteration from @wb after dropping and
		 * regrabbing rcu read lock.
		 */
		wb_get(wb);
		last_wb = wb;

899 900 901
		rcu_read_unlock();
		wb_wait_for_completion(bdi, &fallback_work_done);
		goto restart;
902 903
	}
	rcu_read_unlock();
904 905 906

	if (last_wb)
		wb_put(last_wb);
907 908
}

909 910 911 912 913 914 915 916 917 918 919 920 921
/**
 * cgroup_writeback_umount - flush inode wb switches for umount
 *
 * This function is called when a super_block is about to be destroyed and
 * flushes in-flight inode wb switches.  An inode wb switch goes through
 * RCU and then workqueue, so the two need to be flushed in order to ensure
 * that all previously scheduled switches are finished.  As wb switches are
 * rare occurrences and synchronize_rcu() can take a while, perform
 * flushing iff wb switches are in flight.
 */
void cgroup_writeback_umount(void)
{
	if (atomic_read(&isw_nr_in_flight)) {
922 923 924 925 926
		/*
		 * Use rcu_barrier() to wait for all pending callbacks to
		 * ensure that all in-flight wb switches are in the workqueue.
		 */
		rcu_barrier();
927 928 929 930 931 932 933 934 935 936 937 938 939
		flush_workqueue(isw_wq);
	}
}

static int __init cgroup_writeback_init(void)
{
	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
	if (!isw_wq)
		return -ENOMEM;
	return 0;
}
fs_initcall(cgroup_writeback_init);

940 941
#else	/* CONFIG_CGROUP_WRITEBACK */

942 943 944
static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_unlock(&inode->i_lock);
	spin_lock(&wb->list_lock);
	return wb;
}

static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_lock(&wb->list_lock);
	return wb;
}

966 967 968 969 970
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	return nr_pages;
}

971 972 973 974 975 976
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	might_sleep();

977
	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
978 979 980 981 982
		base_work->auto_free = 0;
		wb_queue_work(&bdi->wb, base_work);
	}
}

983 984
#endif	/* CONFIG_CGROUP_WRITEBACK */

985 986 987 988 989 990 991 992 993 994 995 996
/*
 * Add in the number of potentially dirty inodes, because each inode
 * write can dirty pagecache in the underlying blockdev.
 */
static unsigned long get_nr_dirty_pages(void)
{
	return global_node_page_state(NR_FILE_DIRTY) +
		global_node_page_state(NR_UNSTABLE_NFS) +
		get_nr_dirty_inodes();
}

static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
997
{
998 999 1000
	if (!wb_has_dirty_io(wb))
		return;

1001 1002 1003 1004 1005 1006
	/*
	 * All callers of this function want to start writeback of all
	 * dirty pages. Places like vmscan can call this at a very
	 * high frequency, causing pointless allocations of tons of
	 * work items and keeping the flusher threads busy retrieving
	 * that work. Ensure that we only allow one of them pending and
1007
	 * inflight at the time.
1008
	 */
1009 1010
	if (test_bit(WB_start_all, &wb->state) ||
	    test_and_set_bit(WB_start_all, &wb->state))
1011 1012
		return;

1013 1014
	wb->start_all_reason = reason;
	wb_wakeup(wb);
1015
}
1016

1017
/**
1018 1019
 * wb_start_background_writeback - start background writeback
 * @wb: bdi_writback to write from
1020 1021
 *
 * Description:
1022
 *   This makes sure WB_SYNC_NONE background writeback happens. When
1023
 *   this function returns, it is only guaranteed that for given wb
1024 1025
 *   some IO is happening if we are over background dirty threshold.
 *   Caller need not hold sb s_umount semaphore.
1026
 */
1027
void wb_start_background_writeback(struct bdi_writeback *wb)
1028
{
1029 1030 1031 1032
	/*
	 * We just wake up the flusher thread. It will perform background
	 * writeback as soon as there is no other work to do.
	 */
1033
	trace_writeback_wake_background(wb);
1034
	wb_wakeup(wb);
L
Linus Torvalds 已提交
1035 1036
}

1037 1038 1039
/*
 * Remove the inode from the writeback list it is on.
 */
1040
void inode_io_list_del(struct inode *inode)
1041
{
1042
	struct bdi_writeback *wb;
1043

1044
	wb = inode_to_wb_and_lock_list(inode);
1045
	inode_io_list_del_locked(inode, wb);
1046
	spin_unlock(&wb->list_lock);
1047 1048
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
/*
 * mark an inode as under writeback on the sb
 */
void sb_mark_inode_writeback(struct inode *inode)
{
	struct super_block *sb = inode->i_sb;
	unsigned long flags;

	if (list_empty(&inode->i_wb_list)) {
		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1059
		if (list_empty(&inode->i_wb_list)) {
1060
			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1061 1062
			trace_sb_mark_inode_writeback(inode);
		}
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
	}
}

/*
 * clear an inode as under writeback on the sb
 */
void sb_clear_inode_writeback(struct inode *inode)
{
	struct super_block *sb = inode->i_sb;
	unsigned long flags;

	if (!list_empty(&inode->i_wb_list)) {
		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1077 1078 1079 1080
		if (!list_empty(&inode->i_wb_list)) {
			list_del_init(&inode->i_wb_list);
			trace_sb_clear_inode_writeback(inode);
		}
1081 1082 1083 1084
		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
	}
}

1085 1086 1087 1088 1089
/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1090
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1091 1092 1093
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
1094
static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1095
{
1096
	if (!list_empty(&wb->b_dirty)) {
1097
		struct inode *tail;
1098

N
Nick Piggin 已提交
1099
		tail = wb_inode(wb->b_dirty.next);
1100
		if (time_before(inode->dirtied_when, tail->dirtied_when))
1101 1102
			inode->dirtied_when = jiffies;
	}
1103
	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1104 1105
}

1106
/*
1107
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1108
 */
1109
static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1110
{
1111
	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1112 1113
}

J
Joern Engel 已提交
1114 1115
static void inode_sync_complete(struct inode *inode)
{
1116
	inode->i_state &= ~I_SYNC;
1117 1118
	/* If inode is clean an unused, put it into LRU now... */
	inode_add_lru(inode);
1119
	/* Waiters must see I_SYNC cleared before being woken up */
J
Joern Engel 已提交
1120 1121 1122 1123
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

1124 1125 1126 1127 1128 1129 1130 1131
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
1132
	 * from permanently stopping the whole bdi writeback.
1133 1134 1135 1136 1137 1138
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

