fs-writeback.c 34.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * fs/fs-writeback.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains all the functions related to writing back and waiting
 * upon dirty inodes against superblocks, and writing back dirty
 * pages against inodes.  ie: data writeback.  Writeout of the
 * inode itself is not handled here.
 *
11
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
12 13 14 15 16
 *		Split out of fs/inode.c
 *		Additions for address_space-based writeback
 */

#include <linux/kernel.h>
J
Jens Axboe 已提交
17
#include <linux/module.h>
L
Linus Torvalds 已提交
18
#include <linux/spinlock.h>
19
#include <linux/slab.h>
L
Linus Torvalds 已提交
20 21 22
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mm.h>
23 24
#include <linux/kthread.h>
#include <linux/freezer.h>
L
Linus Torvalds 已提交
25 26 27 28
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/buffer_head.h>
29
#include "internal.h"
L
Linus Torvalds 已提交
30

31
#define inode_to_bdi(inode)	((inode)->i_mapping->backing_dev_info)
32

33 34 35 36 37
/*
 * We don't actually have pdflush, but this one is exported though /proc...
 */
int nr_pdflush_threads;

38 39 40 41 42 43 44
/*
 * Passed into wb_writeback(), essentially a subset of writeback_control
 */
struct wb_writeback_args {
	long nr_pages;
	struct super_block *sb;
	enum writeback_sync_modes sync_mode;
45 46 47
	int for_kupdate:1;
	int range_cyclic:1;
	int for_background:1;
48
	int sb_pinned:1;
49 50
};

51 52
/*
 * Work items for the bdi_writeback threads
53
 */
54
struct bdi_work {
55 56
	struct list_head list;		/* pending work list */
	struct rcu_head rcu_head;	/* for RCU free/clear of work */
57

58 59
	unsigned long seen;		/* threads that have seen this work */
	atomic_t pending;		/* number of threads still to do work */
60

61
	struct wb_writeback_args args;	/* writeback arguments */
62

63
	unsigned long state;		/* flag bits, see WS_* */
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
};

enum {
	WS_USED_B = 0,
	WS_ONSTACK_B,
};

#define WS_USED (1 << WS_USED_B)
#define WS_ONSTACK (1 << WS_ONSTACK_B)

static inline bool bdi_work_on_stack(struct bdi_work *work)
{
	return test_bit(WS_ONSTACK_B, &work->state);
}

static inline void bdi_work_init(struct bdi_work *work,
80
				 struct wb_writeback_args *args)
81 82
{
	INIT_RCU_HEAD(&work->rcu_head);
83
	work->args = *args;
84 85 86
	work->state = WS_USED;
}

87 88 89 90
/**
 * writeback_in_progress - determine whether there is writeback in progress
 * @bdi: the device's backing_dev_info structure.
 *
91 92
 * Determine whether there is writeback waiting to be handled against a
 * backing device.
93 94 95
 */
int writeback_in_progress(struct backing_dev_info *bdi)
{
96
	return !list_empty(&bdi->work_list);
97 98
}

99
static void bdi_work_clear(struct bdi_work *work)
100
{
101 102
	clear_bit(WS_USED_B, &work->state);
	smp_mb__after_clear_bit();
103 104 105 106 107
	/*
	 * work can have disappeared at this point. bit waitq functions
	 * should be able to tolerate this, provided bdi_sched_wait does
	 * not dereference it's pointer argument.
	*/
108
	wake_up_bit(&work->state, WS_USED_B);
109 110
}

111
static void bdi_work_free(struct rcu_head *head)
112
{
113
	struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
114

115 116 117 118
	if (!bdi_work_on_stack(work))
		kfree(work);
	else
		bdi_work_clear(work);
119 120
}

121
static void wb_work_complete(struct bdi_work *work)
L
Linus Torvalds 已提交
122
{
123
	const enum writeback_sync_modes sync_mode = work->args.sync_mode;
124
	int onstack = bdi_work_on_stack(work);
L
Linus Torvalds 已提交
125 126

	/*
127 128 129 130
	 * For allocated work, we can clear the done/seen bit right here.
	 * For on-stack work, we need to postpone both the clear and free
	 * to after the RCU grace period, since the stack could be invalidated
	 * as soon as bdi_work_clear() has done the wakeup.
L
Linus Torvalds 已提交
131
	 */
132
	if (!onstack)
133
		bdi_work_clear(work);
134
	if (sync_mode == WB_SYNC_NONE || onstack)
135 136
		call_rcu(&work->rcu_head, bdi_work_free);
}
L
Linus Torvalds 已提交
137

138 139
static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
{
L
Linus Torvalds 已提交
140
	/*
141 142
	 * The caller has retrieved the work arguments from this work,
	 * drop our reference. If this is the last ref, delete and free it
L
Linus Torvalds 已提交
143
	 */
144 145
	if (atomic_dec_and_test(&work->pending)) {
		struct backing_dev_info *bdi = wb->bdi;
L
Linus Torvalds 已提交
146

147 148 149
		spin_lock(&bdi->wb_lock);
		list_del_rcu(&work->list);
		spin_unlock(&bdi->wb_lock);
L
Linus Torvalds 已提交
150

151 152 153
		wb_work_complete(work);
	}
}
L
Linus Torvalds 已提交
154

155 156
static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
{
157 158 159 160
	work->seen = bdi->wb_mask;
	BUG_ON(!work->seen);
	atomic_set(&work->pending, bdi->wb_cnt);
	BUG_ON(!bdi->wb_cnt);
L
Linus Torvalds 已提交
161

