fs-writeback.c 68.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
11
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
12 13 14 15 16
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
17
#include <linux/export.h>
L
Linus Torvalds 已提交
18
#include <linux/spinlock.h>
19
#include <linux/slab.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
23
#include <linux/pagemap.h>
24
#include <linux/kthread.h>
L
Linus Torvalds 已提交
25 26 27
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
28
#include <linux/tracepoint.h>
29
#include <linux/device.h>
30
#include <linux/memcontrol.h>
31
#include "internal.h"
L
Linus Torvalds 已提交
32

33 34 35 36 37
/*
 * 4MB minimal write chunk size
 */
#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))

38 39 40 41
struct wb_completion {
	atomic_t		cnt;
};

42 43 44
/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
45
struct wb_writeback_work {
46 47
	long nr_pages;
	struct super_block *sb;
48
	unsigned long *older_than_this;
49
	enum writeback_sync_modes sync_mode;
50
	unsigned int tagged_writepages:1;
51 52 53
	unsigned int for_kupdate:1;
	unsigned int range_cyclic:1;
	unsigned int for_background:1;
54
	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55
	unsigned int auto_free:1;	/* free on completion */
56
	enum wb_reason reason;		/* why was writeback initiated? */
57

58
	struct list_head list;		/* pending work list */
59
	struct wb_completion *done;	/* set if the caller waits */
60 61
};

62 63 64 65 66 67 68 69 70 71 72 73 74
/*
 * If one wants to wait for one or more wb_writeback_works, each work's
 * ->done should be set to a wb_completion defined using the following
 * macro.  Once all work items are issued with wb_queue_work(), the caller
 * can wait for the completion of all using wb_wait_for_completion().  Work
 * items which are waited upon aren't freed automatically on completion.
 */
#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
	struct wb_completion cmpl = {					\
		.cnt		= ATOMIC_INIT(1),			\
	}


75 76 77 78 79 80 81 82 83 84 85 86
/*
 * If an inode is constantly having its pages dirtied, but then the
 * updates stop dirtytime_expire_interval seconds in the past, it's
 * possible for the worst case time between when an inode has its
 * timestamps updated and when they finally get written out to be two
 * dirtytime_expire_intervals.  We set the default to 12 hours (in
 * seconds), which means most of the time inodes will have their
 * timestamps written to disk after 12 hours, but in the worst case a
 * few inodes might not their timestamps updated for 24 hours.
 */
unsigned int dirtytime_expire_interval = 12 * 60 * 60;

N
Nick Piggin 已提交
87 88
static inline struct inode *wb_inode(struct list_head *head)
{
89
	return list_entry(head, struct inode, i_io_list);
N
Nick Piggin 已提交
90 91
}

92 93 94 95 96 97 98 99
/*
 * Include the creation of the trace points after defining the
 * wb_writeback_work structure and inline functions so that the definition
 * remains local to this file.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/writeback.h>

100 101
EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);

102 103 104 105 106 107
static bool wb_io_lists_populated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb)) {
		return false;
	} else {
		set_bit(WB_has_dirty_io, &wb->state);
108
		WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 110
		atomic_long_add(wb->avg_write_bandwidth,
				&wb->bdi->tot_write_bandwidth);
111 112 113 114 115 116 117
		return true;
	}
}

static void wb_io_lists_depopulated(struct bdi_writeback *wb)
{
	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118
	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119
		clear_bit(WB_has_dirty_io, &wb->state);
120 121
		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
					&wb->bdi->tot_write_bandwidth) < 0);
122
	}
123 124 125
}

/**
126
 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 128 129 130
 * @inode: inode to be moved
 * @wb: target bdi_writeback
 * @head: one of @wb->b_{dirty|io|more_io}
 *
131
 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 133 134
 * Returns %true if @inode is the first occupant of the !dirty_time IO
 * lists; otherwise, %false.
 */
135
static bool inode_io_list_move_locked(struct inode *inode,
136 137 138 139 140
				      struct bdi_writeback *wb,
				      struct list_head *head)
{
	assert_spin_locked(&wb->list_lock);

141
	list_move(&inode->i_io_list, head);
142 143 144 145 146 147 148 149 150 151

	/* dirty_time doesn't count as dirty_io until expiration */
	if (head != &wb->b_dirty_time)
		return wb_io_lists_populated(wb);

	wb_io_lists_depopulated(wb);
	return false;
}

/**
152
 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 154 155 156 157 158
 * @inode: inode to be removed
 * @wb: bdi_writeback @inode is being removed from
 *
 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 * clear %WB_has_dirty_io if all are empty afterwards.
 */
159
static void inode_io_list_del_locked(struct inode *inode,
160 161 162 163
				     struct bdi_writeback *wb)
{
	assert_spin_locked(&wb->list_lock);

164
	list_del_init(&inode->i_io_list);
165 166 167
	wb_io_lists_depopulated(wb);
}

168
static void wb_wakeup(struct bdi_writeback *wb)
J
Jan Kara 已提交
169
{
170 171 172 173
	spin_lock_bh(&wb->work_lock);
	if (test_bit(WB_registered, &wb->state))
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	spin_unlock_bh(&wb->work_lock);
J
Jan Kara 已提交
174 175
}

176 177
static void wb_queue_work(struct bdi_writeback *wb,
			  struct wb_writeback_work *work)
178
{
179
	trace_writeback_queue(wb, work);
180

181
	spin_lock_bh(&wb->work_lock);
182
	if (!test_bit(WB_registered, &wb->state))
J
Jan Kara 已提交
183
		goto out_unlock;
184 185
	if (work->done)
		atomic_inc(&work->done->cnt);
186 187
	list_add_tail(&work->list, &wb->work_list);
	mod_delayed_work(bdi_wq, &wb->dwork, 0);
J
Jan Kara 已提交
188
out_unlock:
189
	spin_unlock_bh(&wb->work_lock);
L
Linus Torvalds 已提交
190 191
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/**
 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 * @bdi: bdi work items were issued to
 * @done: target wb_completion
 *
 * Wait for one or more work items issued to @bdi with their ->done field
 * set to @done, which should have been defined with
 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 * work items are completed.  Work items which are waited upon aren't freed
 * automatically on completion.
 */
static void wb_wait_for_completion(struct backing_dev_info *bdi,
				   struct wb_completion *done)
{
	atomic_dec(&done->cnt);		/* put down the initial count */
	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
}

210 211
#ifdef CONFIG_CGROUP_WRITEBACK

212 213 214 215 216 217 218 219 220 221 222 223 224 225
/* parameters for foreign inode detection, see wb_detach_inode() */
#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */

#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
					/* each slot's duration is 2s / 16 */
#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
					/* if foreign slots >= 8, switch */
#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
					/* one round can affect upto 5 slots */

226 227 228
static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
static struct workqueue_struct *isw_wq;

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
void __inode_attach_wb(struct inode *inode, struct page *page)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;

	if (inode_cgwb_enabled(inode)) {
		struct cgroup_subsys_state *memcg_css;

		if (page) {
			memcg_css = mem_cgroup_css_from_page(page);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
		} else {
			/* must pin memcg_css, see wb_get_create() */
			memcg_css = task_get_css(current, memory_cgrp_id);
			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
			css_put(memcg_css);
		}
	}

	if (!wb)
		wb = &bdi->wb;

	/*
	 * There may be multiple instances of this function racing to
	 * update the same inode.  Use cmpxchg() to tell the winner.
	 */
	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
		wb_put(wb);
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/**
 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 * @inode: inode of interest with i_lock held
 *
 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 * held on entry and is released on return.  The returned wb is guaranteed
 * to stay @inode's associated wb until its list_lock is released.
 */
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	while (true) {
		struct bdi_writeback *wb = inode_to_wb(inode);

		/*
		 * inode_to_wb() association is protected by both
		 * @inode->i_lock and @wb->list_lock but list_lock nests
		 * outside i_lock.  Drop i_lock and verify that the
		 * association hasn't changed after acquiring list_lock.
		 */
		wb_get(wb);
		spin_unlock(&inode->i_lock);
		spin_lock(&wb->list_lock);
		wb_put(wb);		/* not gonna deref it anymore */

286 287
		/* i_wb may have changed inbetween, can't use inode_to_wb() */
		if (likely(wb == inode->i_wb))
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
			return wb;	/* @inode already has ref */

		spin_unlock(&wb->list_lock);
		cpu_relax();
		spin_lock(&inode->i_lock);
	}
}

/**
 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 * @inode: inode of interest
 *
 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 * on entry.
 */
static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	spin_lock(&inode->i_lock);
	return locked_inode_to_wb_and_lock_list(inode);
}

310 311 312 313 314 315 316 317 318 319 320 321 322
struct inode_switch_wbs_context {
	struct inode		*inode;
	struct bdi_writeback	*new_wb;

	struct rcu_head		rcu_head;
	struct work_struct	work;
};

static void inode_switch_wbs_work_fn(struct work_struct *work)
{
	struct inode_switch_wbs_context *isw =
		container_of(work, struct inode_switch_wbs_context, work);
	struct inode *inode = isw->inode;
323 324
	struct address_space *mapping = inode->i_mapping;
	struct bdi_writeback *old_wb = inode->i_wb;
325
	struct bdi_writeback *new_wb = isw->new_wb;
326 327 328
	struct radix_tree_iter iter;
	bool switched = false;
	void **slot;
329 330 331 332 333 334