1139 1140
#define EXPIRE_DIRTY_ATIME 0x0001

1141
/*
1142
 * Move expired (dirtied before work->older_than_this) dirty inodes from
J
Jan Kara 已提交
1143
 * @delaying_queue to @dispatch_queue.
1144
 */
1145
static int move_expired_inodes(struct list_head *delaying_queue,
1146
			       struct list_head *dispatch_queue,
1147
			       int flags,
1148
			       struct wb_writeback_work *work)
1149
{
1150 1151
	unsigned long *older_than_this = NULL;
	unsigned long expire_time;
1152 1153
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
1154
	struct super_block *sb = NULL;
1155
	struct inode *inode;
1156
	int do_sb_sort = 0;
1157
	int moved = 0;
1158

1159 1160
	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
		older_than_this = work->older_than_this;
1161 1162
	else if (!work->for_sync) {
		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1163 1164
		older_than_this = &expire_time;
	}
1165
	while (!list_empty(delaying_queue)) {
N
Nick Piggin 已提交
1166
		inode = wb_inode(delaying_queue->prev);
1167 1168
		if (older_than_this &&
		    inode_dirtied_after(inode, *older_than_this))
1169
			break;
1170
		list_move(&inode->i_io_list, &tmp);
1171
		moved++;
1172 1173
		if (flags & EXPIRE_DIRTY_ATIME)
			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1174 1175
		if (sb_is_blkdev_sb(inode->i_sb))
			continue;
1176 1177 1178
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
1179 1180
	}

1181 1182 1183
	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
1184
		goto out;
1185 1186
	}

1187 1188
	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
N
Nick Piggin 已提交
1189
		sb = wb_inode(tmp.prev)->i_sb;
1190
		list_for_each_prev_safe(pos, node, &tmp) {
N
Nick Piggin 已提交
1191
			inode = wb_inode(pos);
1192
			if (inode->i_sb == sb)
1193
				list_move(&inode->i_io_list, dispatch_queue);
1194
		}
1195
	}
1196 1197
out:
	return moved;
1198 1199 1200 1201
}

/*
 * Queue all expired dirty inodes for io, eldest first.
1202 1203 1204 1205 1206 1207 1208 1209
 * Before
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    gf         edc     BA
 * After
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    g          fBAedc
 *                                           |
 *                                           +--> dequeue for IO
1210
 */
1211
static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1212
{
1213
	int moved;
1214

1215
	assert_spin_locked(&wb->list_lock);
1216
	list_splice_init(&wb->b_more_io, &wb->b_io);
1217 1218 1219
	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
				     EXPIRE_DIRTY_ATIME, work);
1220 1221
	if (moved)
		wb_io_lists_populated(wb);
1222
	trace_writeback_queue_io(wb, work, moved);
1223 1224
}

1225
static int write_inode(struct inode *inode, struct writeback_control *wbc)
1226
{
T
Tejun Heo 已提交
1227 1228 1229 1230 1231 1232 1233 1234
	int ret;

	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
		trace_writeback_write_inode_start(inode, wbc);
		ret = inode->i_sb->s_op->write_inode(inode, wbc);
		trace_writeback_write_inode(inode, wbc);
		return ret;
	}
1235
	return 0;
1236 1237
}

L
Linus Torvalds 已提交
1238
/*
1239 1240
 * Wait for writeback on an inode to complete. Called with i_lock held.
 * Caller must make sure inode cannot go away when we drop i_lock.
1241
 */
1242 1243 1244
static void __inode_wait_for_writeback(struct inode *inode)
	__releases(inode->i_lock)
	__acquires(inode->i_lock)
1245 1246 1247 1248 1249
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1250 1251
	while (inode->i_state & I_SYNC) {
		spin_unlock(&inode->i_lock);
1252 1253
		__wait_on_bit(wqh, &wq, bit_wait,
			      TASK_UNINTERRUPTIBLE);
1254
		spin_lock(&inode->i_lock);
1255
	}
1256 1257
}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
/*
 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 */
void inode_wait_for_writeback(struct inode *inode)
{
	spin_lock(&inode->i_lock);
	__inode_wait_for_writeback(inode);
	spin_unlock(&inode->i_lock);
}

/*
 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 * held and drops it. It is aimed for callers not holding any inode reference
 * so once i_lock is dropped, inode can go away.
 */
static void inode_sleep_on_writeback(struct inode *inode)
	__releases(inode->i_lock)
{
	DEFINE_WAIT(wait);
	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	int sleep;

	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
	sleep = inode->i_state & I_SYNC;
	spin_unlock(&inode->i_lock);
	if (sleep)
		schedule();
	finish_wait(wqh, &wait);
}

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
/*
 * Find proper writeback list for the inode depending on its current state and
 * possibly also change of its state while we were doing writeback.  Here we
 * handle things such as livelock prevention or fairness of writeback among
 * inodes. This function can be called only by flusher thread - noone else
 * processes all inodes in writeback lists and requeueing inodes behind flusher
 * thread's back can have unexpected consequences.
 */
static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
			  struct writeback_control *wbc)
{
	if (inode->i_state & I_FREEING)
		return;

	/*
	 * Sync livelock prevention. Each inode is tagged and synced in one
	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
	 * the dirty time to prevent enqueue and sync it again.
	 */
	if ((inode->i_state & I_DIRTY) &&
	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
		inode->dirtied_when = jiffies;

1311 1312 1313 1314 1315 1316 1317 1318 1319
	if (wbc->pages_skipped) {
		/*
		 * writeback is not making progress due to locked
		 * buffers. Skip this inode for now.
		 */
		redirty_tail(inode, wb);
		return;
	}

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		/*
		 * We didn't write back all the pages.  nfs_writepages()
		 * sometimes bales out without doing anything.
		 */
		if (wbc->nr_to_write <= 0) {
			/* Slice used up. Queue for next turn. */
			requeue_io(inode, wb);
		} else {
			/*
			 * Writeback blocked by something other than
			 * congestion. Delay the inode for some time to
			 * avoid spinning on the CPU (100% iowait)
			 * retrying writeback of the dirty page/inode
			 * that cannot be performed immediately.
			 */
			redirty_tail(inode, wb);
		}
	} else if (inode->i_state & I_DIRTY) {
		/*
		 * Filesystems can dirty the inode during writeback operations,
		 * such as delayed allocation during submission or metadata
		 * updates after data IO completion.
		 */
		redirty_tail(inode, wb);
1345
	} else if (inode->i_state & I_DIRTY_TIME) {
1346
		inode->dirtied_when = jiffies;
1347
		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1348 1349
	} else {
		/* The inode is clean. Remove from writeback lists. */
1350
		inode_io_list_del_locked(inode, wb);
1351 1352 1353
	}
}

1354
/*
1355 1356 1357
 * Write out an inode and its dirty pages. Do not update the writeback list
 * linkage. That is left to the caller. The caller is also responsible for
 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
L
Linus Torvalds 已提交
1358 1359
 */
static int
1360
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
L
Linus Torvalds 已提交
1361 1362
{
	struct address_space *mapping = inode->i_mapping;
1363
	long nr_to_write = wbc->nr_to_write;
1364
	unsigned dirty;
L
Linus Torvalds 已提交
1365 1366
	int ret;

