fs-writeback.c 66.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
11
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
12 13 14 15 16
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
17
#include <linux/export.h>
L
Linus Torvalds 已提交
18
#include <linux/spinlock.h>
19
#include <linux/slab.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
23
#include <linux/pagemap.h>
24
#include <linux/kthread.h>
L
Linus Torvalds 已提交
25 26 27
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
28
#include <linux/tracepoint.h>
29
#include <linux/device.h>
30
#include <linux/memcontrol.h>
31
#include "internal.h"
L
Linus Torvalds 已提交
32

33 34 35 36 37
/*
 * 4MB minimal write chunk size
 */
#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))

38 39 40 41
struct wb_completion {
	atomic_t		cnt;
};

42 43 44
/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
45
struct wb_writeback_work {
46 47
	long nr_pages;
	struct super_block *sb;
48
	unsigned long *older_than_this;
49
	enum writeback_sync_modes sync_mode;
50
	unsigned int tagged_writepages:1;
51 52 53
	unsigned int for_kupdate:1;
	unsigned int range_cyclic:1;
	unsigned int for_background:1;
54
	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55
	unsigned int auto_free:1;	/* free on completion */
56
	enum wb_reason reason;		/* why was writeback initiated? */
57

58
	struct list_head list;		/* pending work list */
59
	struct wb_completion *done;	/* set if the caller waits */
60 61
};

62 63 64 65 66 67 68 69 70 71 72 73 74
/*
 * If one wants to wait for one or more wb_writeback_works, each work's
 * ->done should be set to a wb_completion defined using the following
 * macro.  Once all work items are issued with wb_queue_work(), the caller
 * can wait for the completion of all using wb_wait_for_completion().  Work
 * items which are waited upon aren't freed automatically on completion.
 */
#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
	struct wb_completion cmpl = {					\
		.cnt		= ATOMIC_INIT(1),			\
	}


75 76 77 78 79 80 81 82 83 84 85 86
/*
 * If an inode is constantly having its pages dirtied, but then the
 * updates stop dirtytime_expire_interval seconds in the past, it's
 * possible for the worst case time between when an inode has its
 * timestamps updated and when they finally get written out to be two
 * dirtytime_expire_intervals.  We set the default to 12 hours (in
 * seconds), which means most of the time inodes will have their
 * timestamps written to disk after 12 hours, but in the worst case a
 * few inodes might not their timestamps updated for 24 hours.
 */
unsigned int dirtytime_expire_interval = 12 * 60 * 60;

N
Nick Piggin 已提交
87 88
static inline struct inode *wb_inode(struct list_head *head)
{
89
	return list_entry(head, struct inode, i_io_list);
N
Nick Piggin 已提交
90 91
}

92 93 94 95 96 97 98 99
/*
 * Include the creation of the trace points after defining the
 * wb_writeback_work structure and inline functions so that the definition
 * remains local to this file.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/writeback.h>

100 101
EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);

102 103 104 105 106 107
static bool wb_io_lists_populated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb)) {
		return false;
	} else {
		set_bit(WB_has_dirty_io, &wb->state);
108
		WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 110
		atomic_long_add(wb->avg_write_bandwidth,
				&wb->bdi->tot_write_bandwidth);
111 112 113 114 115 116 117
		return true;
	}
}

static void wb_io_lists_depopulated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118
	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119
		clear_bit(WB_has_dirty_io, &wb->state);
120 121
		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
					&wb->bdi->tot_write_bandwidth) < 0);
122
	}
123 124 125
}

/**
126
 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 128 129 130
 * @inode: inode to be moved
 * @wb: target bdi_writeback
 * @head: one of @wb->b_{dirty|io|more_io}
 *
131
 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 133 134
 * Returns %true if @inode is the first occupant of the !dirty_time IO
 * lists; otherwise, %false.
 */
135
static bool inode_io_list_move_locked(struct inode *inode,
136 137 138 139 140
				      struct bdi_writeback *wb,
				      struct list_head *head)
{
	assert_spin_locked(&wb->list_lock);

141
	list_move(&inode->i_io_list, head);
142 143 144 145 146 147 148 149 150 151

	/* dirty_time doesn't count as dirty_io until expiration */
	if (head != &wb->b_dirty_time)
		return wb_io_lists_populated(wb);

	wb_io_lists_depopulated(wb);
	return false;
}

/**
152
 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 154 155 156 157 158
 * @inode: inode to be removed
 * @wb: bdi_writeback @inode is being removed from
 *
 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 * clear %WB_has_dirty_io if all are empty afterwards.
 */
159
static void inode_io_list_del_locked(struct inode *inode,
160 161 162 163
				     struct bdi_writeback *wb)
{
	assert_spin_locked(&wb->list_lock);

164
	list_del_init(&inode->i_io_list);
165 166 167
	wb_io_lists_depopulated(wb);
}

168
static void wb_wakeup(struct bdi_writeback *wb)
J
Jan Kara 已提交
169
{
170 171 172 173
	spin_lock_bh(&wb->work_lock);
	if (test_bit(WB_registered, &wb->state))
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	spin_unlock_bh(&wb->work_lock);
J
Jan Kara 已提交
174 175
}

176 177
static void wb_queue_work(struct bdi_writeback *wb,
			  struct wb_writeback_work *work)
178
{
179
	trace_writeback_queue(wb, work);
180

181
	spin_lock_bh(&wb->work_lock);
182
	if (!test_bit(WB_registered, &wb->state))
J
Jan Kara 已提交
183
		goto out_unlock;
184 185
	if (work->done)
		atomic_inc(&work->done->cnt);
186 187
	list_add_tail(&work->list, &wb->work_list);
	mod_delayed_work(bdi_wq, &wb->dwork, 0);
J
Jan Kara 已提交
188
out_unlock:
189
	spin_unlock_bh(&wb->work_lock);
L
Linus Torvalds 已提交
190 191
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/**
 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 * @bdi: bdi work items were issued to
 * @done: target wb_completion
 *
 * Wait for one or more work items issued to @bdi with their ->done field
 * set to @done, which should have been defined with
 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 * work items are completed.  Work items which are waited upon aren't freed
 * automatically on completion.
 */
static void wb_wait_for_completion(struct backing_dev_info *bdi,
				   struct wb_completion *done)
{
	atomic_dec(&done->cnt);		/* put down the initial count */
	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
}

210 211
#ifdef CONFIG_CGROUP_WRITEBACK

212 213 214 215 216 217 218 219 220 221 222 223 224 225
/* parameters for foreign inode detection, see wb_detach_inode() */
#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */

#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
					/* each slot's duration is 2s / 16 */
#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
					/* if foreign slots >= 8, switch */
#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
					/* one round can affect upto 5 slots */

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
void __inode_attach_wb(struct inode *inode, struct page *page)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;

	if (inode_cgwb_enabled(inode)) {
		struct cgroup_subsys_state *memcg_css;

		if (page) {
			memcg_css = mem_cgroup_css_from_page(page);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
		} else {
			/* must pin memcg_css, see wb_get_create() */
			memcg_css = task_get_css(current, memory_cgrp_id);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
			css_put(memcg_css);
		}
	}

	if (!wb)
		wb = &bdi->wb;

	/*
	 * There may be multiple instances of this function racing to
	 * update the same inode.  Use cmpxchg() to tell the winner.
	 */
	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
		wb_put(wb);
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
/**
 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 * @inode: inode of interest with i_lock held
 *
 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 * held on entry and is released on return.  The returned wb is guaranteed
 * to stay @inode's associated wb until its list_lock is released.
 */
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	while (true) {
		struct bdi_writeback *wb = inode_to_wb(inode);

		/*
		 * inode_to_wb() association is protected by both
		 * @inode->i_lock and @wb->list_lock but list_lock nests
		 * outside i_lock.  Drop i_lock and verify that the
		 * association hasn't changed after acquiring list_lock.
		 */
		wb_get(wb);
		spin_unlock(&inode->i_lock);
		spin_lock(&wb->list_lock);
		wb_put(wb);		/* not gonna deref it anymore */

283 284
		/* i_wb may have changed inbetween, can't use inode_to_wb() */
		if (likely(wb == inode->i_wb))
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
			return wb;	/* @inode already has ref */

		spin_unlock(&wb->list_lock);
		cpu_relax();
		spin_lock(&inode->i_lock);
	}
}

/**
 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 * @inode: inode of interest
 *
 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 * on entry.
 */
static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	spin_lock(&inode->i_lock);
	return locked_inode_to_wb_and_lock_list(inode);
}

307 308 309 310 311 312 313 314 315 316 317 318 319
struct inode_switch_wbs_context {
	struct inode		*inode;
	struct bdi_writeback	*new_wb;

	struct rcu_head		rcu_head;
	struct work_struct	work;
};

static void inode_switch_wbs_work_fn(struct work_struct *work)
{
	struct inode_switch_wbs_context *isw =
		container_of(work, struct inode_switch_wbs_context, work);
	struct inode *inode = isw->inode;
320 321
	struct address_space *mapping = inode->i_mapping;
	struct bdi_writeback *old_wb = inode->i_wb;
322
	struct bdi_writeback *new_wb = isw->new_wb;
323 324 325
	struct radix_tree_iter iter;
	bool switched = false;
	void **slot;
326 327 328 329 330 331

