time.c 32.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
20
 * measurement at boot time.
L
Linus Torvalds 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
35
#include <linux/export.h>
L
Linus Torvalds 已提交
36
#include <linux/sched.h>
37
#include <linux/sched/clock.h>
L
Linus Torvalds 已提交
38 39 40 41 42 43 44 45
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
46
#include <linux/clockchips.h>
L
Linus Torvalds 已提交
47 48 49 50
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
51 52
#include <linux/percpu.h>
#include <linux/rtc.h>
53
#include <linux/jiffies.h>
54
#include <linux/posix-timers.h>
55
#include <linux/irq.h>
56
#include <linux/delay.h>
57
#include <linux/irq_work.h>
58
#include <linux/clk-provider.h>
59
#include <linux/suspend.h>
60
#include <linux/rtc.h>
61
#include <linux/sched/cputime.h>
62
#include <asm/trace.h>
L
Linus Torvalds 已提交
63 64 65 66 67 68

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
69
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
70 71
#include <asm/time.h>
#include <asm/prom.h>
72 73
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
74
#include <asm/smp.h>
75
#include <asm/vdso_datapage.h>
76
#include <asm/firmware.h>
77
#include <asm/asm-prototypes.h>
L
Linus Torvalds 已提交
78

79 80
/* powerpc clocksource/clockevent code */

81
#include <linux/clockchips.h>
82
#include <linux/timekeeper_internal.h>
83

84
static u64 rtc_read(struct clocksource *);
85 86 87 88 89 90 91 92
static struct clocksource clocksource_rtc = {
	.name         = "rtc",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = rtc_read,
};

93
static u64 timebase_read(struct clocksource *);
94 95 96 97 98 99 100 101
static struct clocksource clocksource_timebase = {
	.name         = "timebase",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.read         = timebase_read,
};

102 103
#define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
104 105 106

static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev);
107
static int decrementer_shutdown(struct clock_event_device *evt);
108

109
struct clock_event_device decrementer_clockevent = {
110 111 112 113 114 115 116 117
	.name			= "decrementer",
	.rating			= 200,
	.irq			= 0,
	.set_next_event		= decrementer_set_next_event,
	.set_state_shutdown	= decrementer_shutdown,
	.tick_resume		= decrementer_shutdown,
	.features		= CLOCK_EVT_FEAT_ONESHOT |
				  CLOCK_EVT_FEAT_C3STOP,
118
};
119
EXPORT_SYMBOL(decrementer_clockevent);
120

121 122
DEFINE_PER_CPU(u64, decrementers_next_tb);
static DEFINE_PER_CPU(struct clock_event_device, decrementers);
123

L
Linus Torvalds 已提交
124 125
#define XSEC_PER_SEC (1024*1024)

126 127 128 129 130 131 132
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
133 134 135 136
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
137
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
138

L
Linus Torvalds 已提交
139
DEFINE_SPINLOCK(rtc_lock);
140
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
141

142 143
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
144
static u64 boot_tb __read_mostly;
L
Linus Torvalds 已提交
145 146

extern struct timezone sys_tz;
147
static long timezone_offset;
L
Linus Torvalds 已提交
148

149
unsigned long ppc_proc_freq;
150
EXPORT_SYMBOL_GPL(ppc_proc_freq);
151
unsigned long ppc_tb_freq;
152
EXPORT_SYMBOL_GPL(ppc_tb_freq);
153

154
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
155
/*
156 157
 * Factor for converting from cputime_t (timebase ticks) to
 * microseconds. This is stored as 0.64 fixed-point binary fraction.
158
 */
159 160
u64 __cputime_usec_factor;
EXPORT_SYMBOL(__cputime_usec_factor);
161

162
#ifdef CONFIG_PPC_SPLPAR
163
void (*dtl_consumer)(struct dtl_entry *, u64);
164 165 166 167 168 169 170
#endif

#ifdef CONFIG_PPC64
#define get_accounting(tsk)	(&get_paca()->accounting)
#else
#define get_accounting(tsk)	(&task_thread_info(tsk)->accounting)
#endif
171