1367
	WARN_ON(!(inode->i_state & I_SYNC));
L
Linus Torvalds 已提交
1368

T
Tejun Heo 已提交
1369 1370
	trace_writeback_single_inode_start(inode, wbc, nr_to_write);

L
Linus Torvalds 已提交
1371 1372
	ret = do_writepages(mapping, wbc);

1373 1374 1375
	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
1376 1377 1378
	 * I/O completion. We don't do it for sync(2) writeback because it has a
	 * separate, external IO completion path and ->sync_fs for guaranteeing
	 * inode metadata is written back correctly.
1379
	 */
1380
	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1381
		int err = filemap_fdatawait(mapping);
L
Linus Torvalds 已提交
1382 1383 1384 1385
		if (ret == 0)
			ret = err;
	}

1386 1387 1388 1389 1390
	/*
	 * Some filesystems may redirty the inode during the writeback
	 * due to delalloc, clear dirty metadata flags right before
	 * write_inode()
	 */
1391
	spin_lock(&inode->i_lock);
1392

1393
	dirty = inode->i_state & I_DIRTY;
1394
	if (inode->i_state & I_DIRTY_TIME) {
1395
		if ((dirty & I_DIRTY_INODE) ||
1396
		    wbc->sync_mode == WB_SYNC_ALL ||
1397 1398 1399 1400 1401 1402 1403 1404 1405
		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
		    unlikely(time_after(jiffies,
					(inode->dirtied_time_when +
					 dirtytime_expire_interval * HZ)))) {
			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
			trace_writeback_lazytime(inode);
		}
	} else
		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1406
	inode->i_state &= ~dirty;
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

	/*
	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
	 * either they see the I_DIRTY bits cleared or we see the dirtied
	 * inode.
	 *
	 * I_DIRTY_PAGES is always cleared together above even if @mapping
	 * still has dirty pages.  The flag is reinstated after smp_mb() if
	 * necessary.  This guarantees that either __mark_inode_dirty()
	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
	 */
	smp_mb();

	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		inode->i_state |= I_DIRTY_PAGES;

1424
	spin_unlock(&inode->i_lock);
1425

1426 1427
	if (dirty & I_DIRTY_TIME)
		mark_inode_dirty_sync(inode);
1428
	/* Don't write the inode if only I_DIRTY_PAGES was set */
1429
	if (dirty & ~I_DIRTY_PAGES) {
1430
		int err = write_inode(inode, wbc);
L
Linus Torvalds 已提交
1431 1432 1433
		if (ret == 0)
			ret = err;
	}
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	trace_writeback_single_inode(inode, wbc, nr_to_write);
	return ret;
}

/*
 * Write out an inode's dirty pages. Either the caller has an active reference
 * on the inode or the inode has I_WILL_FREE set.
 *
 * This function is designed to be called for writing back one inode which
 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 * and does more profound writeback list handling in writeback_sb_inodes().
 */
1446 1447
static int writeback_single_inode(struct inode *inode,
				  struct writeback_control *wbc)
1448
{
1449
	struct bdi_writeback *wb;
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	int ret = 0;

	spin_lock(&inode->i_lock);
	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		if (wbc->sync_mode != WB_SYNC_ALL)
			goto out;
		/*
1462 1463 1464
		 * It's a data-integrity sync. We must wait. Since callers hold
		 * inode reference or inode has I_WILL_FREE set, it cannot go
		 * away under us.
1465
		 */
1466
		__inode_wait_for_writeback(inode);
1467 1468 1469
	}
	WARN_ON(inode->i_state & I_SYNC);
	/*
J
Jan Kara 已提交
1470 1471 1472 1473 1474 1475
	 * Skip inode if it is clean and we have no outstanding writeback in
	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
	 * function since flusher thread may be doing for example sync in
	 * parallel and if we move the inode, it could get skipped. So here we
	 * make sure inode is on some writeback list and leave it there unless
	 * we have completely cleaned the inode.
1476
	 */
1477
	if (!(inode->i_state & I_DIRTY_ALL) &&
J
Jan Kara 已提交
1478 1479
	    (wbc->sync_mode != WB_SYNC_ALL ||
	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1480 1481
		goto out;
	inode->i_state |= I_SYNC;
1482
	wbc_attach_and_unlock_inode(wbc, inode);
1483

1484
	ret = __writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
1485

1486
	wbc_detach_inode(wbc);
1487 1488

	wb = inode_to_wb_and_lock_list(inode);
1489
	spin_lock(&inode->i_lock);
1490 1491 1492 1493
	/*
	 * If inode is clean, remove it from writeback lists. Otherwise don't
	 * touch it. See comment above for explanation.
	 */
1494
	if (!(inode->i_state & I_DIRTY_ALL))
1495
		inode_io_list_del_locked(inode, wb);
1496
	spin_unlock(&wb->list_lock);
J
Joern Engel 已提交
1497
	inode_sync_complete(inode);
1498 1499
out:
	spin_unlock(&inode->i_lock);
L
Linus Torvalds 已提交
1500 1501 1502
	return ret;
}

1503
static long writeback_chunk_size(struct bdi_writeback *wb,
1504
				 struct wb_writeback_work *work)
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
{
	long pages;

	/*
	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
	 * here avoids calling into writeback_inodes_wb() more than once.
	 *
	 * The intended call sequence for WB_SYNC_ALL writeback is:
	 *
	 *      wb_writeback()
	 *          writeback_sb_inodes()       <== called only once
	 *              write_cache_pages()     <== called once for each inode
	 *                   (quickly) tag currently dirty pages
	 *                   (maybe slowly) sync all tagged pages
	 */
	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
		pages = LONG_MAX;
1523
	else {
1524
		pages = min(wb->avg_write_bandwidth / 2,
1525
			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1526 1527 1528 1529
		pages = min(pages, work->nr_pages);
		pages = round_down(pages + MIN_WRITEBACK_PAGES,
				   MIN_WRITEBACK_PAGES);
	}
1530 1531 1532 1533

	return pages;
}

1534 1535
/*
 * Write a portion of b_io inodes which belong to @sb.
1536
 *
1537
 * Return the number of pages and/or inodes written.
1538 1539 1540 1541
 *
 * NOTE! This is called with wb->list_lock held, and will
 * unlock and relock that for each inode it ends up doing
 * IO for.
1542
 */
1543 1544 1545
static long writeback_sb_inodes(struct super_block *sb,
				struct bdi_writeback *wb,
				struct wb_writeback_work *work)
L
Linus Torvalds 已提交
1546
{
1547 1548 1549 1550 1551
	struct writeback_control wbc = {
		.sync_mode		= work->sync_mode,
		.tagged_writepages	= work->tagged_writepages,
		.for_kupdate		= work->for_kupdate,
		.for_background		= work->for_background,
1552
		.for_sync		= work->for_sync,
1553 1554 1555 1556 1557 1558 1559 1560
		.range_cyclic		= work->range_cyclic,
		.range_start		= 0,
		.range_end		= LLONG_MAX,
	};
	unsigned long start_time = jiffies;
	long write_chunk;
	long wrote = 0;  /* count both pages and inodes */