	/*
	 * By the time control reaches here, RCU grace period has passed
	 * since I_WB_SWITCH assertion and all wb stat update transactions
	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
	 * synchronizing against mapping->tree_lock.
332 333 334 335
	 *
	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
	 * gives us exclusion against all wb related operations on @inode
	 * including IO list manipulations and stat updates.
336
	 */
337 338 339 340 341 342 343
	if (old_wb < new_wb) {
		spin_lock(&old_wb->list_lock);
		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
	} else {
		spin_lock(&new_wb->list_lock);
		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
	}
344
	spin_lock(&inode->i_lock);
345 346 347 348
	spin_lock_irq(&mapping->tree_lock);

	/*
	 * Once I_FREEING is visible under i_lock, the eviction path owns
349
	 * the inode and we shouldn't modify ->i_io_list.
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	 */
	if (unlikely(inode->i_state & I_FREEING))
		goto skip_switch;

	/*
	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
	 * pages actually under underwriteback.
	 */
	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
				   PAGECACHE_TAG_DIRTY) {
		struct page *page = radix_tree_deref_slot_protected(slot,
							&mapping->tree_lock);
		if (likely(page) && PageDirty(page)) {
			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
		}
	}

	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
				   PAGECACHE_TAG_WRITEBACK) {
		struct page *page = radix_tree_deref_slot_protected(slot,
							&mapping->tree_lock);
		if (likely(page)) {
			WARN_ON_ONCE(!PageWriteback(page));
			__dec_wb_stat(old_wb, WB_WRITEBACK);
			__inc_wb_stat(new_wb, WB_WRITEBACK);
		}
	}

	wb_get(new_wb);

	/*
	 * Transfer to @new_wb's IO list if necessary.  The specific list
	 * @inode was on is ignored and the inode is put on ->b_dirty which
	 * is always correct including from ->b_dirty_time.  The transfer
	 * preserves @inode->dirtied_when ordering.
	 */
388
	if (!list_empty(&inode->i_io_list)) {
389 390
		struct inode *pos;

391
		inode_io_list_del_locked(inode, old_wb);
392
		inode->i_wb = new_wb;
393
		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
394 395 396
			if (time_after_eq(inode->dirtied_when,
					  pos->dirtied_when))
				break;
397
		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
398 399 400
	} else {
		inode->i_wb = new_wb;
	}
401

402
	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
403 404 405
	inode->i_wb_frn_winner = 0;
	inode->i_wb_frn_avg_time = 0;
	inode->i_wb_frn_history = 0;
406 407
	switched = true;
skip_switch:
408 409 410 411 412 413
	/*
	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
	 */
	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);

414
	spin_unlock_irq(&mapping->tree_lock);
415
	spin_unlock(&inode->i_lock);
416 417
	spin_unlock(&new_wb->list_lock);
	spin_unlock(&old_wb->list_lock);
418

419 420 421 422
	if (switched) {
		wb_wakeup(new_wb);
		wb_put(old_wb);
	}
423
	wb_put(new_wb);
424 425

	iput(inode);
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	kfree(isw);
}

static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
{
	struct inode_switch_wbs_context *isw = container_of(rcu_head,
				struct inode_switch_wbs_context, rcu_head);

	/* needs to grab bh-unsafe locks, bounce to work item */
	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
	schedule_work(&isw->work);
}

/**
 * inode_switch_wbs - change the wb association of an inode
 * @inode: target inode
 * @new_wb_id: ID of the new wb
 *
 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 * switching is performed asynchronously and may fail silently.
 */
static void inode_switch_wbs(struct inode *inode, int new_wb_id)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct cgroup_subsys_state *memcg_css;
	struct inode_switch_wbs_context *isw;

	/* noop if seems to be already in progress */
	if (inode->i_state & I_WB_SWITCH)
		return;

	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
	if (!isw)
		return;

	/* find and pin the new wb */
	rcu_read_lock();
	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
	if (memcg_css)
		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
	rcu_read_unlock();
	if (!isw->new_wb)
		goto out_free;

	/* while holding I_WB_SWITCH, no one else can update the association */
	spin_lock(&inode->i_lock);
	if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
	    inode_to_wb(inode) == isw->new_wb) {
		spin_unlock(&inode->i_lock);
		goto out_free;
	}
	inode->i_state |= I_WB_SWITCH;
	spin_unlock(&inode->i_lock);

	ihold(inode);
	isw->inode = inode;

	/*
	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
	 * the RCU protected stat update paths to grab the mapping's
	 * tree_lock so that stat transfer can synchronize against them.
	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
	 */
	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
	return;

out_free:
	if (isw->new_wb)
		wb_put(isw->new_wb);
	kfree(isw);
}

498 499 500 501 502 503 504 505 506 507 508 509 510
/**
 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 * @wbc: writeback_control of interest
 * @inode: target inode
 *
 * @inode is locked and about to be written back under the control of @wbc.
 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 * writeback completion, wbc_detach_inode() should be called.  This is used
 * to track the cgroup writeback context.
 */
void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
				 struct inode *inode)
{
511 512 513 514 515
	if (!inode_cgwb_enabled(inode)) {
		spin_unlock(&inode->i_lock);
		return;
	}

516
	wbc->wb = inode_to_wb(inode);
517 518 519 520 521 522 523 524 525
	wbc->inode = inode;

	wbc->wb_id = wbc->wb->memcg_css->id;
	wbc->wb_lcand_id = inode->i_wb_frn_winner;
	wbc->wb_tcand_id = 0;
	wbc->wb_bytes = 0;
	wbc->wb_lcand_bytes = 0;
	wbc->wb_tcand_bytes = 0;

526 527
	wb_get(wbc->wb);
	spin_unlock(&inode->i_lock);
528 529 530 531 532 533 534

	/*
	 * A dying wb indicates that the memcg-blkcg mapping has changed
	 * and a new wb is already serving the memcg.  Switch immediately.
	 */
	if (unlikely(wb_dying(wbc->wb)))
		inode_switch_wbs(inode, wbc->wb_id);
535 536 537
}

/**
538 539
 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 * @wbc: writeback_control of the just finished writeback
540 541 542
 *
 * To be called after a writeback attempt of an inode finishes and undoes
 * wbc_attach_and_unlock_inode().  Can be called under any context.
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
 *
 * As concurrent write sharing of an inode is expected to be very rare and
 * memcg only tracks page ownership on first-use basis severely confining
 * the usefulness of such sharing, cgroup writeback tracks ownership
 * per-inode.  While the support for concurrent write sharing of an inode
 * is deemed unnecessary, an inode being written to by different cgroups at
 * different points in time is a lot more common, and, more importantly,
 * charging only by first-use can too readily lead to grossly incorrect
 * behaviors (single foreign page can lead to gigabytes of writeback to be
 * incorrectly attributed).
 *
 * To resolve this issue, cgroup writeback detects the majority dirtier of
 * an inode and transfers the ownership to it.  To avoid unnnecessary
 * oscillation, the detection mechanism keeps track of history and gives
 * out the switch verdict only if the foreign usage pattern is stable over
 * a certain amount of time and/or writeback attempts.
 *
 * On each writeback attempt, @wbc tries to detect the majority writer
 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 * count from the majority voting, it also counts the bytes written for the
 * current wb and the last round's winner wb (max of last round's current
 * wb, the winner from two rounds ago, and the last round's majority
 * candidate).  Keeping track of the historical winner helps the algorithm
 * to semi-reliably detect the most active writer even when it's not the
 * absolute majority.
 *
 * Once the winner of the round is determined, whether the winner is
 * foreign or not and how much IO time the round consumed is recorded in
 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 * over a certain threshold, the switch verdict is given.
573 574 575
 */
void wbc_detach_inode(struct writeback_control *wbc)
{
576 577
	struct bdi_writeback *wb = wbc->wb;
	struct inode *inode = wbc->inode;
578 579
	unsigned long avg_time, max_bytes, max_time;
	u16 history;
580 581
	int max_id;

582 583 584 585 586 587
	if (!wb)
		return;

	history = inode->i_wb_frn_history;
	avg_time = inode->i_wb_frn_avg_time;

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	/* pick the winner of this round */
	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_id;
		max_bytes = wbc->wb_bytes;
	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_lcand_id;
		max_bytes = wbc->wb_lcand_bytes;
	} else {
		max_id = wbc->wb_tcand_id;
		max_bytes = wbc->wb_tcand_bytes;
	}

	/*
	 * Calculate the amount of IO time the winner consumed and fold it
	 * into the running average kept per inode.  If the consumed IO
	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
	 * deciding whether to switch or not.  This is to prevent one-off
	 * small dirtiers from skewing the verdict.
	 */
	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
				wb->avg_write_bandwidth);
	if (avg_time)
		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
	else
		avg_time = max_time;	/* immediate catch up on first run */

	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
		int slots;