172 173 174 175
static void calc_cputime_factors(void)
{
	struct div_result res;

176 177
	div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
	__cputime_usec_factor = res.result_low;
178 179 180
}

/*
181 182
 * Read the SPURR on systems that have it, otherwise the PURR,
 * or if that doesn't exist return the timebase value passed in.
183
 */
184
static unsigned long read_spurr(unsigned long tb)
185
{
186 187
	if (cpu_has_feature(CPU_FTR_SPURR))
		return mfspr(SPRN_SPURR);
188 189
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
190
	return tb;
191 192
}

193 194
#ifdef CONFIG_PPC_SPLPAR

195
/*
196 197
 * Scan the dispatch trace log and count up the stolen time.
 * Should be called with interrupts disabled.
198
 */
199
static u64 scan_dispatch_log(u64 stop_tb)
200
{
201
	u64 i = local_paca->dtl_ridx;
202 203 204 205 206 207 208
	struct dtl_entry *dtl = local_paca->dtl_curr;
	struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
	struct lppaca *vpa = local_paca->lppaca_ptr;
	u64 tb_delta;
	u64 stolen = 0;
	u64 dtb;

209 210 211
	if (!dtl)
		return 0;

212
	if (i == be64_to_cpu(vpa->dtl_idx))
213
		return 0;
214 215 216 217
	while (i < be64_to_cpu(vpa->dtl_idx)) {
		dtb = be64_to_cpu(dtl->timebase);
		tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
			be32_to_cpu(dtl->ready_to_enqueue_time);
218
		barrier();
219
		if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
220
			/* buffer has overflowed */
221
			i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
222 223 224 225 226
			dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
			continue;
		}
		if (dtb > stop_tb)
			break;
227 228
		if (dtl_consumer)
			dtl_consumer(dtl, i);
229 230 231 232 233 234 235 236 237
		stolen += tb_delta;
		++i;
		++dtl;
		if (dtl == dtl_end)
			dtl = local_paca->dispatch_log;
	}
	local_paca->dtl_ridx = i;
	local_paca->dtl_curr = dtl;
	return stolen;
238 239
}

240 241 242 243 244 245 246
/*
 * Accumulate stolen time by scanning the dispatch trace log.
 * Called on entry from user mode.
 */
void accumulate_stolen_time(void)
{
	u64 sst, ust;
247
	u8 save_soft_enabled = local_paca->soft_enabled;
248
	struct cpu_accounting_data *acct = &local_paca->accounting;
249 250 251 252 253 254 255 256 257

	/* We are called early in the exception entry, before
	 * soft/hard_enabled are sync'ed to the expected state
	 * for the exception. We are hard disabled but the PACA
	 * needs to reflect that so various debug stuff doesn't
	 * complain
	 */
	local_paca->soft_enabled = 0;

258 259
	sst = scan_dispatch_log(acct->starttime_user);
	ust = scan_dispatch_log(acct->starttime);
260 261
	acct->stime -= sst;
	acct->utime -= ust;
262
	acct->steal_time += ust + sst;
263 264

	local_paca->soft_enabled = save_soft_enabled;
265 266 267 268
}

static inline u64 calculate_stolen_time(u64 stop_tb)
{
269 270
	if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
		return scan_dispatch_log(stop_tb);
271

272
	return 0;
273 274
}

275 276 277 278 279 280 281 282
#else /* CONFIG_PPC_SPLPAR */
static inline u64 calculate_stolen_time(u64 stop_tb)
{
	return 0;
}

#endif /* CONFIG_PPC_SPLPAR */

283 284 285 286
/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
287
static unsigned long vtime_delta(struct task_struct *tsk,
288 289
				 unsigned long *stime_scaled,
				 unsigned long *steal_time)
290
{
291
	unsigned long now, nowscaled, deltascaled;
292 293
	unsigned long stime;
	unsigned long utime, utime_scaled;
294
	struct cpu_accounting_data *acct = get_accounting(tsk);
295

296 297
	WARN_ON_ONCE(!irqs_disabled());