1561
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1562
		struct inode *inode = wb_inode(wb->b_io.prev);
1563
		struct bdi_writeback *tmp_wb;
1564 1565

		if (inode->i_sb != sb) {
1566
			if (work->sb) {
1567 1568 1569 1570 1571
				/*
				 * We only want to write back data for this
				 * superblock, move all inodes not belonging
				 * to it back onto the dirty list.
				 */
1572
				redirty_tail(inode, wb);
1573 1574 1575 1576 1577 1578 1579 1580
				continue;
			}

			/*
			 * The inode belongs to a different superblock.
			 * Bounce back to the caller to unpin this and
			 * pin the next superblock.
			 */
1581
			break;
1582 1583
		}

1584
		/*
W
Wanpeng Li 已提交
1585 1586
		 * Don't bother with new inodes or inodes being freed, first
		 * kind does not need periodic writeout yet, and for the latter
1587 1588
		 * kind writeout is handled by the freer.
		 */
1589
		spin_lock(&inode->i_lock);
1590
		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1591
			spin_unlock(&inode->i_lock);
1592
			redirty_tail(inode, wb);
1593 1594
			continue;
		}
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
			/*
			 * If this inode is locked for writeback and we are not
			 * doing writeback-for-data-integrity, move it to
			 * b_more_io so that writeback can proceed with the
			 * other inodes on s_io.
			 *
			 * We'll have another go at writing back this inode
			 * when we completed a full scan of b_io.
			 */
			spin_unlock(&inode->i_lock);
			requeue_io(inode, wb);
			trace_writeback_sb_inodes_requeue(inode);
			continue;
		}
1610 1611
		spin_unlock(&wb->list_lock);

1612 1613 1614 1615 1616
		/*
		 * We already requeued the inode if it had I_SYNC set and we
		 * are doing WB_SYNC_NONE writeback. So this catches only the
		 * WB_SYNC_ALL case.
		 */
1617 1618 1619 1620
		if (inode->i_state & I_SYNC) {
			/* Wait for I_SYNC. This function drops i_lock... */
			inode_sleep_on_writeback(inode);
			/* Inode may be gone, start again */
1621
			spin_lock(&wb->list_lock);
1622 1623
			continue;
		}
1624
		inode->i_state |= I_SYNC;
1625
		wbc_attach_and_unlock_inode(&wbc, inode);
1626

1627
		write_chunk = writeback_chunk_size(wb, work);
1628 1629
		wbc.nr_to_write = write_chunk;
		wbc.pages_skipped = 0;
1630

1631 1632 1633 1634
		/*
		 * We use I_SYNC to pin the inode in memory. While it is set
		 * evict_inode() will wait so the inode cannot be freed.
		 */
1635
		__writeback_single_inode(inode, &wbc);
1636

1637
		wbc_detach_inode(&wbc);
1638 1639
		work->nr_pages -= write_chunk - wbc.nr_to_write;
		wrote += write_chunk - wbc.nr_to_write;
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653

		if (need_resched()) {
			/*
			 * We're trying to balance between building up a nice
			 * long list of IOs to improve our merge rate, and
			 * getting those IOs out quickly for anyone throttling
			 * in balance_dirty_pages().  cond_resched() doesn't
			 * unplug, so get our IOs out the door before we
			 * give up the CPU.
			 */
			blk_flush_plug(current);
			cond_resched();
		}

1654 1655 1656 1657 1658
		/*
		 * Requeue @inode if still dirty.  Be careful as @inode may
		 * have been switched to another wb in the meantime.
		 */
		tmp_wb = inode_to_wb_and_lock_list(inode);
1659
		spin_lock(&inode->i_lock);
1660
		if (!(inode->i_state & I_DIRTY_ALL))
1661
			wrote++;
1662
		requeue_inode(inode, tmp_wb, &wbc);
1663
		inode_sync_complete(inode);
1664
		spin_unlock(&inode->i_lock);
1665

1666 1667 1668 1669 1670
		if (unlikely(tmp_wb != wb)) {
			spin_unlock(&tmp_wb->list_lock);
			spin_lock(&wb->list_lock);
		}

1671 1672 1673 1674 1675 1676 1677 1678 1679
		/*
		 * bail out to wb_writeback() often enough to check
		 * background threshold and other termination conditions.
		 */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
1680
		}
L
Linus Torvalds 已提交
1681
	}
1682
	return wrote;
1683 1684
}

1685 1686
static long __writeback_inodes_wb(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
1687
{
1688 1689
	unsigned long start_time = jiffies;
	long wrote = 0;
N
Nick Piggin 已提交
1690

1691
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1692
		struct inode *inode = wb_inode(wb->b_io.prev);
1693
		struct super_block *sb = inode->i_sb;
1694

1695
		if (!trylock_super(sb)) {
1696
			/*
1697
			 * trylock_super() may fail consistently due to
1698 1699 1700 1701
			 * s_umount being grabbed by someone else. Don't use
			 * requeue_io() to avoid busy retrying the inode/sb.
			 */
			redirty_tail(inode, wb);
1702
			continue;
1703
		}
1704
		wrote += writeback_sb_inodes(sb, wb, work);
1705
		up_read(&sb->s_umount);
1706

1707 1708 1709 1710 1711 1712 1713
		/* refer to the same tests at the end of writeback_sb_inodes */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
		}
1714
	}
1715
	/* Leave any unwritten inodes on b_io */
1716
	return wrote;
1717 1718
}

1719
static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1720
				enum wb_reason reason)
1721
{
1722 1723 1724 1725
	struct wb_writeback_work work = {
		.nr_pages	= nr_pages,
		.sync_mode	= WB_SYNC_NONE,
		.range_cyclic	= 1,
1726
		.reason		= reason,
1727
	};
1728
	struct blk_plug plug;
1729

1730
	blk_start_plug(&plug);
1731
	spin_lock(&wb->list_lock);
W
Wu Fengguang 已提交
1732
	if (list_empty(&wb->b_io))
1733
		queue_io(wb, &work);
1734
	__writeback_inodes_wb(wb, &work);
1735
	spin_unlock(&wb->list_lock);
1736
	blk_finish_plug(&plug);
1737

