huge_memory.c 82.6 KB
Newer Older
1 2 3 4 5 6 7
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 */

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11
#include <linux/mm.h>
#include <linux/sched.h>
12
#include <linux/sched/coredump.h>
13
#include <linux/sched/numa_balancing.h>
14 15 16 17 18
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
19
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
20
#include <linux/mm_inline.h>
21
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
22
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
23
#include <linux/khugepaged.h>
24
#include <linux/freezer.h>
25
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
26
#include <linux/mman.h>
27
#include <linux/memremap.h>
R
Ralf Baechle 已提交
28
#include <linux/pagemap.h>
29
#include <linux/debugfs.h>
30
#include <linux/migrate.h>
31
#include <linux/hashtable.h>
32
#include <linux/userfaultfd_k.h>
33
#include <linux/page_idle.h>
34
#include <linux/shmem_fs.h>
35
#include <linux/oom.h>
36
#include <linux/page_owner.h>
37

38 39 40 41
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
42
/*
43 44 45 46
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
47 48
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
49
 */
50
unsigned long transparent_hugepage_flags __read_mostly =
51
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
52
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 54 55 56
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
57
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 59
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
60

61
static struct shrinker deferred_split_shrinker;
62

63
static atomic_t huge_zero_refcount;
64
struct page *huge_zero_page __read_mostly;
65

66
static struct page *get_huge_zero_page(void)
67 68 69 70
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
71
		return READ_ONCE(huge_zero_page);
72 73

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
74
			HPAGE_PMD_ORDER);
75 76
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
77
		return NULL;
78 79
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
80
	preempt_disable();
81
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
82
		preempt_enable();
83
		__free_pages(zero_page, compound_order(zero_page));
84 85 86 87 88 89
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
90
	return READ_ONCE(huge_zero_page);
91 92
}

93
static void put_huge_zero_page(void)
94
{
95 96 97 98 99
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
100 101
}

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

122 123
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
124
{
125 126 127
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
128

129 130 131
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
132
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
133 134
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
135
		__free_pages(zero_page, compound_order(zero_page));
136
		return HPAGE_PMD_NR;
137 138 139
	}

	return 0;
140 141
}

142
static struct shrinker huge_zero_page_shrinker = {
143 144
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
145 146 147
	.seeks = DEFAULT_SEEKS,
};

148 149 150 151
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
152 153 154 155 156 157
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
158
}
159

160 161 162 163
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
164
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
165

166 167 168 169 170 171 172 173 174 175 176 177 178 179
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
180 181

	if (ret > 0) {
182
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
183 184 185 186
		if (err)
			ret = err;
	}
	return ret;
187 188 189 190
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

191
ssize_t single_hugepage_flag_show(struct kobject *kobj,
192 193 194
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
195 196
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
197
}
198

199
ssize_t single_hugepage_flag_store(struct kobject *kobj,
200 201 202 203
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
204 205 206 207 208 209 210 211 212 213
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
214
		set_bit(flag, &transparent_hugepage_flags);
215
	else
216 217 218 219 220 221 222 223
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
224
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
225
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
226
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
227 228 229 230 231 232
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
233
}
234

235 236 237 238
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
239 240 241 242 243 244 245 246 247 248 249 250
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("defer+madvise", buf,
		    min(sizeof("defer+madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
251 252 253 254 255 256
	} else if (!memcmp("defer", buf,
		    min(sizeof("defer")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
273 274 275 276
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

277 278 279
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
280
	return single_hugepage_flag_show(kobj, attr, buf,
281 282 283 284 285
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
286
	return single_hugepage_flag_store(kobj, attr, buf, count,
287 288 289 290
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
291 292 293 294 295 296 297 298 299

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

300 301 302 303
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
304
	return single_hugepage_flag_show(kobj, attr, buf,
305 306 307 308 309 310
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
311
	return single_hugepage_flag_store(kobj, attr, buf, count,
312 313 314 315 316 317 318 319 320
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
321
	&use_zero_page_attr.attr,
322
	&hpage_pmd_size_attr.attr,
323
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
324 325
	&shmem_enabled_attr.attr,
#endif
326 327 328 329 330 331
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

332
static const struct attribute_group hugepage_attr_group = {
333
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
334 335
};

S
Shaohua Li 已提交
336
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
337 338 339
{
	int err;

S
Shaohua Li 已提交
340 341
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
342
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
343
		return -ENOMEM;
A
Andrea Arcangeli 已提交
344 345
	}

S
Shaohua Li 已提交
346
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
347
	if (err) {
348
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
349
		goto delete_obj;
A
Andrea Arcangeli 已提交
350 351
	}

S
Shaohua Li 已提交
352
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
353
	if (err) {
354
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
355
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
356
	}
S
Shaohua Li 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

394 395 396 397 398 399 400 401 402 403
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
404 405
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
406
		goto err_sysfs;
A
Andrea Arcangeli 已提交
407

408
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
409
	if (err)
410
		goto err_slab;
A
Andrea Arcangeli 已提交
411

412 413 414
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
415 416 417
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
418

419 420 421 422 423
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
424
	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
425
		transparent_hugepage_flags = 0;
426 427
		return 0;
	}
428

429
	err = start_stop_khugepaged();
430 431
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
432

S
Shaohua Li 已提交
433
	return 0;
434
err_khugepaged:
435 436
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
437 438
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
439
	khugepaged_destroy();
440
err_slab:
S
Shaohua Li 已提交
441
	hugepage_exit_sysfs(hugepage_kobj);
442
err_sysfs:
A
Andrea Arcangeli 已提交
443
	return err;
444
}
445
subsys_initcall(hugepage_init);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
473
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
474 475 476 477
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