	/*
	 * By the time control reaches here, RCU grace period has passed
	 * since I_WB_SWITCH assertion and all wb stat update transactions
	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
	 * synchronizing against mapping->tree_lock.
335 336 337 338
	 *
	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
	 * gives us exclusion against all wb related operations on @inode
	 * including IO list manipulations and stat updates.
339
	 */
340 341 342 343 344 345 346
	if (old_wb < new_wb) {
		spin_lock(&old_wb->list_lock);
		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
	} else {
		spin_lock(&new_wb->list_lock);
		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
	}
347
	spin_lock(&inode->i_lock);
348 349 350 351
	spin_lock_irq(&mapping->tree_lock);

	/*
	 * Once I_FREEING is visible under i_lock, the eviction path owns
352
	 * the inode and we shouldn't modify ->i_io_list.
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	 */
	if (unlikely(inode->i_state & I_FREEING))
		goto skip_switch;

	/*
	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
	 * pages actually under underwriteback.
	 */
	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
				   PAGECACHE_TAG_DIRTY) {
		struct page *page = radix_tree_deref_slot_protected(slot,
							&mapping->tree_lock);
		if (likely(page) && PageDirty(page)) {
			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
		}
	}

	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
				   PAGECACHE_TAG_WRITEBACK) {
		struct page *page = radix_tree_deref_slot_protected(slot,
							&mapping->tree_lock);
		if (likely(page)) {
			WARN_ON_ONCE(!PageWriteback(page));
			__dec_wb_stat(old_wb, WB_WRITEBACK);
			__inc_wb_stat(new_wb, WB_WRITEBACK);
		}
	}

	wb_get(new_wb);

	/*
	 * Transfer to @new_wb's IO list if necessary.  The specific list
	 * @inode was on is ignored and the inode is put on ->b_dirty which
	 * is always correct including from ->b_dirty_time.  The transfer
	 * preserves @inode->dirtied_when ordering.
	 */
391
	if (!list_empty(&inode->i_io_list)) {
392 393
		struct inode *pos;

394
		inode_io_list_del_locked(inode, old_wb);
395
		inode->i_wb = new_wb;
396
		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
397 398 399
			if (time_after_eq(inode->dirtied_when,
					  pos->dirtied_when))
				break;
400
		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
401 402 403
	} else {
		inode->i_wb = new_wb;
	}
404

405
	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
406 407 408
	inode->i_wb_frn_winner = 0;
	inode->i_wb_frn_avg_time = 0;
	inode->i_wb_frn_history = 0;
409 410
	switched = true;
skip_switch:
411 412 413 414 415 416
	/*
	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
	 */
	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);

417
	spin_unlock_irq(&mapping->tree_lock);
418
	spin_unlock(&inode->i_lock);
419 420
	spin_unlock(&new_wb->list_lock);
	spin_unlock(&old_wb->list_lock);
421

422 423 424 425
	if (switched) {
		wb_wakeup(new_wb);
		wb_put(old_wb);
	}
426
	wb_put(new_wb);
427 428

	iput(inode);
429
	kfree(isw);
430 431

	atomic_dec(&isw_nr_in_flight);
432 433 434 435 436 437 438 439 440
}

static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
{
	struct inode_switch_wbs_context *isw = container_of(rcu_head,
				struct inode_switch_wbs_context, rcu_head);

	/* needs to grab bh-unsafe locks, bounce to work item */
	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
441
	queue_work(isw_wq, &isw->work);
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
}

/**
 * inode_switch_wbs - change the wb association of an inode
 * @inode: target inode
 * @new_wb_id: ID of the new wb
 *
 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 * switching is performed asynchronously and may fail silently.
 */
static void inode_switch_wbs(struct inode *inode, int new_wb_id)
{
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct cgroup_subsys_state *memcg_css;
	struct inode_switch_wbs_context *isw;

	/* noop if seems to be already in progress */
	if (inode->i_state & I_WB_SWITCH)
		return;

	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
	if (!isw)
		return;

	/* find and pin the new wb */
	rcu_read_lock();
	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
	if (memcg_css)
		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
	rcu_read_unlock();
	if (!isw->new_wb)
		goto out_free;

	/* while holding I_WB_SWITCH, no one else can update the association */
	spin_lock(&inode->i_lock);
477 478 479 480 481 482
	if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
	    inode_to_wb(inode) == isw->new_wb) {
		spin_unlock(&inode->i_lock);
		goto out_free;
	}
483 484 485 486 487 488
	inode->i_state |= I_WB_SWITCH;
	spin_unlock(&inode->i_lock);

	ihold(inode);
	isw->inode = inode;

489 490
	atomic_inc(&isw_nr_in_flight);

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	/*
	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
	 * the RCU protected stat update paths to grab the mapping's
	 * tree_lock so that stat transfer can synchronize against them.
	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
	 */
	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
	return;

out_free:
	if (isw->new_wb)
		wb_put(isw->new_wb);
	kfree(isw);
}

506 507 508 509 510 511 512 513 514 515 516 517 518
/**
 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 * @wbc: writeback_control of interest
 * @inode: target inode
 *
 * @inode is locked and about to be written back under the control of @wbc.
 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 * writeback completion, wbc_detach_inode() should be called.  This is used
 * to track the cgroup writeback context.
 */
void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
				 struct inode *inode)
{
519 520 521 522 523
	if (!inode_cgwb_enabled(inode)) {
		spin_unlock(&inode->i_lock);
		return;
	}

524
	wbc->wb = inode_to_wb(inode);
525 526 527 528 529 530 531 532 533
	wbc->inode = inode;

	wbc->wb_id = wbc->wb->memcg_css->id;
	wbc->wb_lcand_id = inode->i_wb_frn_winner;
	wbc->wb_tcand_id = 0;
	wbc->wb_bytes = 0;
	wbc->wb_lcand_bytes = 0;
	wbc->wb_tcand_bytes = 0;

534 535
	wb_get(wbc->wb);
	spin_unlock(&inode->i_lock);
536 537 538 539 540 541 542

	/*
	 * A dying wb indicates that the memcg-blkcg mapping has changed
	 * and a new wb is already serving the memcg.  Switch immediately.
	 */
	if (unlikely(wb_dying(wbc->wb)))
		inode_switch_wbs(inode, wbc->wb_id);
543 544 545
}

/**
546 547
 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 * @wbc: writeback_control of the just finished writeback
548 549 550
 *
 * To be called after a writeback attempt of an inode finishes and undoes
 * wbc_attach_and_unlock_inode().  Can be called under any context.
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
 *
 * As concurrent write sharing of an inode is expected to be very rare and
 * memcg only tracks page ownership on first-use basis severely confining
 * the usefulness of such sharing, cgroup writeback tracks ownership
 * per-inode.  While the support for concurrent write sharing of an inode
 * is deemed unnecessary, an inode being written to by different cgroups at
 * different points in time is a lot more common, and, more importantly,
 * charging only by first-use can too readily lead to grossly incorrect
 * behaviors (single foreign page can lead to gigabytes of writeback to be
 * incorrectly attributed).
 *
 * To resolve this issue, cgroup writeback detects the majority dirtier of
 * an inode and transfers the ownership to it.  To avoid unnnecessary
 * oscillation, the detection mechanism keeps track of history and gives
 * out the switch verdict only if the foreign usage pattern is stable over
 * a certain amount of time and/or writeback attempts.
 *
 * On each writeback attempt, @wbc tries to detect the majority writer
 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 * count from the majority voting, it also counts the bytes written for the
 * current wb and the last round's winner wb (max of last round's current
 * wb, the winner from two rounds ago, and the last round's majority
 * candidate).  Keeping track of the historical winner helps the algorithm
 * to semi-reliably detect the most active writer even when it's not the
 * absolute majority.
 *
 * Once the winner of the round is determined, whether the winner is
 * foreign or not and how much IO time the round consumed is recorded in
 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 * over a certain threshold, the switch verdict is given.
581 582 583
 */
void wbc_detach_inode(struct writeback_control *wbc)
{
584 585
	struct bdi_writeback *wb = wbc->wb;
	struct inode *inode = wbc->inode;
586 587
	unsigned long avg_time, max_bytes, max_time;
	u16 history;
588 589
	int max_id;

590 591 592 593 594 595
	if (!wb)
		return;

	history = inode->i_wb_frn_history;
	avg_time = inode->i_wb_frn_avg_time;

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
	/* pick the winner of this round */
	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_id;
		max_bytes = wbc->wb_bytes;
	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
		max_id = wbc->wb_lcand_id;
		max_bytes = wbc->wb_lcand_bytes;
	} else {
		max_id = wbc->wb_tcand_id;
		max_bytes = wbc->wb_tcand_bytes;
	}

	/*
	 * Calculate the amount of IO time the winner consumed and fold it
	 * into the running average kept per inode.  If the consumed IO
	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
	 * deciding whether to switch or not.  This is to prevent one-off
	 * small dirtiers from skewing the verdict.
	 */
	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
				wb->avg_write_bandwidth);
	if (avg_time)
		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
	else
		avg_time = max_time;	/* immediate catch up on first run */

	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
		int slots;

		/*
		 * The switch verdict is reached if foreign wb's consume
		 * more than a certain proportion of IO time in a
		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
		 * history mask where each bit represents one sixteenth of
		 * the period.  Determine the number of slots to shift into
		 * history from @max_time.
		 */
		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
		history <<= slots;
		if (wbc->wb_id != max_id)
			history |= (1U << slots) - 1;