1738 1739
	return nr_pages - work.nr_pages;
}
1740 1741 1742

/*
 * Explicit flushing or periodic writeback of "old" data.
1743
 *
1744 1745 1746 1747
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
1748
 *
1749 1750 1751
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
1752
 *
1753 1754
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
1755
 */
1756
static long wb_writeback(struct bdi_writeback *wb,
1757
			 struct wb_writeback_work *work)
1758
{
1759
	unsigned long wb_start = jiffies;
1760
	long nr_pages = work->nr_pages;
1761
	unsigned long oldest_jif;
J
Jan Kara 已提交
1762
	struct inode *inode;
1763
	long progress;
1764
	struct blk_plug plug;
1765

1766 1767
	oldest_jif = jiffies;
	work->older_than_this = &oldest_jif;
N
Nick Piggin 已提交
1768

1769
	blk_start_plug(&plug);
1770
	spin_lock(&wb->list_lock);
1771 1772
	for (;;) {
		/*
1773
		 * Stop writeback when nr_pages has been consumed
1774
		 */
1775
		if (work->nr_pages <= 0)
1776
			break;
1777

1778 1779 1780 1781 1782 1783 1784
		/*
		 * Background writeout and kupdate-style writeback may
		 * run forever. Stop them if there is other work to do
		 * so that e.g. sync can proceed. They'll be restarted
		 * after the other works are all done.
		 */
		if ((work->for_background || work->for_kupdate) &&
1785
		    !list_empty(&wb->work_list))
1786 1787
			break;

N
Nick Piggin 已提交
1788
		/*
1789 1790
		 * For background writeout, stop when we are below the
		 * background dirty threshold
N
Nick Piggin 已提交
1791
		 */
1792
		if (work->for_background && !wb_over_bg_thresh(wb))
1793
			break;
N
Nick Piggin 已提交
1794

1795 1796 1797 1798 1799 1800
		/*
		 * Kupdate and background works are special and we want to
		 * include all inodes that need writing. Livelock avoidance is
		 * handled by these works yielding to any other work so we are
		 * safe.
		 */
1801
		if (work->for_kupdate) {
1802
			oldest_jif = jiffies -
1803
				msecs_to_jiffies(dirty_expire_interval * 10);
1804
		} else if (work->for_background)
1805
			oldest_jif = jiffies;
1806

1807
		trace_writeback_start(wb, work);
1808
		if (list_empty(&wb->b_io))
1809
			queue_io(wb, work);
1810
		if (work->sb)
1811
			progress = writeback_sb_inodes(work->sb, wb, work);
1812
		else
1813
			progress = __writeback_inodes_wb(wb, work);
1814
		trace_writeback_written(wb, work);
1815

1816
		wb_update_bandwidth(wb, wb_start);
1817 1818

		/*
1819 1820 1821 1822 1823 1824
		 * Did we write something? Try for more
		 *
		 * Dirty inodes are moved to b_io for writeback in batches.
		 * The completion of the current batch does not necessarily
		 * mean the overall work is done. So we keep looping as long
		 * as made some progress on cleaning pages or inodes.
1825
		 */
1826
		if (progress)
1827 1828
			continue;
		/*
1829
		 * No more inodes for IO, bail
1830
		 */
1831
		if (list_empty(&wb->b_more_io))
1832
			break;
1833 1834 1835 1836 1837
		/*
		 * Nothing written. Wait for some inode to
		 * become available for writeback. Otherwise
		 * we'll just busyloop.
		 */
1838 1839 1840 1841 1842 1843 1844
		trace_writeback_wait(wb, work);
		inode = wb_inode(wb->b_more_io.prev);
		spin_lock(&inode->i_lock);
		spin_unlock(&wb->list_lock);
		/* This function drops i_lock... */
		inode_sleep_on_writeback(inode);
		spin_lock(&wb->list_lock);
1845
	}
1846
	spin_unlock(&wb->list_lock);
1847
	blk_finish_plug(&plug);
1848

1849
	return nr_pages - work->nr_pages;
1850 1851 1852
}

/*
1853
 * Return the next wb_writeback_work struct that hasn't been processed yet.
1854
 */
1855
static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1856
{
1857
	struct wb_writeback_work *work = NULL;
1858

1859 1860 1861
	spin_lock_bh(&wb->work_lock);
	if (!list_empty(&wb->work_list)) {
		work = list_entry(wb->work_list.next,
1862 1863
				  struct wb_writeback_work, list);
		list_del_init(&work->list);
1864
	}
1865
	spin_unlock_bh(&wb->work_lock);
1866
	return work;
1867 1868
}

1869 1870
static long wb_check_background_flush(struct bdi_writeback *wb)
{
1871
	if (wb_over_bg_thresh(wb)) {
1872 1873 1874 1875 1876 1877

		struct wb_writeback_work work = {
			.nr_pages	= LONG_MAX,
			.sync_mode	= WB_SYNC_NONE,
			.for_background	= 1,
			.range_cyclic	= 1,
1878
			.reason		= WB_REASON_BACKGROUND,
1879 1880 1881 1882 1883 1884 1885 1886
		};

		return wb_writeback(wb, &work);
	}

	return 0;
}

1887 1888 1889 1890 1891
static long wb_check_old_data_flush(struct bdi_writeback *wb)
{
	unsigned long expired;
	long nr_pages;

1892 1893 1894 1895 1896 1897
	/*
	 * When set to zero, disable periodic writeback
	 */
	if (!dirty_writeback_interval)
		return 0;

1898 1899 1900 1901 1902 1903
	expired = wb->last_old_flush +
			msecs_to_jiffies(dirty_writeback_interval * 10);
	if (time_before(jiffies, expired))
		return 0;

	wb->last_old_flush = jiffies;
1904
	nr_pages = get_nr_dirty_pages();
1905

1906
	if (nr_pages) {
1907
		struct wb_writeback_work work = {
1908 1909 1910 1911
			.nr_pages	= nr_pages,
			.sync_mode	= WB_SYNC_NONE,
			.for_kupdate	= 1,
			.range_cyclic	= 1,
1912
			.reason		= WB_REASON_PERIODIC,
1913 1914
		};

1915
		return wb_writeback(wb, &work);
1916
	}
1917 1918 1919 1920

	return 0;
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
static long wb_check_start_all(struct bdi_writeback *wb)
{
	long nr_pages;

	if (!test_bit(WB_start_all, &wb->state))
		return 0;

	nr_pages = get_nr_dirty_pages();
	if (nr_pages) {
		struct wb_writeback_work work = {
			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
			.sync_mode	= WB_SYNC_NONE,
			.range_cyclic	= 1,
			.reason		= wb->start_all_reason,
		};

		nr_pages = wb_writeback(wb, &work);
	}

	clear_bit(WB_start_all, &wb->state);
	return nr_pages;
}


1945 1946 1947
/*
 * Retrieve work items and do the writeback they describe
 */
1948
static long wb_do_writeback(struct bdi_writeback *wb)
1949
{
1950
	struct wb_writeback_work *work;
1951
	long wrote = 0;
1952

