sched.h 57.8 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
2 3 4
/*
 * Scheduler internal types and methods:
 */
5
#include <linux/sched.h>
6

7
#include <linux/sched/autogroup.h>
8
#include <linux/sched/clock.h>
9
#include <linux/sched/coredump.h>
10
#include <linux/sched/cpufreq.h>
11 12
#include <linux/sched/cputime.h>
#include <linux/sched/deadline.h>
13
#include <linux/sched/debug.h>
14
#include <linux/sched/hotplug.h>
15 16 17 18 19 20 21 22 23 24 25
#include <linux/sched/idle.h>
#include <linux/sched/init.h>
#include <linux/sched/isolation.h>
#include <linux/sched/jobctl.h>
#include <linux/sched/loadavg.h>
#include <linux/sched/mm.h>
#include <linux/sched/nohz.h>
#include <linux/sched/numa_balancing.h>
#include <linux/sched/prio.h>
#include <linux/sched/rt.h>
#include <linux/sched/signal.h>
26
#include <linux/sched/smt.h>
27 28
#include <linux/sched/stat.h>
#include <linux/sched/sysctl.h>
29
#include <linux/sched/task.h>
30
#include <linux/sched/task_stack.h>
31 32 33 34 35 36
#include <linux/sched/topology.h>
#include <linux/sched/user.h>
#include <linux/sched/wake_q.h>
#include <linux/sched/xacct.h>

#include <uapi/linux/sched/types.h>
37

38
#include <linux/binfmts.h>
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#include <linux/blkdev.h>
#include <linux/compat.h>
#include <linux/context_tracking.h>
#include <linux/cpufreq.h>
#include <linux/cpuidle.h>
#include <linux/cpuset.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/delayacct.h>
#include <linux/init_task.h>
#include <linux/kprobes.h>
#include <linux/kthread.h>
#include <linux/membarrier.h>
#include <linux/migrate.h>
#include <linux/mmu_context.h>
#include <linux/nmi.h>
#include <linux/proc_fs.h>
#include <linux/prefetch.h>
#include <linux/profile.h>
#include <linux/rcupdate_wait.h>
#include <linux/security.h>
#include <linux/stackprotector.h>
61
#include <linux/stop_machine.h>
62 63 64 65 66 67 68
#include <linux/suspend.h>
#include <linux/swait.h>
#include <linux/syscalls.h>
#include <linux/task_work.h>
#include <linux/tsacct_kern.h>

#include <asm/tlb.h>
69

70
#ifdef CONFIG_PARAVIRT
71
# include <asm/paravirt.h>
72 73
#endif

74
#include "cpupri.h"
75
#include "cpudeadline.h"
76

77
#ifdef CONFIG_SCHED_DEBUG
78
# define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
79
#else
80
# define SCHED_WARN_ON(x)	({ (void)(x), 0; })
81 82
#endif

83
struct rq;
84
struct cpuidle_state;
85

86 87
/* task_struct::on_rq states: */
#define TASK_ON_RQ_QUEUED	1
88
#define TASK_ON_RQ_MIGRATING	2
89

90 91
extern __read_mostly int scheduler_running;

92 93 94
extern unsigned long calc_load_update;
extern atomic_long_t calc_load_tasks;

95
extern void calc_global_load_tick(struct rq *this_rq);
96
extern long calc_load_fold_active(struct rq *this_rq, long adjust);
97 98

#ifdef CONFIG_SMP
99
extern void cpu_load_update_active(struct rq *this_rq);
100
#else
101
static inline void cpu_load_update_active(struct rq *this_rq) { }
102
#endif
103

104 105 106 107 108
/*
 * Helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))

109 110 111 112 113 114 115 116
/*
 * Increase resolution of nice-level calculations for 64-bit architectures.
 * The extra resolution improves shares distribution and load balancing of
 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 * hierarchies, especially on larger systems. This is not a user-visible change
 * and does not change the user-interface for setting shares/weights.
 *
 * We increase resolution only if we have enough bits to allow this increased
117 118
 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
 * are pretty high and the returns do not justify the increased costs.
119
 *
120 121
 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
 * increase coverage and consistency always enable it on 64-bit platforms.
122
 */
123
#ifdef CONFIG_64BIT
124
# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
125 126
# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
# define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
127
#else
128
# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
129 130 131 132
# define scale_load(w)		(w)
# define scale_load_down(w)	(w)
#endif

133
/*
134 135 136 137 138 139 140
 * Task weight (visible to users) and its load (invisible to users) have
 * independent resolution, but they should be well calibrated. We use
 * scale_load() and scale_load_down(w) to convert between them. The
 * following must be true:
 *
 *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
 *
141
 */
142
#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
143

144 145 146 147 148
/*
 * Single value that decides SCHED_DEADLINE internal math precision.
 * 10 -> just above 1us
 * 9  -> just above 0.5us
 */
149
#define DL_SCALE		10
150 151

/*
152
 * Single value that denotes runtime == period, ie unlimited time.
153
 */
154
#define RUNTIME_INF		((u64)~0ULL)
155

156 157 158 159
static inline int idle_policy(int policy)
{
	return policy == SCHED_IDLE;
}
160 161 162 163 164
static inline int fair_policy(int policy)
{
	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
}

165 166
static inline int rt_policy(int policy)
{
167
	return policy == SCHED_FIFO || policy == SCHED_RR;
168 169
}

170 171 172 173
static inline int dl_policy(int policy)
{
	return policy == SCHED_DEADLINE;
}
174 175 176 177 178
static inline bool valid_policy(int policy)
{
	return idle_policy(policy) || fair_policy(policy) ||
		rt_policy(policy) || dl_policy(policy);
}
179

180 181 182 183 184
static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

185 186 187 188 189
static inline int task_has_dl_policy(struct task_struct *p)
{
	return dl_policy(p->policy);
}