298
	now = mftb();
299
	nowscaled = read_spurr(now);
300
	stime = now - acct->starttime;
301 302 303
	acct->starttime = now;
	deltascaled = nowscaled - acct->startspurr;
	acct->startspurr = nowscaled;
304

305
	*steal_time = calculate_stolen_time(now);
306

307
	utime = acct->utime - acct->utime_sspurr;
308
	acct->utime_sspurr = acct->utime;
309 310 311 312 313 314 315 316 317 318 319

	/*
	 * Because we don't read the SPURR on every kernel entry/exit,
	 * deltascaled includes both user and system SPURR ticks.
	 * Apportion these ticks to system SPURR ticks and user
	 * SPURR ticks in the same ratio as the system time (delta)
	 * and user time (udelta) values obtained from the timebase
	 * over the same interval.  The system ticks get accounted here;
	 * the user ticks get saved up in paca->user_time_scaled to be
	 * used by account_process_tick.
	 */
320 321 322 323 324 325
	*stime_scaled = stime;
	utime_scaled = utime;
	if (deltascaled != stime + utime) {
		if (utime) {
			*stime_scaled = deltascaled * stime / (stime + utime);
			utime_scaled = deltascaled - *stime_scaled;
326
		} else {
327
			*stime_scaled = deltascaled;
328 329
		}
	}
330
	acct->utime_scaled += utime_scaled;
331

332
	return stime;
333 334
}

335
void vtime_account_system(struct task_struct *tsk)
336
{
337 338 339 340 341 342 343
	unsigned long stime, stime_scaled, steal_time;
	struct cpu_accounting_data *acct = get_accounting(tsk);

	stime = vtime_delta(tsk, &stime_scaled, &steal_time);

	stime -= min(stime, steal_time);
	acct->steal_time += steal_time;
344

345 346 347 348 349 350 351 352 353 354 355 356 357
	if ((tsk->flags & PF_VCPU) && !irq_count()) {
		acct->gtime += stime;
		acct->utime_scaled += stime_scaled;
	} else {
		if (hardirq_count())
			acct->hardirq_time += stime;
		else if (in_serving_softirq())
			acct->softirq_time += stime;
		else
			acct->stime += stime;

		acct->stime_scaled += stime_scaled;
	}
358
}
359
EXPORT_SYMBOL_GPL(vtime_account_system);
360

361
void vtime_account_idle(struct task_struct *tsk)
362
{
363 364
	unsigned long stime, stime_scaled, steal_time;
	struct cpu_accounting_data *acct = get_accounting(tsk);
365

366 367
	stime = vtime_delta(tsk, &stime_scaled, &steal_time);
	acct->idle_time += stime + steal_time;
368 369 370
}

/*
371
 * Account the whole cputime accumulated in the paca
372
 * Must be called with interrupts disabled.
373 374
 * Assumes that vtime_account_system/idle() has been called
 * recently (i.e. since the last entry from usermode) so that
375
 * get_paca()->user_time_scaled is up to date.
376
 */
377
void vtime_flush(struct task_struct *tsk)
378
{
379
	struct cpu_accounting_data *acct = get_accounting(tsk);
380

381
	if (acct->utime)
382
		account_user_time(tsk, cputime_to_nsecs(acct->utime));
383 384

	if (acct->utime_scaled)
385
		tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
386 387

	if (acct->gtime)
388
		account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
389 390

	if (acct->steal_time)
391
		account_steal_time(cputime_to_nsecs(acct->steal_time));
392 393

	if (acct->idle_time)
394
		account_idle_time(cputime_to_nsecs(acct->idle_time));
395 396

	if (acct->stime)
397 398
		account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
					  CPUTIME_SYSTEM);
399
	if (acct->stime_scaled)
400
		tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
401 402

	if (acct->hardirq_time)
403 404
		account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
					  CPUTIME_IRQ);
405
	if (acct->softirq_time)
406 407
		account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
					  CPUTIME_SOFTIRQ);
408