		/*
		 * The switch verdict is reached if foreign wb's consume
		 * more than a certain proportion of IO time in a
		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
		 * history mask where each bit represents one sixteenth of
		 * the period.  Determine the number of slots to shift into
		 * history from @max_time.
		 */
		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
		history <<= slots;
		if (wbc->wb_id != max_id)
			history |= (1U << slots) - 1;

		/*
		 * Switch if the current wb isn't the consistent winner.
		 * If there are multiple closely competing dirtiers, the
		 * inode may switch across them repeatedly over time, which
		 * is okay.  The main goal is avoiding keeping an inode on
		 * the wrong wb for an extended period of time.
		 */
640 641
		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
			inode_switch_wbs(inode, max_id);
642 643 644 645 646 647 648 649 650 651
	}

	/*
	 * Multiple instances of this function may race to update the
	 * following fields but we don't mind occassional inaccuracies.
	 */
	inode->i_wb_frn_winner = max_id;
	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
	inode->i_wb_frn_history = history;

652 653 654 655
	wb_put(wbc->wb);
	wbc->wb = NULL;
}

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
/**
 * wbc_account_io - account IO issued during writeback
 * @wbc: writeback_control of the writeback in progress
 * @page: page being written out
 * @bytes: number of bytes being written out
 *
 * @bytes from @page are about to written out during the writeback
 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 * wbc_detach_inode().
 */
void wbc_account_io(struct writeback_control *wbc, struct page *page,
		    size_t bytes)
{
	int id;

	/*
	 * pageout() path doesn't attach @wbc to the inode being written
	 * out.  This is intentional as we don't want the function to block
	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
	 * regular writeback instead of writing things out itself.
	 */
	if (!wbc->wb)
		return;

	rcu_read_lock();
	id = mem_cgroup_css_from_page(page)->id;
	rcu_read_unlock();

	if (id == wbc->wb_id) {
		wbc->wb_bytes += bytes;
		return;
	}

	if (id == wbc->wb_lcand_id)
		wbc->wb_lcand_bytes += bytes;

	/* Boyer-Moore majority vote algorithm */
	if (!wbc->wb_tcand_bytes)
		wbc->wb_tcand_id = id;
	if (id == wbc->wb_tcand_id)
		wbc->wb_tcand_bytes += bytes;
	else
		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
}
700
EXPORT_SYMBOL_GPL(wbc_account_io);
701

702 703
/**
 * inode_congested - test whether an inode is congested
704
 * @inode: inode to test for congestion (may be NULL)
705 706 707 708 709 710 711 712 713
 * @cong_bits: mask of WB_[a]sync_congested bits to test
 *
 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 * bits to test and the return value is the mask of set bits.
 *
 * If cgroup writeback is enabled for @inode, the congestion state is
 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 * associated with @inode is congested; otherwise, the root wb's congestion
 * state is used.
714 715 716
 *
 * @inode is allowed to be NULL as this function is often called on
 * mapping->host which is NULL for the swapper space.
717 718 719
 */
int inode_congested(struct inode *inode, int cong_bits)
{
720 721 722 723
	/*
	 * Once set, ->i_wb never becomes NULL while the inode is alive.
	 * Start transaction iff ->i_wb is visible.
	 */
724
	if (inode && inode_to_wb_is_valid(inode)) {
725 726 727 728 729 730 731
		struct bdi_writeback *wb;
		bool locked, congested;

		wb = unlocked_inode_to_wb_begin(inode, &locked);
		congested = wb_congested(wb, cong_bits);
		unlocked_inode_to_wb_end(inode, locked);
		return congested;
732 733 734 735 736 737
	}

	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
}
EXPORT_SYMBOL_GPL(inode_congested);

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
/**
 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 * @wb: target bdi_writeback to split @nr_pages to
 * @nr_pages: number of pages to write for the whole bdi
 *
 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 * @wb->bdi.
 */
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);

	if (nr_pages == LONG_MAX)
		return LONG_MAX;

	/*
	 * This may be called on clean wb's and proportional distribution
	 * may not make sense, just use the original @nr_pages in those
	 * cases.  In general, we wanna err on the side of writing more.
	 */
	if (!tot_bw || this_bw >= tot_bw)
		return nr_pages;
	else
		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
}

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
/**
 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 * @bdi: target backing_dev_info
 * @base_work: wb_writeback_work to issue
 * @skip_if_busy: skip wb's which already have writeback in progress
 *
 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 * distributed to the busy wbs according to each wb's proportion in the
 * total active write bandwidth of @bdi.
 */
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
781
	int next_memcg_id = 0;
782 783 784 785 786 787
	struct bdi_writeback *wb;
	struct wb_iter iter;

	might_sleep();
restart:
	rcu_read_lock();
788
	bdi_for_each_wb(wb, bdi, &iter, next_memcg_id) {
789 790 791 792 793
		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
		struct wb_writeback_work fallback_work;
		struct wb_writeback_work *work;
		long nr_pages;

794 795 796 797 798 799
		/* SYNC_ALL writes out I_DIRTY_TIME too */
		if (!wb_has_dirty_io(wb) &&
		    (base_work->sync_mode == WB_SYNC_NONE ||
		     list_empty(&wb->b_dirty_time)))
			continue;
		if (skip_if_busy && writeback_in_progress(wb))
800 801
			continue;

802 803 804 805 806 807 808 809 810
		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);

		work = kmalloc(sizeof(*work), GFP_ATOMIC);
		if (work) {
			*work = *base_work;
			work->nr_pages = nr_pages;
			work->auto_free = 1;
			wb_queue_work(wb, work);
			continue;
811
		}
812 813 814 815 816 817 818 819 820 821 822 823 824 825

		/* alloc failed, execute synchronously using on-stack fallback */
		work = &fallback_work;
		*work = *base_work;
		work->nr_pages = nr_pages;
		work->auto_free = 0;
		work->done = &fallback_work_done;

		wb_queue_work(wb, work);

		next_memcg_id = wb->memcg_css->id + 1;
		rcu_read_unlock();
		wb_wait_for_completion(bdi, &fallback_work_done);
		goto restart;
826 827 828 829
	}
	rcu_read_unlock();
}

830 831
#else	/* CONFIG_CGROUP_WRITEBACK */

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_unlock(&inode->i_lock);
	spin_lock(&wb->list_lock);
	return wb;
}

static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_lock(&wb->list_lock);
	return wb;
}

853 854 855 856 857
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	return nr_pages;
}

858 859 860 861 862 863
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	might_sleep();

864
	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
865 866 867 868 869
		base_work->auto_free = 0;
		wb_queue_work(&bdi->wb, base_work);
	}
}

870 871
#endif	/* CONFIG_CGROUP_WRITEBACK */

872 873
void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
			bool range_cyclic, enum wb_reason reason)
874
{
875 876 877 878 879 880 881 882 883 884 885
	struct wb_writeback_work *work;

	if (!wb_has_dirty_io(wb))
		return;

	/*
	 * This is WB_SYNC_NONE writeback, so if allocation fails just
	 * wakeup the thread for old dirty data writeback
	 */
	work = kzalloc(sizeof(*work), GFP_ATOMIC);
	if (!work) {
886
		trace_writeback_nowork(wb);
887 888 889 890 891 892 893 894
		wb_wakeup(wb);
		return;
	}

	work->sync_mode	= WB_SYNC_NONE;
	work->nr_pages	= nr_pages;
	work->range_cyclic = range_cyclic;
	work->reason	= reason;
895
	work->auto_free	= 1;
896 897

	wb_queue_work(wb, work);
898
}
899

900
/**
901 902
 * wb_start_background_writeback - start background writeback
 * @wb: bdi_writback to write from
903 904
 *
 * Description:
905
 *   This makes sure WB_SYNC_NONE background writeback happens. When
906
 *   this function returns, it is only guaranteed that for given wb
907 908
 *   some IO is happening if we are over background dirty threshold.
 *   Caller need not hold sb s_umount semaphore.
909
 */
910
void wb_start_background_writeback(struct bdi_writeback *wb)
911
{
912 913 914 915
	/*
	 * We just wake up the flusher thread. It will perform background
	 * writeback as soon as there is no other work to do.
	 */
916
	trace_writeback_wake_background(wb);
917
	wb_wakeup(wb);
L
Linus Torvalds 已提交
918 919
}

920 921 922
/*
 * Remove the inode from the writeback list it is on.
 */
923
void inode_io_list_del(struct inode *inode)
924
{
925
	struct bdi_writeback *wb;
926

927
	wb = inode_to_wb_and_lock_list(inode);
928
	inode_io_list_del_locked(inode, wb);
929
	spin_unlock(&wb->list_lock);
930 931
}

932 933 934 935 936
/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
937
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
938 939 940
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
941
static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
942
{
943
	if (!list_empty(&wb->b_dirty)) {
944
		struct inode *tail;
945

N
Nick Piggin 已提交
946
		tail = wb_inode(wb->b_dirty.next);
947
		if (time_before(inode->dirtied_when, tail->dirtied_when))
948 949
			inode->dirtied_when = jiffies;
	}
950
	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
951 952
}

953
/*
954
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
955
 */
956
static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
957
{
958
	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
959 960
}