190 191
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/*
 * !! For sched_setattr_nocheck() (kernel) only !!
 *
 * This is actually gross. :(
 *
 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
 * tasks, but still be able to sleep. We need this on platforms that cannot
 * atomically change clock frequency. Remove once fast switching will be
 * available on such platforms.
 *
 * SUGOV stands for SchedUtil GOVernor.
 */
#define SCHED_FLAG_SUGOV	0x10000000

static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
{
#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
#else
	return false;
#endif
}

215 216 217
/*
 * Tells if entity @a should preempt entity @b.
 */
218 219
static inline bool
dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
220
{
221 222
	return dl_entity_is_special(a) ||
	       dl_time_before(a->deadline, b->deadline);
223 224
}

225 226 227 228 229 230 231 232 233 234 235 236 237 238
/*
 * This is the priority-queue data structure of the RT scheduling class:
 */
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct rt_bandwidth {
	/* nests inside the rq lock: */
	raw_spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
P
Peter Zijlstra 已提交
239
	unsigned int		rt_period_active;
240
};
241 242 243

void __dl_clear_params(struct task_struct *p);

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
/*
 * To keep the bandwidth of -deadline tasks and groups under control
 * we need some place where:
 *  - store the maximum -deadline bandwidth of the system (the group);
 *  - cache the fraction of that bandwidth that is currently allocated.
 *
 * This is all done in the data structure below. It is similar to the
 * one used for RT-throttling (rt_bandwidth), with the main difference
 * that, since here we are only interested in admission control, we
 * do not decrease any runtime while the group "executes", neither we
 * need a timer to replenish it.
 *
 * With respect to SMP, the bandwidth is given on a per-CPU basis,
 * meaning that:
 *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
 *  - dl_total_bw array contains, in the i-eth element, the currently
 *    allocated bandwidth on the i-eth CPU.
 * Moreover, groups consume bandwidth on each CPU, while tasks only
 * consume bandwidth on the CPU they're running on.
 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
 * that will be shown the next time the proc or cgroup controls will
 * be red. It on its turn can be changed by writing on its own
 * control.
 */
struct dl_bandwidth {
269 270 271
	raw_spinlock_t		dl_runtime_lock;
	u64			dl_runtime;
	u64			dl_period;
272 273 274 275
};

static inline int dl_bandwidth_enabled(void)
{
276
	return sysctl_sched_rt_runtime >= 0;
277 278 279
}

struct dl_bw {
280 281 282
	raw_spinlock_t		lock;
	u64			bw;
	u64			total_bw;
283 284
};

285 286
static inline void __dl_update(struct dl_bw *dl_b, s64 bw);

287
static inline
288
void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
289 290
{
	dl_b->total_bw -= tsk_bw;
291
	__dl_update(dl_b, (s32)tsk_bw / cpus);
292 293 294
}

static inline
295
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
296 297
{
	dl_b->total_bw += tsk_bw;
298
	__dl_update(dl_b, -((s32)tsk_bw / cpus));
299 300 301 302 303 304 305 306 307
}

static inline
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
{
	return dl_b->bw != -1 &&
	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}

308
extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
309
extern void init_dl_bw(struct dl_bw *dl_b);
310
extern int  sched_dl_global_validate(void);
311
extern void sched_dl_do_global(void);
312
extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
313 314 315 316
extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
extern bool __checkparam_dl(const struct sched_attr *attr);
extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
317 318
extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
319
extern bool dl_cpu_busy(unsigned int cpu);
320 321 322 323 324 325 326 327

#ifdef CONFIG_CGROUP_SCHED

#include <linux/cgroup.h>

struct cfs_rq;
struct rt_rq;

328
extern struct list_head task_groups;
329 330 331

struct cfs_bandwidth {
#ifdef CONFIG_CFS_BANDWIDTH
332 333 334 335 336 337
	raw_spinlock_t		lock;
	ktime_t			period;
	u64			quota;
	u64			runtime;
	s64			hierarchical_quota;
	u64			runtime_expires;
338
	int			expires_seq;
339

340 341
	short			idle;
	short			period_active;
342 343 344 345 346 347 348 349
	struct hrtimer		period_timer;
	struct hrtimer		slack_timer;
	struct list_head	throttled_cfs_rq;

	/* Statistics: */
	int			nr_periods;
	int			nr_throttled;
	u64			throttled_time;
350 351

	bool                    distribute_running;
352 353 354
#endif
};

355
/* Task group related information */
356 357 358 359
struct task_group {
	struct cgroup_subsys_state css;

#ifdef CONFIG_FAIR_GROUP_SCHED
360 361 362 363 364
	/* schedulable entities of this group on each CPU */
	struct sched_entity	**se;
	/* runqueue "owned" by this group on each CPU */
	struct cfs_rq		**cfs_rq;
	unsigned long		shares;
365

366
#ifdef	CONFIG_SMP
367 368 369 370 371
	/*
	 * load_avg can be heavily contended at clock tick time, so put
	 * it in its own cacheline separated from the fields above which
	 * will also be accessed at each tick.
	 */
372
	atomic_long_t		load_avg ____cacheline_aligned;
373
#endif
374
#endif
375 376

#ifdef CONFIG_RT_GROUP_SCHED
377 378
	struct sched_rt_entity	**rt_se;
	struct rt_rq		**rt_rq;
379

380
	struct rt_bandwidth	rt_bandwidth;
381 382
#endif

383 384
	struct rcu_head		rcu;
	struct list_head	list;
385

386 387 388
	struct task_group	*parent;
	struct list_head	siblings;
	struct list_head	children;
389 390

#ifdef CONFIG_SCHED_AUTOGROUP
391
	struct autogroup	*autogroup;
392 393
#endif

394
	struct cfs_bandwidth	cfs_bandwidth;
395 396 397 398 399 400 401 402 403 404 405 406 407
};

#ifdef CONFIG_FAIR_GROUP_SCHED
#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD

/*
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
408 409
#define MIN_SHARES		(1UL <<  1)
#define MAX_SHARES		(1UL << 18)
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
#endif

typedef int (*tg_visitor)(struct task_group *, void *);

extern int walk_tg_tree_from(struct task_group *from,
			     tg_visitor down, tg_visitor up, void *data);

