futex.c 69.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
E
Eric Dumazet 已提交
19 20 21
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
22 23 24 25
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
L
Linus Torvalds 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
57
#include <linux/signal.h>
58
#include <linux/module.h>
59
#include <linux/magic.h>
60 61 62
#include <linux/pid.h>
#include <linux/nsproxy.h>

63
#include <asm/futex.h>
L
Linus Torvalds 已提交
64

65 66
#include "rtmutex_common.h"

67 68
int __read_mostly futex_cmpxchg_enabled;

L
Linus Torvalds 已提交
69 70
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)

71 72 73 74 75 76 77 78
/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
#define FLAGS_SHARED		0x01
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

100 101
/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
102
 * @list:		priority-sorted list of tasks waiting on this futex
103 104 105 106 107 108 109 110 111
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
L
Linus Torvalds 已提交
112 113 114
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
P
Pierre Peiffer 已提交
115
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
116
 * The order of wakeup is always to make the first condition true, then
117 118 119 120
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
L
Linus Torvalds 已提交
121 122
 */
struct futex_q {
P
Pierre Peiffer 已提交
123
	struct plist_node list;
L
Linus Torvalds 已提交
124

125
	struct task_struct *task;
L
Linus Torvalds 已提交
126 127
	spinlock_t *lock_ptr;
	union futex_key key;
128
	struct futex_pi_state *pi_state;
129
	struct rt_mutex_waiter *rt_waiter;
130
	union futex_key *requeue_pi_key;
131
	u32 bitset;
L
Linus Torvalds 已提交
132 133
};

134 135 136 137 138 139
static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

L
Linus Torvalds 已提交
140
/*
D
Darren Hart 已提交
141 142 143
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
L
Linus Torvalds 已提交
144 145
 */
struct futex_hash_bucket {
P
Pierre Peiffer 已提交
146 147
	spinlock_t lock;
	struct plist_head chain;
L
Linus Torvalds 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
};

static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];

/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
168 169
	return (key1 && key2
		&& key1->both.word == key2->both.word
L
Linus Torvalds 已提交
170 171 172 173
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

174 175 176 177 178 179 180 181 182 183 184 185
/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 */
static void get_futex_key_refs(union futex_key *key)
{
	if (!key->both.ptr)
		return;

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
A
Al Viro 已提交
186
		ihold(key->shared.inode);
187 188 189 190 191 192 193 194 195 196 197 198 199
		break;
	case FUT_OFF_MMSHARED:
		atomic_inc(&key->private.mm->mm_count);
		break;
	}
}

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
static void drop_futex_key_refs(union futex_key *key)
{
200 201 202
	if (!key->both.ptr) {
		/* If we're here then we tried to put a key we failed to get */
		WARN_ON_ONCE(1);
203
		return;
204
	}
205 206 207 208 209 210 211 212 213 214 215

	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
	case FUT_OFF_INODE:
		iput(key->shared.inode);
		break;
	case FUT_OFF_MMSHARED:
		mmdrop(key->private.mm);
		break;
	}
}

E
Eric Dumazet 已提交
216
/**
217 218 219 220
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 * @key:	address where result is stored.
E
Eric Dumazet 已提交
221 222 223
 *
 * Returns a negative error code or 0
 * The key words are stored in *key on success.
L
Linus Torvalds 已提交
224
 *
225
 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
L
Linus Torvalds 已提交
226 227 228
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
D
Darren Hart 已提交
229
 * lock_page() might sleep, the caller should not hold a spinlock.
L
Linus Torvalds 已提交
230
 */
231
static int
232
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
L
Linus Torvalds 已提交
233
{
234
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
235
	struct mm_struct *mm = current->mm;
236
	struct page *page, *page_head;
L
Linus Torvalds 已提交
237 238 239 240 241
	int err;

	/*
	 * The futex address must be "naturally" aligned.
	 */
242
	key->both.offset = address % PAGE_SIZE;
E
Eric Dumazet 已提交
243
	if (unlikely((address % sizeof(u32)) != 0))
L
Linus Torvalds 已提交
244
		return -EINVAL;
245
	address -= key->both.offset;
L
Linus Torvalds 已提交
246

E
Eric Dumazet 已提交
247 248 249 250 251 252 253 254
	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
255
		if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
E
Eric Dumazet 已提交
256 257 258
			return -EFAULT;
		key->private.mm = mm;
		key->private.address = address;
259
		get_futex_key_refs(key);
E
Eric Dumazet 已提交
260 261
		return 0;
	}
L
Linus Torvalds 已提交
262

263
again:
264
	err = get_user_pages_fast(address, 1, 1, &page);
265 266 267
	if (err < 0)
		return err;

268 269 270
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	page_head = page;
	if (unlikely(PageTail(page))) {
271
		put_page(page);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
		/* serialize against __split_huge_page_splitting() */
		local_irq_disable();
		if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
			page_head = compound_head(page);
			/*
			 * page_head is valid pointer but we must pin
			 * it before taking the PG_lock and/or
			 * PG_compound_lock. The moment we re-enable
			 * irqs __split_huge_page_splitting() can
			 * return and the head page can be freed from
			 * under us. We can't take the PG_lock and/or
			 * PG_compound_lock on a page that could be
			 * freed from under us.
			 */
			if (page != page_head) {
				get_page(page_head);
				put_page(page);
			}
			local_irq_enable();
		} else {
			local_irq_enable();
			goto again;
		}
	}
#else
	page_head = compound_head(page);
	if (page != page_head) {
		get_page(page_head);
		put_page(page);
	}
#endif

	lock_page(page_head);
	if (!page_head->mapping) {
		unlock_page(page_head);
		put_page(page_head);
308 309
		goto again;
	}
L
Linus Torvalds 已提交
310 311 312 313 314 315

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
316
	 * the object not the particular process.
L
Linus Torvalds 已提交
317
	 */
318
	if (PageAnon(page_head)) {
319
		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
L
Linus Torvalds 已提交
320
		key->private.mm = mm;
321
		key->private.address = address;
322 323
	} else {
		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
324 325
		key->shared.inode = page_head->mapping->host;
		key->shared.pgoff = page_head->index;
L
Linus Torvalds 已提交
326 327
	}

328
	get_futex_key_refs(key);
L
Linus Torvalds 已提交
329

330 331
	unlock_page(page_head);
	put_page(page_head);
332
	return 0;
L
Linus Torvalds 已提交
333 334
}

335
static inline void put_futex_key(union futex_key *key)
L
Linus Torvalds 已提交
336
{
337
	drop_futex_key_refs(key);
L
Linus Torvalds 已提交
338 339
}

340 341
/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
342 343 344 345 346
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
347
 * We have no generic implementation of a non-destructive write to the
348 349 350 351 352 353
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
354 355 356 357 358 359 360 361
	struct mm_struct *mm = current->mm;
	int ret;

	down_read(&mm->mmap_sem);
	ret = get_user_pages(current, mm, (unsigned long)uaddr,
			     1, 1, 0, NULL, NULL);
	up_read(&mm->mmap_sem);

362 363 364
	return ret < 0 ? ret : 0;
}

365 366
/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
367 368
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

384 385
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
T
Thomas Gleixner 已提交
386
{
387
	int ret;
T
Thomas Gleixner 已提交
388 389

	pagefault_disable();
390
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
T
Thomas Gleixner 已提交
391 392
	pagefault_enable();

393
	return ret;
T
Thomas Gleixner 已提交
394 395 396
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
397 398 399
{
	int ret;