1953
	set_bit(WB_writeback_running, &wb->state);
1954
	while ((work = get_next_work_item(wb)) != NULL) {
1955
		trace_writeback_exec(wb, work);
1956
		wrote += wb_writeback(wb, work);
1957
		finish_writeback_work(wb, work);
1958 1959
	}

1960 1961 1962 1963 1964
	/*
	 * Check for a flush-everything request
	 */
	wrote += wb_check_start_all(wb);

1965 1966 1967 1968
	/*
	 * Check for periodic writeback, kupdated() style
	 */
	wrote += wb_check_old_data_flush(wb);
1969
	wrote += wb_check_background_flush(wb);
1970
	clear_bit(WB_writeback_running, &wb->state);
1971 1972 1973 1974 1975 1976

	return wrote;
}

/*
 * Handle writeback of dirty data for the device backed by this bdi. Also
1977
 * reschedules periodically and does kupdated style flushing.
1978
 */
1979
void wb_workfn(struct work_struct *work)
1980
{
1981 1982
	struct bdi_writeback *wb = container_of(to_delayed_work(work),
						struct bdi_writeback, dwork);
1983 1984
	long pages_written;

1985
	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
P
Peter Zijlstra 已提交
1986
	current->flags |= PF_SWAPWRITE;
1987

1988
	if (likely(!current_is_workqueue_rescuer() ||
1989
		   !test_bit(WB_registered, &wb->state))) {
1990
		/*
1991
		 * The normal path.  Keep writing back @wb until its
1992
		 * work_list is empty.  Note that this path is also taken
1993
		 * if @wb is shutting down even when we're running off the
1994
		 * rescuer as work_list needs to be drained.
1995
		 */
1996
		do {
1997
			pages_written = wb_do_writeback(wb);
1998
			trace_writeback_pages_written(pages_written);
1999
		} while (!list_empty(&wb->work_list));
2000 2001 2002 2003 2004 2005
	} else {
		/*
		 * bdi_wq can't get enough workers and we're running off
		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
		 * enough for efficient IO.
		 */
2006
		pages_written = writeback_inodes_wb(wb, 1024,
2007
						    WB_REASON_FORKER_THREAD);
2008
		trace_writeback_pages_written(pages_written);
2009 2010
	}

2011
	if (!list_empty(&wb->work_list))
J
Jan Kara 已提交
2012
		wb_wakeup(wb);
2013
	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2014
		wb_wakeup_delayed(wb);
2015

2016
	current->flags &= ~PF_SWAPWRITE;
2017 2018
}

2019 2020 2021 2022 2023
/*
 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
 * write back the whole world.
 */
static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2024
					 enum wb_reason reason)
2025 2026 2027 2028 2029 2030 2031
{
	struct bdi_writeback *wb;

	if (!bdi_has_dirty_io(bdi))
		return;

	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2032
		wb_start_writeback(wb, reason);
2033 2034 2035 2036 2037 2038
}

void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
				enum wb_reason reason)
{
	rcu_read_lock();
2039
	__wakeup_flusher_threads_bdi(bdi, reason);
2040 2041 2042
	rcu_read_unlock();
}

2043
/*
2044
 * Wakeup the flusher threads to start writeback of all currently dirty pages
2045
 */
2046
void wakeup_flusher_threads(enum wb_reason reason)
2047
{
2048
	struct backing_dev_info *bdi;
2049

2050 2051 2052 2053 2054 2055
	/*
	 * If we are expecting writeback progress we must submit plugged IO.
	 */
	if (blk_needs_flush_plug(current))
		blk_schedule_flush_plug(current);

2056
	rcu_read_lock();
2057
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2058
		__wakeup_flusher_threads_bdi(bdi, reason);
2059
	rcu_read_unlock();
L
Linus Torvalds 已提交
2060 2061
}

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
/*
 * Wake up bdi's periodically to make sure dirtytime inodes gets
 * written back periodically.  We deliberately do *not* check the
 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
 * kernel to be constantly waking up once there are any dirtytime
 * inodes on the system.  So instead we define a separate delayed work
 * function which gets called much more rarely.  (By default, only
 * once every 12 hours.)
 *
 * If there is any other write activity going on in the file system,
 * this function won't be necessary.  But if the only thing that has
 * happened on the file system is a dirtytime inode caused by an atime
 * update, we need this infrastructure below to make sure that inode
 * eventually gets pushed out to disk.
 */
static void wakeup_dirtytime_writeback(struct work_struct *w);
static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);

static void wakeup_dirtytime_writeback(struct work_struct *w)
{
	struct backing_dev_info *bdi;

	rcu_read_lock();
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2086 2087
		struct bdi_writeback *wb;

2088
		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2089 2090
			if (!list_empty(&wb->b_dirty_time))
				wb_wakeup(wb);
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
	}
	rcu_read_unlock();
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
}

static int __init start_dirtytime_writeback(void)
{
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
	return 0;
}
__initcall(start_dirtytime_writeback);

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
int dirtytime_interval_handler(struct ctl_table *table, int write,
			       void __user *buffer, size_t *lenp, loff_t *ppos)
{
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		mod_delayed_work(system_wq, &dirtytime_work, 0);
	return ret;
}

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
static noinline void block_dump___mark_inode_dirty(struct inode *inode)
{
	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
		struct dentry *dentry;
		const char *name = "?";

		dentry = d_find_alias(inode);
		if (dentry) {
			spin_lock(&dentry->d_lock);
			name = (const char *) dentry->d_name.name;
		}
		printk(KERN_DEBUG
		       "%s(%d): dirtied inode %lu (%s) on %s\n",
		       current->comm, task_pid_nr(current), inode->i_ino,
		       name, inode->i_sb->s_id);
		if (dentry) {
			spin_unlock(&dentry->d_lock);
			dput(dentry);
		}
	}
}