409 410
	acct->utime = 0;
	acct->utime_scaled = 0;
411
	acct->utime_sspurr = 0;
412 413 414 415 416 417 418
	acct->gtime = 0;
	acct->steal_time = 0;
	acct->idle_time = 0;
	acct->stime = 0;
	acct->stime_scaled = 0;
	acct->hardirq_time = 0;
	acct->softirq_time = 0;
419 420
}

421 422 423 424 425 426 427 428 429 430 431
#ifdef CONFIG_PPC32
/*
 * Called from the context switch with interrupts disabled, to charge all
 * accumulated times to the current process, and to prepare accounting on
 * the next process.
 */
void arch_vtime_task_switch(struct task_struct *prev)
{
	struct cpu_accounting_data *acct = get_accounting(current);

	acct->starttime = get_accounting(prev)->starttime;
432
	acct->startspurr = get_accounting(prev)->startspurr;
433 434 435
}
#endif /* CONFIG_PPC32 */

436
#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
437 438 439
#define calc_cputime_factors()
#endif

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
			HMT_low();
		HMT_medium();
	}
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

L
Linus Torvalds 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

481
#ifdef CONFIG_IRQ_WORK
482

483 484 485 486
/*
 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 */
#ifdef CONFIG_PPC64
487
static inline unsigned long test_irq_work_pending(void)
488
{
489 490 491 492
	unsigned long x;

	asm volatile("lbz %0,%1(13)"
		: "=r" (x)
493
		: "i" (offsetof(struct paca_struct, irq_work_pending)));
494 495 496
	return x;
}

497
static inline void set_irq_work_pending_flag(void)
498 499 500
{
	asm volatile("stb %0,%1(13)" : :
		"r" (1),
501
		"i" (offsetof(struct paca_struct, irq_work_pending)));
502 503
}

504
static inline void clear_irq_work_pending(void)
505 506 507
{
	asm volatile("stb %0,%1(13)" : :
		"r" (0),
508
		"i" (offsetof(struct paca_struct, irq_work_pending)));
509 510
}

511 512
#else /* 32-bit */

513
DEFINE_PER_CPU(u8, irq_work_pending);
514

515 516 517
#define set_irq_work_pending_flag()	__this_cpu_write(irq_work_pending, 1)
#define test_irq_work_pending()		__this_cpu_read(irq_work_pending)
#define clear_irq_work_pending()	__this_cpu_write(irq_work_pending, 0)
518

519 520
#endif /* 32 vs 64 bit */

521
void arch_irq_work_raise(void)
522 523
{
	preempt_disable();
524
	set_irq_work_pending_flag();
525 526 527 528
	set_dec(1);
	preempt_enable();
}

529
#else  /* CONFIG_IRQ_WORK */
530

531 532
#define test_irq_work_pending()	0
#define clear_irq_work_pending()
533

534
#endif /* CONFIG_IRQ_WORK */
535

536
static void __timer_interrupt(void)
537 538
{
	struct pt_regs *regs = get_irq_regs();
539 540
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
	struct clock_event_device *evt = this_cpu_ptr(&decrementers);
541 542 543 544 545 546 547 548 549 550 551 552 553 554
	u64 now;

	trace_timer_interrupt_entry(regs);

	if (test_irq_work_pending()) {
		clear_irq_work_pending();
		irq_work_run();
	}

	now = get_tb_or_rtc();
	if (now >= *next_tb) {
		*next_tb = ~(u64)0;
		if (evt->event_handler)
			evt->event_handler(evt);
555
		__this_cpu_inc(irq_stat.timer_irqs_event);
556 557
	} else {
		now = *next_tb - now;
558 559
		if (now <= decrementer_max)
			set_dec(now);
560 561 562
		/* We may have raced with new irq work */
		if (test_irq_work_pending())
			set_dec(1);
563
		__this_cpu_inc(irq_stat.timer_irqs_others);
564 565 566 567 568
	}

#ifdef CONFIG_PPC64
	/* collect purr register values often, for accurate calculations */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
569
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
570 571 572 573 574 575 576
		cu->current_tb = mfspr(SPRN_PURR);
	}
#endif

	trace_timer_interrupt_exit(regs);
}

L
Linus Torvalds 已提交
577 578 579 580
/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
581
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
582
{
583
	struct pt_regs *old_regs;
584
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
585

