Kconfig 46.4 KB
Newer Older
1 2 3 4 5 6
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
7
#
D
Dan Williams 已提交
8
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
9
#
D
Dan Williams 已提交
10
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
11

D
Dan Williams 已提交
12 13 14
#
# Cryptographic API Configuration
#
15
menuconfig CRYPTO
16
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
17 18 19
	help
	  This option provides the core Cryptographic API.

20 21
if CRYPTO

22 23
comment "Crypto core or helper"

N
Neil Horman 已提交
24 25
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
26
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27
	depends on MODULE_SIG
N
Neil Horman 已提交
28 29 30 31
	help
	  This options enables the fips boot option which is
	  required if you want to system to operate in a FIPS 200
	  certification.  You should say no unless you know what
32
	  this is.
N
Neil Horman 已提交
33

34 35
config CRYPTO_ALGAPI
	tristate
36
	select CRYPTO_ALGAPI2
37 38 39
	help
	  This option provides the API for cryptographic algorithms.

40 41 42
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
43 44
config CRYPTO_AEAD
	tristate
45
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
46 47
	select CRYPTO_ALGAPI

48 49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2

52 53
config CRYPTO_BLKCIPHER
	tristate
54
	select CRYPTO_BLKCIPHER2
55
	select CRYPTO_ALGAPI
56 57 58 59 60

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
61
	select CRYPTO_WORKQUEUE
62

63 64
config CRYPTO_HASH
	tristate
65
	select CRYPTO_HASH2
66 67
	select CRYPTO_ALGAPI

68 69 70 71
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

72 73
config CRYPTO_RNG
	tristate
74
	select CRYPTO_RNG2
75 76
	select CRYPTO_ALGAPI

77 78 79 80
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

81 82 83 84
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

85
config CRYPTO_PCOMP
86 87 88 89 90
	tristate
	select CRYPTO_PCOMP2
	select CRYPTO_ALGAPI

config CRYPTO_PCOMP2
91 92 93
	tristate
	select CRYPTO_ALGAPI2

T
Tadeusz Struk 已提交
94 95 96 97 98 99 100 101 102
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

103 104
config CRYPTO_RSA
	tristate "RSA algorithm"
105
	select CRYPTO_AKCIPHER
106 107 108 109 110
	select MPILIB
	select ASN1
	help
	  Generic implementation of the RSA public key algorithm.

H
Herbert Xu 已提交
111 112
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
113
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
114 115 116 117
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

118 119 120 121 122
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
123
	select CRYPTO_PCOMP2
124
	select CRYPTO_AKCIPHER2
125

126 127
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
128
	depends on NET
129 130
	select CRYPTO_MANAGER
	help
131
	  Userspace configuration for cryptographic instantiations such as
132 133
	  cbc(aes).

134 135
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
136 137
	default y
	depends on CRYPTO_MANAGER2
138
	help
139 140
	  Disable run-time self tests that normally take place at
	  algorithm registration.
141

142
config CRYPTO_GF128MUL
143
	tristate "GF(2^128) multiplication functions"
K
Kazunori MIYAZAWA 已提交
144
	help
145 146 147 148 149
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
K
Kazunori MIYAZAWA 已提交
150

L
Linus Torvalds 已提交
151 152
config CRYPTO_NULL
	tristate "Null algorithms"
153
	select CRYPTO_ALGAPI
154
	select CRYPTO_BLKCIPHER
H
Herbert Xu 已提交
155
	select CRYPTO_HASH
L
Linus Torvalds 已提交
156 157 158
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

159
config CRYPTO_PCRYPT
160 161
	tristate "Parallel crypto engine"
	depends on SMP
162 163 164 165 166 167 168
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

169 170 171
config CRYPTO_WORKQUEUE
       tristate

172 173 174
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
175
	select CRYPTO_HASH
176
	select CRYPTO_MANAGER
177
	select CRYPTO_WORKQUEUE
L
Linus Torvalds 已提交
178
	help
179 180 181
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
182

