amd_iommu.c 60.2 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
A
Akinobu Mita 已提交
21
#include <linux/bitmap.h>
22
#include <linux/slab.h>
23
#include <linux/debugfs.h>
24
#include <linux/scatterlist.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/iommu-helper.h>
27
#include <linux/iommu.h>
28
#include <asm/proto.h>
29
#include <asm/iommu.h>
30
#include <asm/gart.h>
31
#include <asm/amd_iommu_proto.h>
32
#include <asm/amd_iommu_types.h>
33
#include <asm/amd_iommu.h>
34 35 36

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

37 38
#define EXIT_LOOP_COUNT 10000000

39 40
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

41 42 43 44
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

45 46 47 48 49 50
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

51 52
static struct iommu_ops amd_iommu_ops;

53 54 55
/*
 * general struct to manage commands send to an IOMMU
 */
56
struct iommu_cmd {
57 58 59
	u32 data[4];
};

60
static void reset_iommu_command_buffer(struct amd_iommu *iommu);
61
static void update_domain(struct protection_domain *domain);
62

63 64 65 66 67 68 69 70 71 72 73 74 75
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

76 77 78 79 80
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

109 110 111 112 113 114 115 116 117 118 119 120
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
121
	if (dev->bus != &pci_bus_type)
122 123 124 125 126 127 128 129 130 131 132 133 134 135
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

136 137 138 139 140 141 142 143 144 145 146 147 148
static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct pci_dev *pdev;
	u16 devid, alias;

	if (dev->archdata.iommu)
		return 0;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return -ENOMEM;

149 150
	dev_data->dev = dev;

151 152 153 154 155 156
	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];
	pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
	if (pdev)
		dev_data->alias = &pdev->dev;

157 158
	atomic_set(&dev_data->bind, 0);

159 160 161 162 163 164 165 166 167 168
	dev->archdata.iommu = dev_data;


	return 0;
}

static void iommu_uninit_device(struct device *dev)
{
	kfree(dev->archdata.iommu);
}
J
Joerg Roedel 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

void __init amd_iommu_uninit_devices(void)
{
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
		if (ret)
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
206 207 208 209 210 211
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

212
DECLARE_STATS_COUNTER(compl_wait);
213
DECLARE_STATS_COUNTER(cnt_map_single);
214
DECLARE_STATS_COUNTER(cnt_unmap_single);
215
DECLARE_STATS_COUNTER(cnt_map_sg);
216
DECLARE_STATS_COUNTER(cnt_unmap_sg);
217
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
218
DECLARE_STATS_COUNTER(cnt_free_coherent);
219
DECLARE_STATS_COUNTER(cross_page);
220
DECLARE_STATS_COUNTER(domain_flush_single);
221
DECLARE_STATS_COUNTER(domain_flush_all);
222
DECLARE_STATS_COUNTER(alloced_io_mem);
223
DECLARE_STATS_COUNTER(total_map_requests);
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
245 246

	amd_iommu_stats_add(&compl_wait);
247
	amd_iommu_stats_add(&cnt_map_single);
248
	amd_iommu_stats_add(&cnt_unmap_single);
249
	amd_iommu_stats_add(&cnt_map_sg);
250
	amd_iommu_stats_add(&cnt_unmap_sg);
251
	amd_iommu_stats_add(&cnt_alloc_coherent);
252
	amd_iommu_stats_add(&cnt_free_coherent);
253
	amd_iommu_stats_add(&cross_page);
254
	amd_iommu_stats_add(&domain_flush_single);
255
	amd_iommu_stats_add(&domain_flush_all);
256
	amd_iommu_stats_add(&alloced_io_mem);
257
	amd_iommu_stats_add(&total_map_requests);
258 259 260 261
}

#endif

262 263 264 265 266 267
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

268 269 270 271 272 273 274 275 276
static void dump_dte_entry(u16 devid)
{
	int i;

	for (i = 0; i < 8; ++i)
		pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
			amd_iommu_dev_table[devid].data[i]);
}

277 278 279 280 281 282 283 284 285
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

286
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
287 288 289 290 291 292 293 294
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

295
	printk(KERN_ERR "AMD-Vi: Event logged [");
296 297 298 299 300 301 302

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
303
		dump_dte_entry(devid);
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
325
		iommu->reset_in_progress = true;
326
		reset_iommu_command_buffer(iommu);
327
		dump_command(address);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
361
		iommu_print_event(iommu, iommu->evt_buf + head);
362 363 364 365 366 367 368 369
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

370 371
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
372 373
	struct amd_iommu *iommu;

374
	for_each_iommu(iommu)
375 376 377
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
378 379
}

380 381 382 383 384 385 386 387 388 389
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

/*
 * Writes the command to the IOMMUs command buffer and informs the
 * hardware about the new command. Must be called with iommu->lock held.
 */
390
static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
391 392 393 394
{
	u32 tail, head;
	u8 *target;