400
	pagefault_disable();
401
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
402
	pagefault_enable();
L
Linus Torvalds 已提交
403 404 405 406

	return ret ? -EFAULT : 0;
}

407 408 409 410 411 412 413 414 415 416 417

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

418
	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
419 420 421 422 423 424 425 426

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);
427
	pi_state->key = FUTEX_KEY_INIT;
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

static void free_pi_state(struct futex_pi_state *pi_state)
{
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
454
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
455
		list_del_init(&pi_state->list);
456
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;

483
	rcu_read_lock();
484
	p = find_task_by_vpid(pid);
485 486
	if (p)
		get_task_struct(p);
487

488
	rcu_read_unlock();
489 490 491 492 493 494 495 496 497 498 499 500 501

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
502
	struct futex_hash_bucket *hb;
503
	union futex_key key = FUTEX_KEY_INIT;
504

505 506
	if (!futex_cmpxchg_enabled)
		return;
507 508 509
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
510
	 * versus waiters unqueueing themselves:
511
	 */
512
	raw_spin_lock_irq(&curr->pi_lock);
513 514 515 516 517
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
518
		hb = hash_futex(&key);
519
		raw_spin_unlock_irq(&curr->pi_lock);
520 521 522

		spin_lock(&hb->lock);

523
		raw_spin_lock_irq(&curr->pi_lock);
524 525 526 527
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
528 529 530 531 532 533
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
534 535
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
536
		pi_state->owner = NULL;
537
		raw_spin_unlock_irq(&curr->pi_lock);
538 539 540 541 542

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

543
		raw_spin_lock_irq(&curr->pi_lock);
544
	}
545
	raw_spin_unlock_irq(&curr->pi_lock);
546 547 548
}

static int
P
Pierre Peiffer 已提交
549 550
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
		union futex_key *key, struct futex_pi_state **ps)
551 552 553
{
	struct futex_pi_state *pi_state = NULL;
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
554
	struct plist_head *head;
555
	struct task_struct *p;
556
	pid_t pid = uval & FUTEX_TID_MASK;
557 558 559

	head = &hb->chain;

P
Pierre Peiffer 已提交
560
	plist_for_each_entry_safe(this, next, head, list) {
P
Pierre Peiffer 已提交
561
		if (match_futex(&this->key, key)) {
562 563 564 565 566
			/*
			 * Another waiter already exists - bump up
			 * the refcount and return its pi_state:
			 */
			pi_state = this->pi_state;
567
			/*
568
			 * Userspace might have messed up non-PI and PI futexes
569 570 571 572
			 */
			if (unlikely(!pi_state))
				return -EINVAL;

573
			WARN_ON(!atomic_read(&pi_state->refcount));
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

			/*
			 * When pi_state->owner is NULL then the owner died
			 * and another waiter is on the fly. pi_state->owner
			 * is fixed up by the task which acquires
			 * pi_state->rt_mutex.
			 *
			 * We do not check for pid == 0 which can happen when
			 * the owner died and robust_list_exit() cleared the
			 * TID.
			 */
			if (pid && pi_state->owner) {
				/*
				 * Bail out if user space manipulated the
				 * futex value.
				 */
				if (pid != task_pid_vnr(pi_state->owner))
					return -EINVAL;
			}
593

594
			atomic_inc(&pi_state->refcount);
P
Pierre Peiffer 已提交
595
			*ps = pi_state;
596 597 598 599 600 601

			return 0;
		}
	}

	/*
602
	 * We are the first waiter - try to look up the real owner and attach
603
	 * the new pi_state to it, but bail out when TID = 0
604
	 */
605
	if (!pid)
606
		return -ESRCH;
607
	p = futex_find_get_task(pid);
608 609
	if (!p)
		return -ESRCH;
610 611 612 613 614 615 616

	/*
	 * We need to look at the task state flags to figure out,
	 * whether the task is exiting. To protect against the do_exit
	 * change of the task flags, we do this protected by
	 * p->pi_lock:
	 */
617
	raw_spin_lock_irq(&p->pi_lock);
618 619 620 621 622 623 624 625
	if (unlikely(p->flags & PF_EXITING)) {
		/*
		 * The task is on the way out. When PF_EXITPIDONE is
		 * set, we know that the task has finished the
		 * cleanup:
		 */
		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;

626
		raw_spin_unlock_irq(&p->pi_lock);
627 628 629
		put_task_struct(p);
		return ret;
	}
630 631 632 633 634 635 636 637 638 639

	pi_state = alloc_pi_state();

	/*
	 * Initialize the pi_mutex in locked state and make 'p'
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
P
Pierre Peiffer 已提交
640
	pi_state->key = *key;
641

642
	WARN_ON(!list_empty(&pi_state->list));
643 644
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
645
	raw_spin_unlock_irq(&p->pi_lock);
646 647 648

	put_task_struct(p);

P
Pierre Peiffer 已提交
649
	*ps = pi_state;
650 651 652 653

	return 0;
}

654
/**
655
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
656 657 658 659 660 661 662 663
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
664 665 666 667 668 669 670 671 672 673 674
 *
 * Returns:
 *  0 - ready to wait
 *  1 - acquired the lock
 * <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
675
				struct task_struct *task, int set_waiters)
676 677
{
	int lock_taken, ret, ownerdied = 0;
678
	u32 uval, newval, curval, vpid = task_pid_vnr(task);
679 680 681 682 683 684 685 686 687

retry:
	ret = lock_taken = 0;

	/*
	 * To avoid races, we attempt to take the lock here again
	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
	 * the locks. It will most likely not succeed.
	 */
688
	newval = vpid;
689 690
	if (set_waiters)
		newval |= FUTEX_WAITERS;
691

692
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
693 694 695 696 697
		return -EFAULT;

	/*
	 * Detect deadlocks.
	 */
698
	if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
		return -EDEADLK;

	/*
	 * Surprise - we got the lock. Just return to userspace:
	 */
	if (unlikely(!curval))
		return 1;

	uval = curval;

	/*
	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
	 * to wake at the next unlock.
	 */
	newval = curval | FUTEX_WAITERS;

	/*
	 * There are two cases, where a futex might have no owner (the
	 * owner TID is 0): OWNER_DIED. We take over the futex in this
	 * case. We also do an unconditional take over, when the owner
	 * of the futex died.
	 *
	 * This is safe as we are protected by the hash bucket lock !
	 */
	if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
		/* Keep the OWNER_DIED bit */
725
		newval = (curval & ~FUTEX_TID_MASK) | vpid;
726 727 728 729
		ownerdied = 0;
		lock_taken = 1;
	}

730
	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
		return -EFAULT;
	if (unlikely(curval != uval))
		goto retry;

	/*
	 * We took the lock due to owner died take over.
	 */
	if (unlikely(lock_taken))
		return 1;

	/*
	 * We dont have the lock. Look up the PI state (or create it if
	 * we are the first waiter):
	 */
	ret = lookup_pi_state(uval, hb, key, ps);

	if (unlikely(ret)) {
		switch (ret) {
		case -ESRCH:
			/*
			 * No owner found for this futex. Check if the
			 * OWNER_DIED bit is set to figure out whether
			 * this is a robust futex or not.
			 */
			if (get_futex_value_locked(&curval, uaddr))
				return -EFAULT;