183 184 185 186 187 188 189 190 191 192 193 194
config CRYPTO_MCRYPTD
	tristate "Software async multi-buffer crypto daemon"
	select CRYPTO_BLKCIPHER
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	select CRYPTO_WORKQUEUE
	help
	  This is a generic software asynchronous crypto daemon that
	  provides the kernel thread to assist multi-buffer crypto
	  algorithms for submitting jobs and flushing jobs in multi-buffer
	  crypto algorithms.  Multi-buffer crypto algorithms are executed
	  in the context of this kernel thread and drivers can post
195
	  their crypto request asynchronously to be processed by this daemon.
196

197 198 199 200 201 202
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
L
Linus Torvalds 已提交
203
	help
204 205
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
206

207 208 209
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
210
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
211
	help
212
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
213

214
config CRYPTO_ABLK_HELPER
215 216 217
	tristate
	select CRYPTO_CRYPTD

218 219 220 221 222
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
	select CRYPTO_ALGAPI

223
comment "Authenticated Encryption with Associated Data"
224

225 226 227 228
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
L
Linus Torvalds 已提交
229
	help
230
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
231

232 233 234 235
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
236
	select CRYPTO_GHASH
237
	select CRYPTO_NULL
L
Linus Torvalds 已提交
238
	help
239 240
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
241

242 243 244 245 246 247 248 249 250 251 252 253
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

254 255 256 257
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
258
	select CRYPTO_NULL
259
	select CRYPTO_RNG_DEFAULT
L
Linus Torvalds 已提交
260
	help
261 262
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
263

264 265 266 267
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
268
	select CRYPTO_RNG_DEFAULT
269
	default m
270 271 272 273 274
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

275
comment "Block modes"
276

277 278
config CRYPTO_CBC
	tristate "CBC support"
279
	select CRYPTO_BLKCIPHER
280
	select CRYPTO_MANAGER
281
	help
282 283
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
284

285 286
config CRYPTO_CTR
	tristate "CTR support"
287
	select CRYPTO_BLKCIPHER
288
	select CRYPTO_SEQIV
289
	select CRYPTO_MANAGER
290
	help
291
	  CTR: Counter mode
292 293
	  This block cipher algorithm is required for IPSec.

294 295 296 297 298 299 300 301 302 303 304 305 306
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
	  Section 8 of rfc2040 and referenced by rfc3962.
	  (rfc3962 includes errata information in its Appendix A)
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

config CRYPTO_ECB
	tristate "ECB support"
307 308 309
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
310 311 312
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
313

314
config CRYPTO_LRW
315
	tristate "LRW support"
316 317 318 319 320 321 322 323 324 325
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

326 327 328 329 330 331 332 333
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

334
config CRYPTO_XTS
335
	tristate "XTS support"
336 337 338 339 340 341 342 343
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

344 345
comment "Hash modes"

346 347 348 349 350 351 352 353 354 355 356
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

357 358 359
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
360 361
	select CRYPTO_MANAGER
	help
362 363
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
364

365 366 367 368
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
369
	help
370 371 372 373
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
374

375 376 377 378 379 380 381 382 383 384 385
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

386
comment "Digest"
M
Mikko Herranen 已提交
387

388 389
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
390
	select CRYPTO_HASH
391
	select CRC32
J
Joy Latten 已提交
392
	help
393 394
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
395
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
396

397 398 399 400 401 402 403 404 405 406 407 408
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

409 410 411 412 413 414 415 416 417
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
	  instruction. This option will create 'crc32-plcmul' module,
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
	  'crct10dif-plcmul' module, which is faster when computing the
	  crct10dif checksum as compared with the generic table implementation.

458 459 460 461 462 463
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

464 465 466 467 468 469 470 471 472
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

473 474 475 476 477 478 479 480 481 482 483 484
config CRYPTO_POLY1305_X86_64
	tristate "Poly1305 authenticator algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
	select CRYPTO_POLY1305
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
	  instructions.