162
	/*
163 164 165
	 * list_add_tail_rcu() contains the necessary barriers to
	 * make sure the above stores are seen before the item is
	 * noticed on the list
166 167 168 169
	 */
	spin_lock(&bdi->wb_lock);
	list_add_tail_rcu(&work->list, &bdi->work_list);
	spin_unlock(&bdi->wb_lock);
170 171 172 173 174 175 176 177 178

	/*
	 * If the default thread isn't there, make sure we add it. When
	 * it gets created and wakes up, we'll run this work.
	 */
	if (unlikely(list_empty_careful(&bdi->wb_list)))
		wake_up_process(default_backing_dev_info.wb.task);
	else {
		struct bdi_writeback *wb = &bdi->wb;
L
Linus Torvalds 已提交
179

180
		if (wb->task)
181
			wake_up_process(wb->task);
L
Linus Torvalds 已提交
182 183 184
	}
}

185 186 187 188 189 190 191 192 193
/*
 * Used for on-stack allocated work items. The caller needs to wait until
 * the wb threads have acked the work before it's safe to continue.
 */
static void bdi_wait_on_work_clear(struct bdi_work *work)
{
	wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
		    TASK_UNINTERRUPTIBLE);
}
L
Linus Torvalds 已提交
194

195
static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
196
				 struct wb_writeback_args *args)
L
Linus Torvalds 已提交
197
{
198 199
	struct bdi_work *work;

200 201 202 203
	/*
	 * This is WB_SYNC_NONE writeback, so if allocation fails just
	 * wakeup the thread for old dirty data writeback
	 */
204
	work = kmalloc(sizeof(*work), GFP_ATOMIC);
205
	if (work) {
206
		bdi_work_init(work, args);
207 208 209
		bdi_queue_work(bdi, work);
	} else {
		struct bdi_writeback *wb = &bdi->wb;
210

211 212 213
		if (wb->task)
			wake_up_process(wb->task);
	}
214 215
}

216 217 218 219 220 221 222 223 224 225 226 227
/**
 * bdi_sync_writeback - start and wait for writeback
 * @bdi: the backing device to write from
 * @sb: write inodes from this super_block
 *
 * Description:
 *   This does WB_SYNC_ALL data integrity writeback and waits for the
 *   IO to complete. Callers must hold the sb s_umount semaphore for
 *   reading, to avoid having the super disappear before we are done.
 */
static void bdi_sync_writeback(struct backing_dev_info *bdi,
			       struct super_block *sb)
228
{
229 230 231 232 233
	struct wb_writeback_args args = {
		.sb		= sb,
		.sync_mode	= WB_SYNC_ALL,
		.nr_pages	= LONG_MAX,
		.range_cyclic	= 0,
234 235 236 237 238
		/*
		 * Setting sb_pinned is not necessary for WB_SYNC_ALL, but
		 * lets make it explicitly clear.
		 */
		.sb_pinned	= 1,
239 240
	};
	struct bdi_work work;
241

242 243
	bdi_work_init(&work, &args);
	work.state |= WS_ONSTACK;
244

245 246 247 248 249 250 251
	bdi_queue_work(bdi, &work);
	bdi_wait_on_work_clear(&work);
}

/**
 * bdi_start_writeback - start writeback
 * @bdi: the backing device to write from
252
 * @sb: write inodes from this super_block
253
 * @nr_pages: the number of pages to write
254
 * @sb_locked: caller already holds sb umount sem.
255 256 257 258
 *
 * Description:
 *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
 *   started when this function returns, we make no guarentees on
259
 *   completion. Caller specifies whether sb umount sem is held already or not.
260 261
 *
 */
262
void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
263
			 long nr_pages, int sb_locked)
264 265
{
	struct wb_writeback_args args = {
266
		.sb		= sb,
267 268 269
		.sync_mode	= WB_SYNC_NONE,
		.nr_pages	= nr_pages,
		.range_cyclic	= 1,
270
		.sb_pinned	= sb_locked,
271 272
	};

273 274 275 276 277 278 279 280 281
	/*
	 * We treat @nr_pages=0 as the special case to do background writeback,
	 * ie. to sync pages until the background dirty threshold is reached.
	 */
	if (!nr_pages) {
		args.nr_pages = LONG_MAX;
		args.for_background = 1;
	}

282
	bdi_alloc_queue_work(bdi, &args);
L
Linus Torvalds 已提交
283 284
}

285 286 287 288 289
/*
 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 * furthest end of its superblock's dirty-inode list.
 *
 * Before stamping the inode's ->dirtied_when, we check to see whether it is
290
 * already the most-recently-dirtied inode on the b_dirty list.  If that is
291 292 293 294 295
 * the case then the inode must have been redirtied while it was being written
 * out and we don't reset its dirtied_when.
 */
static void redirty_tail(struct inode *inode)
{
296
	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
297

298
	if (!list_empty(&wb->b_dirty)) {
299
		struct inode *tail;
300

301
		tail = list_entry(wb->b_dirty.next, struct inode, i_list);
302
		if (time_before(inode->dirtied_when, tail->dirtied_when))
303 304
			inode->dirtied_when = jiffies;
	}
305
	list_move(&inode->i_list, &wb->b_dirty);
306 307
}

308
/*
309
 * requeue inode for re-scanning after bdi->b_io list is exhausted.
310
 */
311
static void requeue_io(struct inode *inode)
312
{
313 314 315
	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;

	list_move(&inode->i_list, &wb->b_more_io);
316 317
}

J
Joern Engel 已提交
318 319 320 321 322 323 324 325 326
static void inode_sync_complete(struct inode *inode)
{
	/*
	 * Prevent speculative execution through spin_unlock(&inode_lock);
	 */
	smp_mb();
	wake_up_bit(&inode->i_state, __I_SYNC);
}