/**
2137 2138 2139 2140 2141 2142 2143
 * __mark_inode_dirty -	internal function
 *
 * @inode: inode to mark
 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *
 * Mark an inode as dirty. Callers should use mark_inode_dirty or
 * mark_inode_dirty_sync.
L
Linus Torvalds 已提交
2144
 *
2145 2146 2147 2148 2149 2150 2151 2152 2153
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 * dirty list only if it is hashed or if it refers to a blockdev.
 * If it was not hashed, it will never be added to the dirty list
 * even if it is later hashed, as it will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_ you start marking
 * them dirty.
L
Linus Torvalds 已提交
2154
 *
2155 2156 2157 2158 2159 2160
 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 * the kernel-internal blockdev inode represents the dirtying time of the
 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 * page->mapping->host, so the page-dirtying time is recorded in the internal
 * blockdev inode.
L
Linus Torvalds 已提交
2161
 */
2162
void __mark_inode_dirty(struct inode *inode, int flags)
L
Linus Torvalds 已提交
2163
{
2164
	struct super_block *sb = inode->i_sb;
2165 2166 2167
	int dirtytime;

	trace_writeback_mark_inode_dirty(inode, flags);
L
Linus Torvalds 已提交
2168

2169 2170 2171 2172
	/*
	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
	 * dirty the inode itself
	 */
2173
	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
T
Tejun Heo 已提交
2174 2175
		trace_writeback_dirty_inode_start(inode, flags);

2176
		if (sb->s_op->dirty_inode)
2177
			sb->s_op->dirty_inode(inode, flags);
T
Tejun Heo 已提交
2178 2179

		trace_writeback_dirty_inode(inode, flags);
2180
	}
2181 2182 2183
	if (flags & I_DIRTY_INODE)
		flags &= ~I_DIRTY_TIME;
	dirtytime = flags & I_DIRTY_TIME;
2184 2185

	/*
2186 2187
	 * Paired with smp_mb() in __writeback_single_inode() for the
	 * following lockless i_state test.  See there for details.
2188 2189 2190
	 */
	smp_mb();

2191 2192
	if (((inode->i_state & flags) == flags) ||
	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2193 2194 2195 2196 2197
		return;

	if (unlikely(block_dump))
		block_dump___mark_inode_dirty(inode);

2198
	spin_lock(&inode->i_lock);
2199 2200
	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
		goto out_unlock_inode;
2201 2202 2203
	if ((inode->i_state & flags) != flags) {
		const int was_dirty = inode->i_state & I_DIRTY;

2204 2205
		inode_attach_wb(inode, NULL);

2206 2207
		if (flags & I_DIRTY_INODE)
			inode->i_state &= ~I_DIRTY_TIME;
2208 2209 2210 2211 2212 2213 2214 2215
		inode->i_state |= flags;

		/*
		 * If the inode is being synced, just update its dirty state.
		 * The unlocker will place the inode on the appropriate
		 * superblock list, based upon its state.
		 */
		if (inode->i_state & I_SYNC)
2216
			goto out_unlock_inode;
2217 2218 2219 2220 2221 2222

		/*
		 * Only add valid (hashed) inodes to the superblock's
		 * dirty list.  Add blockdev inodes as well.
		 */
		if (!S_ISBLK(inode->i_mode)) {
A
Al Viro 已提交
2223
			if (inode_unhashed(inode))
2224
				goto out_unlock_inode;
2225
		}
A
Al Viro 已提交
2226
		if (inode->i_state & I_FREEING)
2227
			goto out_unlock_inode;
2228 2229 2230 2231 2232 2233

		/*
		 * If the inode was already on b_dirty/b_io/b_more_io, don't
		 * reposition it (that would break b_dirty time-ordering).
		 */
		if (!was_dirty) {
2234
			struct bdi_writeback *wb;
2235
			struct list_head *dirty_list;
2236
			bool wakeup_bdi = false;
2237

2238
			wb = locked_inode_to_wb_and_lock_list(inode);
2239

2240 2241 2242
			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
			     !test_bit(WB_registered, &wb->state),
			     "bdi-%s not registered\n", wb->bdi->name);
2243 2244

			inode->dirtied_when = jiffies;
2245 2246
			if (dirtytime)
				inode->dirtied_time_when = jiffies;
2247

2248
			if (inode->i_state & I_DIRTY)
2249
				dirty_list = &wb->b_dirty;
2250
			else
2251
				dirty_list = &wb->b_dirty_time;
2252

2253
			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2254 2255
							       dirty_list);

2256
			spin_unlock(&wb->list_lock);
2257
			trace_writeback_dirty_inode_enqueue(inode);
2258

2259 2260 2261 2262 2263 2264
			/*
			 * If this is the first dirty inode for this bdi,
			 * we have to wake-up the corresponding bdi thread
			 * to make sure background write-back happens
			 * later.
			 */
2265 2266
			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
				wb_wakeup_delayed(wb);
2267
			return;
L
Linus Torvalds 已提交
2268 2269
		}
	}
2270 2271
out_unlock_inode:
	spin_unlock(&inode->i_lock);
2272 2273 2274
}
EXPORT_SYMBOL(__mark_inode_dirty);

2275 2276 2277 2278 2279 2280 2281 2282 2283
/*
 * The @s_sync_lock is used to serialise concurrent sync operations
 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
 * Concurrent callers will block on the s_sync_lock rather than doing contending
 * walks. The queueing maintains sync(2) required behaviour as all the IO that
 * has been issued up to the time this function is enter is guaranteed to be
 * completed by the time we have gained the lock and waited for all IO that is
 * in progress regardless of the order callers are granted the lock.
 */
2284
static void wait_sb_inodes(struct super_block *sb)
2285
{
2286
	LIST_HEAD(sync_list);
2287 2288 2289 2290 2291

	/*
	 * We need to be protected against the filesystem going from
	 * r/o to r/w or vice versa.
	 */
2292
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2293

2294
	mutex_lock(&sb->s_sync_lock);
2295 2296

	/*
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	 * Splice the writeback list onto a temporary list to avoid waiting on
	 * inodes that have started writeback after this point.
	 *
	 * Use rcu_read_lock() to keep the inodes around until we have a
	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
	 * the local list because inodes can be dropped from either by writeback
	 * completion.
	 */
	rcu_read_lock();
	spin_lock_irq(&sb->s_inode_wblist_lock);
	list_splice_init(&sb->s_inodes_wb, &sync_list);

	/*
	 * Data integrity sync. Must wait for all pages under writeback, because
	 * there may have been pages dirtied before our sync call, but which had
	 * writeout started before we write it out.  In which case, the inode
	 * may not be on the dirty list, but we still have to wait for that
	 * writeout.
2315
	 */
2316 2317 2318
	while (!list_empty(&sync_list)) {
		struct inode *inode = list_first_entry(&sync_list, struct inode,
						       i_wb_list);
2319
		struct address_space *mapping = inode->i_mapping;
2320

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
		/*
		 * Move each inode back to the wb list before we drop the lock
		 * to preserve consistency between i_wb_list and the mapping
		 * writeback tag. Writeback completion is responsible to remove
		 * the inode from either list once the writeback tag is cleared.
		 */
		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);

		/*
		 * The mapping can appear untagged while still on-list since we
		 * do not have the mapping lock. Skip it here, wb completion
		 * will remove it.
		 */
		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
			continue;

		spin_unlock_irq(&sb->s_inode_wblist_lock);