		/*
		 * Switch if the current wb isn't the consistent winner.
		 * If there are multiple closely competing dirtiers, the
		 * inode may switch across them repeatedly over time, which
		 * is okay.  The main goal is avoiding keeping an inode on
		 * the wrong wb for an extended period of time.
		 */
648 649
		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
			inode_switch_wbs(inode, max_id);
650 651 652 653 654 655 656 657 658 659
	}

	/*
	 * Multiple instances of this function may race to update the
	 * following fields but we don't mind occassional inaccuracies.
	 */
	inode->i_wb_frn_winner = max_id;
	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
	inode->i_wb_frn_history = history;

660 661 662 663
	wb_put(wbc->wb);
	wbc->wb = NULL;
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
/**
 * wbc_account_io - account IO issued during writeback
 * @wbc: writeback_control of the writeback in progress
 * @page: page being written out
 * @bytes: number of bytes being written out
 *
 * @bytes from @page are about to written out during the writeback
 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 * wbc_detach_inode().
 */
void wbc_account_io(struct writeback_control *wbc, struct page *page,
		    size_t bytes)
{
	int id;

	/*
	 * pageout() path doesn't attach @wbc to the inode being written
	 * out.  This is intentional as we don't want the function to block
	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
	 * regular writeback instead of writing things out itself.
	 */
	if (!wbc->wb)
		return;

	id = mem_cgroup_css_from_page(page)->id;

	if (id == wbc->wb_id) {
		wbc->wb_bytes += bytes;
		return;
	}

	if (id == wbc->wb_lcand_id)
		wbc->wb_lcand_bytes += bytes;

	/* Boyer-Moore majority vote algorithm */
	if (!wbc->wb_tcand_bytes)
		wbc->wb_tcand_id = id;
	if (id == wbc->wb_tcand_id)
		wbc->wb_tcand_bytes += bytes;
	else
		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
}
706
EXPORT_SYMBOL_GPL(wbc_account_io);
707

708 709
/**
 * inode_congested - test whether an inode is congested
710
 * @inode: inode to test for congestion (may be NULL)
711 712 713 714 715 716 717 718 719
 * @cong_bits: mask of WB_[a]sync_congested bits to test
 *
 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 * bits to test and the return value is the mask of set bits.
 *
 * If cgroup writeback is enabled for @inode, the congestion state is
 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 * associated with @inode is congested; otherwise, the root wb's congestion
 * state is used.
720 721 722
 *
 * @inode is allowed to be NULL as this function is often called on
 * mapping->host which is NULL for the swapper space.
723 724 725
 */
int inode_congested(struct inode *inode, int cong_bits)
{
726 727 728 729
	/*
	 * Once set, ->i_wb never becomes NULL while the inode is alive.
	 * Start transaction iff ->i_wb is visible.
	 */
730
	if (inode && inode_to_wb_is_valid(inode)) {
731 732 733 734 735 736 737
		struct bdi_writeback *wb;
		bool locked, congested;

		wb = unlocked_inode_to_wb_begin(inode, &locked);
		congested = wb_congested(wb, cong_bits);
		unlocked_inode_to_wb_end(inode, locked);
		return congested;
738 739 740 741 742 743
	}

	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
}
EXPORT_SYMBOL_GPL(inode_congested);

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
/**
 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 * @wb: target bdi_writeback to split @nr_pages to
 * @nr_pages: number of pages to write for the whole bdi
 *
 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 * @wb->bdi.
 */
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);

	if (nr_pages == LONG_MAX)
		return LONG_MAX;

	/*
	 * This may be called on clean wb's and proportional distribution
	 * may not make sense, just use the original @nr_pages in those
	 * cases.  In general, we wanna err on the side of writing more.
	 */
	if (!tot_bw || this_bw >= tot_bw)
		return nr_pages;
	else
		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
}

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
/**
 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 * @bdi: target backing_dev_info
 * @base_work: wb_writeback_work to issue
 * @skip_if_busy: skip wb's which already have writeback in progress
 *
 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 * distributed to the busy wbs according to each wb's proportion in the
 * total active write bandwidth of @bdi.
 */
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
787
	struct bdi_writeback *last_wb = NULL;
788 789
	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
					      struct bdi_writeback, bdi_node);
790 791 792 793

	might_sleep();
restart:
	rcu_read_lock();
794
	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
795 796 797 798 799
		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
		struct wb_writeback_work fallback_work;
		struct wb_writeback_work *work;
		long nr_pages;

800 801 802 803 804
		if (last_wb) {
			wb_put(last_wb);
			last_wb = NULL;
		}

805 806 807 808 809 810
		/* SYNC_ALL writes out I_DIRTY_TIME too */
		if (!wb_has_dirty_io(wb) &&
		    (base_work->sync_mode == WB_SYNC_NONE ||
		     list_empty(&wb->b_dirty_time)))
			continue;
		if (skip_if_busy && writeback_in_progress(wb))
811 812
			continue;

813 814 815 816 817 818 819 820 821
		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);

		work = kmalloc(sizeof(*work), GFP_ATOMIC);
		if (work) {
			*work = *base_work;
			work->nr_pages = nr_pages;
			work->auto_free = 1;
			wb_queue_work(wb, work);
			continue;
822
		}
823 824 825 826 827 828 829 830 831 832

		/* alloc failed, execute synchronously using on-stack fallback */
		work = &fallback_work;
		*work = *base_work;
		work->nr_pages = nr_pages;
		work->auto_free = 0;
		work->done = &fallback_work_done;

		wb_queue_work(wb, work);

833 834 835 836 837 838 839 840
		/*
		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
		 * continuing iteration from @wb after dropping and
		 * regrabbing rcu read lock.
		 */
		wb_get(wb);
		last_wb = wb;

841 842 843
		rcu_read_unlock();
		wb_wait_for_completion(bdi, &fallback_work_done);
		goto restart;
844 845
	}
	rcu_read_unlock();
846 847 848

	if (last_wb)
		wb_put(last_wb);
849 850
}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
/**
 * cgroup_writeback_umount - flush inode wb switches for umount
 *
 * This function is called when a super_block is about to be destroyed and
 * flushes in-flight inode wb switches.  An inode wb switch goes through
 * RCU and then workqueue, so the two need to be flushed in order to ensure
 * that all previously scheduled switches are finished.  As wb switches are
 * rare occurrences and synchronize_rcu() can take a while, perform
 * flushing iff wb switches are in flight.
 */
void cgroup_writeback_umount(void)
{
	if (atomic_read(&isw_nr_in_flight)) {
		synchronize_rcu();
		flush_workqueue(isw_wq);
	}
}

static int __init cgroup_writeback_init(void)
{
	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
	if (!isw_wq)
		return -ENOMEM;
	return 0;
}
fs_initcall(cgroup_writeback_init);

878 879
#else	/* CONFIG_CGROUP_WRITEBACK */

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode *inode)
	__releases(&inode->i_lock)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_unlock(&inode->i_lock);
	spin_lock(&wb->list_lock);
	return wb;
}

static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
	__acquires(&wb->list_lock)
{
	struct bdi_writeback *wb = inode_to_wb(inode);

	spin_lock(&wb->list_lock);
	return wb;
}

901 902 903 904 905
static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
{
	return nr_pages;
}

906 907 908 909 910 911
static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
				  struct wb_writeback_work *base_work,
				  bool skip_if_busy)
{
	might_sleep();

912
	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
913 914 915 916 917
		base_work->auto_free = 0;
		wb_queue_work(&bdi->wb, base_work);
	}
}

918 919
#endif	/* CONFIG_CGROUP_WRITEBACK */

920 921
void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
			bool range_cyclic, enum wb_reason reason)
922
{
923 924 925 926 927 928 929 930 931 932 933
	struct wb_writeback_work *work;

	if (!wb_has_dirty_io(wb))
		return;

	/*
	 * This is WB_SYNC_NONE writeback, so if allocation fails just
	 * wakeup the thread for old dirty data writeback
	 */
	work = kzalloc(sizeof(*work), GFP_ATOMIC);
	if (!work) {
934
		trace_writeback_nowork(wb);
935 936 937 938 939 940 941 942
		wb_wakeup(wb);
		return;
	}

	work->sync_mode	= WB_SYNC_NONE;
	work->nr_pages	= nr_pages;
	work->range_cyclic = range_cyclic;
	work->reason	= reason;
943
	work->auto_free	= 1;
944 945

	wb_queue_work(wb, work);
946
}
947

948
/**
949 950
 * wb_start_background_writeback - start background writeback
 * @wb: bdi_writback to write from
951 952
 *
 * Description:
953
 *   This makes sure WB_SYNC_NONE background writeback happens. When
954
 *   this function returns, it is only guaranteed that for given wb
955 956
 *   some IO is happening if we are over background dirty threshold.
 *   Caller need not hold sb s_umount semaphore.
957
 */
958
void wb_start_background_writeback(struct bdi_writeback *wb)
959
{
960 961 962 963
	/*
	 * We just wake up the flusher thread. It will perform background
	 * writeback as soon as there is no other work to do.
	 */
964
	trace_writeback_wake_background(wb);
965
	wb_wakeup(wb);
L
Linus Torvalds 已提交
966 967
}

968 969 970
/*
 * Remove the inode from the writeback list it is on.
 */
971
void inode_io_list_del(struct inode *inode)
972
{
973
	struct bdi_writeback *wb;
974

