Kconfig 45.3 KB
Newer Older
1 2 3 4 5 6
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
7
#
D
Dan Williams 已提交
8
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
9
#
D
Dan Williams 已提交
10
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
11

D
Dan Williams 已提交
12 13 14
#
# Cryptographic API Configuration
#
15
menuconfig CRYPTO
16
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
17 18 19
	help
	  This option provides the core Cryptographic API.

20 21
if CRYPTO

22 23
comment "Crypto core or helper"

N
Neil Horman 已提交
24 25
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
26
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27
	depends on MODULE_SIG
N
Neil Horman 已提交
28 29 30 31
	help
	  This options enables the fips boot option which is
	  required if you want to system to operate in a FIPS 200
	  certification.  You should say no unless you know what
32
	  this is.
N
Neil Horman 已提交
33

34 35
config CRYPTO_ALGAPI
	tristate
36
	select CRYPTO_ALGAPI2
37 38 39
	help
	  This option provides the API for cryptographic algorithms.

40 41 42
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
43 44
config CRYPTO_AEAD
	tristate
45
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
46 47
	select CRYPTO_ALGAPI

48 49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2

52 53
config CRYPTO_BLKCIPHER
	tristate
54
	select CRYPTO_BLKCIPHER2
55
	select CRYPTO_ALGAPI
56 57 58 59 60

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
61
	select CRYPTO_WORKQUEUE
62

63 64
config CRYPTO_HASH
	tristate
65
	select CRYPTO_HASH2
66 67
	select CRYPTO_ALGAPI

68 69 70 71
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

72 73
config CRYPTO_RNG
	tristate
74
	select CRYPTO_RNG2
75 76
	select CRYPTO_ALGAPI

77 78 79 80
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

81 82 83 84
config CRYPTO_RNG_DEFAULT
	tristate
	select CRYPTO_DRBG_MENU

85
config CRYPTO_PCOMP
86 87 88 89 90
	tristate
	select CRYPTO_PCOMP2
	select CRYPTO_ALGAPI

config CRYPTO_PCOMP2
91 92 93
	tristate
	select CRYPTO_ALGAPI2

T
Tadeusz Struk 已提交
94 95 96 97 98 99 100 101 102
config CRYPTO_AKCIPHER2
	tristate
	select CRYPTO_ALGAPI2

config CRYPTO_AKCIPHER
	tristate
	select CRYPTO_AKCIPHER2
	select CRYPTO_ALGAPI

H
Herbert Xu 已提交
103 104
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
105
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
106 107 108 109
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

110 111 112 113 114
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
115
	select CRYPTO_PCOMP2
116

117 118
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
119
	depends on NET
120 121
	select CRYPTO_MANAGER
	help
122
	  Userspace configuration for cryptographic instantiations such as
123 124
	  cbc(aes).

125 126
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
127 128
	default y
	depends on CRYPTO_MANAGER2
129
	help
130 131
	  Disable run-time self tests that normally take place at
	  algorithm registration.
132

133
config CRYPTO_GF128MUL
134
	tristate "GF(2^128) multiplication functions"
K
Kazunori MIYAZAWA 已提交
135
	help
136 137 138 139 140
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
K
Kazunori MIYAZAWA 已提交
141

L
Linus Torvalds 已提交
142 143
config CRYPTO_NULL
	tristate "Null algorithms"
144
	select CRYPTO_ALGAPI
145
	select CRYPTO_BLKCIPHER
H
Herbert Xu 已提交
146
	select CRYPTO_HASH
L
Linus Torvalds 已提交
147 148 149
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

150
config CRYPTO_PCRYPT
151 152
	tristate "Parallel crypto engine"
	depends on SMP
153 154 155 156 157 158 159
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

160 161 162
config CRYPTO_WORKQUEUE
       tristate

163 164 165
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
166
	select CRYPTO_HASH
167
	select CRYPTO_MANAGER
168
	select CRYPTO_WORKQUEUE
L
Linus Torvalds 已提交
169
	help
170 171 172
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
173