478
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
479
{
480
	if (likely(vma->vm_flags & VM_WRITE))
481 482 483 484
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

485 486
static inline struct list_head *page_deferred_list(struct page *page)
{
M
Matthew Wilcox 已提交
487 488
	/* ->lru in the tail pages is occupied by compound_head. */
	return &page[2].deferred_list;
489 490 491 492 493 494 495 496 497 498 499 500 501
}

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
		loff_t off, unsigned long flags, unsigned long size)
{
	unsigned long addr;
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
	unsigned long len_pad;

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
					      off >> PAGE_SHIFT, flags);
	if (IS_ERR_VALUE(addr))
		return 0;

	addr += (off - addr) & (size - 1);
	return addr;
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (addr)
		goto out;
	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
	if (addr)
		return addr;

 out:
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

545 546
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
547
{
J
Jan Kara 已提交
548
	struct vm_area_struct *vma = vmf->vma;
549
	struct mem_cgroup *memcg;
550
	pgtable_t pgtable;
J
Jan Kara 已提交
551
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
552
	vm_fault_t ret = 0;
553

554
	VM_BUG_ON_PAGE(!PageCompound(page), page);
555

556
	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
557 558 559 560
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
561

K
Kirill A. Shutemov 已提交
562
	pgtable = pte_alloc_one(vma->vm_mm, haddr);
563
	if (unlikely(!pgtable)) {
564 565
		ret = VM_FAULT_OOM;
		goto release;
566
	}
567

568
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
569 570 571 572 573
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
574 575
	__SetPageUptodate(page);

J
Jan Kara 已提交
576 577
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
578
		goto unlock_release;
579 580
	} else {
		pmd_t entry;
581

582 583 584 585
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

586 587
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
588
			vm_fault_t ret2;
589

J
Jan Kara 已提交
590
			spin_unlock(vmf->ptl);
591
			mem_cgroup_cancel_charge(page, memcg, true);
592
			put_page(page);
K
Kirill A. Shutemov 已提交
593
			pte_free(vma->vm_mm, pgtable);
594 595 596
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
597 598
		}

599
		entry = mk_huge_pmd(page, vma->vm_page_prot);
600
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
601
		page_add_new_anon_rmap(page, vma, haddr, true);
602
		mem_cgroup_commit_charge(page, memcg, false, true);
603
		lru_cache_add_active_or_unevictable(page, vma);
J
Jan Kara 已提交
604 605
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
606
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
607
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
608
		spin_unlock(vmf->ptl);
609
		count_vm_event(THP_FAULT_ALLOC);
610 611
	}

612
	return 0;
613 614 615 616 617 618 619 620 621
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	mem_cgroup_cancel_charge(page, memcg, true);
	put_page(page);
	return ret;

622 623
}

624
/*
625 626 627 628 629 630 631
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
632 633 634
 */
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
{
635
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
636

637
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
638
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
639 640 641 642 643 644 645 646
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     __GFP_KSWAPD_RECLAIM);
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     0);
647
	return GFP_TRANSHUGE_LIGHT;
648 649
}

650
/* Caller must hold page table lock. */
651
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
652
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
653
		struct page *zero_page)
654 655
{
	pmd_t entry;
A
Andrew Morton 已提交
656 657
	if (!pmd_none(*pmd))
		return false;
658
	entry = mk_pmd(zero_page, vma->vm_page_prot);
659
	entry = pmd_mkhuge(entry);
660 661
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
662
	set_pmd_at(mm, haddr, pmd, entry);
663
	mm_inc_nr_ptes(mm);
A
Andrew Morton 已提交
664
	return true;
665 666
}

667
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
668
{
J
Jan Kara 已提交
669
	struct vm_area_struct *vma = vmf->vma;
670
	gfp_t gfp;
671
	struct page *page;
J
Jan Kara 已提交
672
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
673

674
	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
675
		return VM_FAULT_FALLBACK;
676 677
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
678
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
679
		return VM_FAULT_OOM;
J
Jan Kara 已提交
680
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
681
			!mm_forbids_zeropage(vma->vm_mm) &&
682 683 684 685
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
686
		vm_fault_t ret;
K
Kirill A. Shutemov 已提交
687
		pgtable = pte_alloc_one(vma->vm_mm, haddr);
688
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
689
			return VM_FAULT_OOM;
690
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
691
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
692
			pte_free(vma->vm_mm, pgtable);
693
			count_vm_event(THP_FAULT_FALLBACK);
694
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
695
		}
J
Jan Kara 已提交
696
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
697 698
		ret = 0;
		set = false;
J
Jan Kara 已提交
699
		if (pmd_none(*vmf->pmd)) {
700 701 702 703
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
704 705
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
706 707
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
708
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
709 710
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
711 712 713
				set = true;
			}
		} else
J
Jan Kara 已提交
714
			spin_unlock(vmf->ptl);
715
		if (!set)
K
Kirill A. Shutemov 已提交
716
			pte_free(vma->vm_mm, pgtable);
717
		return ret;
718
	}
719
	gfp = alloc_hugepage_direct_gfpmask(vma);
720
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
721 722
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
723
		return VM_FAULT_FALLBACK;
724
	}
725
	prep_transhuge_page(page);
J
Jan Kara 已提交
726
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
727 728
}

729
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
730 731
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
732 733 734 735 736 737
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

753 754 755
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
756
	if (write) {
757 758
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
759
	}
760 761 762