			/*
			 * We simply start over in case of a robust
			 * futex. The code above will take the futex
			 * and return happy.
			 */
			if (curval & FUTEX_OWNER_DIED) {
				ownerdied = 1;
				goto retry;
			}
		default:
			break;
		}
	}

	return ret;
}

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

	if (WARN_ON(!q->lock_ptr || !spin_is_locked(q->lock_ptr)
			|| plist_node_empty(&q->list)))
		return;

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
}

L
Linus Torvalds 已提交
793 794 795 796 797 798
/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
T
Thomas Gleixner 已提交
799 800
	struct task_struct *p = q->task;

L
Linus Torvalds 已提交
801
	/*
T
Thomas Gleixner 已提交
802
	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
803 804
	 * a non-futex wake up happens on another CPU then the task
	 * might exit and p would dereference a non-existing task
T
Thomas Gleixner 已提交
805 806
	 * struct. Prevent this by holding a reference on p across the
	 * wake up.
L
Linus Torvalds 已提交
807
	 */
T
Thomas Gleixner 已提交
808 809
	get_task_struct(p);

810
	__unqueue_futex(q);
L
Linus Torvalds 已提交
811
	/*
T
Thomas Gleixner 已提交
812 813 814 815
	 * The waiting task can free the futex_q as soon as
	 * q->lock_ptr = NULL is written, without taking any locks. A
	 * memory barrier is required here to prevent the following
	 * store to lock_ptr from getting ahead of the plist_del.
L
Linus Torvalds 已提交
816
	 */
817
	smp_wmb();
L
Linus Torvalds 已提交
818
	q->lock_ptr = NULL;
T
Thomas Gleixner 已提交
819 820 821

	wake_up_state(p, TASK_NORMAL);
	put_task_struct(p);
L
Linus Torvalds 已提交
822 823
}

824 825 826 827 828 829 830 831 832
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
	u32 curval, newval;

	if (!pi_state)
		return -EINVAL;

833 834 835 836 837 838 839
	/*
	 * If current does not own the pi_state then the futex is
	 * inconsistent and user space fiddled with the futex value.
	 */
	if (pi_state->owner != current)
		return -EINVAL;

840
	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
841 842 843
	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
844 845 846
	 * It is possible that the next waiter (the one that brought
	 * this owner to the kernel) timed out and is no longer
	 * waiting on the lock.
847 848 849 850 851 852 853 854 855
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
	 * We pass it to the next owner. (The WAITERS bit is always
	 * kept enabled while there is PI state around. We must also
	 * preserve the owner died bit.)
	 */
856
	if (!(uval & FUTEX_OWNER_DIED)) {
857 858
		int ret = 0;

859
		newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
860

861
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
862
			ret = -EFAULT;
863
		else if (curval != uval)
864 865
			ret = -EINVAL;
		if (ret) {
866
			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
867 868
			return ret;
		}
869
	}
870

871
	raw_spin_lock_irq(&pi_state->owner->pi_lock);
872 873
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
874
	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
875

876
	raw_spin_lock_irq(&new_owner->pi_lock);
877
	WARN_ON(!list_empty(&pi_state->list));
878 879
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
880
	raw_spin_unlock_irq(&new_owner->pi_lock);
881

882
	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
883 884 885 886 887 888 889 890 891 892 893 894 895
	rt_mutex_unlock(&pi_state->pi_mutex);

	return 0;
}

static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
{
	u32 oldval;

	/*
	 * There is no waiter, so we unlock the futex. The owner died
	 * bit has not to be preserved here. We are the owner:
	 */
896 897
	if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
		return -EFAULT;
898 899 900 901 902 903
	if (oldval != uval)
		return -EAGAIN;

	return 0;
}

I
Ingo Molnar 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

D
Darren Hart 已提交
920 921 922
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
923
	spin_unlock(&hb1->lock);
924 925
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
D
Darren Hart 已提交
926 927
}

L
Linus Torvalds 已提交
928
/*
D
Darren Hart 已提交
929
 * Wake up waiters matching bitset queued on this futex (uaddr).
L
Linus Torvalds 已提交
930
 */
931 932
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
L
Linus Torvalds 已提交
933
{
934
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
935
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
936
	struct plist_head *head;
937
	union futex_key key = FUTEX_KEY_INIT;
L
Linus Torvalds 已提交
938 939
	int ret;

940 941 942
	if (!bitset)
		return -EINVAL;

943
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
L
Linus Torvalds 已提交
944 945 946
	if (unlikely(ret != 0))
		goto out;

947 948 949
	hb = hash_futex(&key);
	spin_lock(&hb->lock);
	head = &hb->chain;
L
Linus Torvalds 已提交
950

P
Pierre Peiffer 已提交
951
	plist_for_each_entry_safe(this, next, head, list) {
L
Linus Torvalds 已提交
952
		if (match_futex (&this->key, &key)) {
953
			if (this->pi_state || this->rt_waiter) {
954 955 956
				ret = -EINVAL;
				break;
			}
957 958 959 960 961

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

L
Linus Torvalds 已提交
962 963 964 965 966 967
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

968
	spin_unlock(&hb->lock);
969
	put_futex_key(&key);
970
out:
L
Linus Torvalds 已提交
971 972 973
	return ret;
}

974 975 976 977
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
978
static int
979
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
980
	      int nr_wake, int nr_wake2, int op)
981
{
982
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
983
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
984
	struct plist_head *head;
985
	struct futex_q *this, *next;
D
Darren Hart 已提交
986
	int ret, op_ret;
987

D
Darren Hart 已提交
988
retry:
989
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
990 991
	if (unlikely(ret != 0))
		goto out;
992
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
993
	if (unlikely(ret != 0))
994
		goto out_put_key1;
995

996 997
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
998

D
Darren Hart 已提交
999
retry_private:
T
Thomas Gleixner 已提交
1000
	double_lock_hb(hb1, hb2);
1001
	op_ret = futex_atomic_op_inuser(op, uaddr2);
1002 1003
	if (unlikely(op_ret < 0)) {

D
Darren Hart 已提交
1004
		double_unlock_hb(hb1, hb2);
1005

1006
#ifndef CONFIG_MMU
1007 1008 1009 1010
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
1011
		ret = op_ret;
1012
		goto out_put_keys;
1013 1014
#endif

1015 1016
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
1017
			goto out_put_keys;
1018 1019
		}

1020
		ret = fault_in_user_writeable(uaddr2);
1021
		if (ret)
1022
			goto out_put_keys;
1023

1024
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1025 1026
			goto retry_private;

1027 1028
		put_futex_key(&key2);
		put_futex_key(&key1);
D
Darren Hart 已提交
1029
		goto retry;
1030 1031
	}

1032
	head = &hb1->chain;
1033

P
Pierre Peiffer 已提交
1034
	plist_for_each_entry_safe(this, next, head, list) {
1035 1036 1037 1038 1039 1040 1041 1042
		if (match_futex (&this->key, &key1)) {
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
1043
		head = &hb2->chain;
1044 1045

		op_ret = 0;
P
Pierre Peiffer 已提交
1046
		plist_for_each_entry_safe(this, next, head, list) {
1047 1048 1049 1050 1051 1052 1053 1054 1055
			if (match_futex (&this->key, &key2)) {
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

D
Darren Hart 已提交
1056
	double_unlock_hb(hb1, hb2);
1057
out_put_keys:
1058
	put_futex_key(&key2);
1059
out_put_key1:
1060
	put_futex_key(&key1);
1061
out:
1062 1063 1064
	return ret;
}