975
	wb = inode_to_wb_and_lock_list(inode);
976
	inode_io_list_del_locked(inode, wb);
977
	spin_unlock(&wb->list_lock);
978 979
}

980 981 982 983 984
/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
985
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
986 987 988
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
989
static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
990
{
991
	if (!list_empty(&wb->b_dirty)) {
992
		struct inode *tail;
993

N
Nick Piggin 已提交
994
		tail = wb_inode(wb->b_dirty.next);
995
		if (time_before(inode->dirtied_when, tail->dirtied_when))
996 997
			inode->dirtied_when = jiffies;
	}
998
	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
999 1000
}

1001
/*
1002
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1003
 */
1004
static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1005
{
1006
	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1007 1008
}

J
Joern Engel 已提交
1009 1010
static void inode_sync_complete(struct inode *inode)
{
1011
	inode->i_state &= ~I_SYNC;
1012 1013
	/* If inode is clean an unused, put it into LRU now... */
	inode_add_lru(inode);
1014
	/* Waiters must see I_SYNC cleared before being woken up */
J
Joern Engel 已提交
1015 1016 1017 1018
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

1019 1020 1021 1022 1023 1024 1025 1026
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
1027
	 * from permanently stopping the whole bdi writeback.
1028 1029 1030 1031 1032 1033
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

1034 1035
#define EXPIRE_DIRTY_ATIME 0x0001

1036
/*
1037
 * Move expired (dirtied before work->older_than_this) dirty inodes from
J
Jan Kara 已提交
1038
 * @delaying_queue to @dispatch_queue.
1039
 */
1040
static int move_expired_inodes(struct list_head *delaying_queue,
1041
			       struct list_head *dispatch_queue,
1042
			       int flags,
1043
			       struct wb_writeback_work *work)
1044
{
1045 1046
	unsigned long *older_than_this = NULL;
	unsigned long expire_time;
1047 1048
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
1049
	struct super_block *sb = NULL;
1050
	struct inode *inode;
1051
	int do_sb_sort = 0;
1052
	int moved = 0;
1053

1054 1055
	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
		older_than_this = work->older_than_this;
1056 1057
	else if (!work->for_sync) {
		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1058 1059
		older_than_this = &expire_time;
	}
1060
	while (!list_empty(delaying_queue)) {
N
Nick Piggin 已提交
1061
		inode = wb_inode(delaying_queue->prev);
1062 1063
		if (older_than_this &&
		    inode_dirtied_after(inode, *older_than_this))
1064
			break;
1065
		list_move(&inode->i_io_list, &tmp);
1066
		moved++;
1067 1068
		if (flags & EXPIRE_DIRTY_ATIME)
			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1069 1070
		if (sb_is_blkdev_sb(inode->i_sb))
			continue;
1071 1072 1073
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
1074 1075
	}

1076 1077 1078
	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
1079
		goto out;
1080 1081
	}

1082 1083
	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
N
Nick Piggin 已提交
1084
		sb = wb_inode(tmp.prev)->i_sb;
1085
		list_for_each_prev_safe(pos, node, &tmp) {
N
Nick Piggin 已提交
1086
			inode = wb_inode(pos);
1087
			if (inode->i_sb == sb)
1088
				list_move(&inode->i_io_list, dispatch_queue);
1089
		}
1090
	}
1091 1092
out:
	return moved;
1093 1094 1095 1096
}

/*
 * Queue all expired dirty inodes for io, eldest first.
1097 1098 1099 1100 1101 1102 1103 1104
 * Before
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    gf         edc     BA
 * After
 *         newly dirtied     b_dirty    b_io    b_more_io
 *         =============>    g          fBAedc
 *                                           |
 *                                           +--> dequeue for IO
1105
 */
1106
static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1107
{
1108
	int moved;
1109

1110
	assert_spin_locked(&wb->list_lock);
1111
	list_splice_init(&wb->b_more_io, &wb->b_io);
1112 1113 1114
	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
				     EXPIRE_DIRTY_ATIME, work);
1115 1116
	if (moved)
		wb_io_lists_populated(wb);
1117
	trace_writeback_queue_io(wb, work, moved);
1118 1119
}

1120
static int write_inode(struct inode *inode, struct writeback_control *wbc)
1121
{
T
Tejun Heo 已提交
1122 1123 1124 1125 1126 1127 1128 1129
	int ret;

	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
		trace_writeback_write_inode_start(inode, wbc);
		ret = inode->i_sb->s_op->write_inode(inode, wbc);
		trace_writeback_write_inode(inode, wbc);
		return ret;
	}
1130
	return 0;
1131 1132
}

L
Linus Torvalds 已提交
1133
/*
1134 1135
 * Wait for writeback on an inode to complete. Called with i_lock held.
 * Caller must make sure inode cannot go away when we drop i_lock.
1136
 */
1137 1138 1139
static void __inode_wait_for_writeback(struct inode *inode)
	__releases(inode->i_lock)
	__acquires(inode->i_lock)
1140 1141 1142 1143 1144
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1145 1146
	while (inode->i_state & I_SYNC) {
		spin_unlock(&inode->i_lock);
1147 1148
		__wait_on_bit(wqh, &wq, bit_wait,
			      TASK_UNINTERRUPTIBLE);
1149
		spin_lock(&inode->i_lock);
1150
	}
1151 1152
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
/*
 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 */
void inode_wait_for_writeback(struct inode *inode)
{
	spin_lock(&inode->i_lock);
	__inode_wait_for_writeback(inode);
	spin_unlock(&inode->i_lock);
}

/*
 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 * held and drops it. It is aimed for callers not holding any inode reference
 * so once i_lock is dropped, inode can go away.
 */
static void inode_sleep_on_writeback(struct inode *inode)
	__releases(inode->i_lock)
{
	DEFINE_WAIT(wait);
	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	int sleep;

	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
	sleep = inode->i_state & I_SYNC;
	spin_unlock(&inode->i_lock);
	if (sleep)
		schedule();
	finish_wait(wqh, &wait);
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
/*
 * Find proper writeback list for the inode depending on its current state and
 * possibly also change of its state while we were doing writeback.  Here we
 * handle things such as livelock prevention or fairness of writeback among
 * inodes. This function can be called only by flusher thread - noone else
 * processes all inodes in writeback lists and requeueing inodes behind flusher
 * thread's back can have unexpected consequences.
 */
static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
			  struct writeback_control *wbc)
{
	if (inode->i_state & I_FREEING)
		return;

	/*
	 * Sync livelock prevention. Each inode is tagged and synced in one
	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
	 * the dirty time to prevent enqueue and sync it again.
	 */
	if ((inode->i_state & I_DIRTY) &&
	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
		inode->dirtied_when = jiffies;

1206 1207 1208 1209 1210 1211 1212 1213 1214
	if (wbc->pages_skipped) {
		/*
		 * writeback is not making progress due to locked
		 * buffers. Skip this inode for now.
		 */
		redirty_tail(inode, wb);
		return;
	}

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		/*
		 * We didn't write back all the pages.  nfs_writepages()
		 * sometimes bales out without doing anything.
		 */
		if (wbc->nr_to_write <= 0) {
			/* Slice used up. Queue for next turn. */
			requeue_io(inode, wb);
		} else {
			/*
			 * Writeback blocked by something other than
			 * congestion. Delay the inode for some time to
			 * avoid spinning on the CPU (100% iowait)
			 * retrying writeback of the dirty page/inode
			 * that cannot be performed immediately.
			 */
			redirty_tail(inode, wb);
		}
	} else if (inode->i_state & I_DIRTY) {
		/*
		 * Filesystems can dirty the inode during writeback operations,
		 * such as delayed allocation during submission or metadata
		 * updates after data IO completion.
		 */
		redirty_tail(inode, wb);
1240
	} else if (inode->i_state & I_DIRTY_TIME) {
1241
		inode->dirtied_when = jiffies;
1242
		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1243 1244
	} else {
		/* The inode is clean. Remove from writeback lists. */
1245
		inode_io_list_del_locked(inode, wb);
1246 1247 1248
	}
}

1249
/*
1250 1251 1252
 * Write out an inode and its dirty pages. Do not update the writeback list
 * linkage. That is left to the caller. The caller is also responsible for
 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
L
Linus Torvalds 已提交
1253 1254
 */
static int
1255
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
L
Linus Torvalds 已提交
1256 1257
{
	struct address_space *mapping = inode->i_mapping;
1258
	long nr_to_write = wbc->nr_to_write;
1259
	unsigned dirty;
L
Linus Torvalds 已提交
1260 1261
	int ret;

1262
	WARN_ON(!(inode->i_state & I_SYNC));
L
Linus Torvalds 已提交
1263

T
Tejun Heo 已提交
1264 1265
	trace_writeback_single_inode_start(inode, wbc, nr_to_write);

L
Linus Torvalds 已提交
1266 1267
	ret = do_writepages(mapping, wbc);

1268 1269 1270
	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
1271 1272 1273
	 * I/O completion. We don't do it for sync(2) writeback because it has a
	 * separate, external IO completion path and ->sync_fs for guaranteeing
	 * inode metadata is written back correctly.
1274
	 */
1275
	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1276
		int err = filemap_fdatawait(mapping);
L
Linus Torvalds 已提交
1277 1278 1279 1280
		if (ret == 0)
			ret = err;
	}

1281 1282 1283 1284 1285
	/*
	 * Some filesystems may redirty the inode during the writeback
	 * due to delalloc, clear dirty metadata flags right before
	 * write_inode()
	 */
1286
	spin_lock(&inode->i_lock);
1287

