ntp.c 23.4 KB
Newer Older
1 2 3 4 5 6 7
/*
 * NTP state machine interfaces and logic.
 *
 * This code was mainly moved from kernel/timer.c and kernel/time.c
 * Please see those files for relevant copyright info and historical
 * changelogs.
 */
A
Alexey Dobriyan 已提交
8
#include <linux/capability.h>
R
Roman Zippel 已提交
9
#include <linux/clocksource.h>
10
#include <linux/workqueue.h>
11 12 13 14 15 16
#include <linux/hrtimer.h>
#include <linux/jiffies.h>
#include <linux/math64.h>
#include <linux/timex.h>
#include <linux/time.h>
#include <linux/mm.h>
17
#include <linux/module.h>
18
#include <linux/rtc.h>
19

20
#include "ntp_internal.h"
21

22
/*
23
 * NTP timekeeping variables:
24 25
 *
 * Note: All of the NTP state is protected by the timekeeping locks.
26 27
 */

28

29 30 31
/* USER_HZ period (usecs): */
unsigned long			tick_usec = TICK_USEC;

32
/* SHIFTED_HZ period (nsecs): */
33
unsigned long			tick_nsec;
R
Roman Zippel 已提交
34

35
static u64			tick_length;
36 37
static u64			tick_length_base;

38
#define MAX_TICKADJ		500LL		/* usecs */
39
#define MAX_TICKADJ_SCALED \
40
	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
41 42 43 44

/*
 * phase-lock loop variables
 */
45 46 47 48 49 50 51 52 53

/*
 * clock synchronization status
 *
 * (TIME_ERROR prevents overwriting the CMOS clock)
 */
static int			time_state = TIME_OK;

/* clock status bits:							*/
J
John Stultz 已提交
54
static int			time_status = STA_UNSYNC;
55 56 57 58 59 60 61 62

/* time adjustment (nsecs):						*/
static s64			time_offset;

/* pll time constant:							*/
static long			time_constant = 2;

/* maximum error (usecs):						*/
63
static long			time_maxerror = NTP_PHASE_LIMIT;
64 65

/* estimated error (usecs):						*/
66
static long			time_esterror = NTP_PHASE_LIMIT;
67 68 69 70 71 72 73

/* frequency offset (scaled nsecs/secs):				*/
static s64			time_freq;

/* time at last adjustment (secs):					*/
static long			time_reftime;

J
John Stultz 已提交
74
static long			time_adjust;
75

76 77
/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
static s64			ntp_tick_adj;
78

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
#ifdef CONFIG_NTP_PPS

/*
 * The following variables are used when a pulse-per-second (PPS) signal
 * is available. They establish the engineering parameters of the clock
 * discipline loop when controlled by the PPS signal.
 */
#define PPS_VALID	10	/* PPS signal watchdog max (s) */
#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
				   increase pps_shift or consecutive bad
				   intervals to decrease it */
#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */

static int pps_valid;		/* signal watchdog counter */
static long pps_tf[3];		/* phase median filter */
static long pps_jitter;		/* current jitter (ns) */
static struct timespec pps_fbase; /* beginning of the last freq interval */
static int pps_shift;		/* current interval duration (s) (shift) */
static int pps_intcnt;		/* interval counter */
static s64 pps_freq;		/* frequency offset (scaled ns/s) */
static long pps_stabil;		/* current stability (scaled ns/s) */

/*
 * PPS signal quality monitors
 */
static long pps_calcnt;		/* calibration intervals */
static long pps_jitcnt;		/* jitter limit exceeded */
static long pps_stbcnt;		/* stability limit exceeded */
static long pps_errcnt;		/* calibration errors */


/* PPS kernel consumer compensates the whole phase error immediately.
 * Otherwise, reduce the offset by a fixed factor times the time constant.
 */
static inline s64 ntp_offset_chunk(s64 offset)
{
	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
		return offset;
	else
		return shift_right(offset, SHIFT_PLL + time_constant);
}

static inline void pps_reset_freq_interval(void)
{
	/* the PPS calibration interval may end
	   surprisingly early */
	pps_shift = PPS_INTMIN;
	pps_intcnt = 0;
}