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
 */
static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
{
	return walk_tg_tree_from(&root_task_group, down, up, data);
}

extern int tg_nop(struct task_group *tg, void *data);

extern void free_fair_sched_group(struct task_group *tg);
extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
432
extern void online_fair_sched_group(struct task_group *tg);
433
extern void unregister_fair_sched_group(struct task_group *tg);
434 435 436 437 438 439
extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent);
extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);

extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
P
Peter Zijlstra 已提交
440
extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
441 442 443 444 445 446 447
extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);

extern void free_rt_sched_group(struct task_group *tg);
extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent);
448 449 450 451 452
extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
extern long sched_group_rt_runtime(struct task_group *tg);
extern long sched_group_rt_period(struct task_group *tg);
extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
453

454 455 456 457 458 459 460 461 462 463
extern struct task_group *sched_create_group(struct task_group *parent);
extern void sched_online_group(struct task_group *tg,
			       struct task_group *parent);
extern void sched_destroy_group(struct task_group *tg);
extern void sched_offline_group(struct task_group *tg);

extern void sched_move_task(struct task_struct *tsk);

#ifdef CONFIG_FAIR_GROUP_SCHED
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
464 465 466 467 468 469 470 471 472

#ifdef CONFIG_SMP
extern void set_task_rq_fair(struct sched_entity *se,
			     struct cfs_rq *prev, struct cfs_rq *next);
#else /* !CONFIG_SMP */
static inline void set_task_rq_fair(struct sched_entity *se,
			     struct cfs_rq *prev, struct cfs_rq *next) { }
#endif /* CONFIG_SMP */
#endif /* CONFIG_FAIR_GROUP_SCHED */
473

474 475 476 477 478 479 480 481
#else /* CONFIG_CGROUP_SCHED */

struct cfs_bandwidth { };

#endif	/* CONFIG_CGROUP_SCHED */

/* CFS-related fields in a runqueue */
struct cfs_rq {
482 483 484 485
	struct load_weight	load;
	unsigned long		runnable_weight;
	unsigned int		nr_running;
	unsigned int		h_nr_running;
486

487 488
	u64			exec_clock;
	u64			min_vruntime;
489
#ifndef CONFIG_64BIT
490
	u64			min_vruntime_copy;
491 492
#endif

493
	struct rb_root_cached	tasks_timeline;
494 495 496 497 498

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
499 500 501 502
	struct sched_entity	*curr;
	struct sched_entity	*next;
	struct sched_entity	*last;
	struct sched_entity	*skip;
503 504

#ifdef	CONFIG_SCHED_DEBUG
505
	unsigned int		nr_spread_over;
506 507
#endif

508 509
#ifdef CONFIG_SMP
	/*
510
	 * CFS load tracking
511
	 */
512
	struct sched_avg	avg;
513
#ifndef CONFIG_64BIT
514
	u64			load_last_update_time_copy;
515
#endif
516 517 518 519 520
	struct {
		raw_spinlock_t	lock ____cacheline_aligned;
		int		nr;
		unsigned long	load_avg;
		unsigned long	util_avg;
521
		unsigned long	runnable_sum;
522
	} removed;
523

524
#ifdef CONFIG_FAIR_GROUP_SCHED
525 526 527
	unsigned long		tg_load_avg_contrib;
	long			propagate;
	long			prop_runnable_sum;
528

529 530 531 532 533 534
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
535 536 537
	unsigned long		h_load;
	u64			last_h_load_update;
	struct sched_entity	*h_load_next;
538
#endif /* CONFIG_FAIR_GROUP_SCHED */
539 540
#endif /* CONFIG_SMP */

541
#ifdef CONFIG_FAIR_GROUP_SCHED
542
	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
543 544 545 546 547 548

	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
549 550
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
	 * This list is used during load balance.
551
	 */
552 553 554
	int			on_list;
	struct list_head	leaf_cfs_rq_list;
	struct task_group	*tg;	/* group that "owns" this runqueue */
555 556

#ifdef CONFIG_CFS_BANDWIDTH
557
	int			runtime_enabled;
558
	int			expires_seq;
559 560 561 562 563 564 565 566 567
	u64			runtime_expires;
	s64			runtime_remaining;

	u64			throttled_clock;
	u64			throttled_clock_task;
	u64			throttled_clock_task_time;
	int			throttled;
	int			throttle_count;
	struct list_head	throttled_list;
568 569 570 571 572 573 574 575 576
#endif /* CONFIG_CFS_BANDWIDTH */
#endif /* CONFIG_FAIR_GROUP_SCHED */
};

static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
}

577
/* RT IPI pull logic requires IRQ_WORK */
578
#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
579 580 581
# define HAVE_RT_PUSH_IPI
#endif

582 583
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
584 585 586
	struct rt_prio_array	active;
	unsigned int		rt_nr_running;
	unsigned int		rr_nr_running;
587 588
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
	struct {
589
		int		curr; /* highest queued rt task prio */
590
#ifdef CONFIG_SMP
591
		int		next; /* next highest */
592 593 594 595
#endif
	} highest_prio;
#endif
#ifdef CONFIG_SMP
596 597 598 599
	unsigned long		rt_nr_migratory;
	unsigned long		rt_nr_total;
	int			overloaded;
	struct plist_head	pushable_tasks;
600

601
#endif /* CONFIG_SMP */
602
	int			rt_queued;
603

604 605 606
	int			rt_throttled;
	u64			rt_time;
	u64			rt_runtime;
607
	/* Nests inside the rq lock: */
608
	raw_spinlock_t		rt_runtime_lock;
609 610

#ifdef CONFIG_RT_GROUP_SCHED
611
	unsigned long		rt_nr_boosted;
612

613 614
	struct rq		*rq;
	struct task_group	*tg;
615 616 617
#endif
};

618 619 620 621 622
static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
{
	return rt_rq->rt_queued && rt_rq->rt_nr_running;
}