1288
	dirty = inode->i_state & I_DIRTY;
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	if (inode->i_state & I_DIRTY_TIME) {
		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
		    unlikely(time_after(jiffies,
					(inode->dirtied_time_when +
					 dirtytime_expire_interval * HZ)))) {
			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
			trace_writeback_lazytime(inode);
		}
	} else
		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1300
	inode->i_state &= ~dirty;
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

	/*
	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
	 * either they see the I_DIRTY bits cleared or we see the dirtied
	 * inode.
	 *
	 * I_DIRTY_PAGES is always cleared together above even if @mapping
	 * still has dirty pages.  The flag is reinstated after smp_mb() if
	 * necessary.  This guarantees that either __mark_inode_dirty()
	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
	 */
	smp_mb();

	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		inode->i_state |= I_DIRTY_PAGES;

1318
	spin_unlock(&inode->i_lock);
1319

1320 1321
	if (dirty & I_DIRTY_TIME)
		mark_inode_dirty_sync(inode);
1322
	/* Don't write the inode if only I_DIRTY_PAGES was set */
1323
	if (dirty & ~I_DIRTY_PAGES) {
1324
		int err = write_inode(inode, wbc);
L
Linus Torvalds 已提交
1325 1326 1327
		if (ret == 0)
			ret = err;
	}
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	trace_writeback_single_inode(inode, wbc, nr_to_write);
	return ret;
}

/*
 * Write out an inode's dirty pages. Either the caller has an active reference
 * on the inode or the inode has I_WILL_FREE set.
 *
 * This function is designed to be called for writing back one inode which
 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 * and does more profound writeback list handling in writeback_sb_inodes().
 */
static int
writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
		       struct writeback_control *wbc)
{
	int ret = 0;

	spin_lock(&inode->i_lock);
	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		if (wbc->sync_mode != WB_SYNC_ALL)
			goto out;
		/*
1356 1357 1358
		 * It's a data-integrity sync. We must wait. Since callers hold
		 * inode reference or inode has I_WILL_FREE set, it cannot go
		 * away under us.
1359
		 */
1360
		__inode_wait_for_writeback(inode);
1361 1362 1363
	}
	WARN_ON(inode->i_state & I_SYNC);
	/*
J
Jan Kara 已提交
1364 1365 1366 1367 1368 1369
	 * Skip inode if it is clean and we have no outstanding writeback in
	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
	 * function since flusher thread may be doing for example sync in
	 * parallel and if we move the inode, it could get skipped. So here we
	 * make sure inode is on some writeback list and leave it there unless
	 * we have completely cleaned the inode.
1370
	 */
1371
	if (!(inode->i_state & I_DIRTY_ALL) &&
J
Jan Kara 已提交
1372 1373
	    (wbc->sync_mode != WB_SYNC_ALL ||
	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1374 1375
		goto out;
	inode->i_state |= I_SYNC;
1376
	wbc_attach_and_unlock_inode(wbc, inode);
1377

1378
	ret = __writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
1379

1380
	wbc_detach_inode(wbc);
1381
	spin_lock(&wb->list_lock);
1382
	spin_lock(&inode->i_lock);
1383 1384 1385 1386
	/*
	 * If inode is clean, remove it from writeback lists. Otherwise don't
	 * touch it. See comment above for explanation.
	 */
1387
	if (!(inode->i_state & I_DIRTY_ALL))
1388
		inode_io_list_del_locked(inode, wb);
1389
	spin_unlock(&wb->list_lock);
J
Joern Engel 已提交
1390
	inode_sync_complete(inode);
1391 1392
out:
	spin_unlock(&inode->i_lock);
L
Linus Torvalds 已提交
1393 1394 1395
	return ret;
}

1396
static long writeback_chunk_size(struct bdi_writeback *wb,
1397
				 struct wb_writeback_work *work)
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
{
	long pages;

	/*
	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
	 * here avoids calling into writeback_inodes_wb() more than once.
	 *
	 * The intended call sequence for WB_SYNC_ALL writeback is:
	 *
	 *      wb_writeback()
	 *          writeback_sb_inodes()       <== called only once
	 *              write_cache_pages()     <== called once for each inode
	 *                   (quickly) tag currently dirty pages
	 *                   (maybe slowly) sync all tagged pages
	 */
	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
		pages = LONG_MAX;
1416
	else {
1417
		pages = min(wb->avg_write_bandwidth / 2,
1418
			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1419 1420 1421 1422
		pages = min(pages, work->nr_pages);
		pages = round_down(pages + MIN_WRITEBACK_PAGES,
				   MIN_WRITEBACK_PAGES);
	}
1423 1424 1425 1426

	return pages;
}

1427 1428
/*
 * Write a portion of b_io inodes which belong to @sb.
1429
 *
1430
 * Return the number of pages and/or inodes written.
1431 1432 1433 1434
 *
 * NOTE! This is called with wb->list_lock held, and will
 * unlock and relock that for each inode it ends up doing
 * IO for.
1435
 */
1436 1437 1438
static long writeback_sb_inodes(struct super_block *sb,
				struct bdi_writeback *wb,
				struct wb_writeback_work *work)
L
Linus Torvalds 已提交
1439
{
1440 1441 1442 1443 1444
	struct writeback_control wbc = {
		.sync_mode		= work->sync_mode,
		.tagged_writepages	= work->tagged_writepages,
		.for_kupdate		= work->for_kupdate,
		.for_background		= work->for_background,
1445
		.for_sync		= work->for_sync,
1446 1447 1448 1449 1450 1451 1452 1453
		.range_cyclic		= work->range_cyclic,
		.range_start		= 0,
		.range_end		= LLONG_MAX,
	};
	unsigned long start_time = jiffies;
	long write_chunk;
	long wrote = 0;  /* count both pages and inodes */

1454
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1455
		struct inode *inode = wb_inode(wb->b_io.prev);
1456 1457

		if (inode->i_sb != sb) {
1458
			if (work->sb) {
1459 1460 1461 1462 1463
				/*
				 * We only want to write back data for this
				 * superblock, move all inodes not belonging
				 * to it back onto the dirty list.
				 */
1464
				redirty_tail(inode, wb);
1465 1466 1467 1468 1469 1470 1471 1472
				continue;
			}

			/*
			 * The inode belongs to a different superblock.
			 * Bounce back to the caller to unpin this and
			 * pin the next superblock.
			 */
1473
			break;
1474 1475
		}

1476
		/*
W
Wanpeng Li 已提交
1477 1478
		 * Don't bother with new inodes or inodes being freed, first
		 * kind does not need periodic writeout yet, and for the latter
1479 1480
		 * kind writeout is handled by the freer.
		 */
1481
		spin_lock(&inode->i_lock);
1482
		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1483
			spin_unlock(&inode->i_lock);
1484
			redirty_tail(inode, wb);
1485 1486
			continue;
		}
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
			/*
			 * If this inode is locked for writeback and we are not
			 * doing writeback-for-data-integrity, move it to
			 * b_more_io so that writeback can proceed with the
			 * other inodes on s_io.
			 *
			 * We'll have another go at writing back this inode
			 * when we completed a full scan of b_io.
			 */
			spin_unlock(&inode->i_lock);
			requeue_io(inode, wb);
			trace_writeback_sb_inodes_requeue(inode);
			continue;
		}
1502 1503
		spin_unlock(&wb->list_lock);

1504 1505 1506 1507 1508
		/*
		 * We already requeued the inode if it had I_SYNC set and we
		 * are doing WB_SYNC_NONE writeback. So this catches only the
		 * WB_SYNC_ALL case.
		 */
1509 1510 1511 1512
		if (inode->i_state & I_SYNC) {
			/* Wait for I_SYNC. This function drops i_lock... */
			inode_sleep_on_writeback(inode);
			/* Inode may be gone, start again */
1513
			spin_lock(&wb->list_lock);
1514 1515
			continue;
		}
1516
		inode->i_state |= I_SYNC;
1517
		wbc_attach_and_unlock_inode(&wbc, inode);
1518

1519
		write_chunk = writeback_chunk_size(wb, work);
1520 1521
		wbc.nr_to_write = write_chunk;
		wbc.pages_skipped = 0;
1522

1523 1524 1525 1526
		/*
		 * We use I_SYNC to pin the inode in memory. While it is set
		 * evict_inode() will wait so the inode cannot be freed.
		 */
1527
		__writeback_single_inode(inode, &wbc);
1528

1529
		wbc_detach_inode(&wbc);
1530 1531
		work->nr_pages -= write_chunk - wbc.nr_to_write;
		wrote += write_chunk - wbc.nr_to_write;
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546

		if (need_resched()) {
			/*
			 * We're trying to balance between building up a nice
			 * long list of IOs to improve our merge rate, and
			 * getting those IOs out quickly for anyone throttling
			 * in balance_dirty_pages().  cond_resched() doesn't
			 * unplug, so get our IOs out the door before we
			 * give up the CPU.
			 */
			blk_flush_plug(current);
			cond_resched();
		}


1547 1548
		spin_lock(&wb->list_lock);
		spin_lock(&inode->i_lock);
1549
		if (!(inode->i_state & I_DIRTY_ALL))
1550
			wrote++;
1551 1552
		requeue_inode(inode, wb, &wbc);
		inode_sync_complete(inode);
1553
		spin_unlock(&inode->i_lock);
1554