/**
 * pps_clear - Clears the PPS state variables
 */
static inline void pps_clear(void)
{
	pps_reset_freq_interval();
	pps_tf[0] = 0;
	pps_tf[1] = 0;
	pps_tf[2] = 0;
	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
	pps_freq = 0;
}

/* Decrease pps_valid to indicate that another second has passed since
 * the last PPS signal. When it reaches 0, indicate that PPS signal is
 * missing.
 */
static inline void pps_dec_valid(void)
{
	if (pps_valid > 0)
		pps_valid--;
	else {
		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
				 STA_PPSWANDER | STA_PPSERROR);
		pps_clear();
	}
}

static inline void pps_set_freq(s64 freq)
{
	pps_freq = freq;
}

static inline int is_error_status(int status)
{
167
	return (status & (STA_UNSYNC|STA_CLOCKERR))
168 169 170
		/* PPS signal lost when either PPS time or
		 * PPS frequency synchronization requested
		 */
171 172
		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
			&& !(status & STA_PPSSIGNAL))
173 174
		/* PPS jitter exceeded when
		 * PPS time synchronization requested */
175
		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
176 177 178 179
			== (STA_PPSTIME|STA_PPSJITTER))
		/* PPS wander exceeded or calibration error when
		 * PPS frequency synchronization requested
		 */
180 181
		|| ((status & STA_PPSFREQ)
			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
}

static inline void pps_fill_timex(struct timex *txc)
{
	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
	txc->jitter	   = pps_jitter;
	if (!(time_status & STA_NANO))
		txc->jitter /= NSEC_PER_USEC;
	txc->shift	   = pps_shift;
	txc->stabil	   = pps_stabil;
	txc->jitcnt	   = pps_jitcnt;
	txc->calcnt	   = pps_calcnt;
	txc->errcnt	   = pps_errcnt;
	txc->stbcnt	   = pps_stbcnt;
}

#else /* !CONFIG_NTP_PPS */

static inline s64 ntp_offset_chunk(s64 offset)
{
	return shift_right(offset, SHIFT_PLL + time_constant);
}

static inline void pps_reset_freq_interval(void) {}
static inline void pps_clear(void) {}
static inline void pps_dec_valid(void) {}
static inline void pps_set_freq(s64 freq) {}

static inline int is_error_status(int status)
{
	return status & (STA_UNSYNC|STA_CLOCKERR);
}

static inline void pps_fill_timex(struct timex *txc)
{
	/* PPS is not implemented, so these are zero */
	txc->ppsfreq	   = 0;
	txc->jitter	   = 0;
	txc->shift	   = 0;
	txc->stabil	   = 0;
	txc->jitcnt	   = 0;
	txc->calcnt	   = 0;
	txc->errcnt	   = 0;
	txc->stbcnt	   = 0;
}

#endif /* CONFIG_NTP_PPS */

J
John Stultz 已提交
231 232 233 234 235 236 237 238 239 240 241

/**
 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
 *
 */
static inline int ntp_synced(void)
{
	return !(time_status & STA_UNSYNC);
}


242 243 244
/*
 * NTP methods:
 */
245

246 247 248 249
/*
 * Update (tick_length, tick_length_base, tick_nsec), based
 * on (tick_usec, ntp_tick_adj, time_freq):
 */
250 251
static void ntp_update_frequency(void)
{
252
	u64 second_length;
253
	u64 new_base;
254 255 256 257

	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
						<< NTP_SCALE_SHIFT;

258
	second_length		+= ntp_tick_adj;
259
	second_length		+= time_freq;
260

261
	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
262
	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
263 264 265

	/*
	 * Don't wait for the next second_overflow, apply
266
	 * the change to the tick length immediately:
267
	 */
268 269
	tick_length		+= new_base - tick_length_base;
	tick_length_base	 = new_base;
270 271
}

272
static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
273 274 275 276
{
	time_status &= ~STA_MODE;

	if (secs < MINSEC)
277
		return 0;
278 279

	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
280
		return 0;
281 282 283

	time_status |= STA_MODE;