J
Joern Engel 已提交
961 962
static void inode_sync_complete(struct inode *inode)
{
963
	inode->i_state &= ~I_SYNC;
964 965
	/* If inode is clean an unused, put it into LRU now... */
	inode_add_lru(inode);
966
	/* Waiters must see I_SYNC cleared before being woken up */
J
Joern Engel 已提交
967 968 969 970
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

971 972 973 974 975 976 977 978
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
979
	 * from permanently stopping the whole bdi writeback.
980 981 982 983 984 985
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

986 987
#define EXPIRE_DIRTY_ATIME 0x0001

988
/*
989
 * Move expired (dirtied before work->older_than_this) dirty inodes from
J
Jan Kara 已提交
990
 * @delaying_queue to @dispatch_queue.
991
 */
992
static int move_expired_inodes(struct list_head *delaying_queue,
993
			       struct list_head *dispatch_queue,
994
			       int flags,
995
			       struct wb_writeback_work *work)
996
{
997 998
	unsigned long *older_than_this = NULL;
	unsigned long expire_time;
999 1000
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
1001
	struct super_block *sb = NULL;
1002
	struct inode *inode;
1003
	int do_sb_sort = 0;
1004
	int moved = 0;
1005

1006 1007
	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
		older_than_this = work->older_than_this;
1008 1009
	else if (!work->for_sync) {
		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1010 1011
		older_than_this = &expire_time;
	}
1012
	while (!list_empty(delaying_queue)) {
N
Nick Piggin 已提交
1013
		inode = wb_inode(delaying_queue->prev);
1014 1015
		if (older_than_this &&
		    inode_dirtied_after(inode, *older_than_this))
1016
			break;
1017
		list_move(&inode->i_io_list, &tmp);
1018
		moved++;
1019 1020
		if (flags & EXPIRE_DIRTY_ATIME)
			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1021 1022
		if (sb_is_blkdev_sb(inode->i_sb))
			continue;
1023 1024 1025
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
1026 1027
	}

1028 1029 1030
	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
1031
		goto out;
1032 1033
	}

1034 1035
	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
N
Nick Piggin 已提交
1036
		sb = wb_inode(tmp.prev)->i_sb;
1037
		list_for_each_prev_safe(pos, node, &tmp) {
N
Nick Piggin 已提交
1038
			inode = wb_inode(pos);
1039
			if (inode->i_sb == sb)
1040
				list_move(&inode->i_io_list, dispatch_queue);
1041
		}
1042
	}
1043 1044
out:
	return moved;
1045 1046 1047 1048
}

/*
 * Queue all expired dirty inodes for io, eldest first.
1049 1050 1051 1052 1053 1054 1055 1056
 * Before
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    gf         edc     BA
 * After
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    g          fBAedc
 *                                           |
 *                                           +--> dequeue for IO
1057
 */
1058
static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1059
{
1060
	int moved;
1061

1062
	assert_spin_locked(&wb->list_lock);
1063
	list_splice_init(&wb->b_more_io, &wb->b_io);
1064 1065 1066
	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
				     EXPIRE_DIRTY_ATIME, work);
1067 1068
	if (moved)
		wb_io_lists_populated(wb);
1069
	trace_writeback_queue_io(wb, work, moved);
1070 1071
}

1072
static int write_inode(struct inode *inode, struct writeback_control *wbc)
1073
{
T
Tejun Heo 已提交
1074 1075 1076 1077 1078 1079 1080 1081
	int ret;

	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
		trace_writeback_write_inode_start(inode, wbc);
		ret = inode->i_sb->s_op->write_inode(inode, wbc);
		trace_writeback_write_inode(inode, wbc);
		return ret;
	}
1082
	return 0;
1083 1084
}

L
Linus Torvalds 已提交
1085
/*
1086 1087
 * Wait for writeback on an inode to complete. Called with i_lock held.
 * Caller must make sure inode cannot go away when we drop i_lock.
1088
 */
1089 1090 1091
static void __inode_wait_for_writeback(struct inode *inode)
	__releases(inode->i_lock)
	__acquires(inode->i_lock)
1092 1093 1094 1095 1096
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1097 1098
	while (inode->i_state & I_SYNC) {
		spin_unlock(&inode->i_lock);
1099 1100
		__wait_on_bit(wqh, &wq, bit_wait,
			      TASK_UNINTERRUPTIBLE);
1101
		spin_lock(&inode->i_lock);
1102
	}
1103 1104
}

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
/*
 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 */
void inode_wait_for_writeback(struct inode *inode)
{
	spin_lock(&inode->i_lock);
	__inode_wait_for_writeback(inode);
	spin_unlock(&inode->i_lock);
}

/*
 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 * held and drops it. It is aimed for callers not holding any inode reference
 * so once i_lock is dropped, inode can go away.
 */
static void inode_sleep_on_writeback(struct inode *inode)
	__releases(inode->i_lock)
{
	DEFINE_WAIT(wait);
	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	int sleep;

	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
	sleep = inode->i_state & I_SYNC;
	spin_unlock(&inode->i_lock);
	if (sleep)
		schedule();
	finish_wait(wqh, &wait);
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
/*
 * Find proper writeback list for the inode depending on its current state and
 * possibly also change of its state while we were doing writeback.  Here we
 * handle things such as livelock prevention or fairness of writeback among
 * inodes. This function can be called only by flusher thread - noone else
 * processes all inodes in writeback lists and requeueing inodes behind flusher
 * thread's back can have unexpected consequences.
 */
static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
			  struct writeback_control *wbc)
{
	if (inode->i_state & I_FREEING)
		return;

	/*
	 * Sync livelock prevention. Each inode is tagged and synced in one
	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
	 * the dirty time to prevent enqueue and sync it again.
	 */
	if ((inode->i_state & I_DIRTY) &&
	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
		inode->dirtied_when = jiffies;

1158 1159 1160 1161 1162 1163 1164 1165 1166
	if (wbc->pages_skipped) {
		/*
		 * writeback is not making progress due to locked
		 * buffers. Skip this inode for now.
		 */
		redirty_tail(inode, wb);
		return;
	}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		/*
		 * We didn't write back all the pages.  nfs_writepages()
		 * sometimes bales out without doing anything.
		 */
		if (wbc->nr_to_write <= 0) {
			/* Slice used up. Queue for next turn. */
			requeue_io(inode, wb);
		} else {
			/*
			 * Writeback blocked by something other than
			 * congestion. Delay the inode for some time to
			 * avoid spinning on the CPU (100% iowait)
			 * retrying writeback of the dirty page/inode
			 * that cannot be performed immediately.
			 */
			redirty_tail(inode, wb);
		}
	} else if (inode->i_state & I_DIRTY) {
		/*
		 * Filesystems can dirty the inode during writeback operations,
		 * such as delayed allocation during submission or metadata
		 * updates after data IO completion.
		 */
		redirty_tail(inode, wb);
1192
	} else if (inode->i_state & I_DIRTY_TIME) {
1193
		inode->dirtied_when = jiffies;
1194
		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1195 1196
	} else {
		/* The inode is clean. Remove from writeback lists. */
1197
		inode_io_list_del_locked(inode, wb);
1198 1199 1200
	}
}

1201
/*
1202 1203 1204
 * Write out an inode and its dirty pages. Do not update the writeback list
 * linkage. That is left to the caller. The caller is also responsible for
 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
L
Linus Torvalds 已提交
1205 1206
 */
static int
1207
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
L
Linus Torvalds 已提交
1208 1209
{
	struct address_space *mapping = inode->i_mapping;
1210
	long nr_to_write = wbc->nr_to_write;
1211
	unsigned dirty;
L
Linus Torvalds 已提交
1212 1213
	int ret;

1214
	WARN_ON(!(inode->i_state & I_SYNC));
L
Linus Torvalds 已提交
1215

T
Tejun Heo 已提交
1216 1217
	trace_writeback_single_inode_start(inode, wbc, nr_to_write);

L
Linus Torvalds 已提交
1218 1219
	ret = do_writepages(mapping, wbc);

1220 1221 1222
	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
1223 1224 1225
	 * I/O completion. We don't do it for sync(2) writeback because it has a
	 * separate, external IO completion path and ->sync_fs for guaranteeing
	 * inode metadata is written back correctly.
1226
	 */
1227
	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1228
		int err = filemap_fdatawait(mapping);
L
Linus Torvalds 已提交
1229 1230 1231 1232
		if (ret == 0)
			ret = err;
	}

1233 1234 1235 1236 1237
	/*
	 * Some filesystems may redirty the inode during the writeback
	 * due to delalloc, clear dirty metadata flags right before
	 * write_inode()
	 */
1238
	spin_lock(&inode->i_lock);
1239

1240
	dirty = inode->i_state & I_DIRTY;
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	if (inode->i_state & I_DIRTY_TIME) {
		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
		    unlikely(time_after(jiffies,
					(inode->dirtied_time_when +
					 dirtytime_expire_interval * HZ)))) {
			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
			trace_writeback_lazytime(inode);
		}
	} else
		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1252
	inode->i_state &= ~dirty;
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