586 587 588
	/* Ensure a positive value is written to the decrementer, or else
	 * some CPUs will continue to take decrementer exceptions.
	 */
589
	set_dec(decrementer_max);
590 591

	/* Some implementations of hotplug will get timer interrupts while
592 593 594 595
	 * offline, just ignore these and we also need to set
	 * decrementers_next_tb as MAX to make sure __check_irq_replay
	 * don't replay timer interrupt when return, otherwise we'll trap
	 * here infinitely :(
596
	 */
597 598
	if (!cpu_online(smp_processor_id())) {
		*next_tb = ~(u64)0;
599
		return;
600
	}
601

602 603 604 605 606
	/* Conditionally hard-enable interrupts now that the DEC has been
	 * bumped to its maximum value
	 */
	may_hard_irq_enable();

607

P
Paul Bolle 已提交
608
#if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
609 610 611
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
612

613
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
614 615
	irq_enter();

616
	__timer_interrupt();
L
Linus Torvalds 已提交
617
	irq_exit();
618
	set_irq_regs(old_regs);
L
Linus Torvalds 已提交
619
}
A
Al Viro 已提交
620
EXPORT_SYMBOL(timer_interrupt);
L
Linus Torvalds 已提交
621

622 623 624 625 626 627 628 629 630
/*
 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 * left pending on exit from a KVM guest.  We don't need to do anything
 * to clear them, as they are edge-triggered.
 */
void hdec_interrupt(struct pt_regs *regs)
{
}

631
#ifdef CONFIG_SUSPEND
632
static void generic_suspend_disable_irqs(void)
633 634 635 636 637
{
	/* Disable the decrementer, so that it doesn't interfere
	 * with suspending.
	 */

638
	set_dec(decrementer_max);
639
	local_irq_disable();
640
	set_dec(decrementer_max);
641 642
}

643
static void generic_suspend_enable_irqs(void)
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
{
	local_irq_enable();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_disable_irqs(void)
{
	if (ppc_md.suspend_disable_irqs)
		ppc_md.suspend_disable_irqs();
	generic_suspend_disable_irqs();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_enable_irqs(void)
{
	generic_suspend_enable_irqs();
	if (ppc_md.suspend_enable_irqs)
		ppc_md.suspend_enable_irqs();
}
#endif

665 666 667 668 669 670
unsigned long long tb_to_ns(unsigned long long ticks)
{
	return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
}
EXPORT_SYMBOL_GPL(tb_to_ns);

L
Linus Torvalds 已提交
671 672 673 674 675 676 677
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
678
notrace unsigned long long sched_clock(void)
L
Linus Torvalds 已提交
679
{
680 681
	if (__USE_RTC())
		return get_rtc();
682
	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
L
Linus Torvalds 已提交
683 684
}

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712

#ifdef CONFIG_PPC_PSERIES

/*
 * Running clock - attempts to give a view of time passing for a virtualised
 * kernels.
 * Uses the VTB register if available otherwise a next best guess.
 */
unsigned long long running_clock(void)
{
	/*
	 * Don't read the VTB as a host since KVM does not switch in host
	 * timebase into the VTB when it takes a guest off the CPU, reading the
	 * VTB would result in reading 'last switched out' guest VTB.
	 *
	 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
	 * would be unsafe to rely only on the #ifdef above.
	 */
	if (firmware_has_feature(FW_FEATURE_LPAR) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;

	/*
	 * This is a next best approximation without a VTB.
	 * On a host which is running bare metal there should never be any stolen
	 * time and on a host which doesn't do any virtualisation TB *should* equal
	 * VTB so it makes no difference anyway.
	 */
713
	return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
714 715 716
}
#endif

717
static int __init get_freq(char *name, int cells, unsigned long *val)
718 719
{
	struct device_node *cpu;
720
	const __be32 *fp;
721
	int found = 0;
722

723
	/* The cpu node should have timebase and clock frequency properties */
724 725
	cpu = of_find_node_by_type(NULL, "cpu");