623 624 625
/* Deadline class' related fields in a runqueue */
struct dl_rq {
	/* runqueue is an rbtree, ordered by deadline */
626
	struct rb_root_cached	root;
627

628
	unsigned long		dl_nr_running;
629 630 631 632 633 634 635 636 637

#ifdef CONFIG_SMP
	/*
	 * Deadline values of the currently executing and the
	 * earliest ready task on this rq. Caching these facilitates
	 * the decision wether or not a ready but not running task
	 * should migrate somewhere else.
	 */
	struct {
638 639
		u64		curr;
		u64		next;
640 641
	} earliest_dl;

642 643
	unsigned long		dl_nr_migratory;
	int			overloaded;
644 645 646 647 648 649

	/*
	 * Tasks on this rq that can be pushed away. They are kept in
	 * an rb-tree, ordered by tasks' deadlines, with caching
	 * of the leftmost (earliest deadline) element.
	 */
650
	struct rb_root_cached	pushable_dl_tasks_root;
651
#else
652
	struct dl_bw		dl_bw;
653
#endif
654 655 656 657 658
	/*
	 * "Active utilization" for this runqueue: increased when a
	 * task wakes up (becomes TASK_RUNNING) and decreased when a
	 * task blocks
	 */
659
	u64			running_bw;
660

661 662 663 664 665 666 667 668 669
	/*
	 * Utilization of the tasks "assigned" to this runqueue (including
	 * the tasks that are in runqueue and the tasks that executed on this
	 * CPU and blocked). Increased when a task moves to this runqueue, and
	 * decreased when the task moves away (migrates, changes scheduling
	 * policy, or terminates).
	 * This is needed to compute the "inactive utilization" for the
	 * runqueue (inactive utilization = this_bw - running_bw).
	 */
670 671
	u64			this_bw;
	u64			extra_bw;
672

673 674 675 676
	/*
	 * Inverse of the fraction of CPU utilization that can be reclaimed
	 * by the GRUB algorithm.
	 */
677
	u64			bw_ratio;
678 679
};

680 681 682 683 684 685 686
#ifdef CONFIG_FAIR_GROUP_SCHED
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
#else
#define entity_is_task(se)	1
#endif

687
#ifdef CONFIG_SMP
688 689 690 691 692 693 694 695 696 697 698 699
/*
 * XXX we want to get rid of these helpers and use the full load resolution.
 */
static inline long se_weight(struct sched_entity *se)
{
	return scale_load_down(se->load.weight);
}

static inline long se_runnable(struct sched_entity *se)
{
	return scale_load_down(se->runnable_weight);
}
700

T
Tim Chen 已提交
701 702 703 704 705
static inline bool sched_asym_prefer(int a, int b)
{
	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
}

706 707 708
/*
 * We add the notion of a root-domain which will be used to define per-domain
 * variables. Each exclusive cpuset essentially defines an island domain by
709
 * fully partitioning the member CPUs from any other cpuset. Whenever a new
710 711 712 713 714
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
715 716 717 718 719
	atomic_t		refcount;
	atomic_t		rto_count;
	struct rcu_head		rcu;
	cpumask_var_t		span;
	cpumask_var_t		online;
720

721
	/* Indicate more than one runnable task for any CPU */
722
	bool			overload;
723

724 725 726 727
	/*
	 * The bit corresponding to a CPU gets set here if such CPU has more
	 * than one runnable -deadline task (as it is below for RT tasks).
	 */
728 729 730 731
	cpumask_var_t		dlo_mask;
	atomic_t		dlo_count;
	struct dl_bw		dl_bw;
	struct cpudl		cpudl;
732

733 734 735 736
#ifdef HAVE_RT_PUSH_IPI
	/*
	 * For IPI pull requests, loop across the rto_mask.
	 */
737 738
	struct irq_work		rto_push_work;
	raw_spinlock_t		rto_lock;
739
	/* These are only updated and read within rto_lock */
740 741
	int			rto_loop;
	int			rto_cpu;
742
	/* These atomics are updated outside of a lock */
743 744
	atomic_t		rto_loop_next;
	atomic_t		rto_loop_start;
745
#endif
746 747 748 749
	/*
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
750 751
	cpumask_var_t		rto_mask;
	struct cpupri		cpupri;
752

753
	unsigned long		max_cpu_capacity;
754 755 756
};

extern struct root_domain def_root_domain;
757 758 759
extern struct mutex sched_domains_mutex;

extern void init_defrootdomain(void);
P
Peter Zijlstra 已提交
760
extern int sched_init_domains(const struct cpumask *cpu_map);
761
extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
762 763
extern void sched_get_rd(struct root_domain *rd);
extern void sched_put_rd(struct root_domain *rd);
764

765 766 767
#ifdef HAVE_RT_PUSH_IPI
extern void rto_push_irq_work_func(struct irq_work *work);
#endif
768 769 770 771 772 773 774 775 776 777 778
#endif /* CONFIG_SMP */

/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
struct rq {
	/* runqueue lock: */
779
	raw_spinlock_t		lock;
780 781 782 783 784

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
785
	unsigned int		nr_running;
786
#ifdef CONFIG_NUMA_BALANCING
787 788
	unsigned int		nr_numa_running;
	unsigned int		nr_preferred_running;
789
	unsigned int		numa_migrate_on;
790
#endif
791
	#define CPU_LOAD_IDX_MAX 5
792
	unsigned long		cpu_load[CPU_LOAD_IDX_MAX];
793
#ifdef CONFIG_NO_HZ_COMMON
794
#ifdef CONFIG_SMP
795
	unsigned long		last_load_update_tick;
796
	unsigned long		last_blocked_load_update_tick;
797
	unsigned int		has_blocked_load;
798
#endif /* CONFIG_SMP */
799
	unsigned int		nohz_tick_stopped;
800
	atomic_t nohz_flags;
801
#endif /* CONFIG_NO_HZ_COMMON */
802

803 804 805 806
	/* capture load from *all* tasks on this CPU: */
	struct load_weight	load;
	unsigned long		nr_load_updates;
	u64			nr_switches;
807