	/*
	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
	 * either they see the I_DIRTY bits cleared or we see the dirtied
	 * inode.
	 *
	 * I_DIRTY_PAGES is always cleared together above even if @mapping
	 * still has dirty pages.  The flag is reinstated after smp_mb() if
	 * necessary.  This guarantees that either __mark_inode_dirty()
	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
	 */
	smp_mb();

	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		inode->i_state |= I_DIRTY_PAGES;

1270
	spin_unlock(&inode->i_lock);
1271

1272 1273
	if (dirty & I_DIRTY_TIME)
		mark_inode_dirty_sync(inode);
1274
	/* Don't write the inode if only I_DIRTY_PAGES was set */
1275
	if (dirty & ~I_DIRTY_PAGES) {
1276
		int err = write_inode(inode, wbc);
L
Linus Torvalds 已提交
1277 1278 1279
		if (ret == 0)
			ret = err;
	}
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	trace_writeback_single_inode(inode, wbc, nr_to_write);
	return ret;
}

/*
 * Write out an inode's dirty pages. Either the caller has an active reference
 * on the inode or the inode has I_WILL_FREE set.
 *
 * This function is designed to be called for writing back one inode which
 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 * and does more profound writeback list handling in writeback_sb_inodes().
 */
static int
writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
		       struct writeback_control *wbc)
{
	int ret = 0;

	spin_lock(&inode->i_lock);
	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		if (wbc->sync_mode != WB_SYNC_ALL)
			goto out;
		/*
1308 1309 1310
		 * It's a data-integrity sync. We must wait. Since callers hold
		 * inode reference or inode has I_WILL_FREE set, it cannot go
		 * away under us.
1311
		 */
1312
		__inode_wait_for_writeback(inode);
1313 1314 1315
	}
	WARN_ON(inode->i_state & I_SYNC);
	/*
J
Jan Kara 已提交
1316 1317 1318 1319 1320 1321
	 * Skip inode if it is clean and we have no outstanding writeback in
	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
	 * function since flusher thread may be doing for example sync in
	 * parallel and if we move the inode, it could get skipped. So here we
	 * make sure inode is on some writeback list and leave it there unless
	 * we have completely cleaned the inode.
1322
	 */
1323
	if (!(inode->i_state & I_DIRTY_ALL) &&
J
Jan Kara 已提交
1324 1325
	    (wbc->sync_mode != WB_SYNC_ALL ||
	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1326 1327
		goto out;
	inode->i_state |= I_SYNC;
1328
	wbc_attach_and_unlock_inode(wbc, inode);
1329

1330
	ret = __writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
1331

1332
	wbc_detach_inode(wbc);
1333
	spin_lock(&wb->list_lock);
1334
	spin_lock(&inode->i_lock);
1335 1336 1337 1338
	/*
	 * If inode is clean, remove it from writeback lists. Otherwise don't
	 * touch it. See comment above for explanation.
	 */
1339
	if (!(inode->i_state & I_DIRTY_ALL))
1340
		inode_io_list_del_locked(inode, wb);
1341
	spin_unlock(&wb->list_lock);
J
Joern Engel 已提交
1342
	inode_sync_complete(inode);
1343 1344
out:
	spin_unlock(&inode->i_lock);
L
Linus Torvalds 已提交
1345 1346 1347
	return ret;
}

1348
static long writeback_chunk_size(struct bdi_writeback *wb,
1349
				 struct wb_writeback_work *work)
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
{
	long pages;

	/*
	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
	 * here avoids calling into writeback_inodes_wb() more than once.
	 *
	 * The intended call sequence for WB_SYNC_ALL writeback is:
	 *
	 *      wb_writeback()
	 *          writeback_sb_inodes()       <== called only once
	 *              write_cache_pages()     <== called once for each inode
	 *                   (quickly) tag currently dirty pages
	 *                   (maybe slowly) sync all tagged pages
	 */
	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
		pages = LONG_MAX;
1368
	else {
1369
		pages = min(wb->avg_write_bandwidth / 2,
1370
			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1371 1372 1373 1374
		pages = min(pages, work->nr_pages);
		pages = round_down(pages + MIN_WRITEBACK_PAGES,
				   MIN_WRITEBACK_PAGES);
	}
1375 1376 1377 1378

	return pages;
}

1379 1380
/*
 * Write a portion of b_io inodes which belong to @sb.
1381
 *
1382
 * Return the number of pages and/or inodes written.
1383 1384 1385 1386
 *
 * NOTE! This is called with wb->list_lock held, and will
 * unlock and relock that for each inode it ends up doing
 * IO for.
1387
 */
1388 1389 1390
static long writeback_sb_inodes(struct super_block *sb,
				struct bdi_writeback *wb,
				struct wb_writeback_work *work)
L
Linus Torvalds 已提交
1391
{
1392 1393 1394 1395 1396
	struct writeback_control wbc = {
		.sync_mode		= work->sync_mode,
		.tagged_writepages	= work->tagged_writepages,
		.for_kupdate		= work->for_kupdate,
		.for_background		= work->for_background,
1397
		.for_sync		= work->for_sync,
1398 1399 1400 1401 1402 1403 1404 1405
		.range_cyclic		= work->range_cyclic,
		.range_start		= 0,
		.range_end		= LLONG_MAX,
	};
	unsigned long start_time = jiffies;
	long write_chunk;
	long wrote = 0;  /* count both pages and inodes */

1406
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1407
		struct inode *inode = wb_inode(wb->b_io.prev);
1408 1409

		if (inode->i_sb != sb) {
1410
			if (work->sb) {
1411 1412 1413 1414 1415
				/*
				 * We only want to write back data for this
				 * superblock, move all inodes not belonging
				 * to it back onto the dirty list.
				 */
1416
				redirty_tail(inode, wb);
1417 1418 1419 1420 1421 1422 1423 1424
				continue;
			}

			/*
			 * The inode belongs to a different superblock.
			 * Bounce back to the caller to unpin this and
			 * pin the next superblock.
			 */
1425
			break;
1426 1427
		}

1428
		/*
W
Wanpeng Li 已提交
1429 1430
		 * Don't bother with new inodes or inodes being freed, first
		 * kind does not need periodic writeout yet, and for the latter
1431 1432
		 * kind writeout is handled by the freer.
		 */
1433
		spin_lock(&inode->i_lock);
1434
		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1435
			spin_unlock(&inode->i_lock);
1436
			redirty_tail(inode, wb);
1437 1438
			continue;
		}
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
			/*
			 * If this inode is locked for writeback and we are not
			 * doing writeback-for-data-integrity, move it to
			 * b_more_io so that writeback can proceed with the
			 * other inodes on s_io.
			 *
			 * We'll have another go at writing back this inode
			 * when we completed a full scan of b_io.
			 */
			spin_unlock(&inode->i_lock);
			requeue_io(inode, wb);
			trace_writeback_sb_inodes_requeue(inode);
			continue;
		}
1454 1455
		spin_unlock(&wb->list_lock);

1456 1457 1458 1459 1460
		/*
		 * We already requeued the inode if it had I_SYNC set and we
		 * are doing WB_SYNC_NONE writeback. So this catches only the
		 * WB_SYNC_ALL case.
		 */
1461 1462 1463 1464
		if (inode->i_state & I_SYNC) {
			/* Wait for I_SYNC. This function drops i_lock... */
			inode_sleep_on_writeback(inode);
			/* Inode may be gone, start again */
1465
			spin_lock(&wb->list_lock);
1466 1467
			continue;
		}
1468
		inode->i_state |= I_SYNC;
1469
		wbc_attach_and_unlock_inode(&wbc, inode);
1470

1471
		write_chunk = writeback_chunk_size(wb, work);
1472 1473
		wbc.nr_to_write = write_chunk;
		wbc.pages_skipped = 0;
1474

1475 1476 1477 1478
		/*
		 * We use I_SYNC to pin the inode in memory. While it is set
		 * evict_inode() will wait so the inode cannot be freed.
		 */
1479
		__writeback_single_inode(inode, &wbc);
1480

1481
		wbc_detach_inode(&wbc);
1482 1483
		work->nr_pages -= write_chunk - wbc.nr_to_write;
		wrote += write_chunk - wbc.nr_to_write;
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

		if (need_resched()) {
			/*
			 * We're trying to balance between building up a nice
			 * long list of IOs to improve our merge rate, and
			 * getting those IOs out quickly for anyone throttling
			 * in balance_dirty_pages().  cond_resched() doesn't
			 * unplug, so get our IOs out the door before we
			 * give up the CPU.
			 */
			blk_flush_plug(current);
			cond_resched();
		}


1499 1500
		spin_lock(&wb->list_lock);
		spin_lock(&inode->i_lock);
1501
		if (!(inode->i_state & I_DIRTY_ALL))
1502
			wrote++;
1503 1504
		requeue_inode(inode, wb, &wbc);
		inode_sync_complete(inode);
1505
		spin_unlock(&inode->i_lock);
1506

1507 1508 1509 1510 1511 1512 1513 1514 1515
		/*
		 * bail out to wb_writeback() often enough to check
		 * background threshold and other termination conditions.
		 */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
1516
		}
L
Linus Torvalds 已提交
1517
	}
1518
	return wrote;
1519 1520
}