485 486
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
487
	select CRYPTO_HASH
488
	help
489
	  MD4 message digest algorithm (RFC1320).
490

491 492
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
493
	select CRYPTO_HASH
L
Linus Torvalds 已提交
494
	help
495
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
496

497 498 499 500 501 502 503 504 505
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

506 507 508 509 510 511 512 513
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

514 515 516 517 518 519 520 521 522
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

523 524
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
525
	select CRYPTO_HASH
526
	help
527 528 529 530
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
531

532
config CRYPTO_RMD128
533
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
534
	select CRYPTO_HASH
535 536
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
537

538
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
539
	  be used as a secure replacement for RIPEMD. For other use cases,
540
	  RIPEMD-160 should be used.
541

542
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
543
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
544 545

config CRYPTO_RMD160
546
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
547
	select CRYPTO_HASH
548 549
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
550

551 552 553 554
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
555

556 557
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
558

559
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
560
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
561 562

config CRYPTO_RMD256
563
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
564
	select CRYPTO_HASH
565 566 567 568 569
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
570

571
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
572
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
573 574

config CRYPTO_RMD320
575
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
576
	select CRYPTO_HASH
577 578 579 580 581
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
582

583
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
584
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
585

586 587
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
588
	select CRYPTO_HASH
L
Linus Torvalds 已提交
589
	help
590
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
591

592
config CRYPTO_SHA1_SSSE3
593
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2)"
594 595 596 597 598 599
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
600
	  Extensions (AVX/AVX2), when available.
601

602 603 604 605 606 607 608 609 610
config CRYPTO_SHA256_SSSE3
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
611 612 613 614 615 616 617 618 619 620 621
	  version 2 (AVX2) instructions, when available.

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
622 623
	  version 2 (AVX2) instructions, when available.

624 625 626 627 628 629 630 631 632
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

633 634 635 636 637 638 639 640 641
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

642 643 644 645 646 647 648
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

649 650 651 652 653 654 655
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
config CRYPTO_SHA1_MB
	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

672 673
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
674
	select CRYPTO_HASH
L
Linus Torvalds 已提交
675
	help
676
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
677

678 679
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
680

681 682
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
683

684 685 686 687 688 689 690 691 692
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

693 694 695 696 697 698 699 700 701
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

702 703 704 705 706 707 708 709 710
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

711 712
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
713
	select CRYPTO_HASH
714
	help
715
	  SHA512 secure hash standard (DFIPS 180-2).
716

717 718
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
719

720 721
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
722

723 724 725 726 727 728 729 730 731
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

732 733 734 735 736 737 738 739 740
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

741 742
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
743
	select CRYPTO_HASH
744
	help
745
	  Tiger hash algorithm 192, 160 and 128-bit hashes
746

747 748 749
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
750 751

	  See also:
752
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
753

754 755
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
756
	select CRYPTO_HASH
L
Linus Torvalds 已提交
757
	help
758
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
759

760 761
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
762 763

	  See also:
764
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
765

766 767
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
768
	depends on X86 && 64BIT
769 770 771 772 773
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

774
comment "Ciphers"
L
Linus Torvalds 已提交
775 776 777

config CRYPTO_AES
	tristate "AES cipher algorithms"
778
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
779
	help
780
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
781 782 783
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
784 785 786 787 788 789 790
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
791

792
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
793 794 795 796 797

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
798 799
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
800
	select CRYPTO_AES
L
Linus Torvalds 已提交
801
	help
802
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
803 804 805
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
806 807 808 809 810 811 812
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
813

814
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
815 816 817 818 819

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
820 821
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
822
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
823
	help
824
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
825 826 827
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
828 829 830
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
831 832 833 834 835 836 837 838 839 840 841
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
842
	depends on X86
843 844
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
845
	select CRYPTO_CRYPTD
846
	select CRYPTO_ABLK_HELPER
847
	select CRYPTO_ALGAPI
848
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
849 850
	select CRYPTO_LRW
	select CRYPTO_XTS
851 852 853 854 855 856 857 858 859 860
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
861 862 863 864
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
865