174 175 176 177 178 179 180 181 182 183 184 185
config CRYPTO_MCRYPTD
	tristate "Software async multi-buffer crypto daemon"
	select CRYPTO_BLKCIPHER
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	select CRYPTO_WORKQUEUE
	help
	  This is a generic software asynchronous crypto daemon that
	  provides the kernel thread to assist multi-buffer crypto
	  algorithms for submitting jobs and flushing jobs in multi-buffer
	  crypto algorithms.  Multi-buffer crypto algorithms are executed
	  in the context of this kernel thread and drivers can post
186
	  their crypto request asynchronously to be processed by this daemon.
187

188 189 190 191 192 193
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
L
Linus Torvalds 已提交
194
	help
195 196
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
197

198 199 200
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
201
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
202
	help
203
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
204

205
config CRYPTO_ABLK_HELPER
206 207 208
	tristate
	select CRYPTO_CRYPTD

209 210 211 212 213
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
	select CRYPTO_ALGAPI

214
comment "Authenticated Encryption with Associated Data"
215

216 217 218 219
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
L
Linus Torvalds 已提交
220
	help
221
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
222

223 224 225 226
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
227
	select CRYPTO_GHASH
228
	select CRYPTO_NULL
L
Linus Torvalds 已提交
229
	help
230 231
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
232

233 234 235 236 237 238 239 240 241 242 243 244
config CRYPTO_CHACHA20POLY1305
	tristate "ChaCha20-Poly1305 AEAD support"
	select CRYPTO_CHACHA20
	select CRYPTO_POLY1305
	select CRYPTO_AEAD
	help
	  ChaCha20-Poly1305 AEAD support, RFC7539.

	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
	  IETF protocols.

245 246 247 248
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
249
	select CRYPTO_NULL
250
	select CRYPTO_RNG_DEFAULT
L
Linus Torvalds 已提交
251
	help
252 253
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
254

255 256 257 258
config CRYPTO_ECHAINIV
	tristate "Encrypted Chain IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_NULL
259
	select CRYPTO_RNG_DEFAULT
260
	default m
261 262 263 264 265
	help
	  This IV generator generates an IV based on the encryption of
	  a sequence number xored with a salt.  This is the default
	  algorithm for CBC.

266
comment "Block modes"
267

268 269
config CRYPTO_CBC
	tristate "CBC support"
270
	select CRYPTO_BLKCIPHER
271
	select CRYPTO_MANAGER
272
	help
273 274
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
275

276 277
config CRYPTO_CTR
	tristate "CTR support"
278
	select CRYPTO_BLKCIPHER
279
	select CRYPTO_SEQIV
280
	select CRYPTO_MANAGER
281
	help
282
	  CTR: Counter mode
283 284
	  This block cipher algorithm is required for IPSec.

285 286 287 288 289 290 291 292 293 294 295 296 297
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
	  Section 8 of rfc2040 and referenced by rfc3962.
	  (rfc3962 includes errata information in its Appendix A)
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

config CRYPTO_ECB
	tristate "ECB support"
298 299 300
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
301 302 303
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
304

305
config CRYPTO_LRW
306
	tristate "LRW support"
307 308 309 310 311 312 313 314 315 316
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

317 318 319 320 321 322 323 324
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

325
config CRYPTO_XTS
326
	tristate "XTS support"
327 328 329 330 331 332 333 334
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

335 336
comment "Hash modes"

337 338 339 340 341 342 343 344 345 346 347
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

348 349 350
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
351 352
	select CRYPTO_MANAGER
	help
353 354
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
355

356 357 358 359
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
360
	help
361 362 363 364
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
365

366 367 368 369 370 371 372 373 374 375 376
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

377
comment "Digest"
M
Mikko Herranen 已提交
378

379 380
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
381
	select CRYPTO_HASH
382
	select CRC32
J
Joy Latten 已提交
383
	help
384 385
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
386
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
387

388 389 390 391 392 393 394 395 396 397 398 399
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

400 401 402 403 404 405 406 407 408
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
	  instruction. This option will create 'crc32-plcmul' module,
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
	  'crct10dif-plcmul' module, which is faster when computing the
	  crct10dif checksum as compared with the generic table implementation.

449 450 451 452 453 454
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

455 456 457 458 459 460 461 462 463
config CRYPTO_POLY1305
	tristate "Poly1305 authenticator algorithm"
	help
	  Poly1305 authenticator algorithm, RFC7539.