1521 1522
static long __writeback_inodes_wb(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
1523
{
1524 1525
	unsigned long start_time = jiffies;
	long wrote = 0;
N
Nick Piggin 已提交
1526

1527
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1528
		struct inode *inode = wb_inode(wb->b_io.prev);
1529
		struct super_block *sb = inode->i_sb;
1530

1531
		if (!trylock_super(sb)) {
1532
			/*
1533
			 * trylock_super() may fail consistently due to
1534 1535 1536 1537
			 * s_umount being grabbed by someone else. Don't use
			 * requeue_io() to avoid busy retrying the inode/sb.
			 */
			redirty_tail(inode, wb);
1538
			continue;
1539
		}
1540
		wrote += writeback_sb_inodes(sb, wb, work);
1541
		up_read(&sb->s_umount);
1542

1543 1544 1545 1546 1547 1548 1549
		/* refer to the same tests at the end of writeback_sb_inodes */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
		}
1550
	}
1551
	/* Leave any unwritten inodes on b_io */
1552
	return wrote;
1553 1554
}

1555
static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1556
				enum wb_reason reason)
1557
{
1558 1559 1560 1561
	struct wb_writeback_work work = {
		.nr_pages	= nr_pages,
		.sync_mode	= WB_SYNC_NONE,
		.range_cyclic	= 1,
1562
		.reason		= reason,
1563
	};
1564
	struct blk_plug plug;
1565

1566
	blk_start_plug(&plug);
1567
	spin_lock(&wb->list_lock);
W
Wu Fengguang 已提交
1568
	if (list_empty(&wb->b_io))
1569
		queue_io(wb, &work);
1570
	__writeback_inodes_wb(wb, &work);
1571
	spin_unlock(&wb->list_lock);
1572
	blk_finish_plug(&plug);
1573

1574 1575
	return nr_pages - work.nr_pages;
}
1576 1577 1578

/*
 * Explicit flushing or periodic writeback of "old" data.
1579
 *
1580 1581 1582 1583
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
1584
 *
1585 1586 1587
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
1588
 *
1589 1590
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
1591
 */
1592
static long wb_writeback(struct bdi_writeback *wb,
1593
			 struct wb_writeback_work *work)
1594
{
1595
	unsigned long wb_start = jiffies;
1596
	long nr_pages = work->nr_pages;
1597
	unsigned long oldest_jif;
J
Jan Kara 已提交
1598
	struct inode *inode;
1599
	long progress;
1600
	struct blk_plug plug;
1601

1602 1603
	oldest_jif = jiffies;
	work->older_than_this = &oldest_jif;
N
Nick Piggin 已提交
1604

1605
	blk_start_plug(&plug);
1606
	spin_lock(&wb->list_lock);
1607 1608
	for (;;) {
		/*
1609
		 * Stop writeback when nr_pages has been consumed
1610
		 */
1611
		if (work->nr_pages <= 0)
1612
			break;
1613

1614 1615 1616 1617 1618 1619 1620
		/*
		 * Background writeout and kupdate-style writeback may
		 * run forever. Stop them if there is other work to do
		 * so that e.g. sync can proceed. They'll be restarted
		 * after the other works are all done.
		 */
		if ((work->for_background || work->for_kupdate) &&
1621
		    !list_empty(&wb->work_list))
1622 1623
			break;

N
Nick Piggin 已提交
1624
		/*
1625 1626
		 * For background writeout, stop when we are below the
		 * background dirty threshold
N
Nick Piggin 已提交
1627
		 */
1628
		if (work->for_background && !wb_over_bg_thresh(wb))
1629
			break;
N
Nick Piggin 已提交
1630

1631 1632 1633 1634 1635 1636
		/*
		 * Kupdate and background works are special and we want to
		 * include all inodes that need writing. Livelock avoidance is
		 * handled by these works yielding to any other work so we are
		 * safe.
		 */
1637
		if (work->for_kupdate) {
1638
			oldest_jif = jiffies -
1639
				msecs_to_jiffies(dirty_expire_interval * 10);
1640
		} else if (work->for_background)
1641
			oldest_jif = jiffies;
1642

1643
		trace_writeback_start(wb, work);
1644
		if (list_empty(&wb->b_io))
1645
			queue_io(wb, work);
1646
		if (work->sb)
1647
			progress = writeback_sb_inodes(work->sb, wb, work);
1648
		else
1649
			progress = __writeback_inodes_wb(wb, work);
1650
		trace_writeback_written(wb, work);
1651

1652
		wb_update_bandwidth(wb, wb_start);
1653 1654

		/*
1655 1656 1657 1658 1659 1660
		 * Did we write something? Try for more
		 *
		 * Dirty inodes are moved to b_io for writeback in batches.
		 * The completion of the current batch does not necessarily
		 * mean the overall work is done. So we keep looping as long
		 * as made some progress on cleaning pages or inodes.
1661
		 */
1662
		if (progress)
1663 1664
			continue;
		/*
1665
		 * No more inodes for IO, bail
1666
		 */
1667
		if (list_empty(&wb->b_more_io))
1668
			break;
1669 1670 1671 1672 1673 1674
		/*
		 * Nothing written. Wait for some inode to
		 * become available for writeback. Otherwise
		 * we'll just busyloop.
		 */
		if (!list_empty(&wb->b_more_io))  {
1675
			trace_writeback_wait(wb, work);
N
Nick Piggin 已提交
1676
			inode = wb_inode(wb->b_more_io.prev);
1677
			spin_lock(&inode->i_lock);
1678
			spin_unlock(&wb->list_lock);
1679 1680
			/* This function drops i_lock... */
			inode_sleep_on_writeback(inode);
1681
			spin_lock(&wb->list_lock);
1682 1683
		}
	}
1684
	spin_unlock(&wb->list_lock);
1685
	blk_finish_plug(&plug);
1686

1687
	return nr_pages - work->nr_pages;
1688 1689 1690
}

/*
1691
 * Return the next wb_writeback_work struct that hasn't been processed yet.
1692
 */
1693
static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1694
{
1695
	struct wb_writeback_work *work = NULL;
1696

1697 1698 1699
	spin_lock_bh(&wb->work_lock);
	if (!list_empty(&wb->work_list)) {
		work = list_entry(wb->work_list.next,
1700 1701
				  struct wb_writeback_work, list);
		list_del_init(&work->list);
1702
	}
1703
	spin_unlock_bh(&wb->work_lock);
1704
	return work;
1705 1706
}

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
/*
 * Add in the number of potentially dirty inodes, because each inode
 * write can dirty pagecache in the underlying blockdev.
 */
static unsigned long get_nr_dirty_pages(void)
{
	return global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS) +
		get_nr_dirty_inodes();
}

1718 1719
static long wb_check_background_flush(struct bdi_writeback *wb)
{
1720
	if (wb_over_bg_thresh(wb)) {
1721 1722 1723 1724 1725 1726

		struct wb_writeback_work work = {
			.nr_pages	= LONG_MAX,
			.sync_mode	= WB_SYNC_NONE,
			.for_background	= 1,
			.range_cyclic	= 1,
1727
			.reason		= WB_REASON_BACKGROUND,
1728 1729 1730 1731 1732 1733 1734 1735
		};

		return wb_writeback(wb, &work);
	}

	return 0;
}

1736 1737 1738 1739 1740
static long wb_check_old_data_flush(struct bdi_writeback *wb)
{
	unsigned long expired;
	long nr_pages;

1741 1742 1743 1744 1745 1746
	/*
	 * When set to zero, disable periodic writeback
	 */
	if (!dirty_writeback_interval)
		return 0;

1747 1748 1749 1750 1751 1752
	expired = wb->last_old_flush +
			msecs_to_jiffies(dirty_writeback_interval * 10);
	if (time_before(jiffies, expired))
		return 0;

	wb->last_old_flush = jiffies;
1753
	nr_pages = get_nr_dirty_pages();
1754

1755
	if (nr_pages) {
1756
		struct wb_writeback_work work = {
1757 1758 1759 1760
			.nr_pages	= nr_pages,
			.sync_mode	= WB_SYNC_NONE,
			.for_kupdate	= 1,
			.range_cyclic	= 1,
1761
			.reason		= WB_REASON_PERIODIC,
1762 1763
		};

1764
		return wb_writeback(wb, &work);
1765
	}
1766 1767 1768 1769 1770 1771 1772

	return 0;
}

/*
 * Retrieve work items and do the writeback they describe
 */
1773
static long wb_do_writeback(struct bdi_writeback *wb)
1774
{
1775
	struct wb_writeback_work *work;
1776
	long wrote = 0;
1777

1778
	set_bit(WB_writeback_running, &wb->state);
1779
	while ((work = get_next_work_item(wb)) != NULL) {
1780
		struct wb_completion *done = work->done;
1781

1782
		trace_writeback_exec(wb, work);
1783

1784
		wrote += wb_writeback(wb, work);
1785

1786
		if (work->auto_free)
1787
			kfree(work);
1788 1789
		if (done && atomic_dec_and_test(&done->cnt))
			wake_up_all(&wb->bdi->wb_waitq);
1790 1791 1792 1793 1794 1795
	}