395
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
396
	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
397
	target = iommu->cmd_buf + tail;
398 399 400 401 402 403 404 405 406 407
	memcpy_toio(target, cmd, sizeof(*cmd));
	tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	if (tail == head)
		return -ENOMEM;
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

	return 0;
}

408 409 410 411
/*
 * General queuing function for commands. Takes iommu->lock and calls
 * __iommu_queue_command().
 */
412
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
413 414 415 416 417 418
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command(iommu, cmd);
419
	if (!ret)
420
		iommu->need_sync = true;
421 422 423 424 425
	spin_unlock_irqrestore(&iommu->lock, flags);

	return ret;
}

426 427 428 429 430 431 432 433 434 435
/*
 * This function waits until an IOMMU has completed a completion
 * wait command
 */
static void __iommu_wait_for_completion(struct amd_iommu *iommu)
{
	int ready = 0;
	unsigned status = 0;
	unsigned long i = 0;

436 437
	INC_STATS_COUNTER(compl_wait);

438 439 440 441 442 443 444 445 446 447 448
	while (!ready && (i < EXIT_LOOP_COUNT)) {
		++i;
		/* wait for the bit to become one */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
		ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
	}

	/* set bit back to zero */
	status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
	writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);

449 450
	if (unlikely(i == EXIT_LOOP_COUNT))
		iommu->reset_in_progress = true;
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
}

/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
static int __iommu_completion_wait(struct amd_iommu *iommu)
{
	struct iommu_cmd cmd;

	 memset(&cmd, 0, sizeof(cmd));
	 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
	 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);

	 return __iommu_queue_command(iommu, &cmd);
}

468 469 470 471 472 473 474
/*
 * This function is called whenever we need to ensure that the IOMMU has
 * completed execution of all commands we sent. It sends a
 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
 * us about that by writing a value to a physical address we pass with
 * the command.
 */
475 476
static int iommu_completion_wait(struct amd_iommu *iommu)
{
477 478
	int ret = 0;
	unsigned long flags;
479

480 481
	spin_lock_irqsave(&iommu->lock, flags);

482 483 484
	if (!iommu->need_sync)
		goto out;

485
	ret = __iommu_completion_wait(iommu);
486

487
	iommu->need_sync = false;
488 489

	if (ret)
490
		goto out;
491

492
	__iommu_wait_for_completion(iommu);
493

494 495
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
496

497 498 499
	if (iommu->reset_in_progress)
		reset_iommu_command_buffer(iommu);

500 501 502
	return 0;
}

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
static void iommu_flush_complete(struct protection_domain *domain)
{
	int i;

	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
	}
}

519 520 521
/*
 * Command send function for invalidating a device table entry
 */
522 523 524
static int iommu_flush_device(struct device *dev)
{
	struct amd_iommu *iommu;
525
	struct iommu_cmd cmd;
526 527 528 529 530
	u16 devid;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

531 532 533 534 535 536
	/* Build command */
	memset(&cmd, 0, sizeof(cmd));
	CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
	cmd.data[0] = devid;

	return iommu_queue_command(iommu, &cmd);
537 538
}

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
					  u16 domid, int pde, int s)
{
	memset(cmd, 0, sizeof(*cmd));
	address &= PAGE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	cmd->data[1] |= domid;
	cmd->data[2] = lower_32_bits(address);
	cmd->data[3] = upper_32_bits(address);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

554 555 556
/*
 * Generic command send function for invalidaing TLB entries
 */
557 558 559
static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
		u64 address, u16 domid, int pde, int s)
{
560
	struct iommu_cmd cmd;
561
	int ret;
562

563
	__iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
564

565 566 567
	ret = iommu_queue_command(iommu, &cmd);

	return ret;
568 569
}

570 571 572 573 574
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
575 576
static void __iommu_flush_pages(struct protection_domain *domain,
				u64 address, size_t size, int pde)
577
{
578
	int s = 0, i;
579
	unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
580 581 582

	address &= PAGE_MASK;

583 584 585 586 587 588 589
	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
590 591
	}

592

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
		iommu_queue_inv_iommu_pages(amd_iommus[i], address,
					    domain->id, pde, s);
	}

	return;
}

static void iommu_flush_pages(struct protection_domain *domain,
			     u64 address, size_t size)
{
	__iommu_flush_pages(domain, address, size, 0);
612
}
613

614
/* Flush the whole IO/TLB for a given protection domain */
615
static void iommu_flush_tlb(struct protection_domain *domain)
616
{
617
	__iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
618 619
}

620
/* Flush the whole IO/TLB for a given protection domain - including PDE */
621
static void iommu_flush_tlb_pde(struct protection_domain *domain)
622
{
623
	__iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
624 625
}

626

627
/*
628
 * This function flushes the DTEs for all devices in domain
629
 */
630 631 632 633 634 635 636 637 638 639 640 641 642 643
static void iommu_flush_domain_devices(struct protection_domain *domain)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	list_for_each_entry(dev_data, &domain->dev_list, list)
		iommu_flush_device(dev_data->dev);

	spin_unlock_irqrestore(&domain->lock, flags);
}

static void iommu_flush_all_domain_devices(void)
644
{
645
	struct protection_domain *domain;
646
	unsigned long flags;
647