D
Darren Hart 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
		plist_add(&q->list, &hb2->chain);
		q->lock_ptr = &hb2->lock;
	}
	get_futex_key_refs(key2);
	q->key = *key2;
}

1090 1091
/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1092 1093 1094
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
1095 1096 1097 1098 1099
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1100 1101 1102
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
1103 1104
 */
static inline
1105 1106
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
1107 1108 1109 1110
{
	get_futex_key_refs(key);
	q->key = *key;

1111
	__unqueue_futex(q);
1112 1113 1114 1115

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

1116 1117
	q->lock_ptr = &hb->lock;

T
Thomas Gleixner 已提交
1118
	wake_up_state(q->task, TASK_NORMAL);
1119 1120 1121 1122
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1123 1124 1125 1126 1127 1128 1129
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1130 1131
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1132 1133 1134
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
 *
 * Returns:
 *  0 - failed to acquire the lock atomicly
 *  1 - acquired the lock
 * <0 - error
 */
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
				 struct futex_hash_bucket *hb1,
				 struct futex_hash_bucket *hb2,
				 union futex_key *key1, union futex_key *key2,
1145
				 struct futex_pi_state **ps, int set_waiters)
1146
{
1147
	struct futex_q *top_waiter = NULL;
1148 1149 1150 1151 1152 1153
	u32 curval;
	int ret;

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

1154 1155 1156 1157 1158 1159 1160 1161
	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
1162 1163 1164 1165 1166 1167
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

1168 1169 1170 1171
	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

1172
	/*
1173 1174 1175
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
1176
	 */
1177 1178
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   set_waiters);
1179
	if (ret == 1)
1180
		requeue_pi_wake_futex(top_waiter, key2, hb2);
1181 1182 1183 1184 1185 1186

	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1187
 * @uaddr1:	source futex user address
1188
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1189 1190 1191 1192 1193
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1194
 *		pi futex (pi to pi requeue is not supported)
1195 1196 1197 1198 1199 1200 1201
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
 * Returns:
 * >=0 - on success, the number of tasks requeued or woken
 *  <0 - on error
L
Linus Torvalds 已提交
1202
 */
1203 1204 1205
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
L
Linus Torvalds 已提交
1206
{
1207
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1208 1209
	int drop_count = 0, task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
1210
	struct futex_hash_bucket *hb1, *hb2;
P
Pierre Peiffer 已提交
1211
	struct plist_head *head1;
L
Linus Torvalds 已提交
1212
	struct futex_q *this, *next;
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	u32 curval2;

	if (requeue_pi) {
		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}
L
Linus Torvalds 已提交
1235

1236
retry:
1237 1238 1239 1240 1241 1242 1243 1244 1245
	if (pi_state != NULL) {
		/*
		 * We will have to lookup the pi_state again, so free this one
		 * to keep the accounting correct.
		 */
		free_pi_state(pi_state);
		pi_state = NULL;
	}

1246
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
L
Linus Torvalds 已提交
1247 1248
	if (unlikely(ret != 0))
		goto out;
1249
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
L
Linus Torvalds 已提交
1250
	if (unlikely(ret != 0))
1251
		goto out_put_key1;
L
Linus Torvalds 已提交
1252

1253 1254
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
1255

D
Darren Hart 已提交
1256
retry_private:
I
Ingo Molnar 已提交
1257
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1258

1259 1260
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
1261

1262
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
1263 1264

		if (unlikely(ret)) {
D
Darren Hart 已提交
1265
			double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1266

1267
			ret = get_user(curval, uaddr1);
D
Darren Hart 已提交
1268 1269
			if (ret)
				goto out_put_keys;
L
Linus Torvalds 已提交
1270

1271
			if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1272
				goto retry_private;
L
Linus Torvalds 已提交
1273

1274 1275
			put_futex_key(&key2);
			put_futex_key(&key1);
D
Darren Hart 已提交
1276
			goto retry;
L
Linus Torvalds 已提交
1277
		}
1278
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
1279 1280 1281 1282 1283
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

1284
	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1285 1286 1287 1288 1289 1290
		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
1291
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1292
						 &key2, &pi_state, nr_requeue);
1293 1294 1295 1296 1297 1298 1299 1300 1301

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
		 * reference to it.
		 */
		if (ret == 1) {
			WARN_ON(pi_state);
1302
			drop_count++;
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
			task_count++;
			ret = get_futex_value_locked(&curval2, uaddr2);
			if (!ret)
				ret = lookup_pi_state(curval2, hb2, &key2,
						      &pi_state);
		}

		switch (ret) {
		case 0:
			break;
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
1315 1316
			put_futex_key(&key2);
			put_futex_key(&key1);
1317
			ret = fault_in_user_writeable(uaddr2);
1318 1319 1320 1321 1322 1323
			if (!ret)
				goto retry;
			goto out;
		case -EAGAIN:
			/* The owner was exiting, try again. */
			double_unlock_hb(hb1, hb2);
1324 1325
			put_futex_key(&key2);
			put_futex_key(&key1);
1326 1327 1328 1329 1330 1331 1332
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

1333
	head1 = &hb1->chain;
P
Pierre Peiffer 已提交
1334
	plist_for_each_entry_safe(this, next, head1, list) {
1335 1336 1337 1338
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
L
Linus Torvalds 已提交
1339
			continue;
1340

1341 1342 1343 1344 1345 1346 1347 1348 1349
		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
		 */
		if ((requeue_pi && !this->rt_waiter) ||
		    (!requeue_pi && this->rt_waiter)) {
			ret = -EINVAL;
			break;
		}
1350 1351 1352 1353 1354 1355 1356

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
L
Linus Torvalds 已提交
1357
			wake_futex(this);
1358 1359
			continue;
		}
L
Linus Torvalds 已提交
1360

1361 1362 1363 1364 1365 1366
		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
			/* Prepare the waiter to take the rt_mutex. */
			atomic_inc(&pi_state->refcount);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
							this->task, 1);
			if (ret == 1) {
				/* We got the lock. */
1380
				requeue_pi_wake_futex(this, &key2, hb2);
1381
				drop_count++;
1382 1383 1384 1385 1386 1387 1388
				continue;
			} else if (ret) {
				/* -EDEADLK */
				this->pi_state = NULL;
				free_pi_state(pi_state);
				goto out_unlock;
			}
L
Linus Torvalds 已提交
1389
		}
1390 1391
		requeue_futex(this, hb1, hb2, &key2);
		drop_count++;
L
Linus Torvalds 已提交
1392 1393 1394
	}

out_unlock:
D
Darren Hart 已提交
1395
	double_unlock_hb(hb1, hb2);
L
Linus Torvalds 已提交
1396

1397 1398 1399 1400 1401 1402
	/*
	 * drop_futex_key_refs() must be called outside the spinlocks. During
	 * the requeue we moved futex_q's from the hash bucket at key1 to the
	 * one at key2 and updated their key pointer.  We no longer need to
	 * hold the references to key1.
	 */
L
Linus Torvalds 已提交
1403
	while (--drop_count >= 0)
1404
		drop_futex_key_refs(&key1);
L
Linus Torvalds 已提交
1405

1406
out_put_keys:
1407
	put_futex_key(&key2);
1408
out_put_key1:
1409
	put_futex_key(&key1);
1410
out:
1411 1412 1413
	if (pi_state != NULL)
		free_pi_state(pi_state);
	return ret ? ret : task_count;
L
Linus Torvalds 已提交
1414 1415 1416
}