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
763
		mm_inc_nr_ptes(mm);
764
		pgtable = NULL;
765 766
	}

767 768
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
769 770

out_unlock:
M
Matthew Wilcox 已提交
771
	spin_unlock(ptl);
772 773
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
774 775
}

776
vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
M
Matthew Wilcox 已提交
777
{
778 779
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
M
Matthew Wilcox 已提交
780
	pgprot_t pgprot = vma->vm_page_prot;
781
	pgtable_t pgtable = NULL;
782

M
Matthew Wilcox 已提交
783 784 785 786 787
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
788 789
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
790 791 792 793 794 795
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
796

797 798 799 800 801 802
	if (arch_needs_pgtable_deposit()) {
		pgtable = pte_alloc_one(vma->vm_mm, addr);
		if (!pgtable)
			return VM_FAULT_OOM;
	}

803 804
	track_pfn_insert(vma, &pgprot, pfn);

805
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
806
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
807
}
808
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
M
Matthew Wilcox 已提交
809

810
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
811
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
812
{
813
	if (likely(vma->vm_flags & VM_WRITE))
814 815 816 817 818 819 820 821 822 823 824 825
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
826 827 828 829 830 831 832 833 834 835 836 837 838 839
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

840 841 842 843
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
844 845
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
846 847 848
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
849 850

out_unlock:
851 852 853
	spin_unlock(ptl);
}

854
vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
855
{
856 857
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;
858
	pgprot_t pgprot = vma->vm_page_prot;
859

860 861 862 863 864
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
865 866
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
867 868 869 870 871 872 873 874 875
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

876
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
877 878 879 880 881
	return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

882
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
883
		pmd_t *pmd, int flags)
884 885 886
{
	pmd_t _pmd;

887 888 889
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
890
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
891
				pmd, _pmd, flags & FOLL_WRITE))
892 893 894 895 896 897 898 899 900 901 902 903 904
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd, int flags)
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

905 906 907 908 909 910
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

911
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
912 913 914 915 916 917 918 919
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
920
		touch_pmd(vma, addr, pmd, flags);
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

940 941 942 943
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
944
	spinlock_t *dst_ptl, *src_ptl;
945 946
	struct page *src_page;
	pmd_t pmd;
947
	pgtable_t pgtable = NULL;
948
	int ret = -ENOMEM;
949

950 951 952 953 954 955 956
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

	pgtable = pte_alloc_one(dst_mm, addr);
	if (unlikely(!pgtable))
		goto out;
957

958 959 960
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
961 962 963

	ret = -EAGAIN;
	pmd = *src_pmd;
964 965 966 967 968 969 970 971 972

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
973 974
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
975 976
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
977
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
978
		mm_inc_nr_ptes(dst_mm);
979
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
980 981 982 983 984 985
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

986
	if (unlikely(!pmd_trans_huge(pmd))) {
987 988 989
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
990
	/*
991
	 * When page table lock is held, the huge zero pmd should not be
992 993 994 995
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
996
		struct page *zero_page;
997 998 999 1000 1001
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1002
		zero_page = mm_get_huge_zero_page(dst_mm);
1003
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1004
				zero_page);
1005 1006 1007
		ret = 0;
		goto out_unlock;
	}
1008

1009 1010 1011 1012 1013
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1014
	mm_inc_nr_ptes(dst_mm);
1015
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1016 1017 1018 1019 1020 1021 1022

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1023 1024
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1025 1026 1027 1028
out:
	return ret;
}

1029 1030
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1031
		pud_t *pud, int flags)
1032 1033 1034
{
	pud_t _pud;

1035 1036 1037
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1038
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1039
				pud, _pud, flags & FOLL_WRITE))
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, int flags)
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1053
	if (flags & FOLL_WRITE && !pud_write(*pud))
1054 1055 1056 1057 1058 1059 1060 1061
		return NULL;

	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1062
		touch_pud(vma, addr, pud, flags);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1141
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1142 1143 1144
{
	pmd_t entry;
	unsigned long haddr;
1145
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1146

J
Jan Kara 已提交
1147 1148
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1149 1150 1151
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1152 1153
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1154
	haddr = vmf->address & HPAGE_PMD_MASK;
1155
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1156
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1157 1158

unlock:
J
Jan Kara 已提交
1159
	spin_unlock(vmf->ptl);
1160 1161
}

1162 1163
static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
			pmd_t orig_pmd, struct page *page)
1164
{
J
Jan Kara 已提交
1165 1166
	struct vm_area_struct *vma = vmf->vma;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1167
	struct mem_cgroup *memcg;
1168 1169
	pgtable_t pgtable;
	pmd_t _pmd;
1170 1171
	int i;
	vm_fault_t ret = 0;
1172
	struct page **pages;
1173 1174
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1175

1176 1177
	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
			      GFP_KERNEL);
1178 1179 1180 1181 1182 1183
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
M
Michal Hocko 已提交
1184
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
J
Jan Kara 已提交
1185
					       vmf->address, page_to_nid(page));
A
Andrea Arcangeli 已提交
1186
		if (unlikely(!pages[i] ||
1187
			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
K
Kirill A. Shutemov 已提交
1188
				     GFP_KERNEL, &memcg, false))) {
A
Andrea Arcangeli 已提交
1189
			if (pages[i])
1190
				put_page(pages[i]);
A
Andrea Arcangeli 已提交
1191
			while (--i >= 0) {
1192 1193
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
1194 1195
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
A
Andrea Arcangeli 已提交
1196 1197
				put_page(pages[i]);
			}
1198 1199 1200 1201
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
1202
		set_page_private(pages[i], (unsigned long)memcg);
1203 1204 1205 1206
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
1207
				   haddr + PAGE_SIZE * i, vma);
1208 1209 1210 1211
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

