Kconfig 45.2 KB
Newer Older
1 2 3 4 5 6
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
7
#
D
Dan Williams 已提交
8
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
9
#
D
Dan Williams 已提交
10
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
11

D
Dan Williams 已提交
12 13 14
#
# Cryptographic API Configuration
#
15
menuconfig CRYPTO
16
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
17 18 19
	help
	  This option provides the core Cryptographic API.

20 21
if CRYPTO

22 23
comment "Crypto core or helper"

N
Neil Horman 已提交
24 25
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
26
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27
	depends on MODULE_SIG
N
Neil Horman 已提交
28 29 30 31
	help
	  This options enables the fips boot option which is
	  required if you want to system to operate in a FIPS 200
	  certification.  You should say no unless you know what
32
	  this is.
N
Neil Horman 已提交
33

34 35
config CRYPTO_ALGAPI
	tristate
36
	select CRYPTO_ALGAPI2
37 38 39
	help
	  This option provides the API for cryptographic algorithms.

40 41 42
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
43 44
config CRYPTO_AEAD
	tristate
45
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
46 47
	select CRYPTO_ALGAPI

48 49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2

52 53
config CRYPTO_BLKCIPHER
	tristate
54
	select CRYPTO_BLKCIPHER2
55
	select CRYPTO_ALGAPI
56 57 58 59 60

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
61
	select CRYPTO_WORKQUEUE
62

63 64
config CRYPTO_HASH
	tristate
65
	select CRYPTO_HASH2
66 67
	select CRYPTO_ALGAPI

68 69 70 71
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

72 73
config CRYPTO_RNG
	tristate
74
	select CRYPTO_RNG2
75 76
	select CRYPTO_ALGAPI

77 78 79 80
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

81 82 83 84
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

85
config CRYPTO_PCOMP
86 87 88 89 90
	tristate
	select CRYPTO_PCOMP2
	select CRYPTO_ALGAPI

config CRYPTO_PCOMP2
91 92 93
	tristate
	select CRYPTO_ALGAPI2

H
Herbert Xu 已提交
94 95
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
96
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
97 98 99 100
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

101 102 103 104 105
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
106
	select CRYPTO_PCOMP2
107

108 109
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
110
	depends on NET
111 112
	select CRYPTO_MANAGER
	help
113
	  Userspace configuration for cryptographic instantiations such as
114 115
	  cbc(aes).

116 117
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
118 119
	default y
	depends on CRYPTO_MANAGER2
120
	help
121 122
	  Disable run-time self tests that normally take place at
	  algorithm registration.
123

124
config CRYPTO_GF128MUL
125
	tristate "GF(2^128) multiplication functions"
K
Kazunori MIYAZAWA 已提交
126
	help
127 128 129 130 131
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
K
Kazunori MIYAZAWA 已提交
132

L
Linus Torvalds 已提交
133 134
config CRYPTO_NULL
	tristate "Null algorithms"
135
	select CRYPTO_ALGAPI
136
	select CRYPTO_BLKCIPHER
H
Herbert Xu 已提交
137
	select CRYPTO_HASH
L
Linus Torvalds 已提交
138 139 140
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

141
config CRYPTO_PCRYPT
142 143
	tristate "Parallel crypto engine"
	depends on SMP
144 145 146 147 148 149 150
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

151 152 153
config CRYPTO_WORKQUEUE
       tristate

154 155 156
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
157
	select CRYPTO_HASH
158
	select CRYPTO_MANAGER
159
	select CRYPTO_WORKQUEUE
L
Linus Torvalds 已提交
160
	help
161 162 163
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
164

165 166 167 168 169 170 171 172 173 174 175 176
config CRYPTO_MCRYPTD
	tristate "Software async multi-buffer crypto daemon"
	select CRYPTO_BLKCIPHER
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	select CRYPTO_WORKQUEUE
	help
	  This is a generic software asynchronous crypto daemon that
	  provides the kernel thread to assist multi-buffer crypto
	  algorithms for submitting jobs and flushing jobs in multi-buffer
	  crypto algorithms.  Multi-buffer crypto algorithms are executed
	  in the context of this kernel thread and drivers can post
177
	  their crypto request asynchronously to be processed by this daemon.
178

179 180 181 182 183 184
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
L
Linus Torvalds 已提交
185
	help
186 187
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
188

189 190 191
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
192
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
193
	help
194
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
195

196
config CRYPTO_ABLK_HELPER
197 198 199
	tristate
	select CRYPTO_CRYPTD

200 201 202 203 204
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
	select CRYPTO_ALGAPI

205
comment "Authenticated Encryption with Associated Data"
206

207 208 209 210
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
L
Linus Torvalds 已提交
211
	help
212
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
213