327 328 329 330 331 332 333 334
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
{
	bool ret = time_after(inode->dirtied_when, t);
#ifndef CONFIG_64BIT
	/*
	 * For inodes being constantly redirtied, dirtied_when can get stuck.
	 * It _appears_ to be in the future, but is actually in distant past.
	 * This test is necessary to prevent such wrapped-around relative times
335
	 * from permanently stopping the whole bdi writeback.
336 337 338 339 340 341
	 */
	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
#endif
	return ret;
}

342 343 344 345 346 347 348
/*
 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
 */
static void move_expired_inodes(struct list_head *delaying_queue,
			       struct list_head *dispatch_queue,
				unsigned long *older_than_this)
{
349 350
	LIST_HEAD(tmp);
	struct list_head *pos, *node;
351
	struct super_block *sb = NULL;
352
	struct inode *inode;
353
	int do_sb_sort = 0;
354

355
	while (!list_empty(delaying_queue)) {
356
		inode = list_entry(delaying_queue->prev, struct inode, i_list);
357
		if (older_than_this &&
358
		    inode_dirtied_after(inode, *older_than_this))
359
			break;
360 361 362
		if (sb && sb != inode->i_sb)
			do_sb_sort = 1;
		sb = inode->i_sb;
363 364 365
		list_move(&inode->i_list, &tmp);
	}

366 367 368 369 370 371
	/* just one sb in list, splice to dispatch_queue and we're done */
	if (!do_sb_sort) {
		list_splice(&tmp, dispatch_queue);
		return;
	}

372 373 374 375 376 377 378 379 380
	/* Move inodes from one superblock together */
	while (!list_empty(&tmp)) {
		inode = list_entry(tmp.prev, struct inode, i_list);
		sb = inode->i_sb;
		list_for_each_prev_safe(pos, node, &tmp) {
			inode = list_entry(pos, struct inode, i_list);
			if (inode->i_sb == sb)
				list_move(&inode->i_list, dispatch_queue);
		}
381 382 383 384 385 386
	}
}

/*
 * Queue all expired dirty inodes for io, eldest first.
 */
387
static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
388
{
389 390
	list_splice_init(&wb->b_more_io, wb->b_io.prev);
	move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
391 392
}

393
static int write_inode(struct inode *inode, struct writeback_control *wbc)
394
{
395
	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
396
		return inode->i_sb->s_op->write_inode(inode, wbc);
397
	return 0;
398 399
}

L
Linus Torvalds 已提交
400
/*
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
 * Wait for writeback on an inode to complete.
 */
static void inode_wait_for_writeback(struct inode *inode)
{
	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
	wait_queue_head_t *wqh;

	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
	do {
		spin_unlock(&inode_lock);
		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
		spin_lock(&inode_lock);
	} while (inode->i_state & I_SYNC);
}

/*
 * Write out an inode's dirty pages.  Called under inode_lock.  Either the
 * caller has ref on the inode (either via __iget or via syscall against an fd)
 * or the inode has I_WILL_FREE set (via generic_forget_inode)
 *
L
Linus Torvalds 已提交
421 422 423 424 425 426 427 428 429
 * If `wait' is set, wait on the writeout.
 *
 * The whole writeout design is quite complex and fragile.  We want to avoid
 * starvation of particular inodes when others are being redirtied, prevent
 * livelocks, etc.
 *
 * Called under inode_lock.
 */
static int
430
writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
L
Linus Torvalds 已提交
431 432
{
	struct address_space *mapping = inode->i_mapping;
433
	unsigned dirty;
L
Linus Torvalds 已提交
434 435
	int ret;

436 437 438 439 440 441 442 443
	if (!atomic_read(&inode->i_count))
		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
	else
		WARN_ON(inode->i_state & I_WILL_FREE);

	if (inode->i_state & I_SYNC) {
		/*
		 * If this inode is locked for writeback and we are not doing
444
		 * writeback-for-data-integrity, move it to b_more_io so that
445 446 447
		 * writeback can proceed with the other inodes on s_io.
		 *
		 * We'll have another go at writing back this inode when we
448
		 * completed a full scan of b_io.
449
		 */
450
		if (wbc->sync_mode != WB_SYNC_ALL) {
451 452 453 454 455 456 457 458 459 460
			requeue_io(inode);
			return 0;
		}

		/*
		 * It's a data-integrity sync.  We must wait.
		 */
		inode_wait_for_writeback(inode);
	}

J
Joern Engel 已提交
461
	BUG_ON(inode->i_state & I_SYNC);
L
Linus Torvalds 已提交
462

J
Joern Engel 已提交
463
	/* Set I_SYNC, reset I_DIRTY */
L
Linus Torvalds 已提交
464
	dirty = inode->i_state & I_DIRTY;
J
Joern Engel 已提交
465
	inode->i_state |= I_SYNC;
L
Linus Torvalds 已提交
466 467 468 469 470 471
	inode->i_state &= ~I_DIRTY;

	spin_unlock(&inode_lock);

	ret = do_writepages(mapping, wbc);

472 473 474 475 476
	/*
	 * Make sure to wait on the data before writing out the metadata.
	 * This is important for filesystems that modify metadata on data
	 * I/O completion.
	 */
477
	if (wbc->sync_mode == WB_SYNC_ALL) {
478
		int err = filemap_fdatawait(mapping);
L
Linus Torvalds 已提交
479 480 481 482
		if (ret == 0)
			ret = err;
	}