866
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
867 868 869

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

870 871 872 873
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
	  acceleration for CTR.
874

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

903 904 905 906 907 908 909 910 911 912 913 914 915
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

916 917 918 919 920 921 922 923 924 925 926
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
927 928
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
929 930 931

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
932
	select CRYPTO_BLKCIPHER
933 934 935 936 937 938 939 940 941 942 943
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
944
	select CRYPTO_BLOWFISH_COMMON
945 946 947 948 949 950 951 952 953 954
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

955 956 957 958 959 960 961 962 963
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

964 965
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
966
	depends on X86 && 64BIT
967 968 969 970 971 972 973 974 975 976 977 978
	select CRYPTO_ALGAPI
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

994 995
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
996
	depends on X86 && 64BIT
997 998
	depends on CRYPTO
	select CRYPTO_ALGAPI
999
	select CRYPTO_GLUE_HELPER_X86
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1011 1012 1013 1014 1015 1016 1017 1018
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1019
	select CRYPTO_ABLK_HELPER
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1033 1034
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1035 1036 1037 1038 1039 1040
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1041
	select CRYPTO_ABLK_HELPER
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1074 1075 1076 1077 1078 1079
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1080 1081
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1082
	select CRYPTO_ALGAPI
1083
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1084 1085 1086 1087
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1088 1089 1090 1091 1092
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1093
	select CRYPTO_ABLK_HELPER
1094
	select CRYPTO_CAST_COMMON
1095 1096 1097 1098 1099 1100 1101 1102
	select CRYPTO_CAST5
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1103 1104
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1105
	select CRYPTO_ALGAPI
1106
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1107 1108 1109 1110
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1111 1112 1113 1114 1115
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1116
	select CRYPTO_ABLK_HELPER
1117
	select CRYPTO_GLUE_HELPER_X86
1118
	select CRYPTO_CAST_COMMON
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	select CRYPTO_CAST6
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1129 1130
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1131
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1132
	help
1133
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1134

1135 1136
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1137
	depends on SPARC64
1138 1139 1140 1141 1142 1143
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1157 1158
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1159
	select CRYPTO_ALGAPI
1160
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1161
	help
1162
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1163 1164 1165

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1166
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1167 1168 1169 1170 1171 1172 1173 1174
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1175
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1176

1177
config CRYPTO_SALSA20
1178
	tristate "Salsa20 stream cipher algorithm"
1179 1180 1181 1182 1183 1184
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1185 1186 1187 1188 1189

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_586
1190
	tristate "Salsa20 stream cipher algorithm (i586)"
1191 1192 1193 1194 1195 1196 1197
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1198 1199 1200 1201 1202

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_X86_64
1203
	tristate "Salsa20 stream cipher algorithm (x86_64)"
1204 1205 1206 1207 1208 1209 1210
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1211 1212 1213

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
L
Linus Torvalds 已提交
1214

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
config CRYPTO_CHACHA20
	tristate "ChaCha20 cipher algorithm"
	select CRYPTO_BLKCIPHER
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the portable C implementation of ChaCha20.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1228
config CRYPTO_CHACHA20_X86_64
1229
	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	depends on X86 && 64BIT
	select CRYPTO_BLKCIPHER
	select CRYPTO_CHACHA20
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the x86_64 assembler implementation using SIMD instructions.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1243 1244
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1245
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1246
	help
1247
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1259
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1260
	help
1261
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1262