648
	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
649

650
	list_for_each_entry(domain, &amd_iommu_pd_list, list) {
651
		iommu_flush_domain_devices(domain);
652
		iommu_flush_complete(domain);
653
	}
654

655
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
656 657
}

658 659 660 661 662
void amd_iommu_flush_all_devices(void)
{
	iommu_flush_all_domain_devices();
}

663 664 665 666
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
667
void amd_iommu_flush_all_domains(void)
668
{
669
	struct protection_domain *domain;
670 671 672
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
673

674
	list_for_each_entry(domain, &amd_iommu_pd_list, list) {
675
		spin_lock(&domain->lock);
676 677
		iommu_flush_tlb_pde(domain);
		iommu_flush_complete(domain);
678
		spin_unlock(&domain->lock);
679
	}
680 681

	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
682 683
}

684 685 686 687
static void reset_iommu_command_buffer(struct amd_iommu *iommu)
{
	pr_err("AMD-Vi: Resetting IOMMU command buffer\n");

688 689 690
	if (iommu->reset_in_progress)
		panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");

691
	amd_iommu_reset_cmd_buffer(iommu);
692 693
	amd_iommu_flush_all_devices();
	amd_iommu_flush_all_domains();
694 695

	iommu->reset_in_progress = false;
696 697
}

698 699 700 701 702 703 704
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
734
		      unsigned long page_size,
735 736 737
		      u64 **pte_page,
		      gfp_t gfp)
{
738
	int level, end_lvl;
739
	u64 *pte, *page;
740 741

	BUG_ON(!is_power_of_2(page_size));
742 743 744 745

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

746 747 748 749
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
750 751 752 753 754 755 756 757 758

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

759 760 761 762
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
780
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
781 782 783 784
{
	int level;
	u64 *pte;

785 786 787 788 789
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
790

791 792 793
	while (level > 0) {

		/* Not Present */
794 795 796
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

816 817
		level -= 1;

818
		/* Walk to the next level */
819 820 821 822 823 824 825
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

826 827 828 829 830 831 832
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
833 834 835
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
836
			  int prot,
837
			  unsigned long page_size)
838
{
839
	u64 __pte, *pte;
840
	int i, count;
841

842
	if (!(prot & IOMMU_PROT_MASK))
843 844
		return -EINVAL;

845 846 847 848 849 850 851 852
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
853

854 855 856 857 858
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
859 860 861 862 863 864

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

865 866
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
867

868 869
	update_domain(dom);

870 871 872
	return 0;
}

873 874 875
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
876
{
877 878 879 880 881 882
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
883

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
913

914
	return unmapped;
915 916
}

917 918 919 920
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
921 922 923 924 925 926 927 928 929 930 931 932 933 934
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

935 936 937 938
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
939 940 941 942 943 944 945 946
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
947
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
948
				     PAGE_SIZE);
949 950 951 952 953 954 955
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
956
			__set_bit(addr >> PAGE_SHIFT,
957
				  dma_dom->aperture[0]->bitmap);
958 959 960 961 962
	}

	return 0;
}

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

985 986 987
/*
 * Inits the unity mappings required for a specific device
 */
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1005 1006 1007 1008 1009 1010 1011 1012 1013
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1014

1015
/*
1016
 * The address allocator core functions.
1017 1018 1019
 *
 * called with domain->lock held
 */
1020

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1041 1042 1043 1044 1045
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1046
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1047 1048 1049
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1050
	struct amd_iommu *iommu;
1051
	unsigned long i;
1052

1053 1054 1055 1056
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1076
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1089
	/* Intialize the exclusion range if necessary */
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1112
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1113 1114 1115 1116 1117 1118
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

		dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
	}

1119 1120
	update_domain(&dma_dom->domain);

1121 1122 1123
	return 0;

out_free:
1124 1125
	update_domain(&dma_dom->domain);

1126 1127 1128 1129 1130 1131 1132 1133
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1134 1135 1136 1137 1138 1139 1140
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1141
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1142 1143 1144 1145 1146 1147
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1148 1149
	next_bit >>= PAGE_SHIFT;

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1168
			dom->next_address = address + (pages << PAGE_SHIFT);
1169 1170 1171 1172 1173 1174 1175 1176 1177
			break;
		}

		next_bit = 0;
	}

	return address;
}

1178 1179
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1180
					     unsigned int pages,
1181 1182
					     unsigned long align_mask,
					     u64 dma_mask)
1183 1184 1185
{
	unsigned long address;

1186 1187 1188 1189
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1190

1191
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1192
				     dma_mask, dom->next_address);
1193

1194
	if (address == -1) {
1195
		dom->next_address = 0;
1196 1197
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1198 1199
		dom->need_flush = true;
	}
1200

1201
	if (unlikely(address == -1))
1202
		address = DMA_ERROR_CODE;
1203 1204 1205 1206 1207 1208