483 484
	/* Don't write the inode if only I_DIRTY_PAGES was set */
	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
485
		int err = write_inode(inode, wbc);
L
Linus Torvalds 已提交
486 487 488 489 490
		if (ret == 0)
			ret = err;
	}

	spin_lock(&inode_lock);
J
Joern Engel 已提交
491
	inode->i_state &= ~I_SYNC;
492
	if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
493
		if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
494
			/*
495 496 497 498 499 500 501
			 * More pages get dirtied by a fast dirtier.
			 */
			goto select_queue;
		} else if (inode->i_state & I_DIRTY) {
			/*
			 * At least XFS will redirty the inode during the
			 * writeback (delalloc) and on io completion (isize).
502 503 504
			 */
			redirty_tail(inode);
		} else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
L
Linus Torvalds 已提交
505 506 507
			/*
			 * We didn't write back all the pages.  nfs_writepages()
			 * sometimes bales out without doing anything. Redirty
508
			 * the inode; Move it from b_io onto b_more_io/b_dirty.
509 510 511
			 */
			/*
			 * akpm: if the caller was the kupdate function we put
512
			 * this inode at the head of b_dirty so it gets first
513 514 515 516 517
			 * consideration.  Otherwise, move it to the tail, for
			 * the reasons described there.  I'm not really sure
			 * how much sense this makes.  Presumably I had a good
			 * reasons for doing it this way, and I'd rather not
			 * muck with it at present.
L
Linus Torvalds 已提交
518 519 520
			 */
			if (wbc->for_kupdate) {
				/*
521
				 * For the kupdate function we move the inode
522
				 * to b_more_io so it will get more writeout as
523
				 * soon as the queue becomes uncongested.
L
Linus Torvalds 已提交
524 525
				 */
				inode->i_state |= I_DIRTY_PAGES;
526
select_queue:
527 528 529 530 531 532 533 534 535 536 537
				if (wbc->nr_to_write <= 0) {
					/*
					 * slice used up: queue for next turn
					 */
					requeue_io(inode);
				} else {
					/*
					 * somehow blocked: retry later
					 */
					redirty_tail(inode);
				}
L
Linus Torvalds 已提交
538 539 540 541 542 543 544 545 546
			} else {
				/*
				 * Otherwise fully redirty the inode so that
				 * other inodes on this superblock will get some
				 * writeout.  Otherwise heavy writing to one
				 * file would indefinitely suspend writeout of
				 * all the other files.
				 */
				inode->i_state |= I_DIRTY_PAGES;
547
				redirty_tail(inode);
L
Linus Torvalds 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560
			}
		} else if (atomic_read(&inode->i_count)) {
			/*
			 * The inode is clean, inuse
			 */
			list_move(&inode->i_list, &inode_in_use);
		} else {
			/*
			 * The inode is clean, unused
			 */
			list_move(&inode->i_list, &inode_unused);
		}
	}
J
Joern Engel 已提交
561
	inode_sync_complete(inode);
L
Linus Torvalds 已提交
562 563 564
	return ret;
}

565
static void unpin_sb_for_writeback(struct super_block *sb)
566
{
567 568
	up_read(&sb->s_umount);
	put_super(sb);
569 570
}

571 572 573 574 575 576
enum sb_pin_state {
	SB_PINNED,
	SB_NOT_PINNED,
	SB_PIN_FAILED
};

577 578 579 580 581
/*
 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
 * before calling writeback. So make sure that we do pin it, so it doesn't
 * go away while we are writing inodes from it.
 */
582 583
static enum sb_pin_state pin_sb_for_writeback(struct writeback_control *wbc,
					      struct super_block *sb)
584 585 586 587
{
	/*
	 * Caller must already hold the ref for this
	 */
588
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->sb_pinned) {
589
		WARN_ON(!rwsem_is_locked(&sb->s_umount));
590
		return SB_NOT_PINNED;
591 592 593 594 595 596
	}
	spin_lock(&sb_lock);
	sb->s_count++;
	if (down_read_trylock(&sb->s_umount)) {
		if (sb->s_root) {
			spin_unlock(&sb_lock);
597
			return SB_PINNED;
598 599 600 601 602 603 604 605
		}
		/*
		 * umounted, drop rwsem again and fall through to failure
		 */
		up_read(&sb->s_umount);
	}
	sb->s_count--;
	spin_unlock(&sb_lock);
606
	return SB_PIN_FAILED;
607 608
}

609 610 611 612 613 614 615 616 617 618 619
/*
 * Write a portion of b_io inodes which belong to @sb.
 * If @wbc->sb != NULL, then find and write all such
 * inodes. Otherwise write only ones which go sequentially
 * in reverse order.
 * Return 1, if the caller writeback routine should be
 * interrupted. Otherwise return 0.
 */
static int writeback_sb_inodes(struct super_block *sb,
			       struct bdi_writeback *wb,
			       struct writeback_control *wbc)
L
Linus Torvalds 已提交
620
{
621
	while (!list_empty(&wb->b_io)) {
L
Linus Torvalds 已提交
622
		long pages_skipped;
623 624 625 626 627
		struct inode *inode = list_entry(wb->b_io.prev,
						 struct inode, i_list);
		if (wbc->sb && sb != inode->i_sb) {
			/* super block given and doesn't
			   match, skip this inode */
628 629 630
			redirty_tail(inode);
			continue;
		}
631 632 633
		if (sb != inode->i_sb)
			/* finish with this superblock */
			return 0;
634
		if (inode->i_state & (I_NEW | I_WILL_FREE)) {
635 636 637
			requeue_io(inode);
			continue;
		}
638 639 640 641
		/*
		 * Was this inode dirtied after sync_sb_inodes was called?
		 * This keeps sync from extra jobs and livelock.
		 */
642 643
		if (inode_dirtied_after(inode, wbc->wb_start))
			return 1;
L
Linus Torvalds 已提交
644