	/*
	 * Check for periodic writeback, kupdated() style
	 */
	wrote += wb_check_old_data_flush(wb);
1796
	wrote += wb_check_background_flush(wb);
1797
	clear_bit(WB_writeback_running, &wb->state);
1798 1799 1800 1801 1802 1803

	return wrote;
}

/*
 * Handle writeback of dirty data for the device backed by this bdi. Also
1804
 * reschedules periodically and does kupdated style flushing.
1805
 */
1806
void wb_workfn(struct work_struct *work)
1807
{
1808 1809
	struct bdi_writeback *wb = container_of(to_delayed_work(work),
						struct bdi_writeback, dwork);
1810 1811
	long pages_written;

1812
	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
P
Peter Zijlstra 已提交
1813
	current->flags |= PF_SWAPWRITE;
1814

1815
	if (likely(!current_is_workqueue_rescuer() ||
1816
		   !test_bit(WB_registered, &wb->state))) {
1817
		/*
1818
		 * The normal path.  Keep writing back @wb until its
1819
		 * work_list is empty.  Note that this path is also taken
1820
		 * if @wb is shutting down even when we're running off the
1821
		 * rescuer as work_list needs to be drained.
1822
		 */
1823
		do {
1824
			pages_written = wb_do_writeback(wb);
1825
			trace_writeback_pages_written(pages_written);
1826
		} while (!list_empty(&wb->work_list));
1827 1828 1829 1830 1831 1832
	} else {
		/*
		 * bdi_wq can't get enough workers and we're running off
		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
		 * enough for efficient IO.
		 */
1833
		pages_written = writeback_inodes_wb(wb, 1024,
1834
						    WB_REASON_FORKER_THREAD);
1835
		trace_writeback_pages_written(pages_written);
1836 1837
	}

1838
	if (!list_empty(&wb->work_list))
1839 1840
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1841
		wb_wakeup_delayed(wb);
1842

1843
	current->flags &= ~PF_SWAPWRITE;
1844 1845 1846
}

/*
1847 1848
 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
 * the whole world.
1849
 */
1850
void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1851
{
1852
	struct backing_dev_info *bdi;
1853

1854 1855
	if (!nr_pages)
		nr_pages = get_nr_dirty_pages();
1856

1857
	rcu_read_lock();
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
		struct bdi_writeback *wb;
		struct wb_iter iter;

		if (!bdi_has_dirty_io(bdi))
			continue;

		bdi_for_each_wb(wb, bdi, &iter, 0)
			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
					   false, reason);
	}
1869
	rcu_read_unlock();
L
Linus Torvalds 已提交
1870 1871
}

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
/*
 * Wake up bdi's periodically to make sure dirtytime inodes gets
 * written back periodically.  We deliberately do *not* check the
 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
 * kernel to be constantly waking up once there are any dirtytime
 * inodes on the system.  So instead we define a separate delayed work
 * function which gets called much more rarely.  (By default, only
 * once every 12 hours.)
 *
 * If there is any other write activity going on in the file system,
 * this function won't be necessary.  But if the only thing that has
 * happened on the file system is a dirtytime inode caused by an atime
 * update, we need this infrastructure below to make sure that inode
 * eventually gets pushed out to disk.
 */
static void wakeup_dirtytime_writeback(struct work_struct *w);
static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);

static void wakeup_dirtytime_writeback(struct work_struct *w)
{
	struct backing_dev_info *bdi;

	rcu_read_lock();
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1896 1897 1898 1899 1900 1901
		struct bdi_writeback *wb;
		struct wb_iter iter;

		bdi_for_each_wb(wb, bdi, &iter, 0)
			if (!list_empty(&bdi->wb.b_dirty_time))
				wb_wakeup(&bdi->wb);
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	}
	rcu_read_unlock();
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
}

static int __init start_dirtytime_writeback(void)
{
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
	return 0;
}
__initcall(start_dirtytime_writeback);

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
int dirtytime_interval_handler(struct ctl_table *table, int write,
			       void __user *buffer, size_t *lenp, loff_t *ppos)
{
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		mod_delayed_work(system_wq, &dirtytime_work, 0);
	return ret;
}

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
static noinline void block_dump___mark_inode_dirty(struct inode *inode)
{
	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
		struct dentry *dentry;
		const char *name = "?";

		dentry = d_find_alias(inode);
		if (dentry) {
			spin_lock(&dentry->d_lock);
			name = (const char *) dentry->d_name.name;
		}
		printk(KERN_DEBUG
		       "%s(%d): dirtied inode %lu (%s) on %s\n",
		       current->comm, task_pid_nr(current), inode->i_ino,
		       name, inode->i_sb->s_id);
		if (dentry) {
			spin_unlock(&dentry->d_lock);
			dput(dentry);
		}
	}
}

/**
 *	__mark_inode_dirty -	internal function
 *	@inode: inode to mark
 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
 *  	mark_inode_dirty_sync.
L
Linus Torvalds 已提交
1953
 *
1954 1955 1956 1957 1958 1959 1960 1961 1962
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 * dirty list only if it is hashed or if it refers to a blockdev.
 * If it was not hashed, it will never be added to the dirty list
 * even if it is later hashed, as it will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_ you start marking
 * them dirty.
L
Linus Torvalds 已提交
1963
 *
1964 1965 1966 1967 1968 1969
 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 * the kernel-internal blockdev inode represents the dirtying time of the
 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 * page->mapping->host, so the page-dirtying time is recorded in the internal
 * blockdev inode.
L
Linus Torvalds 已提交
1970
 */
1971
#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1972
void __mark_inode_dirty(struct inode *inode, int flags)
L
Linus Torvalds 已提交
1973
{
1974
	struct super_block *sb = inode->i_sb;
1975 1976 1977
	int dirtytime;

	trace_writeback_mark_inode_dirty(inode, flags);
L
Linus Torvalds 已提交
1978

1979 1980 1981 1982
	/*
	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
	 * dirty the inode itself
	 */
1983
	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
T
Tejun Heo 已提交
1984 1985
		trace_writeback_dirty_inode_start(inode, flags);

1986
		if (sb->s_op->dirty_inode)
1987
			sb->s_op->dirty_inode(inode, flags);
T
Tejun Heo 已提交
1988 1989

		trace_writeback_dirty_inode(inode, flags);
1990
	}
1991 1992 1993
	if (flags & I_DIRTY_INODE)
		flags &= ~I_DIRTY_TIME;
	dirtytime = flags & I_DIRTY_TIME;
1994 1995

	/*
1996 1997
	 * Paired with smp_mb() in __writeback_single_inode() for the
	 * following lockless i_state test.  See there for details.
1998 1999 2000
	 */
	smp_mb();

2001 2002
	if (((inode->i_state & flags) == flags) ||
	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2003 2004 2005 2006 2007
		return;

	if (unlikely(block_dump))
		block_dump___mark_inode_dirty(inode);

2008
	spin_lock(&inode->i_lock);
2009 2010
	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
		goto out_unlock_inode;
2011 2012 2013
	if ((inode->i_state & flags) != flags) {
		const int was_dirty = inode->i_state & I_DIRTY;

2014 2015
		inode_attach_wb(inode, NULL);

2016 2017
		if (flags & I_DIRTY_INODE)
			inode->i_state &= ~I_DIRTY_TIME;
2018 2019 2020 2021 2022 2023 2024 2025
		inode->i_state |= flags;

		/*
		 * If the inode is being synced, just update its dirty state.
		 * The unlocker will place the inode on the appropriate
		 * superblock list, based upon its state.
		 */
		if (inode->i_state & I_SYNC)
2026
			goto out_unlock_inode;
2027 2028 2029 2030 2031 2032

		/*
		 * Only add valid (hashed) inodes to the superblock's
		 * dirty list.  Add blockdev inodes as well.
		 */
		if (!S_ISBLK(inode->i_mode)) {
A
Al Viro 已提交
2033
			if (inode_unhashed(inode))
2034
				goto out_unlock_inode;
2035
		}
A
Al Viro 已提交
2036
		if (inode->i_state & I_FREEING)
2037
			goto out_unlock_inode;
2038 2039 2040 2041 2042 2043

		/*
		 * If the inode was already on b_dirty/b_io/b_more_io, don't
		 * reposition it (that would break b_dirty time-ordering).
		 */
		if (!was_dirty) {
2044
			struct bdi_writeback *wb;
2045
			struct list_head *dirty_list;
2046
			bool wakeup_bdi = false;
2047

2048
			wb = locked_inode_to_wb_and_lock_list(inode);
2049

2050 2051 2052
			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
			     !test_bit(WB_registered, &wb->state),
			     "bdi-%s not registered\n", wb->bdi->name);
2053 2054

			inode->dirtied_when = jiffies;
2055 2056
			if (dirtytime)
				inode->dirtied_time_when = jiffies;
2057

2058
			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2059
				dirty_list = &wb->b_dirty;
2060
			else
2061
				dirty_list = &wb->b_dirty_time;
2062

2063
			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2064 2065
							       dirty_list);

2066
			spin_unlock(&wb->list_lock);
2067
			trace_writeback_dirty_inode_enqueue(inode);
2068