284
	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
285 286
}

R
Roman Zippel 已提交
287 288 289
static void ntp_update_offset(long offset)
{
	s64 freq_adj;
290 291
	s64 offset64;
	long secs;
R
Roman Zippel 已提交
292 293 294 295

	if (!(time_status & STA_PLL))
		return;

R
Roman Zippel 已提交
296
	if (!(time_status & STA_NANO))
297
		offset *= NSEC_PER_USEC;
R
Roman Zippel 已提交
298 299 300 301 302

	/*
	 * Scale the phase adjustment and
	 * clamp to the operating range.
	 */
303 304
	offset = min(offset, MAXPHASE);
	offset = max(offset, -MAXPHASE);
R
Roman Zippel 已提交
305 306 307 308 309

	/*
	 * Select how the frequency is to be controlled
	 * and in which mode (PLL or FLL).
	 */
310
	secs = get_seconds() - time_reftime;
311
	if (unlikely(time_status & STA_FREQHOLD))
312 313
		secs = 0;

314
	time_reftime = get_seconds();
R
Roman Zippel 已提交
315

316
	offset64    = offset;
317
	freq_adj    = ntp_update_offset_fll(offset64, secs);
318

319 320 321 322 323 324 325 326 327 328
	/*
	 * Clamp update interval to reduce PLL gain with low
	 * sampling rate (e.g. intermittent network connection)
	 * to avoid instability.
	 */
	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
		secs = 1 << (SHIFT_PLL + 1 + time_constant);

	freq_adj    += (offset64 * secs) <<
			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
329 330 331 332 333 334

	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);

	time_freq   = max(freq_adj, -MAXFREQ_SCALED);

	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
R
Roman Zippel 已提交
335 336
}

337 338 339 340 341
/**
 * ntp_clear - Clears the NTP state variables
 */
void ntp_clear(void)
{
342 343 344 345
	time_adjust	= 0;		/* stop active adjtime() */
	time_status	|= STA_UNSYNC;
	time_maxerror	= NTP_PHASE_LIMIT;
	time_esterror	= NTP_PHASE_LIMIT;
346 347 348

	ntp_update_frequency();

349 350
	tick_length	= tick_length_base;
	time_offset	= 0;
351 352 353

	/* Clear PPS state variables */
	pps_clear();
354 355
}

356 357 358

u64 ntp_tick_length(void)
{
359
	return tick_length;
360 361 362
}


363
/*
364 365 366 367 368 369 370 371
 * this routine handles the overflow of the microsecond field
 *
 * The tricky bits of code to handle the accurate clock support
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 * They were originally developed for SUN and DEC kernels.
 * All the kudos should go to Dave for this stuff.
 *
 * Also handles leap second processing, and returns leap offset
372
 */
373
int second_overflow(unsigned long secs)
374
{
375
	s64 delta;
376
	int leap = 0;
377 378 379 380 381 382

	/*
	 * Leap second processing. If in leap-insert state at the end of the
	 * day, the system clock is set back one second; if in leap-delete
	 * state, the system clock is set ahead one second.
	 */
383 384
	switch (time_state) {
	case TIME_OK:
385 386 387 388
		if (time_status & STA_INS)
			time_state = TIME_INS;
		else if (time_status & STA_DEL)
			time_state = TIME_DEL;
389 390
		break;
	case TIME_INS:
J
John Stultz 已提交
391 392 393
		if (!(time_status & STA_INS))
			time_state = TIME_OK;
		else if (secs % 86400 == 0) {
394 395 396 397 398
			leap = -1;
			time_state = TIME_OOP;
			printk(KERN_NOTICE
				"Clock: inserting leap second 23:59:60 UTC\n");
		}
399 400
		break;
	case TIME_DEL:
J
John Stultz 已提交
401 402 403
		if (!(time_status & STA_DEL))
			time_state = TIME_OK;
		else if ((secs + 1) % 86400 == 0) {
404 405 406 407 408
			leap = 1;
			time_state = TIME_WAIT;
			printk(KERN_NOTICE
				"Clock: deleting leap second 23:59:59 UTC\n");
		}
409 410 411
		break;
	case TIME_OOP:
		time_state = TIME_WAIT;
412 413
		break;