1212 1213
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1214
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1215

J
Jan Kara 已提交
1216 1217
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1218
		goto out_free_pages;
1219
	VM_BUG_ON_PAGE(!PageHead(page), page);
1220

1221 1222 1223 1224 1225 1226
	/*
	 * Leave pmd empty until pte is filled note we must notify here as
	 * concurrent CPU thread might write to new page before the call to
	 * mmu_notifier_invalidate_range_end() happens which can lead to a
	 * device seeing memory write in different order than CPU.
	 *
1227
	 * See Documentation/vm/mmu_notifier.rst
1228
	 */
J
Jan Kara 已提交
1229
	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1230

J
Jan Kara 已提交
1231
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
K
Kirill A. Shutemov 已提交
1232
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1233 1234

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
K
Kirill A. Shutemov 已提交
1235
		pte_t entry;
1236 1237
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1238 1239
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
J
Jan Kara 已提交
1240
		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1241
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1242
		lru_cache_add_active_or_unevictable(pages[i], vma);
J
Jan Kara 已提交
1243 1244 1245 1246
		vmf->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*vmf->pte));
		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
		pte_unmap(vmf->pte);
1247 1248 1249 1250
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
J
Jan Kara 已提交
1251
	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1252
	page_remove_rmap(page, true);
J
Jan Kara 已提交
1253
	spin_unlock(vmf->ptl);
1254

1255 1256 1257 1258 1259 1260
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
						mmun_end);
1261

1262 1263 1264 1265 1266 1267 1268
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
J
Jan Kara 已提交
1269
	spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
1270
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
1271
	for (i = 0; i < HPAGE_PMD_NR; i++) {
1272 1273
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
1274
		mem_cgroup_cancel_charge(pages[i], memcg, false);
1275
		put_page(pages[i]);
A
Andrea Arcangeli 已提交
1276
	}
1277 1278 1279 1280
	kfree(pages);
	goto out;
}

1281
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1282
{
J
Jan Kara 已提交
1283
	struct vm_area_struct *vma = vmf->vma;
1284
	struct page *page = NULL, *new_page;
1285
	struct mem_cgroup *memcg;
J
Jan Kara 已提交
1286
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1287 1288
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1289
	gfp_t huge_gfp;			/* for allocation and charge */
1290
	vm_fault_t ret = 0;
1291

J
Jan Kara 已提交
1292
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1293
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1294 1295
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
J
Jan Kara 已提交
1296 1297
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1298 1299 1300
		goto out_unlock;

	page = pmd_page(orig_pmd);
1301
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1302 1303
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
1304
	 * part.
1305
	 */
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
			unlock_page(page);
			put_page(page);
			goto out_unlock;
		}
		put_page(page);
	}
	if (reuse_swap_page(page, NULL)) {
1319 1320
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1321
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1322 1323
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1324
		ret |= VM_FAULT_WRITE;
1325
		unlock_page(page);
1326 1327
		goto out_unlock;
	}
1328
	unlock_page(page);
1329
	get_page(page);
J
Jan Kara 已提交
1330
	spin_unlock(vmf->ptl);
1331
alloc:
1332
	if (transparent_hugepage_enabled(vma) &&
1333
	    !transparent_hugepage_debug_cow()) {
1334
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1335
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1336
	} else
1337 1338
		new_page = NULL;

1339 1340 1341
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
1342
		if (!page) {
J
Jan Kara 已提交
1343
			split_huge_pmd(vma, vmf->pmd, vmf->address);
1344
			ret |= VM_FAULT_FALLBACK;
1345
		} else {
J
Jan Kara 已提交
1346
			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1347
			if (ret & VM_FAULT_OOM) {
J
Jan Kara 已提交
1348
				split_huge_pmd(vma, vmf->pmd, vmf->address);
1349 1350
				ret |= VM_FAULT_FALLBACK;
			}
1351
			put_page(page);
1352
		}
1353
		count_vm_event(THP_FAULT_FALLBACK);
1354 1355 1356
		goto out;
	}

1357
	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1358
					huge_gfp, &memcg, true))) {
A
Andrea Arcangeli 已提交
1359
		put_page(new_page);
J
Jan Kara 已提交
1360
		split_huge_pmd(vma, vmf->pmd, vmf->address);
K
Kirill A. Shutemov 已提交
1361
		if (page)
1362
			put_page(page);
1363
		ret |= VM_FAULT_FALLBACK;
1364
		count_vm_event(THP_FAULT_FALLBACK);
A
Andrea Arcangeli 已提交
1365 1366 1367
		goto out;
	}

1368 1369
	count_vm_event(THP_FAULT_ALLOC);

1370
	if (!page)
1371
		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1372
	else
1373 1374
		copy_user_huge_page(new_page, page, vmf->address,
				    vma, HPAGE_PMD_NR);
1375 1376
	__SetPageUptodate(new_page);

1377 1378
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1379
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1380