	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
	  in IETF protocols. This is the portable C implementation of Poly1305.

464 465
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
466
	select CRYPTO_HASH
467
	help
468
	  MD4 message digest algorithm (RFC1320).
469

470 471
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
472
	select CRYPTO_HASH
L
Linus Torvalds 已提交
473
	help
474
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
475

476 477 478 479 480 481 482 483 484
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

485 486 487 488 489 490 491 492
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

493 494 495 496 497 498 499 500 501
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

502 503
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
504
	select CRYPTO_HASH
505
	help
506 507 508 509
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
510

511
config CRYPTO_RMD128
512
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
513
	select CRYPTO_HASH
514 515
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
516

517
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
518
	  be used as a secure replacement for RIPEMD. For other use cases,
519
	  RIPEMD-160 should be used.
520

521
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
522
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
523 524

config CRYPTO_RMD160
525
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
526
	select CRYPTO_HASH
527 528
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
529

530 531 532 533
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
534

535 536
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
537

538
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
539
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
540 541

config CRYPTO_RMD256
542
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
543
	select CRYPTO_HASH
544 545 546 547 548
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
549

550
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
551
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
552 553

config CRYPTO_RMD320
554
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
555
	select CRYPTO_HASH
556 557 558 559 560
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
561

562
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
563
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
564

565 566
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
567
	select CRYPTO_HASH
L
Linus Torvalds 已提交
568
	help
569
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
570

571
config CRYPTO_SHA1_SSSE3
572
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2)"
573 574 575 576 577 578
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
579
	  Extensions (AVX/AVX2), when available.
580

581 582 583 584 585 586 587 588 589
config CRYPTO_SHA256_SSSE3
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
590 591 592 593 594 595 596 597 598 599 600
	  version 2 (AVX2) instructions, when available.

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
601 602
	  version 2 (AVX2) instructions, when available.

603 604 605 606 607 608 609 610 611
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

612 613 614 615 616 617 618 619 620
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

621 622 623 624 625 626 627
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

628 629 630 631 632 633 634
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
config CRYPTO_SHA1_MB
	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

651 652
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
653
	select CRYPTO_HASH
L
Linus Torvalds 已提交
654
	help
655
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
656

657 658
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
659

660 661
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
662

663 664 665 666 667 668 669 670 671
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

672 673 674 675 676 677 678 679 680
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

681 682 683 684 685 686 687 688 689
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

690 691
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
692
	select CRYPTO_HASH
693
	help
694
	  SHA512 secure hash standard (DFIPS 180-2).
695

696 697
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
698

699 700
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
701

702 703 704 705 706 707 708 709 710
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

711 712 713 714 715 716 717 718 719
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

720 721
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
722
	select CRYPTO_HASH
723
	help
724
	  Tiger hash algorithm 192, 160 and 128-bit hashes
725

726 727 728
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
729 730

	  See also:
731
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
732

733 734
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
735
	select CRYPTO_HASH
L
Linus Torvalds 已提交
736
	help
737
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
738

739 740
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
741 742

	  See also:
743
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
744

745 746
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
747
	depends on X86 && 64BIT
748 749 750 751 752
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

753
comment "Ciphers"
L
Linus Torvalds 已提交
754 755 756

config CRYPTO_AES
	tristate "AES cipher algorithms"
757
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
758
	help
759
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
760 761 762
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
763 764 765 766 767 768 769
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
770

771
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
772 773 774 775 776

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
777 778
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
779
	select CRYPTO_AES
L
Linus Torvalds 已提交
780
	help
781
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
782 783 784
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
785 786 787 788 789 790 791
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
792

793
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
794 795 796 797 798

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
799 800
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
801
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
802
	help
803
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
804 805 806
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
807 808 809
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
810 811 812 813 814 815 816 817 818 819 820
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
821
	depends on X86
822 823
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
824
	select CRYPTO_CRYPTD
825
	select CRYPTO_ABLK_HELPER
826
	select CRYPTO_ALGAPI
827
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
828 829
	select CRYPTO_LRW
	select CRYPTO_XTS
830 831 832 833 834 835 836 837 838 839
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
840 841 842 843
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
844