214 215 216 217
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
218
	select CRYPTO_GHASH
219
	select CRYPTO_NULL
L
Linus Torvalds 已提交
220
	help
221 222
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
223

224 225 226 227 228 229 230 231 232 233 234 235
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

236 237 238 239
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
240
	select CRYPTO_NULL
241
	select CRYPTO_RNG_DEFAULT
L
Linus Torvalds 已提交
242
	help
243 244
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
245

246 247 248 249
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
250
	select CRYPTO_RNG_DEFAULT
251
	default m
252 253 254 255 256
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

257
comment "Block modes"
258

259 260
config CRYPTO_CBC
	tristate "CBC support"
261
	select CRYPTO_BLKCIPHER
262
	select CRYPTO_MANAGER
263
	help
264 265
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
266

267 268
config CRYPTO_CTR
	tristate "CTR support"
269
	select CRYPTO_BLKCIPHER
270
	select CRYPTO_SEQIV
271
	select CRYPTO_MANAGER
272
	help
273
	  CTR: Counter mode
274 275
	  This block cipher algorithm is required for IPSec.

276 277 278 279 280 281 282 283 284 285 286 287 288
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
	  Section 8 of rfc2040 and referenced by rfc3962.
	  (rfc3962 includes errata information in its Appendix A)
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

config CRYPTO_ECB
	tristate "ECB support"
289 290 291
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
292 293 294
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
295

296
config CRYPTO_LRW
297
	tristate "LRW support"
298 299 300 301 302 303 304 305 306 307
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

308 309 310 311 312 313 314 315
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

316
config CRYPTO_XTS
317
	tristate "XTS support"
318 319 320 321 322 323 324 325
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

326 327
comment "Hash modes"

328 329 330 331 332 333 334 335 336 337 338
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

339 340 341
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
342 343
	select CRYPTO_MANAGER
	help
344 345
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
346

347 348 349 350
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
351
	help
352 353 354 355
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
356

357 358 359 360 361 362 363 364 365 366 367
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

368
comment "Digest"
M
Mikko Herranen 已提交
369

370 371
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
372
	select CRYPTO_HASH
373
	select CRC32
J
Joy Latten 已提交
374
	help
375 376
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
377
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
378

379 380 381 382 383 384 385 386 387 388 389 390
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

391 392 393 394 395 396 397 398 399
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
	  instruction. This option will create 'crc32-plcmul' module,
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
	  'crct10dif-plcmul' module, which is faster when computing the
	  crct10dif checksum as compared with the generic table implementation.

440 441 442 443 444 445
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

446 447 448 449 450 451 452 453 454
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

455 456
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
457
	select CRYPTO_HASH
458
	help
459
	  MD4 message digest algorithm (RFC1320).
460

461 462
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
463
	select CRYPTO_HASH
L
Linus Torvalds 已提交
464
	help
465
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
466

467 468 469 470 471 472 473 474 475
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

476 477 478 479 480 481 482 483
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

484 485 486 487 488 489 490 491 492
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

493 494
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
495
	select CRYPTO_HASH
496
	help
497 498 499 500
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
501

502
config CRYPTO_RMD128
503
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
504
	select CRYPTO_HASH
505 506
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
507

508
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
509
	  be used as a secure replacement for RIPEMD. For other use cases,
510
	  RIPEMD-160 should be used.
511

512
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
513
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
514 515

config CRYPTO_RMD160
516
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
517
	select CRYPTO_HASH
518 519
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
520

521 522 523 524
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
525

526 527
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
528

529
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
530
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
531 532

config CRYPTO_RMD256
533
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
534
	select CRYPTO_HASH
535 536 537 538 539
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
540

541
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
542
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
543 544

config CRYPTO_RMD320
545
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
546
	select CRYPTO_HASH
547 548 549 550 551
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
552

553
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
554
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
555

556 557
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
558
	select CRYPTO_HASH
L
Linus Torvalds 已提交
559
	help
560
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
561

562
config CRYPTO_SHA1_SSSE3
563
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2)"
564 565 566 567 568 569
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
570
	  Extensions (AVX/AVX2), when available.
571

572 573 574 575 576 577 578 579 580
config CRYPTO_SHA256_SSSE3
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
581 582 583 584 585 586 587 588 589 590 591
	  version 2 (AVX2) instructions, when available.

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
592 593
	  version 2 (AVX2) instructions, when available.