/* The key must be already stored in q->key. */
E
Eric Sesterhenn 已提交
1417
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1418
	__acquires(&hb->lock)
L
Linus Torvalds 已提交
1419
{
1420
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1421

1422 1423
	hb = hash_futex(&q->key);
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
1424

1425 1426
	spin_lock(&hb->lock);
	return hb;
L
Linus Torvalds 已提交
1427 1428
}

1429 1430
static inline void
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1431
	__releases(&hb->lock)
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
{
	spin_unlock(&hb->lock);
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
E
Eric Sesterhenn 已提交
1448
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1449
	__releases(&hb->lock)
L
Linus Torvalds 已提交
1450
{
P
Pierre Peiffer 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
1465
	q->task = current;
1466
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1467 1468
}

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
 * Returns:
 *   1 - if the futex_q was still queued (and we removed unqueued it)
 *   0 - if the futex_q was already removed by the waking thread
L
Linus Torvalds 已提交
1479 1480 1481 1482
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
1483
	int ret = 0;
L
Linus Torvalds 已提交
1484 1485

	/* In the common case we don't take the spinlock, which is nice. */
1486
retry:
L
Linus Torvalds 已提交
1487
	lock_ptr = q->lock_ptr;
1488
	barrier();
1489
	if (lock_ptr != NULL) {
L
Linus Torvalds 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
1508
		__unqueue_futex(q);
1509 1510 1511

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
1512 1513 1514 1515
		spin_unlock(lock_ptr);
		ret = 1;
	}

1516
	drop_futex_key_refs(&q->key);
L
Linus Torvalds 已提交
1517 1518 1519
	return ret;
}

1520 1521
/*
 * PI futexes can not be requeued and must remove themself from the
P
Pierre Peiffer 已提交
1522 1523
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
 * and dropped here.
1524
 */
P
Pierre Peiffer 已提交
1525
static void unqueue_me_pi(struct futex_q *q)
1526
	__releases(q->lock_ptr)
1527
{
1528
	__unqueue_futex(q);
1529 1530 1531 1532 1533

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

P
Pierre Peiffer 已提交
1534
	spin_unlock(q->lock_ptr);
1535 1536
}

P
Pierre Peiffer 已提交
1537
/*
1538
 * Fixup the pi_state owner with the new owner.
P
Pierre Peiffer 已提交
1539
 *
1540 1541
 * Must be called with hash bucket lock held and mm->sem held for non
 * private futexes.
P
Pierre Peiffer 已提交
1542
 */
1543
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1544
				struct task_struct *newowner)
P
Pierre Peiffer 已提交
1545
{
1546
	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
P
Pierre Peiffer 已提交
1547
	struct futex_pi_state *pi_state = q->pi_state;
1548
	struct task_struct *oldowner = pi_state->owner;
P
Pierre Peiffer 已提交
1549
	u32 uval, curval, newval;
D
Darren Hart 已提交
1550
	int ret;
P
Pierre Peiffer 已提交
1551 1552

	/* Owner died? */
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	/*
	 * We are here either because we stole the rtmutex from the
	 * pending owner or we are the pending owner which failed to
	 * get the rtmutex. We have to replace the pending owner TID
	 * in the user space variable. This must be atomic as we have
	 * to preserve the owner died bit here.
	 *
D
Darren Hart 已提交
1563 1564 1565
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	 *
	 * Modifying pi_state _before_ the user space value would
	 * leave the pi_state in an inconsistent state when we fault
	 * here, because we need to drop the hash bucket lock to
	 * handle the fault. This might be observed in the PID check
	 * in lookup_pi_state.
	 */
retry:
	if (get_futex_value_locked(&uval, uaddr))
		goto handle_fault;

	while (1) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

1580
		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
			goto handle_fault;
		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
P
Pierre Peiffer 已提交
1591
	if (pi_state->owner != NULL) {
1592
		raw_spin_lock_irq(&pi_state->owner->pi_lock);
P
Pierre Peiffer 已提交
1593 1594
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
1595
		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1596
	}
P
Pierre Peiffer 已提交
1597

1598
	pi_state->owner = newowner;
P
Pierre Peiffer 已提交
1599

1600
	raw_spin_lock_irq(&newowner->pi_lock);
P
Pierre Peiffer 已提交
1601
	WARN_ON(!list_empty(&pi_state->list));
1602
	list_add(&pi_state->list, &newowner->pi_state_list);
1603
	raw_spin_unlock_irq(&newowner->pi_lock);
1604
	return 0;
P
Pierre Peiffer 已提交
1605 1606

	/*
1607 1608 1609 1610 1611 1612 1613 1614
	 * To handle the page fault we need to drop the hash bucket
	 * lock here. That gives the other task (either the pending
	 * owner itself or the task which stole the rtmutex) the
	 * chance to try the fixup of the pi_state. So once we are
	 * back from handling the fault we need to check the pi_state
	 * after reacquiring the hash bucket lock and before trying to
	 * do another fixup. When the fixup has been done already we
	 * simply return.
P
Pierre Peiffer 已提交
1615
	 */
1616 1617
handle_fault:
	spin_unlock(q->lock_ptr);
1618

1619
	ret = fault_in_user_writeable(uaddr);
1620

1621
	spin_lock(q->lock_ptr);
1622

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return 0;

	if (ret)
		return ret;

	goto retry;
P
Pierre Peiffer 已提交
1633 1634
}

N
Nick Piggin 已提交
1635
static long futex_wait_restart(struct restart_block *restart);
T
Thomas Gleixner 已提交
1636

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
 * Returns:
 *  1 - success, lock taken
 *  0 - success, lock not taken
 * <0 - on error (-EFAULT)
 */
1652
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
{
	struct task_struct *owner;
	int ret = 0;

	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 */
		if (q->pi_state->owner != current)
1663
			ret = fixup_pi_state_owner(uaddr, q, current);
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
		goto out;
	}

	/*
	 * Catch the rare case, where the lock was released when we were on the
	 * way back before we locked the hash bucket.
	 */
	if (q->pi_state->owner == current) {
		/*
		 * Try to get the rt_mutex now. This might fail as some other
		 * task acquired the rt_mutex after we removed ourself from the
		 * rt_mutex waiters list.
		 */
		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
			locked = 1;
			goto out;
		}

		/*
		 * pi_state is incorrect, some other task did a lock steal and
		 * we returned due to timeout or signal without taking the
		 * rt_mutex. Too late. We can access the rt_mutex_owner without
		 * locking, as the other task is now blocked on the hash bucket
		 * lock. Fix the state up.
		 */
		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1690
		ret = fixup_pi_state_owner(uaddr, q, owner);
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
		goto out;
	}

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
	 * the owner, nor the pending owner, of the rt_mutex.
	 */
	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
				"pi-state %p\n", ret,
				q->pi_state->pi_mutex.owner,
				q->pi_state->owner);

out:
	return ret ? ret : locked;
}

1708 1709 1710 1711 1712 1713 1714
/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
T
Thomas Gleixner 已提交
1715
				struct hrtimer_sleeper *timeout)
1716
{
1717 1718 1719 1720 1721 1722
	/*
	 * The task state is guaranteed to be set before another task can
	 * wake it. set_current_state() is implemented using set_mb() and
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
T
Thomas Gleixner 已提交
1723
	set_current_state(TASK_INTERRUPTIBLE);
1724
	queue_me(q, hb);
1725 1726 1727 1728 1729 1730 1731 1732 1733