1555 1556 1557 1558 1559 1560 1561 1562 1563
		/*
		 * bail out to wb_writeback() often enough to check
		 * background threshold and other termination conditions.
		 */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
1564
		}
L
Linus Torvalds 已提交
1565
	}
1566
	return wrote;
1567 1568
}

1569 1570
static long __writeback_inodes_wb(struct bdi_writeback *wb,
				  struct wb_writeback_work *work)
1571
{
1572 1573
	unsigned long start_time = jiffies;
	long wrote = 0;
N
Nick Piggin 已提交
1574

1575
	while (!list_empty(&wb->b_io)) {
N
Nick Piggin 已提交
1576
		struct inode *inode = wb_inode(wb->b_io.prev);
1577
		struct super_block *sb = inode->i_sb;
1578

1579
		if (!trylock_super(sb)) {
1580
			/*
1581
			 * trylock_super() may fail consistently due to
1582 1583 1584 1585
			 * s_umount being grabbed by someone else. Don't use
			 * requeue_io() to avoid busy retrying the inode/sb.
			 */
			redirty_tail(inode, wb);
1586
			continue;
1587
		}
1588
		wrote += writeback_sb_inodes(sb, wb, work);
1589
		up_read(&sb->s_umount);
1590

1591 1592 1593 1594 1595 1596 1597
		/* refer to the same tests at the end of writeback_sb_inodes */
		if (wrote) {
			if (time_is_before_jiffies(start_time + HZ / 10UL))
				break;
			if (work->nr_pages <= 0)
				break;
		}
1598
	}
1599
	/* Leave any unwritten inodes on b_io */
1600
	return wrote;
1601 1602
}

1603
static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1604
				enum wb_reason reason)
1605
{
1606 1607 1608 1609
	struct wb_writeback_work work = {
		.nr_pages	= nr_pages,
		.sync_mode	= WB_SYNC_NONE,
		.range_cyclic	= 1,
1610
		.reason		= reason,
1611
	};
1612
	struct blk_plug plug;
1613

1614
	blk_start_plug(&plug);
1615
	spin_lock(&wb->list_lock);
W
Wu Fengguang 已提交
1616
	if (list_empty(&wb->b_io))
1617
		queue_io(wb, &work);
1618
	__writeback_inodes_wb(wb, &work);
1619
	spin_unlock(&wb->list_lock);
1620
	blk_finish_plug(&plug);
1621

1622 1623
	return nr_pages - work.nr_pages;
}
1624 1625 1626

/*
 * Explicit flushing or periodic writeback of "old" data.
1627
 *
1628 1629 1630 1631
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
1632
 *
1633 1634 1635
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
1636
 *
1637 1638
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
1639
 */
1640
static long wb_writeback(struct bdi_writeback *wb,
1641
			 struct wb_writeback_work *work)
1642
{
1643
	unsigned long wb_start = jiffies;
1644
	long nr_pages = work->nr_pages;
1645
	unsigned long oldest_jif;
J
Jan Kara 已提交
1646
	struct inode *inode;
1647
	long progress;
1648
	struct blk_plug plug;
1649

1650 1651
	oldest_jif = jiffies;
	work->older_than_this = &oldest_jif;
N
Nick Piggin 已提交
1652

1653
	blk_start_plug(&plug);
1654
	spin_lock(&wb->list_lock);
1655 1656
	for (;;) {
		/*
1657
		 * Stop writeback when nr_pages has been consumed
1658
		 */
1659
		if (work->nr_pages <= 0)
1660
			break;
1661

1662 1663 1664 1665 1666 1667 1668
		/*
		 * Background writeout and kupdate-style writeback may
		 * run forever. Stop them if there is other work to do
		 * so that e.g. sync can proceed. They'll be restarted
		 * after the other works are all done.
		 */
		if ((work->for_background || work->for_kupdate) &&
1669
		    !list_empty(&wb->work_list))
1670 1671
			break;

N
Nick Piggin 已提交
1672
		/*
1673 1674
		 * For background writeout, stop when we are below the
		 * background dirty threshold
N
Nick Piggin 已提交
1675
		 */
1676
		if (work->for_background && !wb_over_bg_thresh(wb))
1677
			break;
N
Nick Piggin 已提交
1678

1679 1680 1681 1682 1683 1684
		/*
		 * Kupdate and background works are special and we want to
		 * include all inodes that need writing. Livelock avoidance is
		 * handled by these works yielding to any other work so we are
		 * safe.
		 */
1685
		if (work->for_kupdate) {
1686
			oldest_jif = jiffies -
1687
				msecs_to_jiffies(dirty_expire_interval * 10);
1688
		} else if (work->for_background)
1689
			oldest_jif = jiffies;
1690

1691
		trace_writeback_start(wb, work);
1692
		if (list_empty(&wb->b_io))
1693
			queue_io(wb, work);
1694
		if (work->sb)
1695
			progress = writeback_sb_inodes(work->sb, wb, work);
1696
		else
1697
			progress = __writeback_inodes_wb(wb, work);
1698
		trace_writeback_written(wb, work);
1699

1700
		wb_update_bandwidth(wb, wb_start);
1701 1702

		/*
1703 1704 1705 1706 1707 1708
		 * Did we write something? Try for more
		 *
		 * Dirty inodes are moved to b_io for writeback in batches.
		 * The completion of the current batch does not necessarily
		 * mean the overall work is done. So we keep looping as long
		 * as made some progress on cleaning pages or inodes.
1709
		 */
1710
		if (progress)
1711 1712
			continue;
		/*
1713
		 * No more inodes for IO, bail
1714
		 */
1715
		if (list_empty(&wb->b_more_io))
1716
			break;
1717 1718 1719 1720 1721 1722
		/*
		 * Nothing written. Wait for some inode to
		 * become available for writeback. Otherwise
		 * we'll just busyloop.
		 */
		if (!list_empty(&wb->b_more_io))  {
1723
			trace_writeback_wait(wb, work);
N
Nick Piggin 已提交
1724
			inode = wb_inode(wb->b_more_io.prev);
1725
			spin_lock(&inode->i_lock);
1726
			spin_unlock(&wb->list_lock);
1727 1728
			/* This function drops i_lock... */
			inode_sleep_on_writeback(inode);
1729
			spin_lock(&wb->list_lock);
1730 1731
		}
	}
1732
	spin_unlock(&wb->list_lock);
1733
	blk_finish_plug(&plug);
1734

1735
	return nr_pages - work->nr_pages;
1736 1737 1738
}

/*
1739
 * Return the next wb_writeback_work struct that hasn't been processed yet.
1740
 */
1741
static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1742
{
1743
	struct wb_writeback_work *work = NULL;
1744

1745 1746 1747
	spin_lock_bh(&wb->work_lock);
	if (!list_empty(&wb->work_list)) {
		work = list_entry(wb->work_list.next,
1748 1749
				  struct wb_writeback_work, list);
		list_del_init(&work->list);
1750
	}
1751
	spin_unlock_bh(&wb->work_lock);
1752
	return work;
1753 1754
}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
/*
 * Add in the number of potentially dirty inodes, because each inode
 * write can dirty pagecache in the underlying blockdev.
 */
static unsigned long get_nr_dirty_pages(void)
{
	return global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS) +
		get_nr_dirty_inodes();
}

1766 1767
static long wb_check_background_flush(struct bdi_writeback *wb)
{
1768
	if (wb_over_bg_thresh(wb)) {
1769 1770 1771 1772 1773 1774

		struct wb_writeback_work work = {
			.nr_pages	= LONG_MAX,
			.sync_mode	= WB_SYNC_NONE,
			.for_background	= 1,
			.range_cyclic	= 1,
1775
			.reason		= WB_REASON_BACKGROUND,
1776 1777 1778 1779 1780 1781 1782 1783
		};

		return wb_writeback(wb, &work);
	}

	return 0;
}

1784 1785 1786 1787 1788
static long wb_check_old_data_flush(struct bdi_writeback *wb)
{
	unsigned long expired;
	long nr_pages;

1789 1790 1791 1792 1793 1794
	/*
	 * When set to zero, disable periodic writeback
	 */
	if (!dirty_writeback_interval)
		return 0;

1795 1796 1797 1798 1799 1800
	expired = wb->last_old_flush +
			msecs_to_jiffies(dirty_writeback_interval * 10);
	if (time_before(jiffies, expired))
		return 0;

	wb->last_old_flush = jiffies;
1801
	nr_pages = get_nr_dirty_pages();
1802

1803
	if (nr_pages) {
1804
		struct wb_writeback_work work = {
1805 1806 1807 1808
			.nr_pages	= nr_pages,
			.sync_mode	= WB_SYNC_NONE,
			.for_kupdate	= 1,
			.range_cyclic	= 1,
1809
			.reason		= WB_REASON_PERIODIC,
1810 1811
		};

1812
		return wb_writeback(wb, &work);
1813
	}
1814 1815 1816 1817 1818 1819 1820

	return 0;
}

/*
 * Retrieve work items and do the writeback they describe
 */
1821
static long wb_do_writeback(struct bdi_writeback *wb)
1822
{
1823
	struct wb_writeback_work *work;
1824
	long wrote = 0;
1825

1826
	set_bit(WB_writeback_running, &wb->state);
1827
	while ((work = get_next_work_item(wb)) != NULL) {
1828
		struct wb_completion *done = work->done;
1829