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1209 1210 1211 1212 1213
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1214 1215 1216 1217
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1218 1219
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1220

1221 1222
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1223 1224 1225 1226
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1227

1228
	if (address >= dom->next_address)
1229
		dom->need_flush = true;
1230 1231

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1232

A
Akinobu Mita 已提交
1233
	bitmap_clear(range->bitmap, address, pages);
1234

1235 1236
}

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1299
static void free_pagetable(struct protection_domain *domain)
1300 1301 1302 1303
{
	int i, j;
	u64 *p1, *p2, *p3;

1304
	p1 = domain->pt_root;
1305 1306 1307 1308 1309 1310 1311 1312 1313

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1314
		for (j = 0; j < 512; ++j) {
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1325 1326

	domain->pt_root = NULL;
1327 1328
}

1329 1330 1331 1332
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1333 1334
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1335 1336
	int i;

1337 1338 1339
	if (!dom)
		return;

1340 1341
	del_domain_from_list(&dom->domain);

1342
	free_pagetable(&dom->domain);
1343

1344 1345 1346 1347 1348 1349
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1350 1351 1352 1353

	kfree(dom);
}

1354 1355 1356 1357 1358
/*
 * Allocates a new protection domain usable for the dma_ops functions.
 * It also intializes the page table and the address allocator data
 * structures required for the dma_ops interface
 */
1359
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1372
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1373
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1374
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1375
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1376 1377 1378 1379
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1380
	dma_dom->need_flush = false;
1381
	dma_dom->target_dev = 0xffff;
1382

1383 1384
	add_domain_to_list(&dma_dom->domain);

1385
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1386 1387
		goto free_dma_dom;

1388
	/*
1389 1390
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1391
	 */
1392
	dma_dom->aperture[0]->bitmap[0] = 1;
1393
	dma_dom->next_address = 0;
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1404 1405 1406 1407 1408 1409 1410 1411 1412
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1413
static void set_dte_entry(u16 devid, struct protection_domain *domain)
1414 1415
{
	u64 pte_root = virt_to_phys(domain->pt_root);
1416

1417 1418 1419
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1420 1421

	amd_iommu_dev_table[devid].data[2] = domain->id;
1422 1423
	amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
	amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;
	amd_iommu_dev_table[devid].data[2] = 0;

	amd_iommu_apply_erratum_63(devid);
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
}

static void do_attach(struct device *dev, struct protection_domain *domain)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	u16 devid;

	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
	set_dte_entry(devid, domain);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
1456
	iommu_flush_device(dev);
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
}

static void do_detach(struct device *dev)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	u16 devid;

	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
1468 1469

	/* decrease reference counters */
1470 1471 1472 1473 1474 1475 1476
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
	clear_dte_entry(devid);
1477

1478
	/* Flush the DTE entry */
1479
	iommu_flush_device(dev);
1480 1481 1482 1483 1484 1485
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1486 1487
static int __attach_device(struct device *dev,
			   struct protection_domain *domain)
1488
{
1489
	struct iommu_dev_data *dev_data, *alias_data;
1490
	int ret;
1491 1492 1493

	dev_data   = get_dev_data(dev);
	alias_data = get_dev_data(dev_data->alias);
1494

1495 1496
	if (!alias_data)
		return -EINVAL;
1497

1498 1499 1500
	/* lock domain */
	spin_lock(&domain->lock);

1501
	/* Some sanity checks */
1502
	ret = -EBUSY;
1503 1504
	if (alias_data->domain != NULL &&
	    alias_data->domain != domain)
1505
		goto out_unlock;
1506

1507 1508
	if (dev_data->domain != NULL &&
	    dev_data->domain != domain)
1509
		goto out_unlock;
1510 1511

	/* Do real assignment */
1512 1513 1514 1515
	if (dev_data->alias != dev) {
		alias_data = get_dev_data(dev_data->alias);
		if (alias_data->domain == NULL)
			do_attach(dev_data->alias, domain);
1516 1517

		atomic_inc(&alias_data->bind);
1518
	}
1519

1520 1521
	if (dev_data->domain == NULL)
		do_attach(dev, domain);
1522

1523 1524
	atomic_inc(&dev_data->bind);

1525 1526 1527 1528
	ret = 0;

out_unlock:

1529 1530
	/* ready */
	spin_unlock(&domain->lock);
1531

1532
	return ret;
1533
}
1534

1535 1536 1537 1538
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1539 1540
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
1541
{
1542
	unsigned long flags;
1543
	int ret;
1544 1545

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1546
	ret = __attach_device(dev, domain);
1547 1548
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1549 1550 1551 1552 1553
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1554
	iommu_flush_tlb_pde(domain);
1555 1556

	return ret;
1557 1558
}

1559 1560 1561
/*
 * Removes a device from a protection domain (unlocked)
 */
1562
static void __detach_device(struct device *dev)
1563
{
1564
	struct iommu_dev_data *dev_data = get_dev_data(dev);
1565
	struct iommu_dev_data *alias_data;
1566
	struct protection_domain *domain;
1567
	unsigned long flags;
1568