726
	if (cpu) {
727
		fp = of_get_property(cpu, name, NULL);
728
		if (fp) {
729
			found = 1;
730
			*val = of_read_ulong(fp, cells);
731
		}
732 733

		of_node_put(cpu);
734
	}
735 736 737 738

	return found;
}

739
static void start_cpu_decrementer(void)
740 741
{
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
742 743
	unsigned int tcr;

744 745 746
	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

747 748 749 750 751 752 753 754 755
	tcr = mfspr(SPRN_TCR);
	/*
	 * The watchdog may have already been enabled by u-boot. So leave
	 * TRC[WP] (Watchdog Period) alone.
	 */
	tcr &= TCR_WP_MASK;	/* Clear all bits except for TCR[WP] */
	tcr |= TCR_DIE;		/* Enable decrementer */
	mtspr(SPRN_TCR, tcr);
#endif
756 757
}

758 759 760 761 762 763 764
void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

765 766
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
767
	}
768

769 770 771 772 773 774 775
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
776 777 778
	}
}

779
int update_persistent_clock(struct timespec now)
780 781 782
{
	struct rtc_time tm;

783
	if (!ppc_md.set_rtc_time)
784
		return -ENODEV;
785 786 787 788 789 790 791 792

	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
	tm.tm_year -= 1900;
	tm.tm_mon -= 1;

	return ppc_md.set_rtc_time(&tm);
}

793
static void __read_persistent_clock(struct timespec *ts)
794 795 796 797
{
	struct rtc_time tm;
	static int first = 1;

798
	ts->tv_nsec = 0;
799 800 801 802 803 804 805
	/* XXX this is a litle fragile but will work okay in the short term */
	if (first) {
		first = 0;
		if (ppc_md.time_init)
			timezone_offset = ppc_md.time_init();

		/* get_boot_time() isn't guaranteed to be safe to call late */
806 807 808 809 810 811 812 813
		if (ppc_md.get_boot_time) {
			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
			return;
		}
	}
	if (!ppc_md.get_rtc_time) {
		ts->tv_sec = 0;
		return;
814
	}
815
	ppc_md.get_rtc_time(&tm);
816

817 818
	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
			    tm.tm_hour, tm.tm_min, tm.tm_sec);
819 820
}

821 822 823 824 825 826 827 828 829 830 831 832
void read_persistent_clock(struct timespec *ts)
{
	__read_persistent_clock(ts);

	/* Sanitize it in case real time clock is set below EPOCH */
	if (ts->tv_sec < 0) {
		ts->tv_sec = 0;
		ts->tv_nsec = 0;
	}
		
}

833
/* clocksource code */
834
static notrace u64 rtc_read(struct clocksource *cs)
835
{
836
	return (u64)get_rtc();
837 838
}

839
static notrace u64 timebase_read(struct clocksource *cs)
840
{
841
	return (u64)get_tb();
842 843
}

844 845

void update_vsyscall(struct timekeeper *tk)
846
{
847 848 849 850 851
	struct timespec xt;
	struct clocksource *clock = tk->tkr_mono.clock;
	u32 mult = tk->tkr_mono.mult;
	u32 shift = tk->tkr_mono.shift;
	u64 cycle_last = tk->tkr_mono.cycle_last;
J
John Stultz 已提交
852
	u64 new_tb_to_xs, new_stamp_xsec;
853
	u64 frac_sec;
854 855 856 857

	if (clock != &clocksource_timebase)
		return;

858 859 860
	xt.tv_sec = tk->xtime_sec;
	xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);

861 862 863 864
	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	/*
	 * This computes ((2^20 / 1e9) * mult) >> shift as a
	 * 0.64 fixed-point fraction.
	 * The computation in the else clause below won't overflow
	 * (as long as the timebase frequency is >= 1.049 MHz)
	 * but loses precision because we lose the low bits of the constant
	 * in the shift.  Note that 19342813113834067 ~= 2^(20+64) / 1e9.
	 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
	 * over a second.  (Shift values are usually 22, 23 or 24.)
	 * For high frequency clocks such as the 512MHz timebase clock
	 * on POWER[6789], the mult value is small (e.g. 32768000)
	 * and so we can shift the constant by 16 initially
	 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
	 * remaining shifts after the multiplication, which gives a
	 * more accurate result (e.g. with mult = 32768000, shift = 24,
	 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
	 */
	if (mult <= 62500000 && clock->shift >= 16)
		new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
	else
		new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);