645
		BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
L
Linus Torvalds 已提交
646 647
		__iget(inode);
		pages_skipped = wbc->pages_skipped;
648
		writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
649 650 651 652 653
		if (wbc->pages_skipped != pages_skipped) {
			/*
			 * writeback is not making progress due to locked
			 * buffers.  Skip this inode for now.
			 */
654
			redirty_tail(inode);
L
Linus Torvalds 已提交
655 656 657
		}
		spin_unlock(&inode_lock);
		iput(inode);
658
		cond_resched();
L
Linus Torvalds 已提交
659
		spin_lock(&inode_lock);
660 661
		if (wbc->nr_to_write <= 0) {
			wbc->more_io = 1;
662
			return 1;
663
		}
664
		if (!list_empty(&wb->b_more_io))
665
			wbc->more_io = 1;
L
Linus Torvalds 已提交
666
	}
667 668 669 670 671 672 673 674 675 676 677 678 679
	/* b_io is empty */
	return 1;
}

static void writeback_inodes_wb(struct bdi_writeback *wb,
				struct writeback_control *wbc)
{
	int ret = 0;

	wbc->wb_start = jiffies; /* livelock avoidance */
	spin_lock(&inode_lock);
	if (!wbc->for_kupdate || list_empty(&wb->b_io))
		queue_io(wb, wbc->older_than_this);
N
Nick Piggin 已提交
680

681 682 683 684 685
	while (!list_empty(&wb->b_io)) {
		struct inode *inode = list_entry(wb->b_io.prev,
						 struct inode, i_list);
		struct super_block *sb = inode->i_sb;
		enum sb_pin_state state;
686

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
		if (wbc->sb && sb != wbc->sb) {
			/* super block given and doesn't
			   match, skip this inode */
			redirty_tail(inode);
			continue;
		}
		state = pin_sb_for_writeback(wbc, sb);

		if (state == SB_PIN_FAILED) {
			requeue_io(inode);
			continue;
		}
		ret = writeback_sb_inodes(sb, wb, wbc);

		if (state == SB_PINNED)
			unpin_sb_for_writeback(sb);
		if (ret)
			break;
	}
706 707 708 709
	spin_unlock(&inode_lock);
	/* Leave any unwritten inodes on b_io */
}

710 711 712 713 714 715 716
void writeback_inodes_wbc(struct writeback_control *wbc)
{
	struct backing_dev_info *bdi = wbc->bdi;

	writeback_inodes_wb(&bdi->wb, wbc);
}

717
/*
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
 * The maximum number of pages to writeout in a single bdi flush/kupdate
 * operation.  We do this so we don't hold I_SYNC against an inode for
 * enormous amounts of time, which would block a userspace task which has
 * been forced to throttle against that inode.  Also, the code reevaluates
 * the dirty each time it has written this many pages.
 */
#define MAX_WRITEBACK_PAGES     1024

static inline bool over_bground_thresh(void)
{
	unsigned long background_thresh, dirty_thresh;

	get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);

	return (global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
}

/*
 * Explicit flushing or periodic writeback of "old" data.
738
 *
739 740 741 742
 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 * dirtying-time in the inode's address_space.  So this periodic writeback code
 * just walks the superblock inode list, writing back any inodes which are
 * older than a specific point in time.
743
 *
744 745 746
 * Try to run once per dirty_writeback_interval.  But if a writeback event
 * takes longer than a dirty_writeback_interval interval, then leave a
 * one-second gap.
747
 *
748 749
 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 * all dirty pages if they are all attached to "old" mappings.
750
 */
751 752
static long wb_writeback(struct bdi_writeback *wb,
			 struct wb_writeback_args *args)
753
{
754 755
	struct writeback_control wbc = {
		.bdi			= wb->bdi,
756 757
		.sb			= args->sb,
		.sync_mode		= args->sync_mode,
758
		.older_than_this	= NULL,
759
		.for_kupdate		= args->for_kupdate,
760
		.for_background		= args->for_background,
761
		.range_cyclic		= args->range_cyclic,
762
		.sb_pinned		= args->sb_pinned,
763 764 765
	};
	unsigned long oldest_jif;
	long wrote = 0;
J
Jan Kara 已提交
766
	struct inode *inode;
767

768 769 770 771 772
	if (wbc.for_kupdate) {
		wbc.older_than_this = &oldest_jif;
		oldest_jif = jiffies -
				msecs_to_jiffies(dirty_expire_interval * 10);
	}
773 774 775 776
	if (!wbc.range_cyclic) {
		wbc.range_start = 0;
		wbc.range_end = LLONG_MAX;
	}
N
Nick Piggin 已提交
777

778 779
	for (;;) {
		/*
780
		 * Stop writeback when nr_pages has been consumed
781
		 */
782
		if (args->nr_pages <= 0)
783
			break;
784

N
Nick Piggin 已提交
785
		/*
786 787
		 * For background writeout, stop when we are below the
		 * background dirty threshold
N
Nick Piggin 已提交
788
		 */
789
		if (args->for_background && !over_bground_thresh())
790
			break;
N
Nick Piggin 已提交
791

792 793 794 795
		wbc.more_io = 0;
		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
		wbc.pages_skipped = 0;
		writeback_inodes_wb(wb, &wbc);
796
		args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
797 798 799
		wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;