2069 2070 2071 2072 2073 2074
			/*
			 * If this is the first dirty inode for this bdi,
			 * we have to wake-up the corresponding bdi thread
			 * to make sure background write-back happens
			 * later.
			 */
2075 2076
			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
				wb_wakeup_delayed(wb);
2077
			return;
L
Linus Torvalds 已提交
2078 2079
		}
	}
2080 2081
out_unlock_inode:
	spin_unlock(&inode->i_lock);
2082

2083 2084 2085
}
EXPORT_SYMBOL(__mark_inode_dirty);

2086 2087 2088 2089 2090 2091 2092 2093 2094
/*
 * The @s_sync_lock is used to serialise concurrent sync operations
 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
 * Concurrent callers will block on the s_sync_lock rather than doing contending
 * walks. The queueing maintains sync(2) required behaviour as all the IO that
 * has been issued up to the time this function is enter is guaranteed to be
 * completed by the time we have gained the lock and waited for all IO that is
 * in progress regardless of the order callers are granted the lock.
 */
2095
static void wait_sb_inodes(struct super_block *sb)
2096 2097 2098 2099 2100 2101 2102
{
	struct inode *inode, *old_inode = NULL;

	/*
	 * We need to be protected against the filesystem going from
	 * r/o to r/w or vice versa.
	 */
2103
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2104

2105
	mutex_lock(&sb->s_sync_lock);
2106
	spin_lock(&sb->s_inode_list_lock);
2107 2108 2109 2110 2111 2112 2113 2114

	/*
	 * Data integrity sync. Must wait for all pages under writeback,
	 * because there may have been pages dirtied before our sync
	 * call, but which had writeout started before we write it out.
	 * In which case, the inode may not be on the dirty list, but
	 * we still have to wait for that writeout.
	 */
2115
	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2116
		struct address_space *mapping = inode->i_mapping;
2117

2118 2119 2120 2121
		spin_lock(&inode->i_lock);
		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
		    (mapping->nrpages == 0)) {
			spin_unlock(&inode->i_lock);
2122
			continue;
2123
		}
2124
		__iget(inode);
2125
		spin_unlock(&inode->i_lock);
2126
		spin_unlock(&sb->s_inode_list_lock);
2127

2128
		/*
2129 2130
		 * We hold a reference to 'inode' so it couldn't have been
		 * removed from s_inodes list while we dropped the
2131
		 * s_inode_list_lock.  We cannot iput the inode now as we can
2132
		 * be holding the last reference and we cannot iput it under
2133
		 * s_inode_list_lock. So we keep the reference and iput it
2134
		 * later.
2135 2136 2137 2138 2139 2140 2141 2142
		 */
		iput(old_inode);
		old_inode = inode;

		filemap_fdatawait(mapping);

		cond_resched();

2143
		spin_lock(&sb->s_inode_list_lock);
2144
	}
2145
	spin_unlock(&sb->s_inode_list_lock);
2146
	iput(old_inode);
2147
	mutex_unlock(&sb->s_sync_lock);
L
Linus Torvalds 已提交
2148 2149
}

2150 2151
static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				     enum wb_reason reason, bool skip_if_busy)
L
Linus Torvalds 已提交
2152
{
2153
	DEFINE_WB_COMPLETION_ONSTACK(done);
2154
	struct wb_writeback_work work = {
2155 2156 2157 2158 2159
		.sb			= sb,
		.sync_mode		= WB_SYNC_NONE,
		.tagged_writepages	= 1,
		.done			= &done,
		.nr_pages		= nr,
2160
		.reason			= reason,
2161
	};
2162
	struct backing_dev_info *bdi = sb->s_bdi;
2163

2164
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2165
		return;
2166
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2167

2168
	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2169
	wb_wait_for_completion(bdi, &done);
2170
}
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187

/**
 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
 * @sb: the superblock
 * @nr: the number of pages to write
 * @reason: reason why some writeback work initiated
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
void writeback_inodes_sb_nr(struct super_block *sb,
			    unsigned long nr,
			    enum wb_reason reason)
{
	__writeback_inodes_sb_nr(sb, nr, reason, false);
}
2188 2189 2190 2191 2192
EXPORT_SYMBOL(writeback_inodes_sb_nr);

/**
 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
 * @sb: the superblock
2193
 * @reason: reason why some writeback work was initiated
2194 2195 2196 2197 2198
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
2199
void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2200
{
2201
	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2202
}
2203
EXPORT_SYMBOL(writeback_inodes_sb);
2204

2205
/**
2206
 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2207
 * @sb: the superblock
2208 2209
 * @nr: the number of pages to write
 * @reason: the reason of writeback
2210
 *
2211
 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2212 2213
 * Returns 1 if writeback was started, 0 if not.
 */
2214 2215
bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				   enum wb_reason reason)
2216
{
2217
	if (!down_read_trylock(&sb->s_umount))
2218
		return false;
2219

2220
	__writeback_inodes_sb_nr(sb, nr, reason, true);
2221
	up_read(&sb->s_umount);
2222
	return true;
2223
}
2224
EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2225

2226
/**
2227
 * try_to_writeback_inodes_sb - try to start writeback if none underway
2228
 * @sb: the superblock
2229
 * @reason: reason why some writeback work was initiated
2230
 *
2231
 * Implement by try_to_writeback_inodes_sb_nr()
2232 2233
 * Returns 1 if writeback was started, 0 if not.
 */
2234
bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2235
{
2236
	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2237
}
2238
EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2239

2240 2241
/**
 * sync_inodes_sb	-	sync sb inode pages
2242
 * @sb: the superblock
2243 2244
 *
 * This function writes and waits on any dirty inode belonging to this
2245
 * super_block.
2246
 */
2247
void sync_inodes_sb(struct super_block *sb)
2248
{
2249
	DEFINE_WB_COMPLETION_ONSTACK(done);
2250
	struct wb_writeback_work work = {
2251 2252 2253 2254
		.sb		= sb,
		.sync_mode	= WB_SYNC_ALL,
		.nr_pages	= LONG_MAX,
		.range_cyclic	= 0,
2255
		.done		= &done,
2256
		.reason		= WB_REASON_SYNC,
2257
		.for_sync	= 1,
2258
	};
2259
	struct backing_dev_info *bdi = sb->s_bdi;
2260

2261 2262 2263 2264 2265 2266
	/*
	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
	 * bdi_has_dirty() need to be written out too.
	 */
	if (bdi == &noop_backing_dev_info)
2267
		return;
2268 2269
	WARN_ON(!rwsem_is_locked(&sb->s_umount));

2270
	bdi_split_work_to_wbs(bdi, &work, false);
2271
	wb_wait_for_completion(bdi, &done);
2272

2273
	wait_sb_inodes(sb);
L
Linus Torvalds 已提交
2274
}
2275
EXPORT_SYMBOL(sync_inodes_sb);
L
Linus Torvalds 已提交
2276 2277

/**
2278 2279 2280 2281 2282 2283
 * write_inode_now	-	write an inode to disk
 * @inode: inode to write to disk
 * @sync: whether the write should be synchronous or not
 *
 * This function commits an inode to disk immediately if it is dirty. This is
 * primarily needed by knfsd.
L
Linus Torvalds 已提交
2284
 *
2285
 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
L
Linus Torvalds 已提交
2286 2287 2288
 */
int write_inode_now(struct inode *inode, int sync)
{
2289
	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
L
Linus Torvalds 已提交
2290 2291
	struct writeback_control wbc = {
		.nr_to_write = LONG_MAX,
2292
		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2293 2294
		.range_start = 0,
		.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
2295 2296 2297
	};

	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2298
		wbc.nr_to_write = 0;
L
Linus Torvalds 已提交
2299 2300

	might_sleep();
2301
	return writeback_single_inode(inode, wb, &wbc);
L
Linus Torvalds 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
}
EXPORT_SYMBOL(write_inode_now);

/**
 * sync_inode - write an inode and its pages to disk.
 * @inode: the inode to sync
 * @wbc: controls the writeback mode
 *
 * sync_inode() will write an inode and its pages to disk.  It will also
 * correctly update the inode on its superblock's dirty inode lists and will
 * update inode->i_state.
 *
 * The caller must have a ref on the inode.
 */
int sync_inode(struct inode *inode, struct writeback_control *wbc)
{
2318
	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
L
Linus Torvalds 已提交
2319 2320
}
EXPORT_SYMBOL(sync_inode);
C
Christoph Hellwig 已提交
2321 2322

/**
A
Andrew Morton 已提交
2323
 * sync_inode_metadata - write an inode to disk
C
Christoph Hellwig 已提交
2324 2325 2326
 * @inode: the inode to sync
 * @wait: wait for I/O to complete.
 *
A
Andrew Morton 已提交
2327
 * Write an inode to disk and adjust its dirty state after completion.
C
Christoph Hellwig 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
 *
 * Note: only writes the actual inode, no associated data or other metadata.
 */
int sync_inode_metadata(struct inode *inode, int wait)
{
	struct writeback_control wbc = {
		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
		.nr_to_write = 0, /* metadata-only */
	};

	return sync_inode(inode, &wbc);
}
EXPORT_SYMBOL(sync_inode_metadata);