	/*
	 * Compute the fractional second in units of 2^-32 seconds.
	 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
	 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
	 * it in units of 2^-32 seconds.
	 * We assume shift <= 32 because clocks_calc_mult_shift()
	 * generates shift values in the range 0 - 32.
	 */
	frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
	do_div(frac_sec, NSEC_PER_SEC);
J
John Stultz 已提交
897

898 899 900 901 902 903
	/*
	 * Work out new stamp_xsec value for any legacy users of systemcfg.
	 * stamp_xsec is in units of 2^-20 seconds.
	 */
	new_stamp_xsec = frac_sec >> 12;
	new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
904

J
John Stultz 已提交
905 906 907 908 909 910 911 912 913
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
	 */
914
	vdso_data->tb_orig_stamp = cycle_last;
J
John Stultz 已提交
915 916
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
917 918 919
	vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
	vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
	vdso_data->stamp_xtime = xt;
920
	vdso_data->stamp_sec_fraction = frac_sec;
J
John Stultz 已提交
921 922
	smp_wmb();
	++(vdso_data->tb_update_count);
923 924 925 926 927 928 929 930
}

void update_vsyscall_tz(void)
{
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
}

931
static void __init clocksource_init(void)
932 933 934 935 936 937 938 939
{
	struct clocksource *clock;

	if (__USE_RTC())
		clock = &clocksource_rtc;
	else
		clock = &clocksource_timebase;

940
	if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
941 942 943 944 945 946 947 948 949
		printk(KERN_ERR "clocksource: %s is already registered\n",
		       clock->name);
		return;
	}

	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
	       clock->name, clock->mult, clock->shift);
}

950 951 952
static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev)
{
953
	__this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
954
	set_dec(evt);
955 956 957 958 959

	/* We may have raced with new irq work */
	if (test_irq_work_pending())
		set_dec(1);

960 961 962
	return 0;
}

963
static int decrementer_shutdown(struct clock_event_device *dev)
964
{
965
	decrementer_set_next_event(decrementer_max, dev);
966
	return 0;
967 968
}

969 970 971
/* Interrupt handler for the timer broadcast IPI */
void tick_broadcast_ipi_handler(void)
{
972
	u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
973 974 975

	*next_tb = get_tb_or_rtc();
	__timer_interrupt();
976 977
}

978 979
static void register_decrementer_clockevent(int cpu)
{
980
	struct clock_event_device *dec = &per_cpu(decrementers, cpu);
981 982

	*dec = decrementer_clockevent;
983
	dec->cpumask = cpumask_of(cpu);
984

985 986
	printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
		    dec->name, dec->mult, dec->shift, cpu);
987 988 989 990

	clockevents_register_device(dec);
}

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
static void enable_large_decrementer(void)
{
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return;

	if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
		return;

	/*
	 * If we're running as the hypervisor we need to enable the LD manually
	 * otherwise firmware should have done it for us.
	 */
	if (cpu_has_feature(CPU_FTR_HVMODE))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
}

static void __init set_decrementer_max(void)
{
	struct device_node *cpu;
	u32 bits = 32;

	/* Prior to ISAv3 the decrementer is always 32 bit */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return;

	cpu = of_find_node_by_type(NULL, "cpu");

	if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
		if (bits > 64 || bits < 32) {
			pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
			bits = 32;
		}

		/* calculate the signed maximum given this many bits */
		decrementer_max = (1ul << (bits - 1)) - 1;
	}

	of_node_put(cpu);

	pr_info("time_init: %u bit decrementer (max: %llx)\n",
		bits, decrementer_max);
}

1034
static void __init init_decrementer_clockevent(void)
1035 1036 1037
{
	int cpu = smp_processor_id();

1038 1039
	clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);