414 415
	case TIME_WAIT:
		if (!(time_status & (STA_INS | STA_DEL)))
R
Roman Zippel 已提交
416
			time_state = TIME_OK;
R
Roman Zippel 已提交
417 418
		break;
	}
419

R
Roman Zippel 已提交
420 421 422 423 424 425

	/* Bump the maxerror field */
	time_maxerror += MAXFREQ / NSEC_PER_USEC;
	if (time_maxerror > NTP_PHASE_LIMIT) {
		time_maxerror = NTP_PHASE_LIMIT;
		time_status |= STA_UNSYNC;
426 427
	}

428
	/* Compute the phase adjustment for the next second */
429 430
	tick_length	 = tick_length_base;

431
	delta		 = ntp_offset_chunk(time_offset);
432 433
	time_offset	-= delta;
	tick_length	+= delta;
434

435 436 437
	/* Check PPS signal */
	pps_dec_valid();

438
	if (!time_adjust)
439
		goto out;
440 441 442 443

	if (time_adjust > MAX_TICKADJ) {
		time_adjust -= MAX_TICKADJ;
		tick_length += MAX_TICKADJ_SCALED;
444
		goto out;
445
	}
446 447 448 449

	if (time_adjust < -MAX_TICKADJ) {
		time_adjust += MAX_TICKADJ;
		tick_length -= MAX_TICKADJ_SCALED;
450
		goto out;
451 452 453 454 455
	}

	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
							 << NTP_SCALE_SHIFT;
	time_adjust = 0;
456

457
out:
458
	return leap;
459 460
}

461
#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
462
static void sync_cmos_clock(struct work_struct *work);
463

464
static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
465

466
static void sync_cmos_clock(struct work_struct *work)
467
{
468 469
	struct timespec64 now;
	struct timespec next;
470 471 472 473 474 475 476 477
	int fail = 1;

	/*
	 * If we have an externally synchronized Linux clock, then update
	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
	 * called as close as possible to 500 ms before the new second starts.
	 * This code is run on a timer.  If the clock is set, that timer
	 * may not expire at the correct time.  Thus, we adjust...
478
	 * We want the clock to be within a couple of ticks from the target.
479
	 */
480
	if (!ntp_synced()) {
481 482 483 484 485
		/*
		 * Not synced, exit, do not restart a timer (if one is
		 * running, let it run out).
		 */
		return;
486
	}
487

488
	getnstimeofday64(&now);
489
	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
490
		struct timespec64 adjust = now;
491

492
		fail = -ENODEV;
493 494
		if (persistent_clock_is_local)
			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
495
#ifdef CONFIG_GENERIC_CMOS_UPDATE
496
		fail = update_persistent_clock(timespec64_to_timespec(adjust));
497 498 499
#endif
#ifdef CONFIG_RTC_SYSTOHC
		if (fail == -ENODEV)
500
			fail = rtc_set_ntp_time(adjust);
501 502
#endif
	}
503

504
	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
505 506 507
	if (next.tv_nsec <= 0)
		next.tv_nsec += NSEC_PER_SEC;

508
	if (!fail || fail == -ENODEV)
509 510 511 512 513 514 515 516
		next.tv_sec = 659;
	else
		next.tv_sec = 0;

	if (next.tv_nsec >= NSEC_PER_SEC) {
		next.tv_sec++;
		next.tv_nsec -= NSEC_PER_SEC;
	}
517 518
	queue_delayed_work(system_power_efficient_wq,
			   &sync_cmos_work, timespec_to_jiffies(&next));
519 520
}

521
void ntp_notify_cmos_timer(void)
522
{
523
	queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
524 525
}

526
#else
527
void ntp_notify_cmos_timer(void) { }
528 529
#endif

I
Ingo Molnar 已提交
530 531 532 533

/*
 * Propagate a new txc->status value into the NTP state:
 */
534
static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
I
Ingo Molnar 已提交
535 536 537 538
{
	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
		time_state = TIME_OK;
		time_status = STA_UNSYNC;
539 540
		/* restart PPS frequency calibration */
		pps_reset_freq_interval();
I
Ingo Molnar 已提交
541 542 543 544 545 546 547
	}