1263 1264 1265 1266 1267 1268 1269
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1270 1271 1272 1273
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
1274
	select CRYPTO_CRYPTD
1275
	select CRYPTO_ABLK_HELPER
1276
	select CRYPTO_GLUE_HELPER_X86
1277
	select CRYPTO_SERPENT
1278 1279
	select CRYPTO_LRW
	select CRYPTO_XTS
1280 1281 1282 1283 1284 1285
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1286
	  This module provides Serpent cipher algorithm that processes eight
1287 1288 1289 1290 1291
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1292 1293 1294 1295
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
	select CRYPTO_ALGAPI
1296
	select CRYPTO_CRYPTD
1297
	select CRYPTO_ABLK_HELPER
1298
	select CRYPTO_GLUE_HELPER_X86
1299
	select CRYPTO_SERPENT
1300 1301
	select CRYPTO_LRW
	select CRYPTO_XTS
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1313 1314 1315 1316 1317 1318

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1319
	select CRYPTO_ABLK_HELPER
1320
	select CRYPTO_GLUE_HELPER_X86
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	select CRYPTO_SERPENT
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1335

1336 1337 1338 1339 1340
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1341
	select CRYPTO_ABLK_HELPER
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SERPENT
	select CRYPTO_SERPENT_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1359 1360
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1361
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1362
	help
1363
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1364

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1378
	select CRYPTO_ALGAPI
1379
	select CRYPTO_TWOFISH_COMMON
1380
	help
1381
	  Twofish cipher algorithm.
1382

1383 1384 1385 1386
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1409 1410

	  See also:
1411
	  <http://www.schneier.com/twofish.html>
1412

1413 1414 1415
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1416
	select CRYPTO_ALGAPI
1417
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1418
	help
1419
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1420

1421 1422 1423 1424 1425 1426 1427 1428
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1429 1430
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1431
	depends on X86 && 64BIT
1432 1433 1434
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1435
	select CRYPTO_GLUE_HELPER_X86
1436 1437
	select CRYPTO_LRW
	select CRYPTO_XTS
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1452 1453 1454 1455 1456
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1457
	select CRYPTO_ABLK_HELPER
1458
	select CRYPTO_GLUE_HELPER_X86
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1478 1479 1480 1481 1482 1483 1484
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1485
	help
1486 1487 1488 1489
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1490

1491 1492 1493 1494 1495 1496 1497 1498 1499
config CRYPTO_ZLIB
	tristate "Zlib compression algorithm"
	select CRYPTO_PCOMP
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
	select NLATTR
	help
	  This is the zlib algorithm.

1500 1501 1502 1503 1504 1505 1506 1507
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1508 1509
config CRYPTO_842
	tristate "842 compression algorithm"
1510 1511 1512
	select CRYPTO_ALGAPI
	select 842_COMPRESS
	select 842_DECOMPRESS
1513 1514
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1531

1532 1533 1534 1535 1536 1537 1538 1539 1540
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1541 1542
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1543

1544
menuconfig CRYPTO_DRBG_MENU
1545 1546 1547 1548 1549
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1550
if CRYPTO_DRBG_MENU
1551 1552

config CRYPTO_DRBG_HMAC
1553
	bool
1554 1555
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1556
	select CRYPTO_SHA256
1557 1558 1559

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1560
	select CRYPTO_SHA256
1561 1562 1563 1564 1565 1566 1567 1568 1569
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1570 1571
config CRYPTO_DRBG
	tristate
1572
	default CRYPTO_DRBG_MENU
1573
	select CRYPTO_RNG
1574
	select CRYPTO_JITTERENTROPY
1575 1576

endif	# if CRYPTO_DRBG_MENU
1577

1578 1579 1580 1581 1582 1583 1584 1585 1586
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1587 1588 1589
config CRYPTO_USER_API
	tristate

1590 1591
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1592
	depends on NET
1593 1594 1595 1596 1597 1598
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1599 1600
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1601
	depends on NET
1602 1603 1604 1605 1606 1607
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1608 1609 1610 1611 1612 1613 1614 1615 1616
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1617 1618 1619 1620 1621 1622 1623 1624 1625
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1626 1627 1628
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1629
source "drivers/crypto/Kconfig"
1630
source crypto/asymmetric_keys/Kconfig
L
Linus Torvalds 已提交
1631

1632
endif	# if CRYPTO