808 809 810
	struct cfs_rq		cfs;
	struct rt_rq		rt;
	struct dl_rq		dl;
811 812

#ifdef CONFIG_FAIR_GROUP_SCHED
813 814 815
	/* list of leaf cfs_rq on this CPU: */
	struct list_head	leaf_cfs_rq_list;
	struct list_head	*tmp_alone_branch;
816 817
#endif /* CONFIG_FAIR_GROUP_SCHED */

818 819 820 821 822 823
	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
824
	unsigned long		nr_uninterruptible;
825

826 827 828 829 830
	struct task_struct	*curr;
	struct task_struct	*idle;
	struct task_struct	*stop;
	unsigned long		next_balance;
	struct mm_struct	*prev_mm;
831

832 833 834
	unsigned int		clock_update_flags;
	u64			clock;
	u64			clock_task;
835

836
	atomic_t		nr_iowait;
837 838

#ifdef CONFIG_SMP
839 840 841 842 843
	struct root_domain	*rd;
	struct sched_domain	*sd;

	unsigned long		cpu_capacity;
	unsigned long		cpu_capacity_orig;
844

845
	struct callback_head	*balance_callback;
846

847
	unsigned char		idle_balance;
848

849
	/* For active balancing */
850 851 852 853 854 855 856
	int			active_balance;
	int			push_cpu;
	struct cpu_stop_work	active_balance_work;

	/* CPU of this runqueue: */
	int			cpu;
	int			online;
857

858 859
	struct list_head cfs_tasks;

860
	struct sched_avg	avg_rt;
861
	struct sched_avg	avg_dl;
862
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
863 864
	struct sched_avg	avg_irq;
#endif
865 866
	u64			idle_stamp;
	u64			avg_idle;
867 868

	/* This is used to determine avg_idle's max value */
869
	u64			max_idle_balance_cost;
870 871 872
#endif

#ifdef CONFIG_IRQ_TIME_ACCOUNTING
873
	u64			prev_irq_time;
874 875
#endif
#ifdef CONFIG_PARAVIRT
876
	u64			prev_steal_time;
877 878
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
879
	u64			prev_steal_time_rq;
880 881 882
#endif

	/* calc_load related fields */
883 884
	unsigned long		calc_load_update;
	long			calc_load_active;
885 886 887

#ifdef CONFIG_SCHED_HRTICK
#ifdef CONFIG_SMP
888 889
	int			hrtick_csd_pending;
	call_single_data_t	hrtick_csd;
890
#endif
891
	struct hrtimer		hrtick_timer;
892 893 894 895
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
896 897
	struct sched_info	rq_sched_info;
	unsigned long long	rq_cpu_time;
898 899 900
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */

	/* sys_sched_yield() stats */
901
	unsigned int		yld_count;
902 903

	/* schedule() stats */
904 905
	unsigned int		sched_count;
	unsigned int		sched_goidle;
906 907

	/* try_to_wake_up() stats */
908 909
	unsigned int		ttwu_count;
	unsigned int		ttwu_local;
910 911 912
#endif

#ifdef CONFIG_SMP
913
	struct llist_head	wake_list;
914
#endif
915 916 917

#ifdef CONFIG_CPU_IDLE
	/* Must be inspected within a rcu lock section */
918
	struct cpuidle_state	*idle_state;
919
#endif
920 921 922 923 924 925 926 927 928 929 930
};

static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

P
Peter Zijlstra 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944

#ifdef CONFIG_SCHED_SMT
extern void __update_idle_core(struct rq *rq);

static inline void update_idle_core(struct rq *rq)
{
	if (static_branch_unlikely(&sched_smt_present))
		__update_idle_core(rq);
}

#else
static inline void update_idle_core(struct rq *rq) { }
#endif

945
DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
946

947
#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
948
#define this_rq()		this_cpu_ptr(&runqueues)
949 950
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
951
#define raw_rq()		raw_cpu_ptr(&runqueues)
952

953 954
static inline u64 __rq_clock_broken(struct rq *rq)
{
955
	return READ_ONCE(rq->clock);
956 957
}

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
/*
 * rq::clock_update_flags bits
 *
 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
 *  call to __schedule(). This is an optimisation to avoid
 *  neighbouring rq clock updates.
 *
 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
 *  in effect and calls to update_rq_clock() are being ignored.
 *
 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
 *  made to update_rq_clock() since the last time rq::lock was pinned.
 *
 * If inside of __schedule(), clock_update_flags will have been
 * shifted left (a left shift is a cheap operation for the fast path
 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
 *
 *	if (rq-clock_update_flags >= RQCF_UPDATED)
 *
 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
 * one position though, because the next rq_unpin_lock() will shift it
 * back.
 */
981 982 983
#define RQCF_REQ_SKIP		0x01
#define RQCF_ACT_SKIP		0x02
#define RQCF_UPDATED		0x04
984 985 986 987 988 989 990 991 992 993

static inline void assert_clock_updated(struct rq *rq)
{
	/*
	 * The only reason for not seeing a clock update since the
	 * last rq_pin_lock() is if we're currently skipping updates.
	 */
	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
}

994 995
static inline u64 rq_clock(struct rq *rq)
{
996
	lockdep_assert_held(&rq->lock);
997 998
	assert_clock_updated(rq);

999 1000 1001 1002 1003
	return rq->clock;
}

static inline u64 rq_clock_task(struct rq *rq)
{
1004
	lockdep_assert_held(&rq->lock);
1005 1006
	assert_clock_updated(rq);

1007 1008 1009
	return rq->clock_task;
}

1010
static inline void rq_clock_skip_update(struct rq *rq)
1011 1012
{
	lockdep_assert_held(&rq->lock);
1013 1014 1015 1016
	rq->clock_update_flags |= RQCF_REQ_SKIP;
}

/*
D
Davidlohr Bueso 已提交
1017
 * See rt task throttling, which is the only time a skip
1018 1019 1020 1021 1022 1023
 * request is cancelled.
 */
static inline void rq_clock_cancel_skipupdate(struct rq *rq)
{
	lockdep_assert_held(&rq->lock);
	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1024 1025
}