J
Jan Kara 已提交
1381
	spin_lock(vmf->ptl);
1382
	if (page)
1383
		put_page(page);
J
Jan Kara 已提交
1384 1385
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
1386
		mem_cgroup_cancel_charge(new_page, memcg, true);
1387
		put_page(new_page);
1388
		goto out_mn;
A
Andrea Arcangeli 已提交
1389
	} else {
1390
		pmd_t entry;
1391
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1392
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1393
		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1394
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1395
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1396
		lru_cache_add_active_or_unevictable(new_page, vma);
J
Jan Kara 已提交
1397 1398
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1399
		if (!page) {
K
Kirill A. Shutemov 已提交
1400
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1401
		} else {
1402
			VM_BUG_ON_PAGE(!PageHead(page), page);
1403
			page_remove_rmap(page, true);
1404 1405
			put_page(page);
		}
1406 1407
		ret |= VM_FAULT_WRITE;
	}
J
Jan Kara 已提交
1408
	spin_unlock(vmf->ptl);
1409
out_mn:
1410 1411 1412 1413 1414 1415
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
					       mmun_end);
1416 1417
out:
	return ret;
1418
out_unlock:
J
Jan Kara 已提交
1419
	spin_unlock(vmf->ptl);
1420
	return ret;
1421 1422
}

1423 1424 1425 1426 1427 1428
/*
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1429
	return pmd_write(pmd) ||
1430 1431 1432
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
}

1433
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1434 1435 1436 1437
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1438
	struct mm_struct *mm = vma->vm_mm;
1439 1440
	struct page *page = NULL;

1441
	assert_spin_locked(pmd_lockptr(mm, pmd));
1442

1443
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1444 1445
		goto out;

1446 1447 1448 1449
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1450
	/* Full NUMA hinting faults to serialise migration in fault paths */
1451
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1452 1453
		goto out;

1454
	page = pmd_page(*pmd);
1455
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1456
	if (flags & FOLL_TOUCH)
1457
		touch_pmd(vma, addr, pmd, flags);
E
Eric B Munson 已提交
1458
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1459 1460 1461 1462
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1463 1464
		 * For anon THP:
		 *
1465 1466 1467 1468 1469 1470 1471
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1472 1473 1474 1475 1476 1477
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1478
		 */
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1490
	}
1491
skip_mlock:
1492
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1493
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1494
	if (flags & FOLL_GET)
1495
		get_page(page);
1496 1497 1498 1499 1500

out:
	return page;
}

1501
/* NUMA hinting page fault entry point for trans huge pmds */
1502
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1503
{
J
Jan Kara 已提交
1504
	struct vm_area_struct *vma = vmf->vma;
1505
	struct anon_vma *anon_vma = NULL;
1506
	struct page *page;
J
Jan Kara 已提交
1507
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1508
	int page_nid = -1, this_nid = numa_node_id();
1509
	int target_nid, last_cpupid = -1;
1510 1511
	bool page_locked;
	bool migrated = false;
1512
	bool was_writable;
1513
	int flags = 0;
1514

J
Jan Kara 已提交
1515 1516
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1517 1518
		goto out_unlock;

1519 1520 1521 1522 1523
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1524 1525
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1526 1527
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1528
		spin_unlock(vmf->ptl);
1529
		wait_on_page_locked(page);
1530
		put_page(page);
1531 1532 1533
		goto out;
	}

1534
	page = pmd_page(pmd);
1535
	BUG_ON(is_huge_zero_page(page));
1536
	page_nid = page_to_nid(page);
1537
	last_cpupid = page_cpupid_last(page);
1538
	count_vm_numa_event(NUMA_HINT_FAULTS);
1539
	if (page_nid == this_nid) {
1540
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1541 1542
		flags |= TNF_FAULT_LOCAL;
	}
1543

1544
	/* See similar comment in do_numa_page for explanation */
1545
	if (!pmd_savedwrite(pmd))
1546 1547
		flags |= TNF_NO_GROUP;

1548 1549 1550 1551
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1552 1553 1554 1555
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
	if (target_nid == -1) {
		/* If the page was locked, there are no parallel migrations */
1556
		if (page_locked)
1557
			goto clear_pmdnuma;
1558
	}
1559

1560
	/* Migration could have started since the pmd_trans_migrating check */
1561
	if (!page_locked) {
1562 1563 1564
		page_nid = -1;
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1565
		spin_unlock(vmf->ptl);
1566
		wait_on_page_locked(page);
1567
		put_page(page);
1568 1569 1570
		goto out;
	}

1571 1572 1573 1574
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1575
	get_page(page);
J
Jan Kara 已提交
1576
	spin_unlock(vmf->ptl);
1577
	anon_vma = page_lock_anon_vma_read(page);
1578

P
Peter Zijlstra 已提交
1579
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1580 1581
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1582 1583
		unlock_page(page);
		put_page(page);
1584
		page_nid = -1;
1585
		goto out_unlock;
1586
	}
1587

1588 1589 1590 1591 1592 1593 1594
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
		page_nid = -1;
		goto clear_pmdnuma;
	}

1595 1596 1597 1598 1599 1600
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1601 1602 1603 1604
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1605 1606
	 */
	if (mm_tlb_flush_pending(vma->vm_mm))
1607
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1608

1609 1610
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1611
	 * and access rights restored.
1612
	 */
J
Jan Kara 已提交
1613
	spin_unlock(vmf->ptl);
1614

K
Kirill A. Shutemov 已提交
1615
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1616
				vmf->pmd, pmd, vmf->address, page, target_nid);
1617 1618
	if (migrated) {
		flags |= TNF_MIGRATED;
1619
		page_nid = target_nid;
1620 1621
	} else
		flags |= TNF_MIGRATE_FAIL;
1622