	/*
	 * If we turn on PLL adjustments then reset the
	 * reference time to current time.
	 */
	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
548
		time_reftime = get_seconds();
I
Ingo Molnar 已提交
549

550 551
	/* only set allowed bits */
	time_status &= STA_RONLY;
I
Ingo Molnar 已提交
552 553
	time_status |= txc->status & ~STA_RONLY;
}
554

555

556
static inline void process_adjtimex_modes(struct timex *txc,
557
						struct timespec64 *ts,
558
						s32 *time_tai)
I
Ingo Molnar 已提交
559 560 561 562 563 564
{
	if (txc->modes & ADJ_STATUS)
		process_adj_status(txc, ts);

	if (txc->modes & ADJ_NANO)
		time_status |= STA_NANO;
565

I
Ingo Molnar 已提交
566 567 568 569
	if (txc->modes & ADJ_MICRO)
		time_status &= ~STA_NANO;

	if (txc->modes & ADJ_FREQUENCY) {
570
		time_freq = txc->freq * PPM_SCALE;
I
Ingo Molnar 已提交
571 572
		time_freq = min(time_freq, MAXFREQ_SCALED);
		time_freq = max(time_freq, -MAXFREQ_SCALED);
573 574
		/* update pps_freq */
		pps_set_freq(time_freq);
I
Ingo Molnar 已提交
575 576 577 578
	}

	if (txc->modes & ADJ_MAXERROR)
		time_maxerror = txc->maxerror;
579

I
Ingo Molnar 已提交
580 581 582 583 584 585 586 587 588 589 590 591
	if (txc->modes & ADJ_ESTERROR)
		time_esterror = txc->esterror;

	if (txc->modes & ADJ_TIMECONST) {
		time_constant = txc->constant;
		if (!(time_status & STA_NANO))
			time_constant += 4;
		time_constant = min(time_constant, (long)MAXTC);
		time_constant = max(time_constant, 0l);
	}

	if (txc->modes & ADJ_TAI && txc->constant > 0)
592
		*time_tai = txc->constant;
I
Ingo Molnar 已提交
593 594 595

	if (txc->modes & ADJ_OFFSET)
		ntp_update_offset(txc->offset);
596

I
Ingo Molnar 已提交
597 598 599 600 601 602 603
	if (txc->modes & ADJ_TICK)
		tick_usec = txc->tick;

	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
		ntp_update_frequency();
}

604 605 606 607


/**
 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
608
 */
609
int ntp_validate_timex(struct timex *txc)
610
{
611
	if (txc->modes & ADJ_ADJTIME) {
R
Roman Zippel 已提交
612
		/* singleshot must not be used with any other mode bits */
613
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
614
			return -EINVAL;
615 616 617 618 619 620 621
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		 if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;
622 623 624 625
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
626 627 628
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
629
			return -EINVAL;
J
John Stultz 已提交
630
	}
631

632 633 634
	if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
		return -EPERM;

635 636 637 638 639 640
	/*
	 * Check for potential multiplication overflows that can
	 * only happen on 64-bit systems:
	 */
	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
		if (LLONG_MIN / PPM_SCALE > txc->freq)
641
			return -EINVAL;
642
		if (LLONG_MAX / PPM_SCALE < txc->freq)
643 644 645
			return -EINVAL;
	}

646 647 648 649 650 651 652 653
	return 0;
}


/*
 * adjtimex mainly allows reading (and writing, if superuser) of
 * kernel time-keeping variables. used by xntpd.
 */
654
int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
655 656 657
{
	int result;

658 659 660 661 662 663 664 665 666
	if (txc->modes & ADJ_ADJTIME) {
		long save_adjust = time_adjust;

		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
			/* adjtime() is independent from ntp_adjtime() */
			time_adjust = txc->offset;
			ntp_update_frequency();
		}
		txc->offset = save_adjust;
667
	} else {
R
Roman Zippel 已提交
668

669 670
		/* If there are input parameters, then process them: */
		if (txc->modes)
671
			process_adjtimex_modes(txc, ts, time_tai);
R
Roman Zippel 已提交
672

673
		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
674
				  NTP_SCALE_SHIFT);
675 676 677
		if (!(time_status & STA_NANO))
			txc->offset /= NSEC_PER_USEC;
	}
678