1026 1027 1028
struct rq_flags {
	unsigned long flags;
	struct pin_cookie cookie;
1029 1030 1031 1032 1033 1034 1035 1036
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
	 * current pin context is stashed here in case it needs to be
	 * restored in rq_repin_lock().
	 */
	unsigned int clock_update_flags;
#endif
1037 1038 1039 1040 1041
};

static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
{
	rf->cookie = lockdep_pin_lock(&rq->lock);
1042 1043 1044 1045 1046

#ifdef CONFIG_SCHED_DEBUG
	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
	rf->clock_update_flags = 0;
#endif
1047 1048 1049 1050
}

static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
{
1051 1052 1053 1054 1055
#ifdef CONFIG_SCHED_DEBUG
	if (rq->clock_update_flags > RQCF_ACT_SKIP)
		rf->clock_update_flags = RQCF_UPDATED;
#endif

1056 1057 1058 1059 1060 1061
	lockdep_unpin_lock(&rq->lock, rf->cookie);
}

static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
{
	lockdep_repin_lock(&rq->lock, rf->cookie);
1062 1063 1064 1065 1066 1067 1068

#ifdef CONFIG_SCHED_DEBUG
	/*
	 * Restore the value we stashed in @rf for this pin context.
	 */
	rq->clock_update_flags |= rf->clock_update_flags;
#endif
1069 1070
}

1071
#ifdef CONFIG_NUMA
1072 1073 1074 1075 1076 1077
enum numa_topology_type {
	NUMA_DIRECT,
	NUMA_GLUELESS_MESH,
	NUMA_BACKPLANE,
};
extern enum numa_topology_type sched_numa_topology_type;
1078 1079 1080 1081
extern int sched_max_numa_distance;
extern bool find_numa_distance(int distance);
#endif

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
#ifdef CONFIG_NUMA
extern void sched_init_numa(void);
extern void sched_domains_numa_masks_set(unsigned int cpu);
extern void sched_domains_numa_masks_clear(unsigned int cpu);
#else
static inline void sched_init_numa(void) { }
static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
#endif

1092
#ifdef CONFIG_NUMA_BALANCING
1093 1094 1095 1096 1097 1098 1099
/* The regions in numa_faults array from task_struct */
enum numa_faults_stats {
	NUMA_MEM = 0,
	NUMA_CPU,
	NUMA_MEMBUF,
	NUMA_CPUBUF
};
1100
extern void sched_setnuma(struct task_struct *p, int node);
1101
extern int migrate_task_to(struct task_struct *p, int cpu);
1102 1103
extern int migrate_swap(struct task_struct *p, struct task_struct *t,
			int cpu, int scpu);
1104 1105 1106 1107 1108 1109
extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
#else
static inline void
init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
{
}
1110 1111
#endif /* CONFIG_NUMA_BALANCING */

1112 1113
#ifdef CONFIG_SMP

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
static inline void
queue_balance_callback(struct rq *rq,
		       struct callback_head *head,
		       void (*func)(struct rq *rq))
{
	lockdep_assert_held(&rq->lock);

	if (unlikely(head->next))
		return;

	head->func = (void (*)(struct callback_head *))func;
	head->next = rq->balance_callback;
	rq->balance_callback = head;
}

1129 1130
extern void sched_ttwu_pending(void);

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
#define rcu_dereference_check_sched_domain(p) \
	rcu_dereference_check((p), \
			      lockdep_is_held(&sched_domains_mutex))

/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 * See detach_destroy_domains: synchronize_sched for details.
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
#define for_each_domain(cpu, __sd) \
1143 1144
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
			__sd; __sd = __sd->parent)
1145

1146 1147
#define for_each_lower_domain(sd) for (; sd; sd = sd->child)

1148 1149
/**
 * highest_flag_domain - Return highest sched_domain containing flag.
1150
 * @cpu:	The CPU whose highest level of sched domain is to
1151 1152
 *		be returned.
 * @flag:	The flag to check for the highest sched_domain
1153
 *		for the given CPU.
1154
 *
1155
 * Returns the highest sched_domain of a CPU which contains the given flag.
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
 */
static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd, *hsd = NULL;

	for_each_domain(cpu, sd) {
		if (!(sd->flags & flag))
			break;
		hsd = sd;
	}

	return hsd;
}

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		if (sd->flags & flag)
			break;
	}

	return sd;
}

1182
DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1183
DECLARE_PER_CPU(int, sd_llc_size);
1184
DECLARE_PER_CPU(int, sd_llc_id);
1185
DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1186
DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1187
DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1188

1189
struct sched_group_capacity {
1190
	atomic_t		ref;
1191
	/*
1192
	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1193
	 * for a single CPU.
1194
	 */
1195 1196 1197 1198
	unsigned long		capacity;
	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
	unsigned long		next_update;
	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1199

1200
#ifdef CONFIG_SCHED_DEBUG
1201
	int			id;
1202 1203
#endif

1204
	unsigned long		cpumask[0];		/* Balance mask */
1205 1206 1207
};

struct sched_group {
1208 1209
	struct sched_group	*next;			/* Must be a circular list */
	atomic_t		ref;
1210

1211
	unsigned int		group_weight;
1212
	struct sched_group_capacity *sgc;
1213
	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1214 1215 1216 1217 1218 1219 1220 1221

	/*
	 * The CPUs this group covers.
	 *
	 * NOTE: this field is variable length. (Allocated dynamically
	 * by attaching extra space to the end of the structure,
	 * depending on how many CPUs the kernel has booted up with)
	 */
1222
	unsigned long		cpumask[0];
1223 1224
};

1225
static inline struct cpumask *sched_group_span(struct sched_group *sg)
1226 1227 1228 1229 1230
{
	return to_cpumask(sg->cpumask);
}

/*
1231
 * See build_balance_mask().
1232
 */
1233
static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1234
{
1235
	return to_cpumask(sg->sgc->cpumask);
1236 1237 1238
}