1623
	goto out;
1624
clear_pmdnuma:
1625
	BUG_ON(!PageLocked(page));
1626
	was_writable = pmd_savedwrite(pmd);
1627
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1628
	pmd = pmd_mkyoung(pmd);
1629 1630
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1631 1632
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1633
	unlock_page(page);
1634
out_unlock:
J
Jan Kara 已提交
1635
	spin_unlock(vmf->ptl);
1636 1637 1638 1639 1640

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1641
	if (page_nid != -1)
J
Jan Kara 已提交
1642
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1643
				flags);
1644

1645 1646 1647
	return 0;
}

1648 1649 1650 1651 1652
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1653 1654 1655 1656 1657 1658
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1659
	bool ret = false;
1660

1661 1662
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1663 1664
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1665
		goto out_unlocked;
1666 1667

	orig_pmd = *pmd;
1668
	if (is_huge_zero_pmd(orig_pmd))
1669 1670
		goto out;

1671 1672 1673 1674 1675 1676
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1695
		split_huge_page(page);
1696
		unlock_page(page);
1697
		put_page(page);
1698 1699 1700 1701 1702 1703 1704 1705
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1706
		pmdp_invalidate(vma, addr, pmd);
1707 1708 1709 1710 1711 1712
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1713 1714

	mark_page_lazyfree(page);
1715
	ret = true;
1716 1717 1718 1719 1720 1721
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1722 1723 1724 1725 1726 1727
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1728
	mm_dec_nr_ptes(mm);
1729 1730
}

1731
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1732
		 pmd_t *pmd, unsigned long addr)
1733
{
1734
	pmd_t orig_pmd;
1735
	spinlock_t *ptl;
1736

1737 1738
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1739 1740
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	if (vma_is_dax(vma)) {
1752 1753
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1754 1755
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1756
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1757
	} else if (is_huge_zero_pmd(orig_pmd)) {
1758
		zap_deposited_table(tlb->mm, pmd);
1759
		spin_unlock(ptl);
1760
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1761
	} else {
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1780
		if (PageAnon(page)) {
1781
			zap_deposited_table(tlb->mm, pmd);
1782 1783
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1784 1785
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1786
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1787
		}
1788

1789
		spin_unlock(ptl);
1790 1791
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1792
	}
1793
	return 1;
1794 1795
}

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1822
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1823
		  unsigned long new_addr, unsigned long old_end,
1824
		  pmd_t *old_pmd, pmd_t *new_pmd)
1825
{
1826
	spinlock_t *old_ptl, *new_ptl;
1827 1828
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1829
	bool force_flush = false;
1830 1831 1832

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1833
	    old_end - old_addr < HPAGE_PMD_SIZE)
1834
		return false;
1835 1836 1837 1838 1839 1840 1841

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1842
		return false;
1843 1844
	}

1845 1846 1847 1848
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1849 1850
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1851 1852 1853
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1854
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1855
		if (pmd_present(pmd))
1856
			force_flush = true;
1857
		VM_BUG_ON(!pmd_none(*new_pmd));
1858

1859
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1860
			pgtable_t pgtable;
1861 1862 1863
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1864 1865
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1866 1867
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1868 1869
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1870
		spin_unlock(old_ptl);
1871
		return true;
1872
	}
1873
	return false;
1874 1875
}

1876 1877 1878 1879 1880 1881
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1882
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1883
		unsigned long addr, pgprot_t newprot, int prot_numa)
1884 1885
{
	struct mm_struct *mm = vma->vm_mm;
1886
	spinlock_t *ptl;
1887 1888 1889
	pmd_t entry;
	bool preserve_write;
	int ret;
1890

1891
	ptl = __pmd_trans_huge_lock(pmd, vma);
1892 1893
	if (!ptl)
		return 0;
1894

1895 1896
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1911 1912
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1913 1914 1915 1916 1917 1918
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1919 1920 1921 1922 1923 1924 1925
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1926

1927 1928 1929
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	/*
	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
	 * which is also under down_read(mmap_sem):
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1951
	entry = pmdp_invalidate(vma, addr, pmd);
1952

1953 1954 1955 1956 1957 1958 1959 1960
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1961 1962 1963 1964
	return ret;
}

/*
1965
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1966
 *
1967 1968
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1969
 */
1970
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1971
{
1972 1973
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1974 1975
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1976 1977 1978
		return ptl;
	spin_unlock(ptl);
	return NULL;
1979 1980
}

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	pud_t orig_pud;
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
			tlb->fullmm);
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

2035
	count_vm_event(THP_SPLIT_PUD);
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PUD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
	ptl = pud_lock(mm, pud);
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
	__split_huge_pud_locked(vma, pud, haddr);

out:
	spin_unlock(ptl);
2055 2056 2057 2058 2059 2060
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
					       HPAGE_PUD_SIZE);
2061 2062 2063
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

2064 2065 2066 2067 2068 2069 2070 2071
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

2072 2073 2074 2075 2076 2077
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
2078
	 * See Documentation/vm/mmu_notifier.rst
2079 2080
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2099
		unsigned long haddr, bool freeze)
2100 2101 2102 2103
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2104
	pmd_t old_pmd, _pmd;
2105
	bool young, write, soft_dirty, pmd_migration = false;
2106
	unsigned long addr;
2107 2108 2109 2110 2111
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2112 2113
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2114 2115 2116

	count_vm_event(THP_SPLIT_PMD);

2117 2118
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2119 2120 2121 2122 2123 2124
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2125 2126 2127
		if (vma_is_dax(vma))
			return;
		page = pmd_page(_pmd);
2128 2129
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2130 2131 2132 2133
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2134
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2135 2136
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
2137 2138 2139 2140 2141 2142 2143 2144 2145
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2146 2147 2148
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2172
	if (unlikely(pmd_migration)) {
2173 2174
		swp_entry_t entry;