R
Roman Zippel 已提交
679
	result = time_state;	/* mostly `TIME_OK' */
680 681
	/* check for errors */
	if (is_error_status(time_status))
682 683
		result = TIME_ERROR;

684
	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
685
					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
686 687 688 689
	txc->maxerror	   = time_maxerror;
	txc->esterror	   = time_esterror;
	txc->status	   = time_status;
	txc->constant	   = time_constant;
690
	txc->precision	   = 1;
691
	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
692
	txc->tick	   = tick_usec;
693
	txc->tai	   = *time_tai;
694

695 696
	/* fill PPS status fields */
	pps_fill_timex(txc);
697

698
	txc->time.tv_sec = (time_t)ts->tv_sec;
699
	txc->time.tv_usec = ts->tv_nsec;
R
Roman Zippel 已提交
700 701
	if (!(time_status & STA_NANO))
		txc->time.tv_usec /= NSEC_PER_USEC;
R
Roman Zippel 已提交
702 703

	return result;
704
}
705

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
#ifdef	CONFIG_NTP_PPS

/* actually struct pps_normtime is good old struct timespec, but it is
 * semantically different (and it is the reason why it was invented):
 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
struct pps_normtime {
	__kernel_time_t	sec;	/* seconds */
	long		nsec;	/* nanoseconds */
};

/* normalize the timestamp so that nsec is in the
   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
{
	struct pps_normtime norm = {
		.sec = ts.tv_sec,
		.nsec = ts.tv_nsec
	};

	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
		norm.nsec -= NSEC_PER_SEC;
		norm.sec++;
	}

	return norm;
}

/* get current phase correction and jitter */
static inline long pps_phase_filter_get(long *jitter)
{
	*jitter = pps_tf[0] - pps_tf[1];
	if (*jitter < 0)
		*jitter = -*jitter;

	/* TODO: test various filters */
	return pps_tf[0];
}

/* add the sample to the phase filter */
static inline void pps_phase_filter_add(long err)
{
	pps_tf[2] = pps_tf[1];
	pps_tf[1] = pps_tf[0];
	pps_tf[0] = err;
}

/* decrease frequency calibration interval length.
 * It is halved after four consecutive unstable intervals.
 */
static inline void pps_dec_freq_interval(void)
{
	if (--pps_intcnt <= -PPS_INTCOUNT) {
		pps_intcnt = -PPS_INTCOUNT;
		if (pps_shift > PPS_INTMIN) {
			pps_shift--;
			pps_intcnt = 0;
		}
	}
}

/* increase frequency calibration interval length.
 * It is doubled after four consecutive stable intervals.
 */
static inline void pps_inc_freq_interval(void)
{
	if (++pps_intcnt >= PPS_INTCOUNT) {
		pps_intcnt = PPS_INTCOUNT;
		if (pps_shift < PPS_INTMAX) {
			pps_shift++;
			pps_intcnt = 0;
		}
	}
}

/* update clock frequency based on MONOTONIC_RAW clock PPS signal
 * timestamps
 *
 * At the end of the calibration interval the difference between the
 * first and last MONOTONIC_RAW clock timestamps divided by the length
 * of the interval becomes the frequency update. If the interval was
 * too long, the data are discarded.
 * Returns the difference between old and new frequency values.
 */
static long hardpps_update_freq(struct pps_normtime freq_norm)
{
	long delta, delta_mod;
	s64 ftemp;

	/* check if the frequency interval was too long */
	if (freq_norm.sec > (2 << pps_shift)) {
		time_status |= STA_PPSERROR;
		pps_errcnt++;
		pps_dec_freq_interval();
800 801 802
		printk_deferred(KERN_ERR
			"hardpps: PPSERROR: interval too long - %ld s\n",
			freq_norm.sec);
803 804 805 806 807 808 809 810 811 812 813 814
		return 0;
	}