2339
		spin_lock(&inode->i_lock);
2340
		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2341
			spin_unlock(&inode->i_lock);
2342 2343

			spin_lock_irq(&sb->s_inode_wblist_lock);
2344
			continue;
2345
		}
2346
		__iget(inode);
2347
		spin_unlock(&inode->i_lock);
2348
		rcu_read_unlock();
2349

2350 2351 2352 2353 2354 2355
		/*
		 * We keep the error status of individual mapping so that
		 * applications can catch the writeback error using fsync(2).
		 * See filemap_fdatawait_keep_errors() for details.
		 */
		filemap_fdatawait_keep_errors(mapping);
2356 2357 2358

		cond_resched();

2359 2360 2361 2362
		iput(inode);

		rcu_read_lock();
		spin_lock_irq(&sb->s_inode_wblist_lock);
2363
	}
2364 2365
	spin_unlock_irq(&sb->s_inode_wblist_lock);
	rcu_read_unlock();
2366
	mutex_unlock(&sb->s_sync_lock);
L
Linus Torvalds 已提交
2367 2368
}

2369 2370
static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				     enum wb_reason reason, bool skip_if_busy)
L
Linus Torvalds 已提交
2371
{
2372
	DEFINE_WB_COMPLETION_ONSTACK(done);
2373
	struct wb_writeback_work work = {
2374 2375 2376 2377 2378
		.sb			= sb,
		.sync_mode		= WB_SYNC_NONE,
		.tagged_writepages	= 1,
		.done			= &done,
		.nr_pages		= nr,
2379
		.reason			= reason,
2380
	};
2381
	struct backing_dev_info *bdi = sb->s_bdi;
2382

2383
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2384
		return;
2385
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2386

2387
	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2388
	wb_wait_for_completion(bdi, &done);
2389
}
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406

/**
 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
 * @sb: the superblock
 * @nr: the number of pages to write
 * @reason: reason why some writeback work initiated
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
void writeback_inodes_sb_nr(struct super_block *sb,
			    unsigned long nr,
			    enum wb_reason reason)
{
	__writeback_inodes_sb_nr(sb, nr, reason, false);
}
2407 2408 2409 2410 2411
EXPORT_SYMBOL(writeback_inodes_sb_nr);

/**
 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
 * @sb: the superblock
2412
 * @reason: reason why some writeback work was initiated
2413 2414 2415 2416 2417
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
2418
void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2419
{
2420
	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2421
}
2422
EXPORT_SYMBOL(writeback_inodes_sb);
2423

2424
/**
2425
 * try_to_writeback_inodes_sb - try to start writeback if none underway
2426
 * @sb: the superblock
2427
 * @reason: reason why some writeback work was initiated
2428
 *
2429
 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2430
 */
2431
void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2432
{
2433
	if (!down_read_trylock(&sb->s_umount))
2434
		return;
2435

2436
	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2437
	up_read(&sb->s_umount);
2438
}
2439
EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2440

2441 2442
/**
 * sync_inodes_sb	-	sync sb inode pages
2443
 * @sb: the superblock
2444 2445
 *
 * This function writes and waits on any dirty inode belonging to this
2446
 * super_block.
2447
 */
2448
void sync_inodes_sb(struct super_block *sb)
2449
{
2450
	DEFINE_WB_COMPLETION_ONSTACK(done);
2451
	struct wb_writeback_work work = {
2452 2453 2454 2455
		.sb		= sb,
		.sync_mode	= WB_SYNC_ALL,
		.nr_pages	= LONG_MAX,
		.range_cyclic	= 0,
2456
		.done		= &done,
2457
		.reason		= WB_REASON_SYNC,
2458
		.for_sync	= 1,
2459
	};
2460
	struct backing_dev_info *bdi = sb->s_bdi;
2461

2462 2463 2464 2465 2466 2467
	/*
	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
	 * bdi_has_dirty() need to be written out too.
	 */
	if (bdi == &noop_backing_dev_info)
2468
		return;
2469 2470
	WARN_ON(!rwsem_is_locked(&sb->s_umount));

2471 2472
	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
	bdi_down_write_wb_switch_rwsem(bdi);
2473
	bdi_split_work_to_wbs(bdi, &work, false);
2474
	wb_wait_for_completion(bdi, &done);
2475
	bdi_up_write_wb_switch_rwsem(bdi);
2476

2477
	wait_sb_inodes(sb);
L
Linus Torvalds 已提交
2478
}
2479
EXPORT_SYMBOL(sync_inodes_sb);
L
Linus Torvalds 已提交
2480 2481

/**
2482 2483 2484 2485 2486 2487
 * write_inode_now	-	write an inode to disk
 * @inode: inode to write to disk
 * @sync: whether the write should be synchronous or not
 *
 * This function commits an inode to disk immediately if it is dirty. This is
 * primarily needed by knfsd.
L
Linus Torvalds 已提交
2488
 *
2489
 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
L
Linus Torvalds 已提交
2490 2491 2492 2493 2494
 */
int write_inode_now(struct inode *inode, int sync)
{
	struct writeback_control wbc = {
		.nr_to_write = LONG_MAX,
2495
		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2496 2497
		.range_start = 0,
		.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
2498 2499 2500
	};

	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2501
		wbc.nr_to_write = 0;
L
Linus Torvalds 已提交
2502 2503

	might_sleep();
2504
	return writeback_single_inode(inode, &wbc);
L
Linus Torvalds 已提交
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
}
EXPORT_SYMBOL(write_inode_now);

/**
 * sync_inode - write an inode and its pages to disk.
 * @inode: the inode to sync
 * @wbc: controls the writeback mode
 *
 * sync_inode() will write an inode and its pages to disk.  It will also
 * correctly update the inode on its superblock's dirty inode lists and will
 * update inode->i_state.
 *
 * The caller must have a ref on the inode.
 */
int sync_inode(struct inode *inode, struct writeback_control *wbc)
{
2521
	return writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
2522 2523
}
EXPORT_SYMBOL(sync_inode);
C
Christoph Hellwig 已提交
2524 2525

/**
A
Andrew Morton 已提交
2526
 * sync_inode_metadata - write an inode to disk
C
Christoph Hellwig 已提交
2527 2528 2529
 * @inode: the inode to sync
 * @wait: wait for I/O to complete.
 *
A
Andrew Morton 已提交
2530
 * Write an inode to disk and adjust its dirty state after completion.
C
Christoph Hellwig 已提交
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
 *
 * Note: only writes the actual inode, no associated data or other metadata.
 */
int sync_inode_metadata(struct inode *inode, int wait)
{
	struct writeback_control wbc = {
		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
		.nr_to_write = 0, /* metadata-only */
	};

	return sync_inode(inode, &wbc);
}
EXPORT_SYMBOL(sync_inode_metadata);