		/*
800
		 * If we consumed everything, see if we have more
801
		 */
802 803 804 805 806 807
		if (wbc.nr_to_write <= 0)
			continue;
		/*
		 * Didn't write everything and we don't have more IO, bail
		 */
		if (!wbc.more_io)
808
			break;
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
		/*
		 * Did we write something? Try for more
		 */
		if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
			continue;
		/*
		 * Nothing written. Wait for some inode to
		 * become available for writeback. Otherwise
		 * we'll just busyloop.
		 */
		spin_lock(&inode_lock);
		if (!list_empty(&wb->b_more_io))  {
			inode = list_entry(wb->b_more_io.prev,
						struct inode, i_list);
			inode_wait_for_writeback(inode);
824
		}
825
		spin_unlock(&inode_lock);
826 827 828 829 830 831 832
	}

	return wrote;
}

/*
 * Return the next bdi_work struct that hasn't been processed by this
833 834 835 836 837
 * wb thread yet. ->seen is initially set for each thread that exists
 * for this device, when a thread first notices a piece of work it
 * clears its bit. Depending on writeback type, the thread will notify
 * completion on either receiving the work (WB_SYNC_NONE) or after
 * it is done (WB_SYNC_ALL).
838 839 840 841 842 843 844 845 846
 */
static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
					   struct bdi_writeback *wb)
{
	struct bdi_work *work, *ret = NULL;

	rcu_read_lock();

	list_for_each_entry_rcu(work, &bdi->work_list, list) {
847
		if (!test_bit(wb->nr, &work->seen))
848
			continue;
849
		clear_bit(wb->nr, &work->seen);
850 851 852 853 854 855 856 857 858 859 860 861 862 863

		ret = work;
		break;
	}

	rcu_read_unlock();
	return ret;
}

static long wb_check_old_data_flush(struct bdi_writeback *wb)
{
	unsigned long expired;
	long nr_pages;

864 865 866 867 868 869
	/*
	 * When set to zero, disable periodic writeback
	 */
	if (!dirty_writeback_interval)
		return 0;

870 871 872 873 874 875 876 877 878 879
	expired = wb->last_old_flush +
			msecs_to_jiffies(dirty_writeback_interval * 10);
	if (time_before(jiffies, expired))
		return 0;

	wb->last_old_flush = jiffies;
	nr_pages = global_page_state(NR_FILE_DIRTY) +
			global_page_state(NR_UNSTABLE_NFS) +
			(inodes_stat.nr_inodes - inodes_stat.nr_unused);

880 881 882 883 884 885 886 887 888 889
	if (nr_pages) {
		struct wb_writeback_args args = {
			.nr_pages	= nr_pages,
			.sync_mode	= WB_SYNC_NONE,
			.for_kupdate	= 1,
			.range_cyclic	= 1,
		};

		return wb_writeback(wb, &args);
	}
890 891 892 893 894 895 896 897 898 899 900

	return 0;
}

/*
 * Retrieve work items and do the writeback they describe
 */
long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
{
	struct backing_dev_info *bdi = wb->bdi;
	struct bdi_work *work;
901
	long wrote = 0;
902 903

	while ((work = get_next_work_item(bdi, wb)) != NULL) {
904
		struct wb_writeback_args args = work->args;
905 906 907 908 909

		/*
		 * Override sync mode, in case we must wait for completion
		 */
		if (force_wait)
910
			work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
911 912 913 914 915

		/*
		 * If this isn't a data integrity operation, just notify
		 * that we have seen this work and we are now starting it.
		 */
916
		if (args.sync_mode == WB_SYNC_NONE)
917 918
			wb_clear_pending(wb, work);

919
		wrote += wb_writeback(wb, &args);
920 921 922 923 924

		/*
		 * This is a data integrity writeback, so only do the
		 * notification when we have completed the work.
		 */
925
		if (args.sync_mode == WB_SYNC_ALL)
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
			wb_clear_pending(wb, work);
	}

	/*
	 * Check for periodic writeback, kupdated() style
	 */
	wrote += wb_check_old_data_flush(wb);

	return wrote;
}

/*
 * Handle writeback of dirty data for the device backed by this bdi. Also
 * wakes up periodically and does kupdated style flushing.
 */
int bdi_writeback_task(struct bdi_writeback *wb)
{
	unsigned long last_active = jiffies;
	unsigned long wait_jiffies = -1UL;
	long pages_written;

	while (!kthread_should_stop()) {
		pages_written = wb_do_writeback(wb, 0);

		if (pages_written)
			last_active = jiffies;
		else if (wait_jiffies != -1UL) {
			unsigned long max_idle;

N
Nick Piggin 已提交
955
			/*
956 957 958
			 * Longest period of inactivity that we tolerate. If we
			 * see dirty data again later, the task will get
			 * recreated automatically.
N
Nick Piggin 已提交
959
			 */
960 961 962 963 964
			max_idle = max(5UL * 60 * HZ, wait_jiffies);
			if (time_after(jiffies, max_idle + last_active))
				break;
		}

965 966 967 968 969 970
		if (dirty_writeback_interval) {
			wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
			schedule_timeout_interruptible(wait_jiffies);
		} else
			schedule();

971 972 973 974 975 976 977
		try_to_freeze();
	}

	return 0;
}

/*
978 979
 * Schedule writeback for all backing devices. This does WB_SYNC_NONE
 * writeback, for integrity writeback see bdi_sync_writeback().
980
 */
981
static void bdi_writeback_all(struct super_block *sb, long nr_pages)
982
{
983 984 985 986 987
	struct wb_writeback_args args = {
		.sb		= sb,
		.nr_pages	= nr_pages,
		.sync_mode	= WB_SYNC_NONE,
	};
988 989
	struct backing_dev_info *bdi;

990
	rcu_read_lock();
991

992
	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
993 994
		if (!bdi_has_dirty_io(bdi))
			continue;
N
Nick Piggin 已提交
995