	/* here the raw frequency offset and wander (stability) is
	 * calculated. If the wander is less than the wander threshold
	 * the interval is increased; otherwise it is decreased.
	 */
	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
			freq_norm.sec);
	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
	pps_freq = ftemp;
	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
815 816
		printk_deferred(KERN_WARNING
				"hardpps: PPSWANDER: change=%ld\n", delta);
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
		time_status |= STA_PPSWANDER;
		pps_stbcnt++;
		pps_dec_freq_interval();
	} else {	/* good sample */
		pps_inc_freq_interval();
	}

	/* the stability metric is calculated as the average of recent
	 * frequency changes, but is used only for performance
	 * monitoring
	 */
	delta_mod = delta;
	if (delta_mod < 0)
		delta_mod = -delta_mod;
	pps_stabil += (div_s64(((s64)delta_mod) <<
				(NTP_SCALE_SHIFT - SHIFT_USEC),
				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;

	/* if enabled, the system clock frequency is updated */
	if ((time_status & STA_PPSFREQ) != 0 &&
	    (time_status & STA_FREQHOLD) == 0) {
		time_freq = pps_freq;
		ntp_update_frequency();
	}

	return delta;
}

/* correct REALTIME clock phase error against PPS signal */
static void hardpps_update_phase(long error)
{
	long correction = -error;
	long jitter;

	/* add the sample to the median filter */
	pps_phase_filter_add(correction);
	correction = pps_phase_filter_get(&jitter);

	/* Nominal jitter is due to PPS signal noise. If it exceeds the
	 * threshold, the sample is discarded; otherwise, if so enabled,
	 * the time offset is updated.
	 */
	if (jitter > (pps_jitter << PPS_POPCORN)) {
860 861 862
		printk_deferred(KERN_WARNING
				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
				jitter, (pps_jitter << PPS_POPCORN));
863 864 865 866 867 868 869 870 871 872 873 874 875 876
		time_status |= STA_PPSJITTER;
		pps_jitcnt++;
	} else if (time_status & STA_PPSTIME) {
		/* correct the time using the phase offset */
		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
				NTP_INTERVAL_FREQ);
		/* cancel running adjtime() */
		time_adjust = 0;
	}
	/* update jitter */
	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
}

/*
877
 * __hardpps() - discipline CPU clock oscillator to external PPS signal
878 879 880 881 882 883 884 885 886 887
 *
 * This routine is called at each PPS signal arrival in order to
 * discipline the CPU clock oscillator to the PPS signal. It takes two
 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
 * is used to correct clock phase error and the latter is used to
 * correct the frequency.
 *
 * This code is based on David Mills's reference nanokernel
 * implementation. It was mostly rewritten but keeps the same idea.
 */
888
void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
{
	struct pps_normtime pts_norm, freq_norm;

	pts_norm = pps_normalize_ts(*phase_ts);

	/* clear the error bits, they will be set again if needed */
	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);

	/* indicate signal presence */
	time_status |= STA_PPSSIGNAL;
	pps_valid = PPS_VALID;

	/* when called for the first time,
	 * just start the frequency interval */
	if (unlikely(pps_fbase.tv_sec == 0)) {
		pps_fbase = *raw_ts;
		return;
	}

	/* ok, now we have a base for frequency calculation */
	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));

	/* check that the signal is in the range
	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
	if ((freq_norm.sec == 0) ||
			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
		time_status |= STA_PPSJITTER;
		/* restart the frequency calibration interval */
		pps_fbase = *raw_ts;
919
		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
		return;
	}

	/* signal is ok */

	/* check if the current frequency interval is finished */
	if (freq_norm.sec >= (1 << pps_shift)) {
		pps_calcnt++;
		/* restart the frequency calibration interval */
		pps_fbase = *raw_ts;
		hardpps_update_freq(freq_norm);
	}

	hardpps_update_phase(pts_norm.nsec);

}
#endif	/* CONFIG_NTP_PPS */

938 939
static int __init ntp_tick_adj_setup(char *str)
{
940 941 942 943
	int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);

	if (rc)
		return rc;
944 945
	ntp_tick_adj <<= NTP_SCALE_SHIFT;

946 947 948 949
	return 1;
}

__setup("ntp_tick_adj=", ntp_tick_adj_setup);
R
Roman Zippel 已提交
950 951 952 953 954

void __init ntp_init(void)
{
	ntp_clear();
}