845
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
846 847 848

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

849 850 851 852
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
	  acceleration for CTR.
853

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

882 883 884 885 886 887 888 889 890 891 892 893 894
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

895 896 897 898 899 900 901 902 903 904 905
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
906 907
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
908 909 910

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
911
	select CRYPTO_BLKCIPHER
912 913 914 915 916 917 918 919 920 921 922
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
923
	select CRYPTO_BLOWFISH_COMMON
924 925 926 927 928 929 930 931 932 933
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

934 935 936 937 938 939 940 941 942
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

943 944
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
945
	depends on X86 && 64BIT
946 947 948 949 950 951 952 953 954 955 956 957
	select CRYPTO_ALGAPI
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

973 974
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
975
	depends on X86 && 64BIT
976 977
	depends on CRYPTO
	select CRYPTO_ALGAPI
978
	select CRYPTO_GLUE_HELPER_X86
979 980 981 982 983 984 985 986 987 988 989
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
990 991 992 993 994 995 996 997
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
998
	select CRYPTO_ABLK_HELPER
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
1012 1013
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1014 1015 1016 1017 1018 1019
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1020
	select CRYPTO_ABLK_HELPER
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1053 1054 1055 1056 1057 1058
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1059 1060
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1061
	select CRYPTO_ALGAPI
1062
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1063 1064 1065 1066
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1067 1068 1069 1070 1071
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1072
	select CRYPTO_ABLK_HELPER
1073
	select CRYPTO_CAST_COMMON
1074 1075 1076 1077 1078 1079 1080 1081
	select CRYPTO_CAST5
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1082 1083
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1084
	select CRYPTO_ALGAPI
1085
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1086 1087 1088 1089
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1090 1091 1092 1093 1094
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1095
	select CRYPTO_ABLK_HELPER
1096
	select CRYPTO_GLUE_HELPER_X86
1097
	select CRYPTO_CAST_COMMON
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	select CRYPTO_CAST6
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1108 1109
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1110
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1111
	help
1112
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1113

1114 1115
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1116
	depends on SPARC64
1117 1118 1119 1120 1121 1122
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1136 1137
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1138
	select CRYPTO_ALGAPI
1139
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1140
	help
1141
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1142 1143 1144

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1145
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1146 1147 1148 1149 1150 1151 1152 1153
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1154
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1155

1156
config CRYPTO_SALSA20
1157
	tristate "Salsa20 stream cipher algorithm"
1158 1159 1160 1161 1162 1163
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1164 1165 1166 1167 1168

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_586
1169
	tristate "Salsa20 stream cipher algorithm (i586)"
1170 1171 1172 1173 1174 1175 1176
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1177 1178 1179 1180 1181

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_X86_64
1182
	tristate "Salsa20 stream cipher algorithm (x86_64)"
1183 1184 1185 1186 1187 1188 1189
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1190 1191 1192

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
L
Linus Torvalds 已提交
1193

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
config CRYPTO_CHACHA20
	tristate "ChaCha20 cipher algorithm"
	select CRYPTO_BLKCIPHER
	help
	  ChaCha20 cipher algorithm, RFC7539.

	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
	  Bernstein and further specified in RFC7539 for use in IETF protocols.
	  This is the portable C implementation of ChaCha20.

	  See also:
	  <http://cr.yp.to/chacha/chacha-20080128.pdf>

1207 1208
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1209
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1210
	help
1211
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1223
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1224
	help
1225
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1226

1227 1228 1229 1230 1231 1232 1233
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1234 1235 1236 1237
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
1238
	select CRYPTO_CRYPTD
1239
	select CRYPTO_ABLK_HELPER
1240
	select CRYPTO_GLUE_HELPER_X86
1241
	select CRYPTO_SERPENT
1242 1243
	select CRYPTO_LRW
	select CRYPTO_XTS
1244 1245 1246 1247 1248 1249
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1250
	  This module provides Serpent cipher algorithm that processes eight
1251 1252 1253 1254 1255
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1256 1257 1258 1259
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
	select CRYPTO_ALGAPI
1260
	select CRYPTO_CRYPTD
1261
	select CRYPTO_ABLK_HELPER
1262
	select CRYPTO_GLUE_HELPER_X86
1263
	select CRYPTO_SERPENT
1264 1265
	select CRYPTO_LRW
	select CRYPTO_XTS
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1277 1278 1279 1280 1281 1282