	/* Arm the timer */
	if (timeout) {
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
		if (!hrtimer_active(&timeout->timer))
			timeout->task = NULL;
	}

	/*
1734 1735
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
			schedule();
	}
	__set_current_state(TASK_RUNNING);
}

1749 1750 1751 1752
/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
1753
 * @flags:	futex flags (FLAGS_SHARED, etc.)
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
 * Returns:
 *  0 - uaddr contains val and hb has been locked
 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
 */
1766
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1767
			   struct futex_q *q, struct futex_hash_bucket **hb)
L
Linus Torvalds 已提交
1768
{
1769 1770
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
1771 1772

	/*
D
Darren Hart 已提交
1773
	 * Access the page AFTER the hash-bucket is locked.
L
Linus Torvalds 已提交
1774 1775 1776 1777 1778 1779 1780
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
1781 1782
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
L
Linus Torvalds 已提交
1783 1784
	 * cond(var) false, which would violate the guarantee.
	 *
1785 1786 1787 1788
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
L
Linus Torvalds 已提交
1789
	 */
1790
retry:
1791
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key);
1792
	if (unlikely(ret != 0))
1793
		return ret;
1794 1795 1796 1797

retry_private:
	*hb = queue_lock(q);

1798
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
1799

1800 1801
	if (ret) {
		queue_unlock(q, *hb);
L
Linus Torvalds 已提交
1802

1803
		ret = get_user(uval, uaddr);
D
Darren Hart 已提交
1804
		if (ret)
1805
			goto out;
L
Linus Torvalds 已提交
1806

1807
		if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
1808 1809
			goto retry_private;

1810
		put_futex_key(&q->key);
D
Darren Hart 已提交
1811
		goto retry;
L
Linus Torvalds 已提交
1812
	}
1813

1814 1815 1816
	if (uval != val) {
		queue_unlock(q, *hb);
		ret = -EWOULDBLOCK;
P
Peter Zijlstra 已提交
1817
	}
L
Linus Torvalds 已提交
1818

1819 1820
out:
	if (ret)
1821
		put_futex_key(&q->key);
1822 1823 1824
	return ret;
}

1825 1826
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
1827 1828 1829 1830
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
1831
	struct futex_q q = futex_q_init;
1832 1833 1834 1835 1836 1837 1838 1839 1840
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

	if (abs_time) {
		to = &timeout;

1841 1842 1843
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
1844 1845 1846 1847 1848
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

T
Thomas Gleixner 已提交
1849
retry:
1850 1851 1852 1853
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
1854
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1855 1856 1857
	if (ret)
		goto out;

1858
	/* queue_me and wait for wakeup, timeout, or a signal. */
T
Thomas Gleixner 已提交
1859
	futex_wait_queue_me(hb, &q, to);
L
Linus Torvalds 已提交
1860 1861

	/* If we were woken (and unqueued), we succeeded, whatever. */
P
Peter Zijlstra 已提交
1862
	ret = 0;
1863
	/* unqueue_me() drops q.key ref */
L
Linus Torvalds 已提交
1864
	if (!unqueue_me(&q))
1865
		goto out;
P
Peter Zijlstra 已提交
1866
	ret = -ETIMEDOUT;
1867
	if (to && !to->task)
1868
		goto out;
N
Nick Piggin 已提交
1869

1870
	/*
T
Thomas Gleixner 已提交
1871 1872
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
1873
	 */
1874
	if (!signal_pending(current))
T
Thomas Gleixner 已提交
1875 1876
		goto retry;

P
Peter Zijlstra 已提交
1877
	ret = -ERESTARTSYS;
1878
	if (!abs_time)
1879
		goto out;
L
Linus Torvalds 已提交
1880

P
Peter Zijlstra 已提交
1881 1882
	restart = &current_thread_info()->restart_block;
	restart->fn = futex_wait_restart;
1883
	restart->futex.uaddr = uaddr;
P
Peter Zijlstra 已提交
1884 1885 1886
	restart->futex.val = val;
	restart->futex.time = abs_time->tv64;
	restart->futex.bitset = bitset;
1887
	restart->futex.flags = flags;
1888

P
Peter Zijlstra 已提交
1889 1890
	ret = -ERESTART_RESTARTBLOCK;

1891
out:
1892 1893 1894 1895
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
1896 1897 1898
	return ret;
}

N
Nick Piggin 已提交
1899 1900 1901

static long futex_wait_restart(struct restart_block *restart)
{
1902
	u32 __user *uaddr = restart->futex.uaddr;
1903
	ktime_t t, *tp = NULL;
N
Nick Piggin 已提交
1904

1905 1906 1907 1908
	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t.tv64 = restart->futex.time;
		tp = &t;
	}
N
Nick Piggin 已提交
1909
	restart->fn = do_no_restart_syscall;
1910 1911 1912

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
N
Nick Piggin 已提交
1913 1914 1915
}


1916 1917 1918 1919 1920 1921
/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block, it does PI, etc. (Due to
 * races the kernel might see a 0 value of the futex too.)
 */
1922 1923
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
			 ktime_t *time, int trylock)
1924
{
1925
	struct hrtimer_sleeper timeout, *to = NULL;
1926
	struct futex_hash_bucket *hb;
1927
	struct futex_q q = futex_q_init;
1928
	int res, ret;
1929 1930 1931 1932

	if (refill_pi_state_cache())
		return -ENOMEM;

1933
	if (time) {
1934
		to = &timeout;
1935 1936
		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
				      HRTIMER_MODE_ABS);
1937
		hrtimer_init_sleeper(to, current);
1938
		hrtimer_set_expires(&to->timer, *time);
1939 1940
	}

1941
retry:
1942
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key);
1943
	if (unlikely(ret != 0))
1944
		goto out;
1945

D
Darren Hart 已提交
1946
retry_private:
E
Eric Sesterhenn 已提交
1947
	hb = queue_lock(&q);
1948

1949
	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1950
	if (unlikely(ret)) {
1951
		switch (ret) {
1952 1953 1954 1955 1956 1957
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
1958 1959 1960 1961 1962 1963
		case -EAGAIN:
			/*
			 * Task is exiting and we just wait for the
			 * exit to complete.
			 */
			queue_unlock(&q, hb);
1964
			put_futex_key(&q.key);
1965 1966 1967
			cond_resched();
			goto retry;
		default:
1968
			goto out_unlock_put_key;
1969 1970 1971 1972 1973 1974
		}
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
E
Eric Sesterhenn 已提交
1975
	queue_me(&q, hb);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
	if (!trylock)
		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
	else {
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

1989
	spin_lock(q.lock_ptr);
1990 1991 1992 1993
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
1994
	res = fixup_owner(uaddr, &q, !ret);
1995 1996 1997 1998 1999 2000
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;
2001

2002
	/*
2003 2004
	 * If fixup_owner() faulted and was unable to handle the fault, unlock
	 * it and return the fault to userspace.
2005 2006 2007 2008
	 */
	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
		rt_mutex_unlock(&q.pi_state->pi_mutex);

2009 2010
	/* Unqueue and drop the lock */
	unqueue_me_pi(&q);
2011

2012
	goto out_put_key;
2013

2014
out_unlock_put_key:
2015 2016
	queue_unlock(&q, hb);

2017
out_put_key:
2018
	put_futex_key(&q.key);
2019
out:
2020 2021
	if (to)
		destroy_hrtimer_on_stack(&to->timer);
2022
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2023

2024
uaddr_faulted:
2025 2026
	queue_unlock(&q, hb);