1569
	BUG_ON(!dev_data->domain);
1570

1571 1572 1573
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
1574

1575
	if (dev_data->alias != dev) {
1576
		alias_data = get_dev_data(dev_data->alias);
1577 1578
		if (atomic_dec_and_test(&alias_data->bind))
			do_detach(dev_data->alias);
1579 1580
	}

1581 1582 1583
	if (atomic_dec_and_test(&dev_data->bind))
		do_detach(dev);

1584
	spin_unlock_irqrestore(&domain->lock, flags);
1585 1586 1587

	/*
	 * If we run in passthrough mode the device must be assigned to the
1588 1589
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
1590
	 */
1591 1592
	if (iommu_pass_through &&
	    (dev_data->domain == NULL && domain != pt_domain))
1593
		__attach_device(dev, pt_domain);
1594 1595 1596 1597 1598
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
1599
static void detach_device(struct device *dev)
1600 1601 1602 1603 1604
{
	unsigned long flags;

	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1605
	__detach_device(dev);
1606 1607
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
1608

1609 1610 1611 1612 1613 1614 1615
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
	struct protection_domain *dom;
1616
	struct iommu_dev_data *dev_data, *alias_data;
1617 1618 1619
	unsigned long flags;
	u16 devid, alias;

1620 1621 1622 1623 1624 1625
	devid      = get_device_id(dev);
	alias      = amd_iommu_alias_table[devid];
	dev_data   = get_dev_data(dev);
	alias_data = get_dev_data(dev_data->alias);
	if (!alias_data)
		return NULL;
1626 1627

	read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1628
	dom = dev_data->domain;
1629
	if (dom == NULL &&
1630 1631 1632
	    alias_data->domain != NULL) {
		__attach_device(dev, alias_data->domain);
		dom = alias_data->domain;
1633 1634 1635 1636 1637 1638 1639
	}

	read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return dom;
}

1640 1641 1642 1643
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct device *dev = data;
1644
	u16 devid;
1645 1646 1647
	struct protection_domain *domain;
	struct dma_ops_domain *dma_domain;
	struct amd_iommu *iommu;
1648
	unsigned long flags;
1649

1650 1651
	if (!check_device(dev))
		return 0;
1652

1653 1654
	devid  = get_device_id(dev);
	iommu  = amd_iommu_rlookup_table[devid];
1655 1656

	switch (action) {
1657
	case BUS_NOTIFY_UNBOUND_DRIVER:
1658 1659 1660

		domain = domain_for_device(dev);

1661 1662
		if (!domain)
			goto out;
1663 1664
		if (iommu_pass_through)
			break;
1665
		detach_device(dev);
1666 1667
		break;
	case BUS_NOTIFY_ADD_DEVICE:
1668 1669 1670 1671 1672

		iommu_init_device(dev);

		domain = domain_for_device(dev);

1673 1674 1675 1676
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1677
		dma_domain = dma_ops_domain_alloc();
1678 1679 1680 1681 1682 1683 1684 1685
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1686
		break;
1687 1688 1689 1690
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

1691 1692 1693 1694
	default:
		goto out;
	}

1695
	iommu_flush_device(dev);
1696 1697 1698 1699 1700 1701
	iommu_completion_wait(iommu);

out:
	return 0;
}

1702
static struct notifier_block device_nb = {
1703 1704
	.notifier_call = device_change_notifier,
};
1705

1706 1707 1708 1709 1710
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1724
static struct protection_domain *get_domain(struct device *dev)
1725
{
1726
	struct protection_domain *domain;
1727
	struct dma_ops_domain *dma_dom;
1728
	u16 devid = get_device_id(dev);
1729

1730
	if (!check_device(dev))
1731
		return ERR_PTR(-EINVAL);
1732

1733 1734 1735
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
1736

1737 1738
	if (domain != NULL)
		return domain;
1739

1740
	/* Device not bount yet - bind it */
1741
	dma_dom = find_protection_domain(devid);
1742
	if (!dma_dom)
1743 1744
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
1745
	DUMP_printk("Using protection domain %d for device %s\n",
1746
		    dma_dom->domain.id, dev_name(dev));
1747

1748
	return &dma_dom->domain;
1749 1750
}

1751 1752
static void update_device_table(struct protection_domain *domain)
{
1753
	struct iommu_dev_data *dev_data;
1754

1755 1756 1757
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		u16 devid = get_device_id(dev_data->dev);
		set_dte_entry(devid, domain);
1758 1759 1760 1761 1762 1763 1764 1765 1766
	}
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
1767
	iommu_flush_domain_devices(domain);
1768
	iommu_flush_tlb_pde(domain);
1769 1770 1771 1772

	domain->updated = false;
}

1773 1774 1775 1776 1777 1778
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1779
	struct aperture_range *aperture;
1780 1781
	u64 *pte, *pte_page;

1782 1783 1784 1785 1786
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1787
	if (!pte) {
1788
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1789
				GFP_ATOMIC);
1790 1791
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
1792
		pte += PM_LEVEL_INDEX(0, address);
1793

1794
	update_domain(&dom->domain);
1795 1796 1797 1798

	return pte;
}

1799 1800 1801 1802
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
1803
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

1814
	pte  = dma_ops_get_pte(dom, address);
1815
	if (!pte)
1816
		return DMA_ERROR_CODE;
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

1834 1835 1836
/*
 * The generic unmapping function for on page in the DMA address space.
 */
1837
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
1838 1839
				 unsigned long address)
{
1840
	struct aperture_range *aperture;
1841 1842 1843 1844 1845
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

1846 1847 1848 1849 1850 1851 1852
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
1853

1854
	pte += PM_LEVEL_INDEX(0, address);
1855 1856 1857 1858 1859 1860

	WARN_ON(!*pte);

	*pte = 0ULL;
}

1861 1862
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
1863 1864
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
1865 1866
 * Must be called with the domain lock held.
 */
1867 1868 1869 1870
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
1871
			       int dir,
1872 1873
			       bool align,
			       u64 dma_mask)
1874 1875
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
1876
	dma_addr_t address, start, ret;
1877
	unsigned int pages;
1878
	unsigned long align_mask = 0;
1879 1880
	int i;

1881
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1882 1883
	paddr &= PAGE_MASK;

1884 1885
	INC_STATS_COUNTER(total_map_requests);

1886 1887 1888
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

1889 1890 1891
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

1892
retry:
1893 1894
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
1895
	if (unlikely(address == DMA_ERROR_CODE)) {
1896 1897 1898 1899 1900 1901 1902
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

1903
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
1904 1905 1906
			goto out;

		/*
1907
		 * aperture was successfully enlarged by 128 MB, try
1908 1909 1910 1911
		 * allocation again
		 */
		goto retry;
	}
1912 1913 1914

	start = address;
	for (i = 0; i < pages; ++i) {
1915
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
1916
		if (ret == DMA_ERROR_CODE)
1917 1918
			goto out_unmap;

1919 1920 1921 1922 1923
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

1924 1925
	ADD_STATS_COUNTER(alloced_io_mem, size);

1926
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1927
		iommu_flush_tlb(&dma_dom->domain);
1928
		dma_dom->need_flush = false;
1929
	} else if (unlikely(amd_iommu_np_cache))
1930
		iommu_flush_pages(&dma_dom->domain, address, size);
1931

1932 1933
out:
	return address;
1934 1935 1936 1937 1938

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
1939
		dma_ops_domain_unmap(dma_dom, start);
1940 1941 1942 1943
	}

	dma_ops_free_addresses(dma_dom, address, pages);

1944
	return DMA_ERROR_CODE;
1945 1946
}

1947 1948 1949 1950
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
1951
static void __unmap_single(struct dma_ops_domain *dma_dom,
1952 1953 1954 1955 1956 1957 1958
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

1959
	if ((dma_addr == DMA_ERROR_CODE) ||
1960
	    (dma_addr + size > dma_dom->aperture_size))
1961 1962
		return;

1963
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1964 1965 1966 1967
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
1968
		dma_ops_domain_unmap(dma_dom, start);
1969 1970 1971
		start += PAGE_SIZE;
	}

1972 1973
	SUB_STATS_COUNTER(alloced_io_mem, size);

1974
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
1975

1976
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1977
		iommu_flush_pages(&dma_dom->domain, dma_addr, size);
1978 1979
		dma_dom->need_flush = false;
	}
1980 1981
}

1982 1983 1984
/*
 * The exported map_single function for dma_ops.
 */
1985 1986 1987 1988
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
1989 1990 1991 1992
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
1993
	u64 dma_mask;
1994
	phys_addr_t paddr = page_to_phys(page) + offset;
1995

1996 1997
	INC_STATS_COUNTER(cnt_map_single);

1998 1999
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2000
		return (dma_addr_t)paddr;
2001 2002
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2003

2004 2005
	dma_mask = *dev->dma_mask;

2006
	spin_lock_irqsave(&domain->lock, flags);
2007

2008
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2009
			    dma_mask);
2010
	if (addr == DMA_ERROR_CODE)
2011 2012
		goto out;

2013
	iommu_flush_complete(domain);
2014 2015 2016 2017 2018 2019 2020

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2021 2022 2023
/*
 * The exported unmap_single function for dma_ops.
 */
2024 2025
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2026 2027 2028 2029
{
	unsigned long flags;
	struct protection_domain *domain;

2030 2031
	INC_STATS_COUNTER(cnt_unmap_single);

2032 2033
	domain = get_domain(dev);
	if (IS_ERR(domain))
2034 2035
		return;

2036 2037
	spin_lock_irqsave(&domain->lock, flags);

2038
	__unmap_single(domain->priv, dma_addr, size, dir);
2039

2040
	iommu_flush_complete(domain);
2041 2042 2043 2044

	spin_unlock_irqrestore(&domain->lock, flags);
}

2045 2046 2047 2048
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2063 2064 2065 2066
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2067
static int map_sg(struct device *dev, struct scatterlist *sglist,
2068 2069
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2070 2071 2072 2073 2074 2075 2076
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2077
	u64 dma_mask;
2078