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1283
	select CRYPTO_ABLK_HELPER
1284
	select CRYPTO_GLUE_HELPER_X86
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	select CRYPTO_SERPENT
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1299

1300 1301 1302 1303 1304
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1305
	select CRYPTO_ABLK_HELPER
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SERPENT
	select CRYPTO_SERPENT_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1323 1324
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1325
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1326
	help
1327
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1328

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1342
	select CRYPTO_ALGAPI
1343
	select CRYPTO_TWOFISH_COMMON
1344
	help
1345
	  Twofish cipher algorithm.
1346

1347 1348 1349 1350
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1373 1374

	  See also:
1375
	  <http://www.schneier.com/twofish.html>
1376

1377 1378 1379
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1380
	select CRYPTO_ALGAPI
1381
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1382
	help
1383
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1384

1385 1386 1387 1388 1389 1390 1391 1392
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1393 1394
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1395
	depends on X86 && 64BIT
1396 1397 1398
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1399
	select CRYPTO_GLUE_HELPER_X86
1400 1401
	select CRYPTO_LRW
	select CRYPTO_XTS
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1416 1417 1418 1419 1420
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1421
	select CRYPTO_ABLK_HELPER
1422
	select CRYPTO_GLUE_HELPER_X86
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1442 1443 1444 1445 1446 1447 1448
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1449
	help
1450 1451 1452 1453
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1454

1455 1456 1457 1458 1459 1460 1461 1462 1463
config CRYPTO_ZLIB
	tristate "Zlib compression algorithm"
	select CRYPTO_PCOMP
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
	select NLATTR
	help
	  This is the zlib algorithm.

1464 1465 1466 1467 1468 1469 1470 1471
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1472 1473
config CRYPTO_842
	tristate "842 compression algorithm"
1474 1475 1476
	select CRYPTO_ALGAPI
	select 842_COMPRESS
	select 842_DECOMPRESS
1477 1478
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1495

1496 1497 1498 1499 1500 1501 1502 1503 1504
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1505 1506
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1507

1508
menuconfig CRYPTO_DRBG_MENU
1509 1510 1511 1512 1513
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1514
if CRYPTO_DRBG_MENU
1515 1516

config CRYPTO_DRBG_HMAC
1517
	bool
1518 1519
	default y
	select CRYPTO_HMAC
H
Herbert Xu 已提交
1520
	select CRYPTO_SHA256
1521 1522 1523

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
H
Herbert Xu 已提交
1524
	select CRYPTO_SHA256
1525 1526 1527 1528 1529 1530 1531 1532 1533
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1534 1535
config CRYPTO_DRBG
	tristate
1536
	default CRYPTO_DRBG_MENU
1537
	select CRYPTO_RNG
1538
	select CRYPTO_JITTERENTROPY
1539 1540

endif	# if CRYPTO_DRBG_MENU
1541

1542 1543 1544 1545 1546 1547 1548 1549 1550
config CRYPTO_JITTERENTROPY
	tristate "Jitterentropy Non-Deterministic Random Number Generator"
	help
	  The Jitterentropy RNG is a noise that is intended
	  to provide seed to another RNG. The RNG does not
	  perform any cryptographic whitening of the generated
	  random numbers. This Jitterentropy RNG registers with
	  the kernel crypto API and can be used by any caller.

1551 1552 1553
config CRYPTO_USER_API
	tristate

1554 1555
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1556
	depends on NET
1557 1558 1559 1560 1561 1562
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1563 1564
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1565
	depends on NET
1566 1567 1568 1569 1570 1571
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1572 1573 1574 1575 1576 1577 1578 1579 1580
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1581 1582 1583 1584 1585 1586 1587 1588 1589
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1590 1591 1592
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1593
source "drivers/crypto/Kconfig"
1594
source crypto/asymmetric_keys/Kconfig
L
Linus Torvalds 已提交
1595

1596
endif	# if CRYPTO