2175
		entry = pmd_to_swp_entry(old_pmd);
2176
		page = pfn_to_page(swp_offset(entry));
2177 2178 2179 2180
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
	} else {
2181
		page = pmd_page(old_pmd);
2182 2183 2184 2185 2186 2187
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
	}
2188
	VM_BUG_ON_PAGE(!page_count(page), page);
2189
	page_ref_add(page, HPAGE_PMD_NR - 1);
2190

2191 2192 2193 2194
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2195 2196 2197
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2198
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2199 2200 2201 2202 2203 2204
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2205
		if (freeze || pmd_migration) {
2206 2207 2208
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2209 2210
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2211
		} else {
2212
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2213
			entry = maybe_mkwrite(entry, vma);
2214 2215 2216 2217
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2218 2219
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2220
		}
2221
		pte = pte_offset_map(&_pmd, addr);
2222
		BUG_ON(!pte_none(*pte));
2223
		set_pte_at(mm, addr, pte, entry);
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
2239
		__dec_node_page_state(page, NR_ANON_THPS);
2240 2241 2242 2243 2244 2245 2246 2247 2248
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2249 2250

	if (freeze) {
2251
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2252 2253 2254 2255
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2256 2257 2258
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2259
		unsigned long address, bool freeze, struct page *page)
2260 2261 2262 2263 2264 2265 2266
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PMD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
	ptl = pmd_lock(mm, pmd);
2267 2268 2269 2270 2271 2272 2273 2274 2275

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

2276
	if (pmd_trans_huge(*pmd)) {
2277
		page = pmd_page(*pmd);
2278
		if (PageMlocked(page))
2279
			clear_page_mlock(page);
2280
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2281
		goto out;
2282
	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2283
out:
2284
	spin_unlock(ptl);
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
					       HPAGE_PMD_SIZE);
2300 2301
}

2302 2303
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2304
{
2305
	pgd_t *pgd;
2306
	p4d_t *p4d;
2307
	pud_t *pud;
2308 2309
	pmd_t *pmd;

2310
	pgd = pgd_offset(vma->vm_mm, address);
2311 2312 2313
	if (!pgd_present(*pgd))
		return;

2314 2315 2316 2317 2318
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2319 2320 2321 2322
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2323

2324
	__split_huge_pmd(vma, pmd, address, freeze, page);
2325 2326
}

2327
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2340
		split_huge_pmd_address(vma, start, false, NULL);
2341 2342 2343 2344 2345 2346 2347 2348 2349

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2350
		split_huge_pmd_address(vma, end, false, NULL);
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2364
			split_huge_pmd_address(next, nstart, false, NULL);
2365 2366
	}
}
2367

2368
static void unmap_page(struct page *page)
2369
{
2370
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2371
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2372
	bool unmap_success;
2373 2374 2375

	VM_BUG_ON_PAGE(!PageHead(page), page);

2376
	if (PageAnon(page))
2377
		ttu_flags |= TTU_SPLIT_FREEZE;
2378

M
Minchan Kim 已提交
2379 2380
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2381 2382
}

2383
static void remap_page(struct page *page)
2384
{
2385
	int i;
2386 2387 2388 2389 2390 2391
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2392 2393
}

2394
static void __split_huge_page_tail(struct page *head, int tail,
2395 2396 2397 2398
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2399
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2400 2401

	/*
2402 2403 2404 2405
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
	 * for exmaple lock_page() which set PG_waiters.
2406 2407 2408 2409 2410
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2411
			 (1L << PG_swapcache) |
2412 2413 2414
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2415
			 (1L << PG_workingset) |
2416
			 (1L << PG_locked) |
2417 2418
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
2419

2420 2421 2422 2423 2424 2425
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2426
	/* Page flags must be visible before we make the page non-compound. */
2427 2428
	smp_wmb();

2429 2430 2431 2432 2433 2434
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2435 2436
	clear_compound_head(page_tail);

2437 2438 2439 2440
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2441 2442 2443 2444 2445 2446
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2447 2448 2449 2450 2451 2452

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2453 2454 2455
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2456
static void __split_huge_page(struct page *page, struct list_head *list,
2457
		pgoff_t end, unsigned long flags)
2458 2459 2460 2461
{
	struct page *head = compound_head(page);
	struct zone *zone = page_zone(head);
	struct lruvec *lruvec;
2462
	int i;
2463

M
Mel Gorman 已提交
2464
	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2465 2466 2467 2468

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2469
	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2470
		__split_huge_page_tail(head, i, lruvec, list);
2471 2472
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2473
			ClearPageDirty(head + i);
2474
			__delete_from_page_cache(head + i, NULL);
2475 2476
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2477 2478 2479
			put_page(head + i);
		}
	}
2480 2481

	ClearPageCompound(head);
2482 2483 2484

	split_page_owner(head, HPAGE_PMD_ORDER);

2485 2486
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
2487 2488 2489 2490 2491
		/* Additional pin to radix tree of swap cache */
		if (PageSwapCache(head))
			page_ref_add(head, 2);
		else
			page_ref_inc(head);
2492 2493 2494
	} else {
		/* Additional pin to radix tree */
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2495
		xa_unlock(&head->mapping->i_pages);
2496 2497
	}

2498
	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2499

2500
	remap_page(head);
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2519 2520
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
2521
	int i, compound, ret;
2522 2523 2524 2525 2526 2527