1040
	decrementer_clockevent.max_delta_ns =
1041
		clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
1042
	decrementer_clockevent.max_delta_ticks = decrementer_max;
1043 1044
	decrementer_clockevent.min_delta_ns =
		clockevent_delta2ns(2, &decrementer_clockevent);
1045
	decrementer_clockevent.min_delta_ticks = 2;
1046 1047 1048 1049 1050 1051

	register_decrementer_clockevent(cpu);
}

void secondary_cpu_time_init(void)
{
1052 1053 1054
	/* Enable and test the large decrementer for this cpu */
	enable_large_decrementer();

1055 1056 1057 1058 1059
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

1060 1061 1062 1063 1064
	/* FIME: Should make unrelatred change to move snapshot_timebase
	 * call here ! */
	register_decrementer_clockevent(smp_processor_id());
}

1065
/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
1066 1067 1068
void __init time_init(void)
{
	struct div_result res;
1069
	u64 scale;
1070 1071
	unsigned shift;

1072 1073 1074 1075 1076 1077
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
1078
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1079
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1080
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
1081 1082
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
	}
1083 1084

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1085
	tb_ticks_per_sec = ppc_tb_freq;
1086
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
1087
	calc_cputime_factors();
1088

L
Linus Torvalds 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;
1107
	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1108
	boot_tb = get_tb_or_rtc();
L
Linus Torvalds 已提交
1109

1110
	/* If platform provided a timezone (pmac), we correct the time */
1111
	if (timezone_offset) {
1112 1113
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
1114
	}
1115

1116 1117
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
L
Linus Torvalds 已提交
1118

1119 1120 1121 1122
	/* initialise and enable the large decrementer (if we have one) */
	set_decrementer_max();
	enable_large_decrementer();

1123 1124 1125 1126 1127
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

1128 1129
	/* Register the clocksource */
	clocksource_init();
1130

1131
	init_decrementer_clockevent();
1132
	tick_setup_hrtimer_broadcast();
1133 1134 1135 1136

#ifdef CONFIG_COMMON_CLK
	of_clk_init(NULL);
#endif
L
Linus Torvalds 已提交
1137 1138 1139 1140 1141 1142 1143
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
1144 1145
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
1183
	 * No-one uses the day of the week.
L
Linus Torvalds 已提交
1184
	 */
1185
	tm->tm_wday = -1;
L
Linus Torvalds 已提交
1186
}
1187
EXPORT_SYMBOL(to_tm);
L
Linus Torvalds 已提交
1188 1189 1190 1191 1192

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
1193 1194
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
1195
{
1196 1197 1198
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
1199 1200 1201 1202 1203 1204

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

1205 1206 1207 1208 1209
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
1210

1211 1212 1213 1214 1215
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1216

1217 1218
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1219 1220

}
1221

1222 1223 1224 1225 1226 1227 1228 1229 1230
/* We don't need to calibrate delay, we use the CPU timebase for that */
void calibrate_delay(void)
{
	/* Some generic code (such as spinlock debug) use loops_per_jiffy
	 * as the number of __delay(1) in a jiffy, so make it so
	 */
	loops_per_jiffy = tb_ticks_per_jiffy;
}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
#if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
{
	ppc_md.get_rtc_time(tm);
	return rtc_valid_tm(tm);
}

static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
{
	if (!ppc_md.set_rtc_time)
		return -EOPNOTSUPP;

	if (ppc_md.set_rtc_time(tm) < 0)
		return -EOPNOTSUPP;

	return 0;
}

static const struct rtc_class_ops rtc_generic_ops = {
	.read_time = rtc_generic_get_time,
	.set_time = rtc_generic_set_time,
};

1254 1255 1256 1257 1258 1259 1260
static int __init rtc_init(void)
{
	struct platform_device *pdev;

	if (!ppc_md.get_rtc_time)
		return -ENODEV;

1261 1262 1263
	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
					     &rtc_generic_ops,
					     sizeof(rtc_generic_ops));
1264

1265
	return PTR_ERR_OR_ZERO(pdev);
1266 1267
}

1268
device_initcall(rtc_init);
1269
#endif