594 595 596 597 598 599 600 601 602
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

603 604 605 606 607 608 609 610 611
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

612 613 614 615 616 617 618
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

619 620 621 622 623 624 625
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
config CRYPTO_SHA1_MB
	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

642 643
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
644
	select CRYPTO_HASH
L
Linus Torvalds 已提交
645
	help
646
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
647

648 649
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
650

651 652
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
653

654 655 656 657 658 659 660 661 662
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

663 664 665 666 667 668 669 670 671
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

672 673 674 675 676 677 678 679 680
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

681 682
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
683
	select CRYPTO_HASH
684
	help
685
	  SHA512 secure hash standard (DFIPS 180-2).
686

687 688
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
689

690 691
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
692

693 694 695 696 697 698 699 700 701
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

702 703 704 705 706 707 708 709 710
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

711 712
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
713
	select CRYPTO_HASH
714
	help
715
	  Tiger hash algorithm 192, 160 and 128-bit hashes
716

717 718 719
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
720 721

	  See also:
722
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
723

724 725
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
726
	select CRYPTO_HASH
L
Linus Torvalds 已提交
727
	help
728
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
729

730 731
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
732 733

	  See also:
734
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
735

736 737
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
738
	depends on X86 && 64BIT
739 740 741 742 743
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

744
comment "Ciphers"
L
Linus Torvalds 已提交
745 746 747

config CRYPTO_AES
	tristate "AES cipher algorithms"
748
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
749
	help
750
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
751 752 753
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
754 755 756 757 758 759 760
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
761

762
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
763 764 765 766 767

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
768 769
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
770
	select CRYPTO_AES
L
Linus Torvalds 已提交
771
	help
772
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
773 774 775
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
776 777 778 779 780 781 782
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
783

784
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
785 786 787 788 789

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
790 791
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
792
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
793
	help
794
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
795 796 797
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
798 799 800
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
801 802 803 804 805 806 807 808 809 810 811
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
812
	depends on X86
813 814
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
815
	select CRYPTO_CRYPTD
816
	select CRYPTO_ABLK_HELPER
817
	select CRYPTO_ALGAPI
818
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
819 820
	select CRYPTO_LRW
	select CRYPTO_XTS
821 822 823 824 825 826 827 828 829 830
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
831 832 833 834
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
835

836
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
837 838 839

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

840 841 842 843
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
	  acceleration for CTR.
844

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

873 874 875 876 877 878 879 880 881 882 883 884 885
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

886 887 888 889 890 891 892 893 894 895 896
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
897 898
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
899 900 901

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
902
	select CRYPTO_BLKCIPHER
903 904 905 906 907 908 909 910 911 912 913
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
914
	select CRYPTO_BLOWFISH_COMMON
915 916 917 918 919 920 921 922 923 924
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

925 926 927 928 929 930 931 932 933
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

934 935
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
936
	depends on X86 && 64BIT
937 938 939 940 941 942 943 944 945 946 947 948
	select CRYPTO_ALGAPI
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

964 965
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
966
	depends on X86 && 64BIT
967 968
	depends on CRYPTO
	select CRYPTO_ALGAPI
969
	select CRYPTO_GLUE_HELPER_X86
970 971 972 973 974 975 976 977 978 979 980
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
981 982 983 984 985 986 987 988
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
989
	select CRYPTO_ABLK_HELPER
990 991 992 993 994 995 996 997 998 999 1000 1001 1002
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1003 1004
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1005 1006 1007 1008 1009 1010
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1011
	select CRYPTO_ABLK_HELPER
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1044 1045 1046 1047 1048 1049
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1050 1051
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1052
	select CRYPTO_ALGAPI
1053
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1054 1055 1056 1057
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1058 1059 1060 1061 1062
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1063
	select CRYPTO_ABLK_HELPER
1064
	select CRYPTO_CAST_COMMON
1065 1066 1067 1068 1069 1070 1071 1072
	select CRYPTO_CAST5
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1073 1074
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1075
	select CRYPTO_ALGAPI
1076
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1077 1078 1079 1080
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1081 1082 1083 1084 1085
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1086
	select CRYPTO_ABLK_HELPER
1087
	select CRYPTO_GLUE_HELPER_X86
1088
	select CRYPTO_CAST_COMMON
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	select CRYPTO_CAST6
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1099 1100
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1101
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1102
	help
1103
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1104

1105 1106
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1107
	depends on SPARC64
1108 1109 1110 1111 1112 1113
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1127 1128
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1129
	select CRYPTO_ALGAPI
1130
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1131
	help
1132
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1133 1134 1135

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1136
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1137 1138 1139 1140 1141 1142 1143 1144
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1145
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1146

1147
config CRYPTO_SALSA20
1148
	tristate "Salsa20 stream cipher algorithm"
1149 1150 1151 1152 1153 1154
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1155 1156 1157 1158 1159

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_586
1160
	tristate "Salsa20 stream cipher algorithm (i586)"
1161 1162 1163 1164 1165 1166 1167
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1168 1169 1170 1171 1172