2027
	ret = fault_in_user_writeable(uaddr);
D
Darren Hart 已提交
2028 2029
	if (ret)
		goto out_put_key;
2030

2031
	if (!(flags & FLAGS_SHARED))
D
Darren Hart 已提交
2032 2033
		goto retry_private;

2034
	put_futex_key(&q.key);
D
Darren Hart 已提交
2035
	goto retry;
2036 2037 2038 2039 2040 2041 2042
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
2043
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2044 2045 2046
{
	struct futex_hash_bucket *hb;
	struct futex_q *this, *next;
P
Pierre Peiffer 已提交
2047
	struct plist_head *head;
2048
	union futex_key key = FUTEX_KEY_INIT;
2049
	u32 uval, vpid = task_pid_vnr(current);
D
Darren Hart 已提交
2050
	int ret;
2051 2052 2053 2054 2055 2056 2057

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
2058
	if ((uval & FUTEX_TID_MASK) != vpid)
2059 2060
		return -EPERM;

2061
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
	if (unlikely(ret != 0))
		goto out;

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
	 * To avoid races, try to do the TID -> 0 atomic transition
	 * again. If it succeeds then we can return without waking
	 * anyone else up:
	 */
2073 2074
	if (!(uval & FUTEX_OWNER_DIED) &&
	    cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2075 2076 2077 2078 2079
		goto pi_faulted;
	/*
	 * Rare case: we managed to release the lock atomically,
	 * no need to wake anyone else up:
	 */
2080
	if (unlikely(uval == vpid))
2081 2082 2083 2084 2085 2086 2087 2088
		goto out_unlock;

	/*
	 * Ok, other tasks may need to be woken up - check waiters
	 * and do the wakeup if necessary:
	 */
	head = &hb->chain;

P
Pierre Peiffer 已提交
2089
	plist_for_each_entry_safe(this, next, head, list) {
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
		if (!match_futex (&this->key, &key))
			continue;
		ret = wake_futex_pi(uaddr, uval, this);
		/*
		 * The atomic access to the futex value
		 * generated a pagefault, so retry the
		 * user-access and the wakeup:
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		goto out_unlock;
	}
	/*
	 * No waiters - kernel unlocks the futex:
	 */
2105 2106 2107 2108 2109
	if (!(uval & FUTEX_OWNER_DIED)) {
		ret = unlock_futex_pi(uaddr, uval);
		if (ret == -EFAULT)
			goto pi_faulted;
	}
2110 2111 2112

out_unlock:
	spin_unlock(&hb->lock);
2113
	put_futex_key(&key);
2114

2115
out:
2116 2117 2118
	return ret;

pi_faulted:
2119
	spin_unlock(&hb->lock);
2120
	put_futex_key(&key);
2121

2122
	ret = fault_in_user_writeable(uaddr);
2123
	if (!ret)
2124 2125
		goto retry;

L
Linus Torvalds 已提交
2126 2127 2128
	return ret;
}

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
 * Returns
 *  0 - no early wakeup detected
2143
 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
2165
		plist_del(&q->list, &hb->chain);
2166

T
Thomas Gleixner 已提交
2167
		/* Handle spurious wakeups gracefully */
2168
		ret = -EWOULDBLOCK;
2169 2170
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
T
Thomas Gleixner 已提交
2171
		else if (signal_pending(current))
2172
			ret = -ERESTARTNOINTR;
2173 2174 2175 2176 2177 2178
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2179
 * @uaddr:	the futex we initially wait on (non-pi)
2180
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2181 2182 2183
 * 		the same type, no requeueing from private to shared, etc.
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
2184
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
 * @clockrt:	whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
 * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
 * complete the acquisition of the rt_mutex prior to returning to userspace.
 * This ensures the rt_mutex maintains an owner when it has waiters; without
 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
 * need to.
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
 * via the following:
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2198 2199 2200
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
2201
 *
2202
 * If 3, cleanup and return -ERESTARTNOINTR.
2203 2204 2205 2206 2207 2208 2209
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
2210
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2211 2212 2213 2214 2215 2216 2217
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
 * Returns:
 *  0 - On success
 * <0 - On error
 */
2218
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2219
				 u32 val, ktime_t *abs_time, u32 bitset,
2220
				 u32 __user *uaddr2)
2221 2222 2223 2224 2225
{
	struct hrtimer_sleeper timeout, *to = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct rt_mutex *pi_mutex = NULL;
	struct futex_hash_bucket *hb;
2226 2227
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
2228 2229 2230 2231 2232 2233 2234
	int res, ret;

	if (!bitset)
		return -EINVAL;

	if (abs_time) {
		to = &timeout;
2235 2236 2237
		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
		hrtimer_init_sleeper(to, current);
		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
					     current->timer_slack_ns);
	}

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	debug_rt_mutex_init_waiter(&rt_waiter);
	rt_waiter.task = NULL;

2250
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
2251 2252 2253
	if (unlikely(ret != 0))
		goto out;

2254 2255 2256 2257
	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

2258 2259 2260 2261
	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
2262
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
T
Thomas Gleixner 已提交
2263 2264
	if (ret)
		goto out_key2;
2265 2266

	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
T
Thomas Gleixner 已提交
2267
	futex_wait_queue_me(hb, &q, to);
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out_put_keys;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
2279 2280 2281
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
	 */

	/* Check if the requeue code acquired the second futex for us. */
	if (!q.rt_waiter) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case.
		 */
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
2292
			ret = fixup_pi_state_owner(uaddr2, &q, current);
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
			spin_unlock(q.lock_ptr);
		}
	} else {
		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
		WARN_ON(!&q.pi_state);
		pi_mutex = &q.pi_state->pi_mutex;
		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
		debug_rt_mutex_free_waiter(&rt_waiter);

		spin_lock(q.lock_ptr);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
2311
		res = fixup_owner(uaddr2, &q, !ret);
2312 2313
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
2314
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		/* Unqueue and drop the lock. */
		unqueue_me_pi(&q);
	}

	/*
	 * If fixup_pi_state_owner() faulted and was unable to handle the
	 * fault, unlock the rt_mutex and return the fault to userspace.
	 */
	if (ret == -EFAULT) {
		if (rt_mutex_owner(pi_mutex) == current)
			rt_mutex_unlock(pi_mutex);
	} else if (ret == -EINTR) {
		/*
2332 2333 2334 2335 2336
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
2337
		 */
2338
		ret = -EWOULDBLOCK;
2339 2340 2341
	}

out_put_keys:
2342
	put_futex_key(&q.key);
T
Thomas Gleixner 已提交
2343
out_key2:
2344
	put_futex_key(&key2);
2345 2346 2347 2348 2349 2350 2351 2352 2353

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

2354 2355 2356 2357 2358 2359 2360
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
2361
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2362 2363 2364 2365 2366 2367 2368 2369
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
2370 2371 2372
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
2373
 */
2374 2375
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
2376
{
2377 2378
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
2391 2392 2393 2394
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2395
 */
2396 2397 2398
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
2399
{
A
Al Viro 已提交
2400
	struct robust_list_head __user *head;
2401
	unsigned long ret;
2402
	const struct cred *cred = current_cred(), *pcred;
2403