1830
		trace_writeback_exec(wb, work);
1831

1832
		wrote += wb_writeback(wb, work);
1833

1834
		if (work->auto_free)
1835
			kfree(work);
1836 1837
		if (done && atomic_dec_and_test(&done->cnt))
			wake_up_all(&wb->bdi->wb_waitq);
1838 1839 1840 1841 1842 1843
	}

	/*
	 * Check for periodic writeback, kupdated() style
	 */
	wrote += wb_check_old_data_flush(wb);
1844
	wrote += wb_check_background_flush(wb);
1845
	clear_bit(WB_writeback_running, &wb->state);
1846 1847 1848 1849 1850 1851

	return wrote;
}

/*
 * Handle writeback of dirty data for the device backed by this bdi. Also
1852
 * reschedules periodically and does kupdated style flushing.
1853
 */
1854
void wb_workfn(struct work_struct *work)
1855
{
1856 1857
	struct bdi_writeback *wb = container_of(to_delayed_work(work),
						struct bdi_writeback, dwork);
1858 1859
	long pages_written;

1860
	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
P
Peter Zijlstra 已提交
1861
	current->flags |= PF_SWAPWRITE;
1862

1863
	if (likely(!current_is_workqueue_rescuer() ||
1864
		   !test_bit(WB_registered, &wb->state))) {
1865
		/*
1866
		 * The normal path.  Keep writing back @wb until its
1867
		 * work_list is empty.  Note that this path is also taken
1868
		 * if @wb is shutting down even when we're running off the
1869
		 * rescuer as work_list needs to be drained.
1870
		 */
1871
		do {
1872
			pages_written = wb_do_writeback(wb);
1873
			trace_writeback_pages_written(pages_written);
1874
		} while (!list_empty(&wb->work_list));
1875 1876 1877 1878 1879 1880
	} else {
		/*
		 * bdi_wq can't get enough workers and we're running off
		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
		 * enough for efficient IO.
		 */
1881
		pages_written = writeback_inodes_wb(wb, 1024,
1882
						    WB_REASON_FORKER_THREAD);
1883
		trace_writeback_pages_written(pages_written);
1884 1885
	}

1886
	if (!list_empty(&wb->work_list))
1887 1888
		mod_delayed_work(bdi_wq, &wb->dwork, 0);
	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1889
		wb_wakeup_delayed(wb);
1890

1891
	current->flags &= ~PF_SWAPWRITE;
1892 1893 1894
}

/*
1895 1896
 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
 * the whole world.
1897
 */
1898
void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1899
{
1900
	struct backing_dev_info *bdi;
1901

1902 1903
	if (!nr_pages)
		nr_pages = get_nr_dirty_pages();
1904

1905
	rcu_read_lock();
1906 1907 1908 1909 1910 1911
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
		struct bdi_writeback *wb;

		if (!bdi_has_dirty_io(bdi))
			continue;

1912
		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1913 1914 1915
			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
					   false, reason);
	}
1916
	rcu_read_unlock();
L
Linus Torvalds 已提交
1917 1918
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
/*
 * Wake up bdi's periodically to make sure dirtytime inodes gets
 * written back periodically.  We deliberately do *not* check the
 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
 * kernel to be constantly waking up once there are any dirtytime
 * inodes on the system.  So instead we define a separate delayed work
 * function which gets called much more rarely.  (By default, only
 * once every 12 hours.)
 *
 * If there is any other write activity going on in the file system,
 * this function won't be necessary.  But if the only thing that has
 * happened on the file system is a dirtytime inode caused by an atime
 * update, we need this infrastructure below to make sure that inode
 * eventually gets pushed out to disk.
 */
static void wakeup_dirtytime_writeback(struct work_struct *w);
static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);

static void wakeup_dirtytime_writeback(struct work_struct *w)
{
	struct backing_dev_info *bdi;

	rcu_read_lock();
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1943 1944
		struct bdi_writeback *wb;

1945
		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1946 1947
			if (!list_empty(&wb->b_dirty_time))
				wb_wakeup(wb);
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	}
	rcu_read_unlock();
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
}

static int __init start_dirtytime_writeback(void)
{
	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
	return 0;
}
__initcall(start_dirtytime_writeback);

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
int dirtytime_interval_handler(struct ctl_table *table, int write,
			       void __user *buffer, size_t *lenp, loff_t *ppos)
{
	int ret;

	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
	if (ret == 0 && write)
		mod_delayed_work(system_wq, &dirtytime_work, 0);
	return ret;
}

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
static noinline void block_dump___mark_inode_dirty(struct inode *inode)
{
	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
		struct dentry *dentry;
		const char *name = "?";

		dentry = d_find_alias(inode);
		if (dentry) {
			spin_lock(&dentry->d_lock);
			name = (const char *) dentry->d_name.name;
		}
		printk(KERN_DEBUG
		       "%s(%d): dirtied inode %lu (%s) on %s\n",
		       current->comm, task_pid_nr(current), inode->i_ino,
		       name, inode->i_sb->s_id);
		if (dentry) {
			spin_unlock(&dentry->d_lock);
			dput(dentry);
		}
	}
}

/**
 *	__mark_inode_dirty -	internal function
 *	@inode: inode to mark
 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
 *  	mark_inode_dirty_sync.
L
Linus Torvalds 已提交
1999
 *
2000 2001 2002 2003 2004 2005 2006 2007 2008
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 * dirty list only if it is hashed or if it refers to a blockdev.
 * If it was not hashed, it will never be added to the dirty list
 * even if it is later hashed, as it will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_ you start marking
 * them dirty.
L
Linus Torvalds 已提交
2009
 *
2010 2011 2012 2013 2014 2015
 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 * the kernel-internal blockdev inode represents the dirtying time of the
 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 * page->mapping->host, so the page-dirtying time is recorded in the internal
 * blockdev inode.
L
Linus Torvalds 已提交
2016
 */
2017
void __mark_inode_dirty(struct inode *inode, int flags)
L
Linus Torvalds 已提交
2018
{
2019
#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2020
	struct super_block *sb = inode->i_sb;
2021 2022 2023
	int dirtytime;

	trace_writeback_mark_inode_dirty(inode, flags);
L
Linus Torvalds 已提交
2024

2025 2026 2027 2028
	/*
	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
	 * dirty the inode itself
	 */
2029
	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
T
Tejun Heo 已提交
2030 2031
		trace_writeback_dirty_inode_start(inode, flags);

2032
		if (sb->s_op->dirty_inode)
2033
			sb->s_op->dirty_inode(inode, flags);
T
Tejun Heo 已提交
2034 2035

		trace_writeback_dirty_inode(inode, flags);
2036
	}
2037 2038 2039
	if (flags & I_DIRTY_INODE)
		flags &= ~I_DIRTY_TIME;
	dirtytime = flags & I_DIRTY_TIME;
2040 2041

	/*
2042 2043
	 * Paired with smp_mb() in __writeback_single_inode() for the
	 * following lockless i_state test.  See there for details.
2044 2045 2046
	 */
	smp_mb();

2047 2048
	if (((inode->i_state & flags) == flags) ||
	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2049 2050 2051 2052 2053
		return;

	if (unlikely(block_dump))
		block_dump___mark_inode_dirty(inode);

2054
	spin_lock(&inode->i_lock);
2055 2056
	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
		goto out_unlock_inode;
2057 2058 2059
	if ((inode->i_state & flags) != flags) {
		const int was_dirty = inode->i_state & I_DIRTY;

2060 2061
		inode_attach_wb(inode, NULL);

2062 2063
		if (flags & I_DIRTY_INODE)
			inode->i_state &= ~I_DIRTY_TIME;
2064 2065 2066 2067 2068 2069 2070 2071
		inode->i_state |= flags;

		/*
		 * If the inode is being synced, just update its dirty state.
		 * The unlocker will place the inode on the appropriate
		 * superblock list, based upon its state.
		 */
		if (inode->i_state & I_SYNC)
2072
			goto out_unlock_inode;
2073 2074 2075 2076 2077 2078

		/*
		 * Only add valid (hashed) inodes to the superblock's
		 * dirty list.  Add blockdev inodes as well.
		 */
		if (!S_ISBLK(inode->i_mode)) {
A
Al Viro 已提交
2079
			if (inode_unhashed(inode))
2080
				goto out_unlock_inode;
2081
		}
A
Al Viro 已提交
2082
		if (inode->i_state & I_FREEING)
2083
			goto out_unlock_inode;
2084 2085 2086 2087 2088 2089

		/*
		 * If the inode was already on b_dirty/b_io/b_more_io, don't
		 * reposition it (that would break b_dirty time-ordering).
		 */
		if (!was_dirty) {
2090
			struct bdi_writeback *wb;
2091
			struct list_head *dirty_list;
2092
			bool wakeup_bdi = false;
2093

2094
			wb = locked_inode_to_wb_and_lock_list(inode);
2095

2096 2097 2098
			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
			     !test_bit(WB_registered, &wb->state),
			     "bdi-%s not registered\n", wb->bdi->name);
2099 2100

			inode->dirtied_when = jiffies;
2101 2102
			if (dirtytime)
				inode->dirtied_time_when = jiffies;
2103

2104
			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2105
				dirty_list = &wb->b_dirty;
2106
			else
2107
				dirty_list = &wb->b_dirty_time;
2108

2109
			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2110 2111
							       dirty_list);

2112
			spin_unlock(&wb->list_lock);
2113
			trace_writeback_dirty_inode_enqueue(inode);
2114