/**
1239 1240
 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
 * @group: The group whose first CPU is to be returned.
1241 1242 1243
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
1244
	return cpumask_first(sched_group_span(group));
1245 1246
}

P
Peter Zijlstra 已提交
1247 1248
extern int group_balance_cpu(struct sched_group *sg);

1249 1250
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
void register_sched_domain_sysctl(void);
1251
void dirty_sched_domain_sysctl(int cpu);
1252 1253 1254 1255 1256
void unregister_sched_domain_sysctl(void);
#else
static inline void register_sched_domain_sysctl(void)
{
}
1257 1258 1259
static inline void dirty_sched_domain_sysctl(int cpu)
{
}
1260 1261 1262 1263 1264
static inline void unregister_sched_domain_sysctl(void)
{
}
#endif

1265 1266 1267 1268
#else

static inline void sched_ttwu_pending(void) { }

1269
#endif /* CONFIG_SMP */
1270

1271
#include "stats.h"
1272
#include "autogroup.h"
1273 1274 1275 1276 1277 1278

#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
1279 1280 1281
 * We cannot use task_css() and friends because the cgroup subsystem
 * changes that value before the cgroup_subsys::attach() method is called,
 * therefore we cannot pin it and might observe the wrong value.
P
Peter Zijlstra 已提交
1282 1283 1284 1285 1286 1287
 *
 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 * core changes this before calling sched_move_task().
 *
 * Instead we use a 'copy' which is updated from sched_move_task() while
 * holding both task_struct::pi_lock and rq::lock.
1288 1289 1290
 */
static inline struct task_group *task_group(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1291
	return p->sched_task_group;
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
	struct task_group *tg = task_group(p);
#endif

#ifdef CONFIG_FAIR_GROUP_SCHED
1302
	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	p->se.cfs_rq = tg->cfs_rq[cpu];
	p->se.parent = tg->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = tg->rt_rq[cpu];
	p->rt.parent = tg->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
1333 1334 1335
#ifdef CONFIG_THREAD_INFO_IN_TASK
	p->cpu = cpu;
#else
1336
	task_thread_info(p)->cpu = cpu;
1337
#endif
1338
	p->wake_cpu = cpu;
1339 1340 1341 1342 1343 1344 1345
#endif
}

/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
1346
# include <linux/static_key.h>
1347 1348 1349 1350 1351 1352 1353 1354 1355
# define const_debug __read_mostly
#else
# define const_debug const
#endif

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

enum {
1356
#include "features.h"
1357
	__SCHED_FEAT_NR,
1358 1359 1360 1361
};

#undef SCHED_FEAT

1362
#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1363 1364 1365 1366 1367 1368 1369

/*
 * To support run-time toggling of sched features, all the translation units
 * (but core.c) reference the sysctl_sched_features defined in core.c.
 */
extern const_debug unsigned int sysctl_sched_features;

1370
#define SCHED_FEAT(name, enabled)					\
1371
static __always_inline bool static_branch_##name(struct static_key *key) \
1372
{									\
1373
	return static_key_##enabled(key);				\
1374 1375 1376 1377 1378
}

#include "features.h"
#undef SCHED_FEAT

1379
extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1380
#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1381

1382
#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395

/*
 * Each translation unit has its own copy of sysctl_sched_features to allow
 * constants propagation at compile time and compiler optimization based on
 * features default.
 */
#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |
static const_debug __maybe_unused unsigned int sysctl_sched_features =
#include "features.h"
	0;
#undef SCHED_FEAT

1396
#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1397

1398
#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1399

1400
extern struct static_key_false sched_numa_balancing;
1401
extern struct static_key_false sched_schedstats;
1402

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_runtime < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}

static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

static inline int task_running(struct rq *rq, struct task_struct *p)
{
#ifdef CONFIG_SMP
	return p->on_cpu;
#else
	return task_current(rq, p);
#endif
}

1430 1431 1432 1433
static inline int task_on_rq_queued(struct task_struct *p)
{
	return p->on_rq == TASK_ON_RQ_QUEUED;
}
1434

1435 1436 1437 1438 1439
static inline int task_on_rq_migrating(struct task_struct *p)
{
	return p->on_rq == TASK_ON_RQ_MIGRATING;
}

1440 1441 1442
/*
 * wake flags
 */
1443 1444 1445
#define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
#define WF_FORK			0x02		/* Child wakeup after fork */
#define WF_MIGRATED		0x4		/* Internal use, task got migrated */
1446

1447 1448 1449 1450 1451 1452 1453 1454 1455
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

1456 1457
#define WEIGHT_IDLEPRIO		3
#define WMULT_IDLEPRIO		1431655765
1458

1459 1460
extern const int		sched_prio_to_weight[40];
extern const u32		sched_prio_to_wmult[40];
1461

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
/*
 * {de,en}queue flags:
 *
 * DEQUEUE_SLEEP  - task is no longer runnable
 * ENQUEUE_WAKEUP - task just became runnable
 *
 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
 *                are in a known state which allows modification. Such pairs
 *                should preserve as much state as possible.
 *
 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
 *        in the runqueue.
 *
 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1477
 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1478 1479 1480 1481
 *
 */

#define DEQUEUE_SLEEP		0x01
1482 1483 1484
#define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
#define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
#define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1485

1486
#define ENQUEUE_WAKEUP		0x01
1487 1488
#define ENQUEUE_RESTORE		0x02
#define ENQUEUE_MOVE		0x04
1489
#define ENQUEUE_NOCLOCK		0x08
1490

1491 1492
#define ENQUEUE_HEAD		0x10
#define ENQUEUE_REPLENISH	0x20
1493
#ifdef CONFIG_SMP
1494
#define ENQUEUE_MIGRATED	0x40
1495
#else
1496
#define ENQUEUE_MIGRATED	0x00
1497 1498
#endif

1499 1500
#define RETRY_TASK		((void *)-1UL)

1501 1502 1503 1504 1505
struct sched_class {
	const struct sched_class *next;

	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1506 1507
	void (*yield_task)   (struct rq *rq);
	bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1508