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_X86_64
1173
	tristate "Salsa20 stream cipher algorithm (x86_64)"
1174 1175 1176 1177 1178 1179 1180
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1181 1182 1183

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
L
Linus Torvalds 已提交
1184

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
config CRYPTO_CHACHA20
	tristate "ChaCha20 cipher algorithm"
	select CRYPTO_BLKCIPHER
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the portable C implementation of ChaCha20.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1198 1199
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1200
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1201
	help
1202
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1203

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1214
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1215
	help
1216
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1217

1218 1219 1220 1221 1222 1223 1224
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1225 1226 1227 1228
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
1229
	select CRYPTO_CRYPTD
1230
	select CRYPTO_ABLK_HELPER
1231
	select CRYPTO_GLUE_HELPER_X86
1232
	select CRYPTO_SERPENT
1233 1234
	select CRYPTO_LRW
	select CRYPTO_XTS
1235 1236 1237 1238 1239 1240
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1241
	  This module provides Serpent cipher algorithm that processes eight
1242 1243 1244 1245 1246
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1247 1248 1249 1250
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
	select CRYPTO_ALGAPI
1251
	select CRYPTO_CRYPTD
1252
	select CRYPTO_ABLK_HELPER
1253
	select CRYPTO_GLUE_HELPER_X86
1254
	select CRYPTO_SERPENT
1255 1256
	select CRYPTO_LRW
	select CRYPTO_XTS
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1268 1269 1270 1271 1272 1273

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1274
	select CRYPTO_ABLK_HELPER
1275
	select CRYPTO_GLUE_HELPER_X86
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	select CRYPTO_SERPENT
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1290

1291 1292 1293 1294 1295
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1296
	select CRYPTO_ABLK_HELPER
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SERPENT
	select CRYPTO_SERPENT_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1314 1315
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1316
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1317
	help
1318
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1319

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1333
	select CRYPTO_ALGAPI
1334
	select CRYPTO_TWOFISH_COMMON
1335
	help
1336
	  Twofish cipher algorithm.
1337

1338 1339 1340 1341
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1342

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1364 1365

	  See also:
1366
	  <http://www.schneier.com/twofish.html>
1367

1368 1369 1370
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1371
	select CRYPTO_ALGAPI
1372
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1373
	help
1374
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1375

1376 1377 1378 1379 1380 1381 1382 1383
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1384 1385
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1386
	depends on X86 && 64BIT
1387 1388 1389
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1390
	select CRYPTO_GLUE_HELPER_X86
1391 1392
	select CRYPTO_LRW
	select CRYPTO_XTS
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1407 1408 1409 1410 1411
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1412
	select CRYPTO_ABLK_HELPER
1413
	select CRYPTO_GLUE_HELPER_X86
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1433 1434 1435 1436 1437 1438 1439
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1440
	help
1441 1442 1443 1444
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1445

1446 1447 1448 1449 1450 1451 1452 1453 1454
config CRYPTO_ZLIB
	tristate "Zlib compression algorithm"
	select CRYPTO_PCOMP
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
	select NLATTR
	help
	  This is the zlib algorithm.

1455 1456 1457 1458 1459 1460 1461 1462
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1463 1464
config CRYPTO_842
	tristate "842 compression algorithm"
1465 1466 1467
	select CRYPTO_ALGAPI
	select 842_COMPRESS
	select 842_DECOMPRESS
1468 1469
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1486

1487 1488 1489 1490 1491 1492 1493 1494 1495
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1496 1497
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1498

1499
menuconfig CRYPTO_DRBG_MENU
1500 1501 1502 1503 1504
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1505
if CRYPTO_DRBG_MENU
1506 1507

config CRYPTO_DRBG_HMAC
1508
	bool
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	default y
	select CRYPTO_HMAC

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
	select CRYPTO_HASH
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1524 1525
config CRYPTO_DRBG
	tristate
1526
	default CRYPTO_DRBG_MENU
1527
	select CRYPTO_RNG
1528
	select CRYPTO_JITTERENTROPY
1529 1530

endif	# if CRYPTO_DRBG_MENU
1531

1532 1533 1534 1535 1536 1537 1538 1539 1540
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1541 1542 1543
config CRYPTO_USER_API
	tristate

1544 1545
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1546
	depends on NET
1547 1548 1549 1550 1551 1552
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1553 1554
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1555
	depends on NET
1556 1557 1558 1559 1560 1561
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1562 1563 1564 1565 1566 1567 1568 1569 1570
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1571 1572 1573 1574 1575 1576 1577 1578 1579
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1580 1581 1582
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1583
source "drivers/crypto/Kconfig"
1584
source crypto/asymmetric_keys/Kconfig
L
Linus Torvalds 已提交
1585

1586
endif	# if CRYPTO