2115 2116 2117 2118 2119 2120
			/*
			 * If this is the first dirty inode for this bdi,
			 * we have to wake-up the corresponding bdi thread
			 * to make sure background write-back happens
			 * later.
			 */
2121 2122
			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
				wb_wakeup_delayed(wb);
2123
			return;
L
Linus Torvalds 已提交
2124 2125
		}
	}
2126 2127
out_unlock_inode:
	spin_unlock(&inode->i_lock);
2128

2129
#undef I_DIRTY_INODE
2130 2131 2132
}
EXPORT_SYMBOL(__mark_inode_dirty);

2133 2134 2135 2136 2137 2138 2139 2140 2141
/*
 * The @s_sync_lock is used to serialise concurrent sync operations
 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
 * Concurrent callers will block on the s_sync_lock rather than doing contending
 * walks. The queueing maintains sync(2) required behaviour as all the IO that
 * has been issued up to the time this function is enter is guaranteed to be
 * completed by the time we have gained the lock and waited for all IO that is
 * in progress regardless of the order callers are granted the lock.
 */
2142
static void wait_sb_inodes(struct super_block *sb)
2143 2144 2145 2146 2147 2148 2149
{
	struct inode *inode, *old_inode = NULL;

	/*
	 * We need to be protected against the filesystem going from
	 * r/o to r/w or vice versa.
	 */
2150
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2151

2152
	mutex_lock(&sb->s_sync_lock);
2153
	spin_lock(&sb->s_inode_list_lock);
2154 2155 2156 2157 2158 2159 2160 2161

	/*
	 * Data integrity sync. Must wait for all pages under writeback,
	 * because there may have been pages dirtied before our sync
	 * call, but which had writeout started before we write it out.
	 * In which case, the inode may not be on the dirty list, but
	 * we still have to wait for that writeout.
	 */
2162
	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2163
		struct address_space *mapping = inode->i_mapping;
2164

2165 2166 2167 2168
		spin_lock(&inode->i_lock);
		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
		    (mapping->nrpages == 0)) {
			spin_unlock(&inode->i_lock);
2169
			continue;
2170
		}
2171
		__iget(inode);
2172
		spin_unlock(&inode->i_lock);
2173
		spin_unlock(&sb->s_inode_list_lock);
2174

2175
		/*
2176 2177
		 * We hold a reference to 'inode' so it couldn't have been
		 * removed from s_inodes list while we dropped the
2178
		 * s_inode_list_lock.  We cannot iput the inode now as we can
2179
		 * be holding the last reference and we cannot iput it under
2180
		 * s_inode_list_lock. So we keep the reference and iput it
2181
		 * later.
2182 2183 2184 2185
		 */
		iput(old_inode);
		old_inode = inode;

2186 2187 2188 2189 2190 2191
		/*
		 * We keep the error status of individual mapping so that
		 * applications can catch the writeback error using fsync(2).
		 * See filemap_fdatawait_keep_errors() for details.
		 */
		filemap_fdatawait_keep_errors(mapping);
2192 2193 2194

		cond_resched();

2195
		spin_lock(&sb->s_inode_list_lock);
2196
	}
2197
	spin_unlock(&sb->s_inode_list_lock);
2198
	iput(old_inode);
2199
	mutex_unlock(&sb->s_sync_lock);
L
Linus Torvalds 已提交
2200 2201
}

2202 2203
static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				     enum wb_reason reason, bool skip_if_busy)
L
Linus Torvalds 已提交
2204
{
2205
	DEFINE_WB_COMPLETION_ONSTACK(done);
2206
	struct wb_writeback_work work = {
2207 2208 2209 2210 2211
		.sb			= sb,
		.sync_mode		= WB_SYNC_NONE,
		.tagged_writepages	= 1,
		.done			= &done,
		.nr_pages		= nr,
2212
		.reason			= reason,
2213
	};
2214
	struct backing_dev_info *bdi = sb->s_bdi;
2215

2216
	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2217
		return;
2218
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2219

2220
	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2221
	wb_wait_for_completion(bdi, &done);
2222
}
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

/**
 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
 * @sb: the superblock
 * @nr: the number of pages to write
 * @reason: reason why some writeback work initiated
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
void writeback_inodes_sb_nr(struct super_block *sb,
			    unsigned long nr,
			    enum wb_reason reason)
{
	__writeback_inodes_sb_nr(sb, nr, reason, false);
}
2240 2241 2242 2243 2244
EXPORT_SYMBOL(writeback_inodes_sb_nr);

/**
 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
 * @sb: the superblock
2245
 * @reason: reason why some writeback work was initiated
2246 2247 2248 2249 2250
 *
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO.
 */
2251
void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2252
{
2253
	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2254
}
2255
EXPORT_SYMBOL(writeback_inodes_sb);
2256

2257
/**
2258
 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2259
 * @sb: the superblock
2260 2261
 * @nr: the number of pages to write
 * @reason: the reason of writeback
2262
 *
2263
 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2264 2265
 * Returns 1 if writeback was started, 0 if not.
 */
2266 2267
bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
				   enum wb_reason reason)
2268
{
2269
	if (!down_read_trylock(&sb->s_umount))
2270
		return false;
2271

2272
	__writeback_inodes_sb_nr(sb, nr, reason, true);
2273
	up_read(&sb->s_umount);
2274
	return true;
2275
}
2276
EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2277

2278
/**
2279
 * try_to_writeback_inodes_sb - try to start writeback if none underway
2280
 * @sb: the superblock
2281
 * @reason: reason why some writeback work was initiated
2282
 *
2283
 * Implement by try_to_writeback_inodes_sb_nr()
2284 2285
 * Returns 1 if writeback was started, 0 if not.
 */
2286
bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2287
{
2288
	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2289
}
2290
EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2291

2292 2293
/**
 * sync_inodes_sb	-	sync sb inode pages
2294
 * @sb: the superblock
2295 2296
 *
 * This function writes and waits on any dirty inode belonging to this
2297
 * super_block.
2298
 */
2299
void sync_inodes_sb(struct super_block *sb)
2300
{
2301
	DEFINE_WB_COMPLETION_ONSTACK(done);
2302
	struct wb_writeback_work work = {
2303 2304 2305 2306
		.sb		= sb,
		.sync_mode	= WB_SYNC_ALL,
		.nr_pages	= LONG_MAX,
		.range_cyclic	= 0,
2307
		.done		= &done,
2308
		.reason		= WB_REASON_SYNC,
2309
		.for_sync	= 1,
2310
	};
2311
	struct backing_dev_info *bdi = sb->s_bdi;
2312

2313 2314 2315 2316 2317 2318
	/*
	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
	 * bdi_has_dirty() need to be written out too.
	 */
	if (bdi == &noop_backing_dev_info)
2319
		return;
2320 2321
	WARN_ON(!rwsem_is_locked(&sb->s_umount));

2322
	bdi_split_work_to_wbs(bdi, &work, false);
2323
	wb_wait_for_completion(bdi, &done);
2324

2325
	wait_sb_inodes(sb);
L
Linus Torvalds 已提交
2326
}
2327
EXPORT_SYMBOL(sync_inodes_sb);
L
Linus Torvalds 已提交
2328 2329

/**
2330 2331 2332 2333 2334 2335
 * write_inode_now	-	write an inode to disk
 * @inode: inode to write to disk
 * @sync: whether the write should be synchronous or not
 *
 * This function commits an inode to disk immediately if it is dirty. This is
 * primarily needed by knfsd.
L
Linus Torvalds 已提交
2336
 *
2337
 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
L
Linus Torvalds 已提交
2338 2339 2340
 */
int write_inode_now(struct inode *inode, int sync)
{
2341
	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
L
Linus Torvalds 已提交
2342 2343
	struct writeback_control wbc = {
		.nr_to_write = LONG_MAX,
2344
		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2345 2346
		.range_start = 0,
		.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
2347 2348 2349
	};

	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2350
		wbc.nr_to_write = 0;
L
Linus Torvalds 已提交
2351 2352

	might_sleep();
2353
	return writeback_single_inode(inode, wb, &wbc);
L
Linus Torvalds 已提交
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
}
EXPORT_SYMBOL(write_inode_now);

/**
 * sync_inode - write an inode and its pages to disk.
 * @inode: the inode to sync
 * @wbc: controls the writeback mode
 *
 * sync_inode() will write an inode and its pages to disk.  It will also
 * correctly update the inode on its superblock's dirty inode lists and will
 * update inode->i_state.
 *
 * The caller must have a ref on the inode.
 */
int sync_inode(struct inode *inode, struct writeback_control *wbc)
{
2370
	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
L
Linus Torvalds 已提交
2371 2372
}
EXPORT_SYMBOL(sync_inode);
C
Christoph Hellwig 已提交
2373 2374

/**
A
Andrew Morton 已提交
2375
 * sync_inode_metadata - write an inode to disk
C
Christoph Hellwig 已提交
2376 2377 2378
 * @inode: the inode to sync
 * @wait: wait for I/O to complete.
 *
A
Andrew Morton 已提交
2379
 * Write an inode to disk and adjust its dirty state after completion.
C
Christoph Hellwig 已提交
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
 *
 * Note: only writes the actual inode, no associated data or other metadata.
 */
int sync_inode_metadata(struct inode *inode, int wait)
{
	struct writeback_control wbc = {
		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
		.nr_to_write = 0, /* metadata-only */
	};

	return sync_inode(inode, &wbc);
}
EXPORT_SYMBOL(sync_inode_metadata);