2079 2080
	INC_STATS_COUNTER(cnt_map_sg);

2081 2082
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2083
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2084 2085
	else if (IS_ERR(domain))
		return 0;
2086

2087
	dma_mask = *dev->dma_mask;
2088 2089 2090 2091 2092 2093

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2094
		s->dma_address = __map_single(dev, domain->priv,
2095 2096
					      paddr, s->length, dir, false,
					      dma_mask);
2097 2098 2099 2100 2101 2102 2103 2104

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2105
	iommu_flush_complete(domain);
2106 2107 2108 2109 2110 2111 2112 2113

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2114
			__unmap_single(domain->priv, s->dma_address,
2115 2116 2117 2118 2119 2120 2121 2122 2123
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2124 2125 2126 2127
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2128
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2129 2130
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2131 2132 2133 2134 2135 2136
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2137 2138
	INC_STATS_COUNTER(cnt_unmap_sg);

2139 2140
	domain = get_domain(dev);
	if (IS_ERR(domain))
2141 2142
		return;

2143 2144 2145
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2146
		__unmap_single(domain->priv, s->dma_address,
2147 2148 2149 2150
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2151
	iommu_flush_complete(domain);
2152 2153 2154 2155

	spin_unlock_irqrestore(&domain->lock, flags);
}

2156 2157 2158
/*
 * The exported alloc_coherent function for dma_ops.
 */
2159 2160 2161 2162 2163 2164 2165
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2166
	u64 dma_mask = dev->coherent_dma_mask;
2167

2168 2169
	INC_STATS_COUNTER(cnt_alloc_coherent);

2170 2171
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2172 2173 2174
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2175 2176
	} else if (IS_ERR(domain))
		return NULL;
2177

2178 2179 2180
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2181 2182 2183

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2184
		return NULL;
2185 2186 2187

	paddr = virt_to_phys(virt_addr);

2188 2189 2190
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2191 2192
	spin_lock_irqsave(&domain->lock, flags);

2193
	*dma_addr = __map_single(dev, domain->priv, paddr,
2194
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2195

2196
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2197
		spin_unlock_irqrestore(&domain->lock, flags);
2198
		goto out_free;
J
Jiri Slaby 已提交
2199
	}
2200

2201
	iommu_flush_complete(domain);
2202 2203 2204 2205

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2206 2207 2208 2209 2210 2211

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2212 2213
}

2214 2215 2216
/*
 * The exported free_coherent function for dma_ops.
 */
2217 2218 2219 2220 2221 2222
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct protection_domain *domain;

2223 2224
	INC_STATS_COUNTER(cnt_free_coherent);

2225 2226
	domain = get_domain(dev);
	if (IS_ERR(domain))
2227 2228
		goto free_mem;

2229 2230
	spin_lock_irqsave(&domain->lock, flags);

2231
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2232

2233
	iommu_flush_complete(domain);
2234 2235 2236 2237 2238 2239 2240

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2241 2242 2243 2244 2245 2246
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2247
	return check_device(dev);
2248 2249
}

2250
/*
2251 2252
 * The function for pre-allocating protection domains.
 *
2253 2254 2255 2256
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
2257
static void prealloc_protection_domains(void)
2258 2259 2260
{
	struct pci_dev *dev = NULL;
	struct dma_ops_domain *dma_dom;
2261
	u16 devid;
2262

2263
	for_each_pci_dev(dev) {
2264 2265 2266

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2267
			continue;
2268 2269

		/* Is there already any domain for it? */
2270
		if (domain_for_device(&dev->dev))
2271
			continue;
2272 2273 2274

		devid = get_device_id(&dev->dev);

2275
		dma_dom = dma_ops_domain_alloc();
2276 2277 2278
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2279 2280
		dma_dom->target_dev = devid;

2281
		attach_device(&dev->dev, &dma_dom->domain);
2282

2283
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2284 2285 2286
	}
}

2287
static struct dma_map_ops amd_iommu_dma_ops = {
2288 2289
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
2290 2291
	.map_page = map_page,
	.unmap_page = unmap_page,
2292 2293
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2294
	.dma_supported = amd_iommu_dma_supported,
2295 2296
};

2297 2298 2299
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2300 2301 2302 2303 2304 2305

void __init amd_iommu_init_api(void)
{
	register_iommu(&amd_iommu_ops);
}

2306 2307 2308 2309 2310
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
	int ret;

2311 2312 2313 2314 2315
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2316
	for_each_iommu(iommu) {
2317
		iommu->default_dom = dma_ops_domain_alloc();
2318 2319
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2320
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2321 2322 2323 2324 2325
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2326
	/*
2327
	 * Pre-allocate the protection domains for each device.
2328
	 */
2329
	prealloc_protection_domains();
2330 2331

	iommu_detected = 1;
2332
	swiotlb = 0;
2333

2334
	/* Make the driver finally visible to the drivers */
2335 2336
	dma_ops = &amd_iommu_dma_ops;