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2528
	compound = compound_mapcount(page);
2529
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2530 2531
		return compound;
	ret = compound;
2532 2533
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2534 2535 2536
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2537 2538 2539 2540 2541
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

	/* Additional pins from radix tree */
	if (PageAnon(page))
		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
	else
		extra_pins = HPAGE_PMD_NR;
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2637
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2638
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2639 2640 2641
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2642
	bool mlocked;
2643
	unsigned long flags;
2644
	pgoff_t end;
2645 2646 2647 2648 2649

	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageCompound(page), page);

2650 2651 2652
	if (PageWriteback(page))
		return -EBUSY;

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2667
		end = -1;
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2681 2682 2683 2684 2685 2686 2687 2688 2689

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2690 2691 2692
	}

	/*
2693
	 * Racy check if we can split the page, before unmap_page() will
2694 2695
	 * split PMDs
	 */
2696
	if (!can_split_huge_page(head, &extra_pins)) {
2697 2698 2699 2700
		ret = -EBUSY;
		goto out_unlock;
	}

2701
	mlocked = PageMlocked(page);
2702
	unmap_page(head);
2703 2704
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2705 2706 2707 2708
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2709
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2710
	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2711 2712 2713 2714

	if (mapping) {
		void **pslot;

M
Matthew Wilcox 已提交
2715 2716
		xa_lock(&mapping->i_pages);
		pslot = radix_tree_lookup_slot(&mapping->i_pages,
2717 2718 2719 2720 2721 2722
				page_index(head));
		/*
		 * Check if the head page is present in radix tree.
		 * We assume all tail are present too, if head is there.
		 */
		if (radix_tree_deref_slot_protected(pslot,
M
Matthew Wilcox 已提交
2723
					&mapping->i_pages.xa_lock) != head)
2724 2725 2726
			goto fail;
	}

2727
	/* Prevent deferred_split_scan() touching ->_refcount */
2728
	spin_lock(&ds_queue->split_queue_lock);
2729 2730
	count = page_count(head);
	mapcount = total_mapcount(head);
2731
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2732
		if (!list_empty(page_deferred_list(head))) {
2733
			ds_queue->split_queue_len--;
2734 2735
			list_del(page_deferred_list(head));
		}
2736
		if (mapping)
2737
			__dec_node_page_state(page, NR_SHMEM_THPS);
2738
		spin_unlock(&ds_queue->split_queue_lock);
2739
		__split_huge_page(page, list, end, flags);
2740 2741 2742 2743 2744 2745
		if (PageSwapCache(head)) {
			swp_entry_t entry = { .val = page_private(head) };

			ret = split_swap_cluster(entry);
		} else
			ret = 0;
2746
	} else {
2747 2748 2749 2750 2751 2752 2753 2754
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
2755
		spin_unlock(&ds_queue->split_queue_lock);
2756
fail:		if (mapping)
M
Matthew Wilcox 已提交
2757
			xa_unlock(&mapping->i_pages);
2758
		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2759
		remap_page(head);
2760 2761 2762 2763
		ret = -EBUSY;
	}

out_unlock:
2764 2765 2766 2767 2768 2769
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2770 2771 2772 2773
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2774 2775 2776

void free_transhuge_page(struct page *page)
{
2777
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2778
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2779 2780
	unsigned long flags;

2781
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2782
	if (!list_empty(page_deferred_list(page))) {
2783
		ds_queue->split_queue_len--;
2784 2785
		list_del(page_deferred_list(page));
	}
2786
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2787 2788 2789 2790 2791
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2792
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2793
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2794 2795 2796 2797
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2798
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2799
	if (list_empty(page_deferred_list(page))) {
2800
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2801 2802
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2803
	}
2804
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2805 2806 2807 2808 2809
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2810
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2811 2812
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
	return READ_ONCE(ds_queue->split_queue_len);
2813 2814 2815 2816 2817
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2818
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2819
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2820 2821 2822 2823 2824
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2825
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2826
	/* Take pin on all head pages to avoid freeing them under us */
2827
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2828 2829
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2830 2831 2832 2833
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2834
			list_del_init(page_deferred_list(page));
2835
			ds_queue->split_queue_len--;
2836
		}
2837 2838
		if (!--sc->nr_to_scan)
			break;
2839
	}
2840
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2841 2842 2843

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2844 2845
		if (!trylock_page(page))
			goto next;
2846 2847 2848 2849
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2850
next:
2851 2852 2853
		put_page(page);
	}

2854 2855 2856
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2857

2858 2859 2860 2861
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2862
	if (!split && list_empty(&ds_queue->split_queue))
2863 2864
		return SHRINK_STOP;
	return split;
2865 2866 2867 2868 2869 2870
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2871
	.flags = SHRINKER_NUMA_AWARE,
2872
};
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2898
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2911
	pr_info("%lu of %lu THP split\n", split, total);
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
	void *ret;

2922
	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2923 2924 2925 2926 2927 2928 2929
			&split_huge_pages_fops);
	if (!ret)
		pr_warn("Failed to create split_huge_pages in debugfs");
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
2940
	pmd_t pmdswp;
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
	pmdval = *pvmw->pmd;
	pmdp_invalidate(vma, address, pvmw->pmd);
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
2951 2952 2953 2954
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2974 2975
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
2976
	if (is_write_migration_entry(entry))
2977
		pmde = maybe_pmd_mkwrite(pmde, vma);
2978 2979

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2980 2981 2982 2983
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
2984
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2985
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2986 2987 2988 2989
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif