cpuset.c 76.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46
#include <linux/sched.h>
47
#include <linux/sched/mm.h>
48
#include <linux/sched/task.h>
L
Linus Torvalds 已提交
49
#include <linux/seq_file.h>
50
#include <linux/security.h>
L
Linus Torvalds 已提交
51 52 53 54 55
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
56
#include <linux/time64.h>
L
Linus Torvalds 已提交
57 58 59
#include <linux/backing-dev.h>
#include <linux/sort.h>

60
#include <linux/uaccess.h>
A
Arun Sharma 已提交
61
#include <linux/atomic.h>
62
#include <linux/mutex.h>
63
#include <linux/cgroup.h>
64
#include <linux/wait.h>
L
Linus Torvalds 已提交
65

66
DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
67

68 69 70 71 72
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
73
	time64_t time;		/* clock (secs) when val computed */
74 75 76
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
77
struct cpuset {
78 79
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
80
	unsigned long flags;		/* "unsigned long" so bitops work */
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
	/*
	 * On default hierarchy:
	 *
	 * The user-configured masks can only be changed by writing to
	 * cpuset.cpus and cpuset.mems, and won't be limited by the
	 * parent masks.
	 *
	 * The effective masks is the real masks that apply to the tasks
	 * in the cpuset. They may be changed if the configured masks are
	 * changed or hotplug happens.
	 *
	 * effective_mask == configured_mask & parent's effective_mask,
	 * and if it ends up empty, it will inherit the parent's mask.
	 *
	 *
	 * On legacy hierachy:
	 *
	 * The user-configured masks are always the same with effective masks.
	 */

102 103 104 105 106 107 108
	/* user-configured CPUs and Memory Nodes allow to tasks */
	cpumask_var_t cpus_allowed;
	nodemask_t mems_allowed;

	/* effective CPUs and Memory Nodes allow to tasks */
	cpumask_var_t effective_cpus;
	nodemask_t effective_mems;
L
Linus Torvalds 已提交
109

110 111 112 113 114 115 116 117 118 119 120 121
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

122
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
123

124 125 126 127 128 129
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
130 131
	/* partition number for rebuild_sched_domains() */
	int pn;
132

133 134
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
135 136
};

137
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
138
{
139
	return css ? container_of(css, struct cpuset, css) : NULL;
140 141 142 143 144
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
145
	return css_cs(task_css(task, cpuset_cgrp_id));
146 147
}

148
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
149
{
T
Tejun Heo 已提交
150
	return css_cs(cs->css.parent);
T
Tejun Heo 已提交
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164 165
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
166 167
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
168
	CS_ONLINE,
L
Linus Torvalds 已提交
169 170
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
171
	CS_MEM_HARDWALL,
172
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
173
	CS_SCHED_LOAD_BALANCE,
174 175
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
176 177 178
} cpuset_flagbits_t;

/* convenient tests for these bits */
179
static inline bool is_cpuset_online(struct cpuset *cs)
T
Tejun Heo 已提交
180
{
181
	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
T
Tejun Heo 已提交
182 183
}

L
Linus Torvalds 已提交
184 185
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
186
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
187 188 189 190
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
191
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
192 193
}

194 195 196 197 198
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
199 200 201 202 203
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

204 205
static inline int is_memory_migrate(const struct cpuset *cs)
{
206
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
207 208
}

209 210 211 212 213 214 215 216 217 218
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
219
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
220 221
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
222 223
};

224 225 226
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
227
 * @pos_css: used for iteration
228 229 230 231 232
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
233 234 235
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
236

237 238 239
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
240
 * @pos_css: used for iteration
241 242 243
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
244
 * with RCU read locked.  The caller may modify @pos_css by calling
245 246
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
247
 */
248 249 250
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
251

L
Linus Torvalds 已提交
252
/*
253 254 255 256
 * There are two global locks guarding cpuset structures - cpuset_mutex and
 * callback_lock. We also require taking task_lock() when dereferencing a
 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 * comment.
257
 *
258
 * A task must hold both locks to modify cpusets.  If a task holds
259
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
260
 * is the only task able to also acquire callback_lock and be able to
261 262 263
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
264 265
 * callback routines can briefly acquire callback_lock to query cpusets.
 * Once it is ready to make the changes, it takes callback_lock, blocking
266
 * everyone else.
267 268
 *
 * Calls to the kernel memory allocator can not be made while holding
269
 * callback_lock, as that would risk double tripping on callback_lock
270 271 272
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
273
 * If a task is only holding callback_lock, then it has read-only
274 275
 * access to cpusets.
 *
276 277 278
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
279
 *
280
 * The cpuset_common_file_read() handlers only hold callback_lock across
281 282 283
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
284 285
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
286 287
 */

288
static DEFINE_MUTEX(cpuset_mutex);
289
static DEFINE_SPINLOCK(callback_lock);
290

291 292
static struct workqueue_struct *cpuset_migrate_mm_wq;

293 294 295 296 297 298
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

299 300
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

301 302 303 304 305 306 307 308 309 310
/*
 * Cgroup v2 behavior is used when on default hierarchy or the
 * cgroup_v2_mode flag is set.
 */
static inline bool is_in_v2_mode(void)
{
	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
}

311 312
/*
 * This is ugly, but preserves the userspace API for existing cpuset
313
 * users. If someone tries to mount the "cpuset" filesystem, we
314 315
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
316 317
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
318
{
319
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
320
	struct dentry *ret = ERR_PTR(-ENODEV);
321 322 323 324
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
325 326
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
327 328 329
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
330 331 332 333
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
334
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
335 336 337
};

/*
338
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
339
 * are online.  If none are online, walk up the cpuset hierarchy
340
 * until we find one that does have some online cpus.
L
Linus Torvalds 已提交
341 342
 *
 * One way or another, we guarantee to return some non-empty subset
343
 * of cpu_online_mask.
L
Linus Torvalds 已提交
344
 *
345
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
346
 */
347
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
348
{
349
	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
T
Tejun Heo 已提交
350
		cs = parent_cs(cs);
351 352 353 354 355 356 357 358 359 360 361 362
		if (unlikely(!cs)) {
			/*
			 * The top cpuset doesn't have any online cpu as a
			 * consequence of a race between cpuset_hotplug_work
			 * and cpu hotplug notifier.  But we know the top
			 * cpuset's effective_cpus is on its way to to be
			 * identical to cpu_online_mask.
			 */
			cpumask_copy(pmask, cpu_online_mask);
			return;
		}
	}
363
	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
L
Linus Torvalds 已提交
364 365 366 367
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
368 369
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
370
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
371 372
 *
 * One way or another, we guarantee to return some non-empty subset
373
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
374
 *
375
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
376
 */
377
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
378
{
379
	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
T
Tejun Heo 已提交
380
		cs = parent_cs(cs);
381
	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
382 383
}

384 385 386
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
387
 * Call with callback_lock or cpuset_mutex held.
388 389 390 391 392
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
393
		task_set_spread_page(tsk);
394
	else
395 396
		task_clear_spread_page(tsk);

397
	if (is_spread_slab(cs))
398
		task_set_spread_slab(tsk);
399
	else
400
		task_clear_spread_slab(tsk);
401 402
}

L
Linus Torvalds 已提交
403 404 405 406 407
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
408
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
409 410 411 412
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
413
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
414 415 416 417 418
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

419 420 421 422
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
423
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
424
{
425 426 427 428 429 430
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

431 432 433 434
	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
		goto free_cpus;
435

436 437
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
438
	return trial;
439 440 441 442 443 444

free_cpus:
	free_cpumask_var(trial->cpus_allowed);
free_cs:
	kfree(trial);
	return NULL;
445 446 447 448 449 450 451 452
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
453
	free_cpumask_var(trial->effective_cpus);
454
	free_cpumask_var(trial->cpus_allowed);
455 456 457
	kfree(trial);
}

L
Linus Torvalds 已提交
458 459 460 461 462 463 464
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
465
 * cpuset_mutex held.
L
Linus Torvalds 已提交
466 467 468 469 470 471 472 473 474 475 476 477
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

478
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
479
{
480
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
481
	struct cpuset *c, *par;
482 483 484
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
485 486

	/* Each of our child cpusets must be a subset of us */
487
	ret = -EBUSY;
488
	cpuset_for_each_child(c, css, cur)
489 490
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
491 492

	/* Remaining checks don't apply to root cpuset */
493
	ret = 0;
494
	if (cur == &top_cpuset)
495
		goto out;
L
Linus Torvalds 已提交
496

T
Tejun Heo 已提交
497
	par = parent_cs(cur);
498

499
	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
500
	ret = -EACCES;
501
	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
502
		goto out;
L
Linus Torvalds 已提交
503

504 505 506 507
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
508
	ret = -EINVAL;
509
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
510 511
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
512
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
513
			goto out;
L
Linus Torvalds 已提交
514 515 516
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
517
			goto out;
L
Linus Torvalds 已提交
518 519
	}

520 521
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
522
	 * be changed to have empty cpus_allowed or mems_allowed.
523
	 */
524
	ret = -ENOSPC;
525
	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
526 527 528 529 530 531 532
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
533

534 535 536 537 538 539 540 541 542 543
	/*
	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
	 * tasks.
	 */
	ret = -EBUSY;
	if (is_cpu_exclusive(cur) &&
	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
				       trial->cpus_allowed))
		goto out;

544 545 546 547
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
548 549
}

550
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
551
/*
552
 * Helper routine for generate_sched_domains().
553
 * Do cpusets a, b have overlapping effective cpus_allowed masks?
P
Paul Jackson 已提交
554 555 556
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
557
	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
P
Paul Jackson 已提交
558 559
}

560 561 562 563 564 565 566 567
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

568 569
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
570
{
571
	struct cpuset *cp;
572
	struct cgroup_subsys_state *pos_css;
573

574
	rcu_read_lock();
575
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
576 577
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
578
			pos_css = css_rightmost_descendant(pos_css);
579
			continue;
580
		}
581 582 583 584

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
585
	rcu_read_unlock();
586 587
}

P
Paul Jackson 已提交
588
/*
589 590 591 592 593
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
594
 * The output of this function needs to be passed to kernel/sched/core.c
595 596 597
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
598
 *
L
Li Zefan 已提交
599
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
600 601 602 603 604 605 606
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
607
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
608 609
 *
 * The three key local variables below are:
610
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
611 612 613 614 615 616 617 618 619 620 621 622
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
623
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
642
static int generate_sched_domains(cpumask_var_t **domains,
643
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
644 645 646 647 648
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
649
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
650
	cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
651
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
652
	int ndoms = 0;		/* number of sched domains in result */
653
	int nslot;		/* next empty doms[] struct cpumask slot */
654
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
655 656

	doms = NULL;
657
	dattr = NULL;
658
	csa = NULL;
P
Paul Jackson 已提交
659

660 661 662 663
	if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
		goto done;
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);

P
Paul Jackson 已提交
664 665
	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
666 667
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
668
		if (!doms)
669 670
			goto done;

671 672 673
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
674
			update_domain_attr_tree(dattr, &top_cpuset);
675
		}
676 677
		cpumask_and(doms[0], top_cpuset.effective_cpus,
				     non_isolated_cpus);
678 679

		goto done;
P
Paul Jackson 已提交
680 681
	}

682
	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
P
Paul Jackson 已提交
683 684 685 686
	if (!csa)
		goto done;
	csn = 0;

687
	rcu_read_lock();
688
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
689 690
		if (cp == &top_cpuset)
			continue;
691
		/*
692 693 694 695 696 697
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
698
		 */
699
		if (!cpumask_empty(cp->cpus_allowed) &&
700 701
		    !(is_sched_load_balance(cp) &&
		      cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
702
			continue;
703

704 705 706 707
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
708
		pos_css = css_rightmost_descendant(pos_css);
709 710
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

739 740 741 742
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
743
	doms = alloc_sched_domains(ndoms);
744
	if (!doms)
745 746 747 748 749 750
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
751
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
752 753 754

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
755
		struct cpumask *dp;
P
Paul Jackson 已提交
756 757
		int apn = a->pn;

758 759 760 761 762
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

763
		dp = doms[nslot];
764 765 766 767

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
768 769
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
770
				warnings--;
P
Paul Jackson 已提交
771
			}
772 773
			continue;
		}
P
Paul Jackson 已提交
774

775
		cpumask_clear(dp);
776 777 778 779 780 781
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
782
				cpumask_or(dp, dp, b->effective_cpus);
783
				cpumask_and(dp, dp, non_isolated_cpus);
784 785 786 787 788
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
789 790
			}
		}
791
		nslot++;
P
Paul Jackson 已提交
792 793 794
	}
	BUG_ON(nslot != ndoms);

795
done:
796
	free_cpumask_var(non_isolated_cpus);
797 798
	kfree(csa);

799 800 801 802 803 804 805
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

806 807 808 809 810 811 812 813
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
814 815 816 817 818
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
819
 *
820
 * Call with cpuset_mutex held.  Takes get_online_cpus().
821
 */
822
static void rebuild_sched_domains_locked(void)
823 824
{
	struct sched_domain_attr *attr;
825
	cpumask_var_t *doms;
826 827
	int ndoms;

828
	lockdep_assert_held(&cpuset_mutex);
829
	get_online_cpus();
830

831 832 833 834 835
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
836
	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
837 838
		goto out;

839 840 841 842 843
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
844
out:
845
	put_online_cpus();
846
}
847
#else /* !CONFIG_SMP */
848
static void rebuild_sched_domains_locked(void)
849 850 851
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
852

853 854
void rebuild_sched_domains(void)
{
855
	mutex_lock(&cpuset_mutex);
856
	rebuild_sched_domains_locked();
857
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
858 859
}

860 861 862 863
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
864 865 866
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
867
 */
868
static void update_tasks_cpumask(struct cpuset *cs)
869
{
870 871 872
	struct css_task_iter it;
	struct task_struct *task;

873
	css_task_iter_start(&cs->css, 0, &it);
874
	while ((task = css_task_iter_next(&it)))
875
		set_cpus_allowed_ptr(task, cs->effective_cpus);
876
	css_task_iter_end(&it);
877 878
}

879
/*
880 881 882 883 884 885
 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_cpus: temp variable for calculating new effective_cpus
 *
 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 * and all its descendants need to be updated.
886
 *
887
 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
888 889 890
 *
 * Called with cpuset_mutex held
 */
891
static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
892 893
{
	struct cpuset *cp;
894
	struct cgroup_subsys_state *pos_css;
895
	bool need_rebuild_sched_domains = false;
896 897

	rcu_read_lock();
898 899 900 901 902
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);

903 904 905 906
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some CPUs.
		 */
907
		if (is_in_v2_mode() && cpumask_empty(new_cpus))
908 909
			cpumask_copy(new_cpus, parent->effective_cpus);

910 911 912 913
		/* Skip the whole subtree if the cpumask remains the same. */
		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
914
		}
915

916
		if (!css_tryget_online(&cp->css))
917 918 919
			continue;
		rcu_read_unlock();

920
		spin_lock_irq(&callback_lock);
921
		cpumask_copy(cp->effective_cpus, new_cpus);
922
		spin_unlock_irq(&callback_lock);
923

924
		WARN_ON(!is_in_v2_mode() &&
925 926
			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));

927
		update_tasks_cpumask(cp);
928

929 930 931 932 933 934 935 936
		/*
		 * If the effective cpumask of any non-empty cpuset is changed,
		 * we need to rebuild sched domains.
		 */
		if (!cpumask_empty(cp->cpus_allowed) &&
		    is_sched_load_balance(cp))
			need_rebuild_sched_domains = true;

937 938 939 940
		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
941 942 943

	if (need_rebuild_sched_domains)
		rebuild_sched_domains_locked();
944 945
}

C
Cliff Wickman 已提交
946 947 948
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
949
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
950 951
 * @buf: buffer of cpu numbers written to this cpuset
 */
952 953
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
954
{
C
Cliff Wickman 已提交
955
	int retval;
L
Linus Torvalds 已提交
956

957
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
958 959 960
	if (cs == &top_cpuset)
		return -EACCES;

961
	/*
962
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
963 964 965
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
966
	 */
967
	if (!*buf) {
968
		cpumask_clear(trialcs->cpus_allowed);
969
	} else {
970
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
971 972
		if (retval < 0)
			return retval;
973

974 975
		if (!cpumask_subset(trialcs->cpus_allowed,
				    top_cpuset.cpus_allowed))
976
			return -EINVAL;
977
	}
P
Paul Jackson 已提交
978

P
Paul Menage 已提交
979
	/* Nothing to do if the cpus didn't change */
980
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
981
		return 0;
C
Cliff Wickman 已提交
982

983 984 985 986
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

987
	spin_lock_irq(&callback_lock);
988
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
989
	spin_unlock_irq(&callback_lock);
P
Paul Jackson 已提交
990

991 992
	/* use trialcs->cpus_allowed as a temp variable */
	update_cpumasks_hier(cs, trialcs->cpus_allowed);
993
	return 0;
L
Linus Torvalds 已提交
994 995
}

996
/*
997 998 999 1000 1001
 * Migrate memory region from one set of nodes to another.  This is
 * performed asynchronously as it can be called from process migration path
 * holding locks involved in process management.  All mm migrations are
 * performed in the queued order and can be waited for by flushing
 * cpuset_migrate_mm_wq.
1002 1003
 */

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
struct cpuset_migrate_mm_work {
	struct work_struct	work;
	struct mm_struct	*mm;
	nodemask_t		from;
	nodemask_t		to;
};

static void cpuset_migrate_mm_workfn(struct work_struct *work)
{
	struct cpuset_migrate_mm_work *mwork =
		container_of(work, struct cpuset_migrate_mm_work, work);

	/* on a wq worker, no need to worry about %current's mems_allowed */
	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
	mmput(mwork->mm);
	kfree(mwork);
}

1022 1023 1024
static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
1025
	struct cpuset_migrate_mm_work *mwork;
1026

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
	if (mwork) {
		mwork->mm = mm;
		mwork->from = *from;
		mwork->to = *to;
		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
		queue_work(cpuset_migrate_mm_wq, &mwork->work);
	} else {
		mmput(mm);
	}
}
1038

1039
static void cpuset_post_attach(void)
1040 1041
{
	flush_workqueue(cpuset_migrate_mm_wq);
1042 1043
}

1044
/*
1045 1046 1047 1048
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
1049 1050 1051 1052
 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
 * and rebind an eventual tasks' mempolicy. If the task is allocating in
 * parallel, it might temporarily see an empty intersection, which results in
 * a seqlock check and retry before OOM or allocation failure.
1053 1054 1055 1056
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
1057 1058
	task_lock(tsk);

1059 1060
	local_irq_disable();
	write_seqcount_begin(&tsk->mems_allowed_seq);
1061

1062
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1063
	mpol_rebind_task(tsk, newmems);
1064
	tsk->mems_allowed = *newmems;
1065

1066 1067
	write_seqcount_end(&tsk->mems_allowed_seq);
	local_irq_enable();
1068

1069
	task_unlock(tsk);
1070 1071
}

1072 1073
static void *cpuset_being_rebound;

1074 1075 1076 1077
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1078 1079 1080
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1081
 */
1082
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1083
{
1084
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1085 1086
	struct css_task_iter it;
	struct task_struct *task;
1087

1088
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1089

1090
	guarantee_online_mems(cs, &newmems);
1091

1092
	/*
1093 1094 1095 1096
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1097
	 * the global cpuset_mutex, we know that no other rebind effort
1098
	 * will be contending for the global variable cpuset_being_rebound.
1099
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1100
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1101
	 */
1102
	css_task_iter_start(&cs->css, 0, &it);
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1118 1119
		else
			mmput(mm);
1120 1121
	}
	css_task_iter_end(&it);
1122

1123 1124 1125 1126 1127 1128
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1129
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1130
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1131 1132
}

1133
/*
1134 1135 1136
 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_mems: a temp variable for calculating new effective_mems
1137
 *
1138 1139
 * When configured nodemask is changed, the effective nodemasks of this cpuset
 * and all its descendants need to be updated.
1140
 *
1141
 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1142 1143 1144
 *
 * Called with cpuset_mutex held
 */
1145
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1146 1147
{
	struct cpuset *cp;
1148
	struct cgroup_subsys_state *pos_css;
1149 1150

	rcu_read_lock();
1151 1152 1153 1154 1155
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);

1156 1157 1158 1159
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some MEMs.
		 */
1160
		if (is_in_v2_mode() && nodes_empty(*new_mems))
1161 1162
			*new_mems = parent->effective_mems;

1163 1164 1165 1166
		/* Skip the whole subtree if the nodemask remains the same. */
		if (nodes_equal(*new_mems, cp->effective_mems)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
1167
		}
1168

1169
		if (!css_tryget_online(&cp->css))
1170 1171 1172
			continue;
		rcu_read_unlock();

1173
		spin_lock_irq(&callback_lock);
1174
		cp->effective_mems = *new_mems;
1175
		spin_unlock_irq(&callback_lock);
1176

1177
		WARN_ON(!is_in_v2_mode() &&
1178
			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1179

1180
		update_tasks_nodemask(cp);
1181 1182 1183 1184 1185 1186 1187

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1188 1189 1190
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1191 1192 1193 1194
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1195
 *
1196
 * Call with cpuset_mutex held. May take callback_lock during call.
1197 1198 1199 1200
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1201 1202
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1203 1204 1205 1206
{
	int retval;

	/*
1207
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1208 1209
	 * it's read-only
	 */
1210 1211 1212 1213
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1214 1215 1216 1217 1218 1219 1220 1221

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1222
		nodes_clear(trialcs->mems_allowed);
1223
	} else {
1224
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1225 1226 1227
		if (retval < 0)
			goto done;

1228
		if (!nodes_subset(trialcs->mems_allowed,
1229 1230
				  top_cpuset.mems_allowed)) {
			retval = -EINVAL;
1231 1232
			goto done;
		}
1233
	}
1234 1235

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1236 1237 1238
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1239
	retval = validate_change(cs, trialcs);
1240 1241 1242
	if (retval < 0)
		goto done;

1243
	spin_lock_irq(&callback_lock);
1244
	cs->mems_allowed = trialcs->mems_allowed;
1245
	spin_unlock_irq(&callback_lock);
1246

1247
	/* use trialcs->mems_allowed as a temp variable */
1248
	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1249 1250 1251 1252
done:
	return retval;
}

1253 1254
int current_cpuset_is_being_rebound(void)
{
1255 1256 1257 1258 1259 1260 1261
	int ret;

	rcu_read_lock();
	ret = task_cs(current) == cpuset_being_rebound;
	rcu_read_unlock();

	return ret;
1262 1263
}

1264
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1265
{
1266
#ifdef CONFIG_SMP
1267
	if (val < -1 || val >= sched_domain_level_max)
1268
		return -EINVAL;
1269
#endif
1270 1271 1272

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1273 1274
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1275
			rebuild_sched_domains_locked();
1276 1277 1278 1279 1280
	}

	return 0;
}

1281
/**
1282 1283 1284
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1285 1286 1287
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1288
 */
1289
static void update_tasks_flags(struct cpuset *cs)
1290
{
1291 1292 1293
	struct css_task_iter it;
	struct task_struct *task;

1294
	css_task_iter_start(&cs->css, 0, &it);
1295 1296 1297
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1298 1299
}

L
Linus Torvalds 已提交
1300 1301
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1302 1303 1304
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1305
 *
1306
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1307 1308
 */

1309 1310
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1311
{
1312
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1313
	int balance_flag_changed;
1314 1315
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1316

1317 1318 1319 1320
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1321
	if (turning_on)
1322
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1323
	else
1324
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1325

1326
	err = validate_change(cs, trialcs);
1327
	if (err < 0)
1328
		goto out;
P
Paul Jackson 已提交
1329 1330

	balance_flag_changed = (is_sched_load_balance(cs) !=
1331
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1332

1333 1334 1335
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1336
	spin_lock_irq(&callback_lock);
1337
	cs->flags = trialcs->flags;
1338
	spin_unlock_irq(&callback_lock);
1339

1340
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1341
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1342

1343
	if (spread_flag_changed)
1344
		update_tasks_flags(cs);
1345 1346 1347
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1348 1349
}

1350
/*
A
Adrian Bunk 已提交
1351
 * Frequency meter - How fast is some event occurring?
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
1396
#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
1412 1413 1414 1415 1416
	time64_t now;
	u32 ticks;

	now = ktime_get_seconds();
	ticks = now - fmp->time;
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1451 1452
static struct cpuset *cpuset_attach_old_cs;

1453
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1454
static int cpuset_can_attach(struct cgroup_taskset *tset)
1455
{
1456 1457
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1458 1459
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1460

1461
	/* used later by cpuset_attach() */
1462 1463
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
	cs = css_cs(css);
1464

1465 1466
	mutex_lock(&cpuset_mutex);

1467
	/* allow moving tasks into an empty cpuset if on default hierarchy */
1468
	ret = -ENOSPC;
1469
	if (!is_in_v2_mode() &&
1470
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1471
		goto out_unlock;
1472

1473
	cgroup_taskset_for_each(task, css, tset) {
1474 1475
		ret = task_can_attach(task, cs->cpus_allowed);
		if (ret)
1476 1477 1478 1479
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1480
	}
1481

1482 1483 1484 1485 1486
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1487 1488 1489 1490
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1491
}
1492

1493
static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1494
{
1495 1496 1497 1498 1499 1500
	struct cgroup_subsys_state *css;
	struct cpuset *cs;

	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1501
	mutex_lock(&cpuset_mutex);
1502
	css_cs(css)->attach_in_progress--;
1503
	mutex_unlock(&cpuset_mutex);
1504
}
L
Linus Torvalds 已提交
1505

1506
/*
1507
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1508 1509 1510 1511 1512
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1513
static void cpuset_attach(struct cgroup_taskset *tset)
1514
{
1515
	/* static buf protected by cpuset_mutex */
1516
	static nodemask_t cpuset_attach_nodemask_to;
1517
	struct task_struct *task;
1518
	struct task_struct *leader;
1519 1520
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1521
	struct cpuset *oldcs = cpuset_attach_old_cs;
1522

1523 1524 1525
	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1526 1527
	mutex_lock(&cpuset_mutex);

1528 1529 1530 1531
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1532
		guarantee_online_cpus(cs, cpus_attach);
1533

1534
	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1535

1536
	cgroup_taskset_for_each(task, css, tset) {
1537 1538 1539 1540 1541 1542 1543 1544 1545
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1546

1547
	/*
1548 1549
	 * Change mm for all threadgroup leaders. This is expensive and may
	 * sleep and should be moved outside migration path proper.
1550
	 */
1551
	cpuset_attach_nodemask_to = cs->effective_mems;
1552
	cgroup_taskset_for_each_leader(leader, css, tset) {
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
		struct mm_struct *mm = get_task_mm(leader);

		if (mm) {
			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);

			/*
			 * old_mems_allowed is the same with mems_allowed
			 * here, except if this task is being moved
			 * automatically due to hotplug.  In that case
			 * @mems_allowed has been updated and is empty, so
			 * @old_mems_allowed is the right nodesets that we
			 * migrate mm from.
			 */
1566
			if (is_memory_migrate(cs))
1567 1568
				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
						  &cpuset_attach_nodemask_to);
1569 1570
			else
				mmput(mm);
1571
		}
1572
	}
1573

1574
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1575

1576
	cs->attach_in_progress--;
1577 1578
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1579 1580

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1581 1582 1583 1584 1585
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1586
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1587 1588
	FILE_CPULIST,
	FILE_MEMLIST,
1589 1590
	FILE_EFFECTIVE_CPULIST,
	FILE_EFFECTIVE_MEMLIST,
L
Linus Torvalds 已提交
1591 1592
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1593
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1594
	FILE_SCHED_LOAD_BALANCE,
1595
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1596 1597
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1598 1599
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1600 1601
} cpuset_filetype_t;

1602 1603
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1604
{
1605
	struct cpuset *cs = css_cs(css);
1606
	cpuset_filetype_t type = cft->private;
1607
	int retval = 0;
1608

1609
	mutex_lock(&cpuset_mutex);
1610 1611
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1612
		goto out_unlock;
1613
	}
1614 1615

	switch (type) {
L
Linus Torvalds 已提交
1616
	case FILE_CPU_EXCLUSIVE:
1617
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1618 1619
		break;
	case FILE_MEM_EXCLUSIVE:
1620
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1621
		break;
1622 1623 1624
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1625
	case FILE_SCHED_LOAD_BALANCE:
1626
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1627
		break;
1628
	case FILE_MEMORY_MIGRATE:
1629
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1630
		break;
1631
	case FILE_MEMORY_PRESSURE_ENABLED:
1632
		cpuset_memory_pressure_enabled = !!val;
1633
		break;
1634
	case FILE_SPREAD_PAGE:
1635
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1636 1637
		break;
	case FILE_SPREAD_SLAB:
1638
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1639
		break;
L
Linus Torvalds 已提交
1640 1641
	default:
		retval = -EINVAL;
1642
		break;
L
Linus Torvalds 已提交
1643
	}
1644 1645
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1646 1647 1648
	return retval;
}

1649 1650
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1651
{
1652
	struct cpuset *cs = css_cs(css);
1653
	cpuset_filetype_t type = cft->private;
1654
	int retval = -ENODEV;
1655

1656 1657 1658
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1659

1660 1661 1662 1663 1664 1665 1666 1667
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1668 1669
out_unlock:
	mutex_unlock(&cpuset_mutex);
1670 1671 1672
	return retval;
}

1673 1674 1675
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1676 1677
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
1678
{
1679
	struct cpuset *cs = css_cs(of_css(of));
1680
	struct cpuset *trialcs;
1681
	int retval = -ENODEV;
1682

1683 1684
	buf = strstrip(buf);

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
1695 1696 1697 1698 1699 1700 1701 1702
	 *
	 * cpuset_hotplug_work calls back into cgroup core via
	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
	 * operation like this one can lead to a deadlock through kernfs
	 * active_ref protection.  Let's break the protection.  Losing the
	 * protection is okay as we check whether @cs is online after
	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
	 * hierarchies.
1703
	 */
1704 1705
	css_get(&cs->css);
	kernfs_break_active_protection(of->kn);
1706 1707
	flush_work(&cpuset_hotplug_work);

1708 1709 1710
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1711

1712
	trialcs = alloc_trial_cpuset(cs);
1713 1714
	if (!trialcs) {
		retval = -ENOMEM;
1715
		goto out_unlock;
1716
	}
1717

1718
	switch (of_cft(of)->private) {
1719
	case FILE_CPULIST:
1720
		retval = update_cpumask(cs, trialcs, buf);
1721 1722
		break;
	case FILE_MEMLIST:
1723
		retval = update_nodemask(cs, trialcs, buf);
1724 1725 1726 1727 1728
		break;
	default:
		retval = -EINVAL;
		break;
	}
1729 1730

	free_trial_cpuset(trialcs);
1731 1732
out_unlock:
	mutex_unlock(&cpuset_mutex);
1733 1734
	kernfs_unbreak_active_protection(of->kn);
	css_put(&cs->css);
1735
	flush_workqueue(cpuset_migrate_mm_wq);
1736
	return retval ?: nbytes;
1737 1738
}

L
Linus Torvalds 已提交
1739 1740 1741 1742 1743 1744 1745 1746
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1747
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1748
{
1749 1750
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1751
	int ret = 0;
L
Linus Torvalds 已提交
1752

1753
	spin_lock_irq(&callback_lock);
L
Linus Torvalds 已提交
1754 1755 1756

	switch (type) {
	case FILE_CPULIST:
1757
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
L
Linus Torvalds 已提交
1758 1759
		break;
	case FILE_MEMLIST:
1760
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
L
Linus Torvalds 已提交
1761
		break;
1762
	case FILE_EFFECTIVE_CPULIST:
1763
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1764 1765
		break;
	case FILE_EFFECTIVE_MEMLIST:
1766
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1767
		break;
L
Linus Torvalds 已提交
1768
	default:
1769
		ret = -EINVAL;
L
Linus Torvalds 已提交
1770 1771
	}

1772
	spin_unlock_irq(&callback_lock);
1773
	return ret;
L
Linus Torvalds 已提交
1774 1775
}

1776
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1777
{
1778
	struct cpuset *cs = css_cs(css);
1779 1780 1781 1782 1783 1784
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1785 1786
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1802 1803 1804

	/* Unreachable but makes gcc happy */
	return 0;
1805
}
L
Linus Torvalds 已提交
1806

1807
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1808
{
1809
	struct cpuset *cs = css_cs(css);
1810 1811 1812 1813 1814 1815 1816
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1817 1818 1819

	/* Unrechable but makes gcc happy */
	return 0;
1820 1821
}

L
Linus Torvalds 已提交
1822 1823 1824 1825 1826

/*
 * for the common functions, 'private' gives the type of file
 */

1827 1828 1829
static struct cftype files[] = {
	{
		.name = "cpus",
1830
		.seq_show = cpuset_common_seq_show,
1831
		.write = cpuset_write_resmask,
1832
		.max_write_len = (100U + 6 * NR_CPUS),
1833 1834 1835 1836 1837
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1838
		.seq_show = cpuset_common_seq_show,
1839
		.write = cpuset_write_resmask,
1840
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1841 1842 1843
		.private = FILE_MEMLIST,
	},

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	{
		.name = "effective_cpus",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_CPULIST,
	},

	{
		.name = "effective_mems",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_MEMLIST,
	},

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1870 1871 1872 1873 1874 1875 1876
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1877 1878 1879 1880 1881 1882 1883 1884 1885
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1886 1887
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1916

1917 1918 1919 1920 1921 1922 1923
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1924

1925 1926
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1927 1928

/*
1929
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1930
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1931 1932
 */

1933 1934
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1935
{
T
Tejun Heo 已提交
1936
	struct cpuset *cs;
L
Linus Torvalds 已提交
1937

1938
	if (!parent_css)
1939
		return &top_cpuset.css;
1940

T
Tejun Heo 已提交
1941
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1942
	if (!cs)
1943
		return ERR_PTR(-ENOMEM);
1944 1945 1946 1947
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
		goto free_cpus;
L
Linus Torvalds 已提交
1948

P
Paul Jackson 已提交
1949
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1950
	cpumask_clear(cs->cpus_allowed);
1951
	nodes_clear(cs->mems_allowed);
1952 1953
	cpumask_clear(cs->effective_cpus);
	nodes_clear(cs->effective_mems);
1954
	fmeter_init(&cs->fmeter);
1955
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1956

T
Tejun Heo 已提交
1957
	return &cs->css;
1958 1959 1960 1961 1962 1963

free_cpus:
	free_cpumask_var(cs->cpus_allowed);
free_cs:
	kfree(cs);
	return ERR_PTR(-ENOMEM);
T
Tejun Heo 已提交
1964 1965
}

1966
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1967
{
1968
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1969
	struct cpuset *parent = parent_cs(cs);
1970
	struct cpuset *tmp_cs;
1971
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1972 1973 1974 1975

	if (!parent)
		return 0;

1976 1977
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1978
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1979 1980 1981 1982
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1983

1984
	cpuset_inc();
1985

1986
	spin_lock_irq(&callback_lock);
1987
	if (is_in_v2_mode()) {
1988 1989 1990
		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
		cs->effective_mems = parent->effective_mems;
	}
1991
	spin_unlock_irq(&callback_lock);
1992

1993
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1994
		goto out_unlock;
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
2009
	rcu_read_lock();
2010
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2011 2012
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
2013
			goto out_unlock;
2014
		}
2015
	}
2016
	rcu_read_unlock();
2017

2018
	spin_lock_irq(&callback_lock);
2019
	cs->mems_allowed = parent->mems_allowed;
2020
	cs->effective_mems = parent->mems_allowed;
2021
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2022
	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
D
Dan Carpenter 已提交
2023
	spin_unlock_irq(&callback_lock);
2024 2025
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
2026 2027 2028
	return 0;
}

2029 2030 2031 2032 2033 2034
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

2035
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
2036
{
2037
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
2038

2039
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2040 2041 2042 2043

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

2044
	cpuset_dec();
T
Tejun Heo 已提交
2045
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2046

2047
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2048 2049
}

2050
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
2051
{
2052
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
2053

2054
	free_cpumask_var(cs->effective_cpus);
2055
	free_cpumask_var(cs->cpus_allowed);
2056
	kfree(cs);
L
Linus Torvalds 已提交
2057 2058
}

2059 2060 2061
static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
	mutex_lock(&cpuset_mutex);
2062
	spin_lock_irq(&callback_lock);
2063

2064
	if (is_in_v2_mode()) {
2065 2066 2067 2068 2069 2070 2071 2072
		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
		top_cpuset.mems_allowed = node_possible_map;
	} else {
		cpumask_copy(top_cpuset.cpus_allowed,
			     top_cpuset.effective_cpus);
		top_cpuset.mems_allowed = top_cpuset.effective_mems;
	}

2073
	spin_unlock_irq(&callback_lock);
2074 2075 2076
	mutex_unlock(&cpuset_mutex);
}

2077 2078 2079 2080 2081
/*
 * Make sure the new task conform to the current state of its parent,
 * which could have been changed by cpuset just after it inherits the
 * state from the parent and before it sits on the cgroup's task list.
 */
2082
static void cpuset_fork(struct task_struct *task)
2083 2084 2085 2086 2087 2088 2089 2090
{
	if (task_css_is_root(task, cpuset_cgrp_id))
		return;

	set_cpus_allowed_ptr(task, &current->cpus_allowed);
	task->mems_allowed = current->mems_allowed;
}

2091
struct cgroup_subsys cpuset_cgrp_subsys = {
2092 2093 2094 2095 2096 2097 2098
	.css_alloc	= cpuset_css_alloc,
	.css_online	= cpuset_css_online,
	.css_offline	= cpuset_css_offline,
	.css_free	= cpuset_css_free,
	.can_attach	= cpuset_can_attach,
	.cancel_attach	= cpuset_cancel_attach,
	.attach		= cpuset_attach,
2099
	.post_attach	= cpuset_post_attach,
2100
	.bind		= cpuset_bind,
2101
	.fork		= cpuset_fork,
2102
	.legacy_cftypes	= files,
2103
	.early_init	= true,
2104 2105
};

L
Linus Torvalds 已提交
2106 2107 2108 2109 2110 2111 2112 2113
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2114
	int err = 0;
L
Linus Torvalds 已提交
2115

N
Nicholas Mc Guire 已提交
2116 2117
	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2118

2119
	cpumask_setall(top_cpuset.cpus_allowed);
2120
	nodes_setall(top_cpuset.mems_allowed);
2121 2122
	cpumask_setall(top_cpuset.effective_cpus);
	nodes_setall(top_cpuset.effective_mems);
L
Linus Torvalds 已提交
2123

2124
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2125
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2126
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2127 2128 2129

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2130 2131
		return err;

N
Nicholas Mc Guire 已提交
2132
	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2133

2134
	return 0;
L
Linus Torvalds 已提交
2135 2136
}

2137
/*
2138
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2139 2140
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2141 2142
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2143
 */
2144 2145 2146 2147 2148 2149 2150 2151
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2152
	parent = parent_cs(cs);
2153
	while (cpumask_empty(parent->cpus_allowed) ||
2154
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2155
		parent = parent_cs(parent);
2156

2157
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2158
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
T
Tejun Heo 已提交
2159 2160
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2161
	}
2162 2163
}

2164 2165 2166 2167
static void
hotplug_update_tasks_legacy(struct cpuset *cs,
			    struct cpumask *new_cpus, nodemask_t *new_mems,
			    bool cpus_updated, bool mems_updated)
2168 2169 2170
{
	bool is_empty;

2171
	spin_lock_irq(&callback_lock);
2172 2173 2174 2175
	cpumask_copy(cs->cpus_allowed, new_cpus);
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->mems_allowed = *new_mems;
	cs->effective_mems = *new_mems;
2176
	spin_unlock_irq(&callback_lock);
2177 2178 2179 2180 2181

	/*
	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
	 * as the tasks will be migratecd to an ancestor.
	 */
2182
	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2183
		update_tasks_cpumask(cs);
2184
	if (mems_updated && !nodes_empty(cs->mems_allowed))
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
		update_tasks_nodemask(cs);

	is_empty = cpumask_empty(cs->cpus_allowed) ||
		   nodes_empty(cs->mems_allowed);

	mutex_unlock(&cpuset_mutex);

	/*
	 * Move tasks to the nearest ancestor with execution resources,
	 * This is full cgroup operation which will also call back into
	 * cpuset. Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);

	mutex_lock(&cpuset_mutex);
}

2203 2204 2205 2206
static void
hotplug_update_tasks(struct cpuset *cs,
		     struct cpumask *new_cpus, nodemask_t *new_mems,
		     bool cpus_updated, bool mems_updated)
2207
{
2208 2209 2210 2211 2212
	if (cpumask_empty(new_cpus))
		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
	if (nodes_empty(*new_mems))
		*new_mems = parent_cs(cs)->effective_mems;

2213
	spin_lock_irq(&callback_lock);
2214 2215
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->effective_mems = *new_mems;
2216
	spin_unlock_irq(&callback_lock);
2217

2218
	if (cpus_updated)
2219
		update_tasks_cpumask(cs);
2220
	if (mems_updated)
2221 2222 2223
		update_tasks_nodemask(cs);
}

2224
/**
2225
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2226
 * @cs: cpuset in interest
2227
 *
2228 2229 2230
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2231
 */
2232
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2233
{
2234 2235 2236 2237
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
	bool cpus_updated;
	bool mems_updated;
2238 2239
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2240

2241
	mutex_lock(&cpuset_mutex);
2242

2243 2244 2245 2246 2247 2248 2249 2250 2251
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2252 2253
	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2254

2255 2256
	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2257

2258
	if (is_in_v2_mode())
2259 2260
		hotplug_update_tasks(cs, &new_cpus, &new_mems,
				     cpus_updated, mems_updated);
2261
	else
2262 2263
		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
					    cpus_updated, mems_updated);
2264

2265
	mutex_unlock(&cpuset_mutex);
2266 2267
}

2268
/**
2269
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2270
 *
2271 2272 2273 2274 2275
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2276
 *
2277
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2278 2279
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2280
 *
2281 2282
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2283
 */
2284
static void cpuset_hotplug_workfn(struct work_struct *work)
2285
{
2286 2287
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2288
	bool cpus_updated, mems_updated;
2289
	bool on_dfl = is_in_v2_mode();
2290

2291
	mutex_lock(&cpuset_mutex);
2292

2293 2294 2295
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2296

2297 2298
	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2299

2300 2301
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
2302
		spin_lock_irq(&callback_lock);
2303 2304
		if (!on_dfl)
			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2305
		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2306
		spin_unlock_irq(&callback_lock);
2307 2308
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2309

2310 2311
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
2312
		spin_lock_irq(&callback_lock);
2313 2314
		if (!on_dfl)
			top_cpuset.mems_allowed = new_mems;
2315
		top_cpuset.effective_mems = new_mems;
2316
		spin_unlock_irq(&callback_lock);
2317
		update_tasks_nodemask(&top_cpuset);
2318
	}
2319

2320 2321
	mutex_unlock(&cpuset_mutex);

2322 2323
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2324
		struct cpuset *cs;
2325
		struct cgroup_subsys_state *pos_css;
2326

2327
		rcu_read_lock();
2328
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2329
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2330 2331
				continue;
			rcu_read_unlock();
2332

2333
			cpuset_hotplug_update_tasks(cs);
2334

2335 2336 2337 2338 2339
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2340

2341
	/* rebuild sched domains if cpus_allowed has changed */
2342 2343
	if (cpus_updated)
		rebuild_sched_domains();
2344 2345
}

2346
void cpuset_update_active_cpus(void)
2347
{
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 *
	 * We still need to do partition_sched_domains() synchronously;
	 * otherwise, the scheduler will get confused and put tasks to the
	 * dead CPU.  Fall back to the default single domain.
	 * cpuset_hotplug_workfn() will rebuild it as necessary.
	 */
	partition_sched_domains(1, NULL, NULL);
	schedule_work(&cpuset_hotplug_work);
2360 2361
}

2362
/*
2363 2364
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2365
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2366
 */
2367 2368
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2369
{
2370
	schedule_work(&cpuset_hotplug_work);
2371
	return NOTIFY_OK;
2372
}
2373 2374 2375 2376 2377

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2378

L
Linus Torvalds 已提交
2379 2380 2381 2382
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2383
 */
L
Linus Torvalds 已提交
2384 2385
void __init cpuset_init_smp(void)
{
2386
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2387
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2388
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2389

2390 2391 2392
	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
	top_cpuset.effective_mems = node_states[N_MEMORY];

2393
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2394 2395 2396

	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
	BUG_ON(!cpuset_migrate_mm_wq);
L
Linus Torvalds 已提交
2397 2398 2399 2400 2401
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2402
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2403
 *
2404
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2405
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2406
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2407 2408 2409
 * tasks cpuset.
 **/

2410
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2411
{
2412 2413 2414
	unsigned long flags;

	spin_lock_irqsave(&callback_lock, flags);
2415
	rcu_read_lock();
2416
	guarantee_online_cpus(task_cs(tsk), pmask);
2417
	rcu_read_unlock();
2418
	spin_unlock_irqrestore(&callback_lock, flags);
L
Linus Torvalds 已提交
2419 2420
}