2337 2338
	amd_iommu_stats_init();

2339 2340 2341 2342
	return 0;

free_domains:

2343
	for_each_iommu(iommu) {
2344 2345 2346 2347 2348 2349
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2363
	struct iommu_dev_data *dev_data, *next;
2364 2365 2366 2367
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2368 2369 2370
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
		struct device *dev = dev_data->dev;

2371
		__detach_device(dev);
2372 2373
		atomic_set(&dev_data->bind, 0);
	}
2374 2375 2376 2377

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2378 2379 2380 2381 2382
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2383 2384
	del_domain_from_list(domain);

2385 2386 2387 2388 2389 2390 2391
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2392 2393 2394 2395 2396
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2397
		return NULL;
2398 2399

	spin_lock_init(&domain->lock);
2400
	mutex_init(&domain->api_lock);
2401 2402
	domain->id = domain_id_alloc();
	if (!domain->id)
2403
		goto out_err;
2404
	INIT_LIST_HEAD(&domain->dev_list);
2405

2406 2407
	add_domain_to_list(domain);

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
2422
		goto out_free;
2423 2424

	domain->mode    = PAGE_MODE_3_LEVEL;
2425 2426 2427 2428 2429 2430 2431 2432 2433
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
2434
	protection_domain_free(domain);
2435 2436 2437 2438

	return -ENOMEM;
}

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

2453
	protection_domain_free(domain);
2454 2455 2456 2457

	dom->priv = NULL;
}

2458 2459 2460
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2461
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2462 2463 2464
	struct amd_iommu *iommu;
	u16 devid;

2465
	if (!check_device(dev))
2466 2467
		return;

2468
	devid = get_device_id(dev);
2469

2470
	if (dev_data->domain != NULL)
2471
		detach_device(dev);
2472 2473 2474 2475 2476

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2477
	iommu_flush_device(dev);
2478 2479 2480
	iommu_completion_wait(iommu);
}

2481 2482 2483 2484
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
2485
	struct iommu_dev_data *dev_data;
2486
	struct amd_iommu *iommu;
2487
	int ret;
2488 2489
	u16 devid;

2490
	if (!check_device(dev))
2491 2492
		return -EINVAL;

2493 2494
	dev_data = dev->archdata.iommu;

2495
	devid = get_device_id(dev);
2496 2497 2498 2499 2500

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -EINVAL;

2501
	if (dev_data->domain)
2502
		detach_device(dev);
2503

2504
	ret = attach_device(dev, domain);
2505 2506 2507

	iommu_completion_wait(iommu);

2508
	return ret;
2509 2510
}

2511 2512
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
			 phys_addr_t paddr, int gfp_order, int iommu_prot)
2513
{
2514
	unsigned long page_size = 0x1000UL << gfp_order;
2515 2516 2517 2518 2519 2520 2521 2522 2523
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

2524
	mutex_lock(&domain->api_lock);
2525
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2526 2527
	mutex_unlock(&domain->api_lock);

2528
	return ret;
2529 2530
}

2531 2532
static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   int gfp_order)
2533 2534
{
	struct protection_domain *domain = dom->priv;
2535
	unsigned long page_size, unmap_size;
2536

2537
	page_size  = 0x1000UL << gfp_order;
2538

2539
	mutex_lock(&domain->api_lock);
2540
	unmap_size = iommu_unmap_page(domain, iova, page_size);
2541
	mutex_unlock(&domain->api_lock);
2542

2543
	iommu_flush_tlb_pde(domain);
2544

2545
	return get_order(unmap_size);
2546 2547
}

2548 2549 2550 2551
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
2552
	unsigned long offset_mask;
2553
	phys_addr_t paddr;
2554
	u64 *pte, __pte;
2555

2556
	pte = fetch_pte(domain, iova);
2557

2558
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2559 2560
		return 0;

2561 2562 2563 2564 2565 2566 2567
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2568 2569 2570 2571

	return paddr;
}

S
Sheng Yang 已提交
2572 2573 2574 2575 2576 2577
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
	return 0;
}

2578 2579 2580 2581 2582
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
2583 2584
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
2585
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2586
	.domain_has_cap = amd_iommu_domain_has_cap,
2587 2588
};

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
2601
	struct amd_iommu *iommu;
2602
	struct pci_dev *dev = NULL;
2603
	u16 devid;
2604

2605
	/* allocate passthrough domain */
2606 2607 2608 2609 2610 2611 2612 2613
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode |= PAGE_MODE_NONE;

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {

2614
		if (!check_device(&dev->dev))
2615 2616
			continue;

2617 2618
		devid = get_device_id(&dev->dev);

2619
		iommu = amd_iommu_rlookup_table[devid];
2620 2621 2622
		if (!iommu)
			continue;

2623
		attach_device(&dev->dev, pt_domain);
2624 2625 2626 2627 2628 2629
	}

	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}