996
		bdi_alloc_queue_work(bdi, &args);
997 998
	}

999
	rcu_read_unlock();
L
Linus Torvalds 已提交
1000 1001 1002
}

/*
1003 1004 1005 1006 1007 1008 1009 1010
 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
 * the whole world.
 */
void wakeup_flusher_threads(long nr_pages)
{
	if (nr_pages == 0)
		nr_pages = global_page_state(NR_FILE_DIRTY) +
				global_page_state(NR_UNSTABLE_NFS);
1011
	bdi_writeback_all(NULL, nr_pages);
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
}

static noinline void block_dump___mark_inode_dirty(struct inode *inode)
{
	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
		struct dentry *dentry;
		const char *name = "?";

		dentry = d_find_alias(inode);
		if (dentry) {
			spin_lock(&dentry->d_lock);
			name = (const char *) dentry->d_name.name;
		}
		printk(KERN_DEBUG
		       "%s(%d): dirtied inode %lu (%s) on %s\n",
		       current->comm, task_pid_nr(current), inode->i_ino,
		       name, inode->i_sb->s_id);
		if (dentry) {
			spin_unlock(&dentry->d_lock);
			dput(dentry);
		}
	}
}

/**
 *	__mark_inode_dirty -	internal function
 *	@inode: inode to mark
 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
 *  	mark_inode_dirty_sync.
L
Linus Torvalds 已提交
1042
 *
1043 1044 1045 1046 1047 1048 1049 1050 1051
 * Put the inode on the super block's dirty list.
 *
 * CAREFUL! We mark it dirty unconditionally, but move it onto the
 * dirty list only if it is hashed or if it refers to a blockdev.
 * If it was not hashed, it will never be added to the dirty list
 * even if it is later hashed, as it will have been marked dirty already.
 *
 * In short, make sure you hash any inodes _before_ you start marking
 * them dirty.
L
Linus Torvalds 已提交
1052
 *
1053 1054
 * This function *must* be atomic for the I_DIRTY_PAGES case -
 * set_page_dirty() is called under spinlock in several places.
L
Linus Torvalds 已提交
1055
 *
1056 1057 1058 1059 1060 1061
 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
 * the kernel-internal blockdev inode represents the dirtying time of the
 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
 * page->mapping->host, so the page-dirtying time is recorded in the internal
 * blockdev inode.
L
Linus Torvalds 已提交
1062
 */
1063
void __mark_inode_dirty(struct inode *inode, int flags)
L
Linus Torvalds 已提交
1064
{
1065
	struct super_block *sb = inode->i_sb;
L
Linus Torvalds 已提交
1066

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	/*
	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
	 * dirty the inode itself
	 */
	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
		if (sb->s_op->dirty_inode)
			sb->s_op->dirty_inode(inode);
	}

	/*
	 * make sure that changes are seen by all cpus before we test i_state
	 * -- mikulas
	 */
	smp_mb();

	/* avoid the locking if we can */
	if ((inode->i_state & flags) == flags)
		return;

	if (unlikely(block_dump))
		block_dump___mark_inode_dirty(inode);

	spin_lock(&inode_lock);
	if ((inode->i_state & flags) != flags) {
		const int was_dirty = inode->i_state & I_DIRTY;

		inode->i_state |= flags;

		/*
		 * If the inode is being synced, just update its dirty state.
		 * The unlocker will place the inode on the appropriate
		 * superblock list, based upon its state.
		 */
		if (inode->i_state & I_SYNC)
			goto out;

		/*
		 * Only add valid (hashed) inodes to the superblock's
		 * dirty list.  Add blockdev inodes as well.
		 */
		if (!S_ISBLK(inode->i_mode)) {
			if (hlist_unhashed(&inode->i_hash))
				goto out;
		}
		if (inode->i_state & (I_FREEING|I_CLEAR))
			goto out;

		/*
		 * If the inode was already on b_dirty/b_io/b_more_io, don't
		 * reposition it (that would break b_dirty time-ordering).
		 */
		if (!was_dirty) {
			struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1120 1121 1122 1123 1124 1125 1126 1127
			struct backing_dev_info *bdi = wb->bdi;

			if (bdi_cap_writeback_dirty(bdi) &&
			    !test_bit(BDI_registered, &bdi->state)) {
				WARN_ON(1);
				printk(KERN_ERR "bdi-%s not registered\n",
								bdi->name);
			}
1128 1129 1130

			inode->dirtied_when = jiffies;
			list_move(&inode->i_list, &wb->b_dirty);
L
Linus Torvalds 已提交
1131 1132
		}
	}
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
out:
	spin_unlock(&inode_lock);
}
EXPORT_SYMBOL(__mark_inode_dirty);

/*
 * Write out a superblock's list of dirty inodes.  A wait will be performed
 * upon no inodes, all inodes or the final one, depending upon sync_mode.
 *
 * If older_than_this is non-NULL, then only write out inodes which
 * had their first dirtying at a time earlier than *older_than_this.
 *
 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
 * This function assumes that the blockdev superblock's inodes are backed by
 * a variety of queues, so all inodes are searched.  For other superblocks,
 * assume that all inodes are backed by the same queue.
 *
 * The inodes to be written are parked on bdi->b_io.  They are moved back onto
 * bdi->b_dirty as they are selected for writing.  This way, none can be missed
 * on the writer throttling path, and we get decent balancing between many
 * throttled threads: we don't want them all piling up on inode_sync_wait.
 */
1155
static void wait_sb_inodes(struct super_block *sb)
1156 1157 1158 1159 1160 1161 1162
{
	struct inode *inode, *old_inode = NULL;