2421
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2422 2423
{
	rcu_read_lock();
2424
	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2440 2441 2442
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2443 2444 2445
	 */
}

2446
void __init cpuset_init_current_mems_allowed(void)
L
Linus Torvalds 已提交
2447
{
2448
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2449 2450
}

2451 2452 2453 2454 2455 2456
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2457
 * subset of node_states[N_MEMORY], even if this means going outside the
2458 2459 2460 2461 2462 2463
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;
2464
	unsigned long flags;
2465

2466
	spin_lock_irqsave(&callback_lock, flags);
2467
	rcu_read_lock();
2468
	guarantee_online_mems(task_cs(tsk), &mask);
2469
	rcu_read_unlock();
2470
	spin_unlock_irqrestore(&callback_lock, flags);
2471 2472 2473 2474

	return mask;
}

2475
/**
2476 2477
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2478
 *
2479
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2480
 */
2481
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2482
{
2483
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2484 2485
}

2486
/*
2487 2488
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
2489
 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2490
 * (an unusual configuration), then returns the root cpuset.
2491
 */
2492
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2493
{
T
Tejun Heo 已提交
2494 2495
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2496 2497 2498
	return cs;
}

2499
/**
2500
 * cpuset_node_allowed - Can we allocate on a memory node?
2501
 * @node: is this an allowed node?
2502
 * @gfp_mask: memory allocation flags
2503
 *
2504 2505 2506 2507
 * If we're in interrupt, yes, we can always allocate.  If @node is set in
 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
 * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes.
2508 2509 2510
 * Otherwise, no.
 *
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2511 2512
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2513
 * GFP_KERNEL allocations are not so marked, so can escape to the
2514
 * nearest enclosing hardwalled ancestor cpuset.
2515
 *
2516
 * Scanning up parent cpusets requires callback_lock.  The
2517 2518 2519 2520
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2521
 * cpuset are short of memory, might require taking the callback_lock.
2522
 *
2523
 * The first call here from mm/page_alloc:get_page_from_freelist()
2524 2525 2526
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2527 2528 2529 2530 2531 2532
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2533 2534
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2535
 *	TIF_MEMDIE   - any node ok
2536
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2537
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2538
 */
2539
bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2540
{
2541
	struct cpuset *cs;		/* current cpuset ancestors */
2542
	int allowed;			/* is allocation in zone z allowed? */
2543
	unsigned long flags;
2544

2545
	if (in_interrupt())
2546
		return true;
2547
	if (node_isset(node, current->mems_allowed))
2548
		return true;
2549 2550 2551 2552 2553
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2554
		return true;
2555
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2556
		return false;
2557

2558
	if (current->flags & PF_EXITING) /* Let dying task have memory */
2559
		return true;
2560

2561
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2562
	spin_lock_irqsave(&callback_lock, flags);
2563

2564
	rcu_read_lock();
2565
	cs = nearest_hardwall_ancestor(task_cs(current));
2566
	allowed = node_isset(node, cs->mems_allowed);
2567
	rcu_read_unlock();
2568

2569
	spin_unlock_irqrestore(&callback_lock, flags);
2570
	return allowed;
L
Linus Torvalds 已提交
2571 2572
}

2573
/**
2574 2575
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2600
static int cpuset_spread_node(int *rotor)
2601
{
2602
	return *rotor = next_node_in(*rotor, current->mems_allowed);
2603
}
2604 2605 2606

int cpuset_mem_spread_node(void)
{
2607 2608 2609 2610
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2611 2612 2613 2614 2615
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2616 2617 2618 2619
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2620 2621 2622
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2623 2624
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2625
/**
2626 2627 2628 2629 2630 2631 2632 2633
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2634 2635
 **/

2636 2637
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2638
{
2639
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2640 2641
}

2642
/**
2643
 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2644
 *
2645
 * Description: Prints current's name, cpuset name, and cached copy of its
2646
 * mems_allowed to the kernel log.
2647
 */
2648
void cpuset_print_current_mems_allowed(void)
2649
{
2650
	struct cgroup *cgrp;
2651

2652
	rcu_read_lock();
2653

2654 2655
	cgrp = task_cs(current)->css.cgroup;
	pr_info("%s cpuset=", current->comm);
T
Tejun Heo 已提交
2656
	pr_cont_cgroup_name(cgrp);
2657 2658
	pr_cont(" mems_allowed=%*pbl\n",
		nodemask_pr_args(&current->mems_allowed));
2659

2660
	rcu_read_unlock();
2661 2662
}

2663 2664 2665 2666 2667 2668
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2669
int cpuset_memory_pressure_enabled __read_mostly;
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
2691
	rcu_read_lock();
2692
	fmeter_markevent(&task_cs(current)->fmeter);
2693
	rcu_read_unlock();
2694 2695
}

2696
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2697 2698 2699 2700
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2701 2702
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2703
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2704
 *    anyway.
L
Linus Torvalds 已提交
2705
 */
Z
Zefan Li 已提交
2706 2707
int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
		     struct pid *pid, struct task_struct *tsk)
L
Linus Torvalds 已提交
2708
{
2709
	char *buf;
2710
	struct cgroup_subsys_state *css;
2711
	int retval;
L
Linus Torvalds 已提交
2712

2713
	retval = -ENOMEM;
T
Tejun Heo 已提交
2714
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
2715
	if (!buf)
2716 2717
		goto out;

2718
	css = task_get_css(tsk, cpuset_cgrp_id);
2719 2720
	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
				current->nsproxy->cgroup_ns);
2721
	css_put(css);
2722
	if (retval >= PATH_MAX)
2723 2724
		retval = -ENAMETOOLONG;
	if (retval < 0)
Z
Zefan Li 已提交
2725
		goto out_free;
2726
	seq_puts(m, buf);
L
Linus Torvalds 已提交
2727
	seq_putc(m, '\n');
T
Tejun Heo 已提交
2728
	retval = 0;
2729
out_free:
L
Linus Torvalds 已提交
2730
	kfree(buf);
2731
out:
L
Linus Torvalds 已提交
2732 2733
	return retval;
}
2734
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2735

2736
/* Display task mems_allowed in /proc/<pid>/status file. */
2737 2738
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
2739 2740 2741 2742
	seq_printf(m, "Mems_allowed:\t%*pb\n",
		   nodemask_pr_args(&task->mems_allowed));
	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
		   nodemask_pr_args(&task->mems_allowed));
L
Linus Torvalds 已提交
2743
}