2404 2405 2406
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

2407 2408 2409 2410 2411 2412
	if (!pid)
		head = current->robust_list;
	else {
		struct task_struct *p;

		ret = -ESRCH;
2413
		rcu_read_lock();
2414
		p = find_task_by_vpid(pid);
2415 2416 2417
		if (!p)
			goto err_unlock;
		ret = -EPERM;
2418 2419 2420
		pcred = __task_cred(p);
		if (cred->euid != pcred->euid &&
		    cred->euid != pcred->uid &&
2421
		    !capable(CAP_SYS_PTRACE))
2422 2423
			goto err_unlock;
		head = p->robust_list;
2424
		rcu_read_unlock();
2425 2426 2427 2428 2429 2430 2431
	}

	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
2432
	rcu_read_unlock();
2433 2434 2435 2436 2437 2438 2439 2440

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
2441
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2442
{
2443
	u32 uval, nval, mval;
2444

2445 2446
retry:
	if (get_user(uval, uaddr))
2447 2448
		return -1;

2449
	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
2460
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
		/*
		 * We are not holding a lock here, but we want to have
		 * the pagefault_disable/enable() protection because
		 * we want to handle the fault gracefully. If the
		 * access fails we try to fault in the futex with R/W
		 * verification via get_user_pages. get_user() above
		 * does not guarantee R/W access. If that fails we
		 * give up and leave the futex locked.
		 */
		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;
		}
2475
		if (nval != uval)
2476
			goto retry;
2477

2478 2479 2480 2481
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
T
Thomas Gleixner 已提交
2482
		if (!pi && (uval & FUTEX_WAITERS))
P
Peter Zijlstra 已提交
2483
			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2484 2485 2486 2487
	}
	return 0;
}

2488 2489 2490 2491
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
A
Al Viro 已提交
2492
				     struct robust_list __user * __user *head,
2493
				     unsigned int *pi)
2494 2495 2496
{
	unsigned long uentry;

A
Al Viro 已提交
2497
	if (get_user(uentry, (unsigned long __user *)head))
2498 2499
		return -EFAULT;

A
Al Viro 已提交
2500
	*entry = (void __user *)(uentry & ~1UL);
2501 2502 2503 2504 2505
	*pi = uentry & 1;

	return 0;
}

2506 2507 2508 2509 2510 2511 2512 2513 2514
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
M
Martin Schwidefsky 已提交
2515
	struct robust_list __user *entry, *next_entry, *pending;
2516 2517
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int uninitialized_var(next_pi);
2518
	unsigned long futex_offset;
M
Martin Schwidefsky 已提交
2519
	int rc;
2520

2521 2522 2523
	if (!futex_cmpxchg_enabled)
		return;

2524 2525 2526 2527
	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
2528
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
2539
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2540
		return;
2541

M
Martin Schwidefsky 已提交
2542
	next_entry = NULL;	/* avoid warning with gcc */
2543
	while (entry != &head->list) {
M
Martin Schwidefsky 已提交
2544 2545 2546 2547 2548
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2549 2550
		/*
		 * A pending lock might already be on the list, so
2551
		 * don't process it twice:
2552 2553
		 */
		if (entry != pending)
A
Al Viro 已提交
2554
			if (handle_futex_death((void __user *)entry + futex_offset,
2555
						curr, pi))
2556
				return;
M
Martin Schwidefsky 已提交
2557
		if (rc)
2558
			return;
M
Martin Schwidefsky 已提交
2559 2560
		entry = next_entry;
		pi = next_pi;
2561 2562 2563 2564 2565 2566 2567 2568
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
M
Martin Schwidefsky 已提交
2569 2570 2571 2572

	if (pending)
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip);
2573 2574
}

2575
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2576
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
2577
{
2578 2579
	int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
	unsigned int flags = 0;
E
Eric Dumazet 已提交
2580 2581

	if (!(op & FUTEX_PRIVATE_FLAG))
2582
		flags |= FLAGS_SHARED;
L
Linus Torvalds 已提交
2583

2584 2585 2586 2587 2588
	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
			return -ENOSYS;
	}
L
Linus Torvalds 已提交
2589

E
Eric Dumazet 已提交
2590
	switch (cmd) {
L
Linus Torvalds 已提交
2591
	case FUTEX_WAIT:
2592 2593
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAIT_BITSET:
2594
		ret = futex_wait(uaddr, flags, val, timeout, val3);
L
Linus Torvalds 已提交
2595 2596
		break;
	case FUTEX_WAKE:
2597 2598
		val3 = FUTEX_BITSET_MATCH_ANY;
	case FUTEX_WAKE_BITSET:
2599
		ret = futex_wake(uaddr, flags, val, val3);
L
Linus Torvalds 已提交
2600 2601
		break;
	case FUTEX_REQUEUE:
2602
		ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
L
Linus Torvalds 已提交
2603 2604
		break;
	case FUTEX_CMP_REQUEUE:
2605
		ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
L
Linus Torvalds 已提交
2606
		break;
2607
	case FUTEX_WAKE_OP:
2608
		ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2609
		break;
2610
	case FUTEX_LOCK_PI:
2611
		if (futex_cmpxchg_enabled)
2612
			ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2613 2614
		break;
	case FUTEX_UNLOCK_PI:
2615
		if (futex_cmpxchg_enabled)
2616
			ret = futex_unlock_pi(uaddr, flags);
2617 2618
		break;
	case FUTEX_TRYLOCK_PI:
2619
		if (futex_cmpxchg_enabled)
2620
			ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2621
		break;
2622 2623
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
2624 2625
		ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					    uaddr2);
2626 2627
		break;
	case FUTEX_CMP_REQUEUE_PI:
2628
		ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2629
		break;
L
Linus Torvalds 已提交
2630 2631 2632 2633 2634 2635 2636
	default:
		ret = -ENOSYS;
	}
	return ret;
}


2637 2638 2639
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		struct timespec __user *, utime, u32 __user *, uaddr2,
		u32, val3)
L
Linus Torvalds 已提交
2640
{
2641 2642
	struct timespec ts;
	ktime_t t, *tp = NULL;
2643
	u32 val2 = 0;
E
Eric Dumazet 已提交
2644
	int cmd = op & FUTEX_CMD_MASK;
L
Linus Torvalds 已提交
2645

2646
	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2647 2648
		      cmd == FUTEX_WAIT_BITSET ||
		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2649
		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
L
Linus Torvalds 已提交
2650
			return -EFAULT;
2651
		if (!timespec_valid(&ts))
2652
			return -EINVAL;
2653 2654

		t = timespec_to_ktime(ts);
E
Eric Dumazet 已提交
2655
		if (cmd == FUTEX_WAIT)
2656
			t = ktime_add_safe(ktime_get(), t);
2657
		tp = &t;
L
Linus Torvalds 已提交
2658 2659
	}
	/*
2660
	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2661
	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
L
Linus Torvalds 已提交
2662
	 */
2663
	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2664
	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2665
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
2666

2667
	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
L
Linus Torvalds 已提交
2668 2669
}

2670
static int __init futex_init(void)
L
Linus Torvalds 已提交
2671
{
2672
	u32 curval;
T
Thomas Gleixner 已提交
2673
	int i;
A
Akinobu Mita 已提交
2674

2675 2676 2677 2678 2679 2680 2681
	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
2682
	 * implementation, the non-functional ones will return
2683 2684
	 * -ENOSYS.
	 */
2685
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2686 2687
		futex_cmpxchg_enabled = 1;

T
Thomas Gleixner 已提交
2688 2689 2690 2691 2692
	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
		plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
		spin_lock_init(&futex_queues[i].lock);
	}

L
Linus Torvalds 已提交
2693 2694
	return 0;
}
2695
__initcall(futex_init);