	/*
	 * We need to be protected against the filesystem going from
	 * r/o to r/w or vice versa.
	 */
1163
	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

	spin_lock(&inode_lock);

	/*
	 * Data integrity sync. Must wait for all pages under writeback,
	 * because there may have been pages dirtied before our sync
	 * call, but which had writeout started before we write it out.
	 * In which case, the inode may not be on the dirty list, but
	 * we still have to wait for that writeout.
	 */
1174
	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
		struct address_space *mapping;

		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
			continue;
		mapping = inode->i_mapping;
		if (mapping->nrpages == 0)
			continue;
		__iget(inode);
		spin_unlock(&inode_lock);
		/*
		 * We hold a reference to 'inode' so it couldn't have
		 * been removed from s_inodes list while we dropped the
		 * inode_lock.  We cannot iput the inode now as we can
		 * be holding the last reference and we cannot iput it
		 * under inode_lock. So we keep the reference and iput
		 * it later.
		 */
		iput(old_inode);
		old_inode = inode;

		filemap_fdatawait(mapping);

		cond_resched();

		spin_lock(&inode_lock);
	}
	spin_unlock(&inode_lock);
	iput(old_inode);
L
Linus Torvalds 已提交
1203 1204
}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
static void __writeback_inodes_sb(struct super_block *sb, int sb_locked)
{
	unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
	unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
	long nr_to_write;

	nr_to_write = nr_dirty + nr_unstable +
			(inodes_stat.nr_inodes - inodes_stat.nr_unused);

	bdi_start_writeback(sb->s_bdi, sb, nr_to_write, sb_locked);
}

1217 1218 1219
/**
 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
 * @sb: the superblock
L
Linus Torvalds 已提交
1220
 *
1221 1222 1223 1224
 * Start writeback on some inodes on this super_block. No guarantees are made
 * on how many (if any) will be written, and this function does not wait
 * for IO completion of submitted IO. The number of pages submitted is
 * returned.
L
Linus Torvalds 已提交
1225
 */
1226
void writeback_inodes_sb(struct super_block *sb)
L
Linus Torvalds 已提交
1227
{
1228
	__writeback_inodes_sb(sb, 0);
1229 1230 1231
}
EXPORT_SYMBOL(writeback_inodes_sb);

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
/**
 * writeback_inodes_sb_locked	- writeback dirty inodes from given super_block
 * @sb: the superblock
 *
 * Like writeback_inodes_sb(), except the caller already holds the
 * sb umount sem.
 */
void writeback_inodes_sb_locked(struct super_block *sb)
{
	__writeback_inodes_sb(sb, 1);
}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
/**
 * writeback_inodes_sb_if_idle	-	start writeback if none underway
 * @sb: the superblock
 *
 * Invoke writeback_inodes_sb if no writeback is currently underway.
 * Returns 1 if writeback was started, 0 if not.
 */
int writeback_inodes_sb_if_idle(struct super_block *sb)
{
	if (!writeback_in_progress(sb->s_bdi)) {
		writeback_inodes_sb(sb);
		return 1;
	} else
		return 0;
}
EXPORT_SYMBOL(writeback_inodes_sb_if_idle);

1261 1262 1263 1264 1265 1266 1267
/**
 * sync_inodes_sb	-	sync sb inode pages
 * @sb: the superblock
 *
 * This function writes and waits on any dirty inode belonging to this
 * super_block. The number of pages synced is returned.
 */
1268
void sync_inodes_sb(struct super_block *sb)
1269
{
1270 1271
	bdi_sync_writeback(sb->s_bdi, sb);
	wait_sb_inodes(sb);
L
Linus Torvalds 已提交
1272
}
1273
EXPORT_SYMBOL(sync_inodes_sb);
L
Linus Torvalds 已提交
1274 1275

/**
1276 1277 1278 1279 1280 1281
 * write_inode_now	-	write an inode to disk
 * @inode: inode to write to disk
 * @sync: whether the write should be synchronous or not
 *
 * This function commits an inode to disk immediately if it is dirty. This is
 * primarily needed by knfsd.
L
Linus Torvalds 已提交
1282
 *
1283
 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
L
Linus Torvalds 已提交
1284 1285 1286 1287 1288 1289
 */
int write_inode_now(struct inode *inode, int sync)
{
	int ret;
	struct writeback_control wbc = {
		.nr_to_write = LONG_MAX,
1290
		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1291 1292
		.range_start = 0,
		.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
1293 1294 1295
	};

	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1296
		wbc.nr_to_write = 0;
L
Linus Torvalds 已提交
1297 1298 1299

	might_sleep();
	spin_lock(&inode_lock);
1300
	ret = writeback_single_inode(inode, &wbc);
L
Linus Torvalds 已提交
1301 1302
	spin_unlock(&inode_lock);
	if (sync)
J
Joern Engel 已提交
1303
		inode_sync_wait(inode);
L
Linus Torvalds 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	return ret;
}
EXPORT_SYMBOL(write_inode_now);

/**
 * sync_inode - write an inode and its pages to disk.
 * @inode: the inode to sync
 * @wbc: controls the writeback mode
 *
 * sync_inode() will write an inode and its pages to disk.  It will also
 * correctly update the inode on its superblock's dirty inode lists and will
 * update inode->i_state.
 *
 * The caller must have a ref on the inode.
 */
int sync_inode(struct inode *inode, struct writeback_control *wbc)
{
	int ret;

	spin_lock(&inode_lock);
1324
	ret = writeback_single_inode(inode, wbc);
L
Linus Torvalds 已提交
1325 1326 1327 1328
	spin_unlock(&inode_lock);
	return ret;
}
EXPORT_SYMBOL(sync_inode);