1509
	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1510

1511 1512 1513 1514
	/*
	 * It is the responsibility of the pick_next_task() method that will
	 * return the next task to call put_prev_task() on the @prev task or
	 * something equivalent.
1515 1516 1517
	 *
	 * May return RETRY_TASK when it finds a higher prio class has runnable
	 * tasks.
1518
	 */
1519 1520 1521 1522
	struct task_struct * (*pick_next_task)(struct rq *rq,
					       struct task_struct *prev,
					       struct rq_flags *rf);
	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1523 1524

#ifdef CONFIG_SMP
1525
	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1526
	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1527

1528
	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1529 1530 1531 1532 1533 1534 1535 1536

	void (*set_cpus_allowed)(struct task_struct *p,
				 const struct cpumask *newmask);

	void (*rq_online)(struct rq *rq);
	void (*rq_offline)(struct rq *rq);
#endif

1537 1538 1539 1540
	void (*set_curr_task)(struct rq *rq);
	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
	void (*task_fork)(struct task_struct *p);
	void (*task_dead)(struct task_struct *p);
1541

1542 1543 1544 1545 1546
	/*
	 * The switched_from() call is allowed to drop rq->lock, therefore we
	 * cannot assume the switched_from/switched_to pair is serliazed by
	 * rq->lock. They are however serialized by p->pi_lock.
	 */
1547 1548
	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1549
	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1550
			      int oldprio);
1551

1552 1553
	unsigned int (*get_rr_interval)(struct rq *rq,
					struct task_struct *task);
1554

1555
	void (*update_curr)(struct rq *rq);
1556

1557 1558
#define TASK_SET_GROUP		0
#define TASK_MOVE_GROUP		1
1559

1560
#ifdef CONFIG_FAIR_GROUP_SCHED
1561
	void (*task_change_group)(struct task_struct *p, int type);
1562 1563
#endif
};
1564

1565 1566 1567 1568 1569
static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	prev->sched_class->put_prev_task(rq, prev);
}

1570 1571 1572 1573 1574
static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
{
	curr->sched_class->set_curr_task(rq);
}

1575
#ifdef CONFIG_SMP
1576
#define sched_class_highest (&stop_sched_class)
1577 1578 1579
#else
#define sched_class_highest (&dl_sched_class)
#endif
1580 1581 1582 1583
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)

extern const struct sched_class stop_sched_class;
1584
extern const struct sched_class dl_sched_class;
1585 1586 1587 1588 1589 1590 1591
extern const struct sched_class rt_sched_class;
extern const struct sched_class fair_sched_class;
extern const struct sched_class idle_sched_class;


#ifdef CONFIG_SMP

1592
extern void update_group_capacity(struct sched_domain *sd, int cpu);
1593

1594
extern void trigger_load_balance(struct rq *rq);
1595

1596 1597
extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);

1598 1599
#endif

1600 1601 1602 1603 1604 1605 1606 1607 1608
#ifdef CONFIG_CPU_IDLE
static inline void idle_set_state(struct rq *rq,
				  struct cpuidle_state *idle_state)
{
	rq->idle_state = idle_state;
}

static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
1609
	SCHED_WARN_ON(!rcu_read_lock_held());
1610

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
	return rq->idle_state;
}
#else
static inline void idle_set_state(struct rq *rq,
				  struct cpuidle_state *idle_state)
{
}

static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
	return NULL;
}
#endif

1625 1626
extern void schedule_idle(void);

1627 1628 1629
extern void sysrq_sched_debug_show(void);
extern void sched_init_granularity(void);
extern void update_max_interval(void);
1630 1631

extern void init_sched_dl_class(void);
1632 1633 1634
extern void init_sched_rt_class(void);
extern void init_sched_fair_class(void);

1635 1636
extern void reweight_task(struct task_struct *p, int prio);

1637
extern void resched_curr(struct rq *rq);
1638 1639 1640 1641 1642
extern void resched_cpu(int cpu);

extern struct rt_bandwidth def_rt_bandwidth;
extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);

1643 1644
extern struct dl_bandwidth def_dl_bandwidth;
extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1645
extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1646
extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1647
extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1648

1649 1650 1651
#define BW_SHIFT		20
#define BW_UNIT			(1 << BW_SHIFT)
#define RATIO_SHIFT		8
1652 1653
unsigned long to_ratio(u64 period, u64 runtime);

1654
extern void init_entity_runnable_average(struct sched_entity *se);
1655
extern void post_init_entity_util_avg(struct sched_entity *se);
1656

1657 1658
#ifdef CONFIG_NO_HZ_FULL
extern bool sched_can_stop_tick(struct rq *rq);
1659
extern int __init sched_tick_offload_init(void);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683

/*
 * Tick may be needed by tasks in the runqueue depending on their policy and
 * requirements. If tick is needed, lets send the target an IPI to kick it out of
 * nohz mode if necessary.
 */
static inline void sched_update_tick_dependency(struct rq *rq)
{
	int cpu;

	if (!tick_nohz_full_enabled())
		return;

	cpu = cpu_of(rq);

	if (!tick_nohz_full_cpu(cpu))
		return;

	if (sched_can_stop_tick(rq))
		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
	else
		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
}
#else
1684
static inline int sched_tick_offload_init(void) { return 0; }
1685 1686 1687
static inline void sched_update_tick_dependency(struct rq *rq) { }
#endif

1688
static inline void add_nr_running(struct rq *rq, unsigned count)
1689
{
1690 1691 1692
	unsigned prev_nr = rq->nr_running;

	rq->nr_running = prev_nr + count;
1693

1694
	if (prev_nr < 2 && rq->nr_running >= 2) {
1695 1696 1697 1698 1699
#ifdef CONFIG_SMP
		if (!rq->rd->overload)
			rq->rd->overload = true;
#endif
	}
1700 1701

	sched_update_tick_dependency(rq);
1702 1703
}

1704
static inline void sub_nr_running(struct rq *rq, unsigned count)
1705
{
1706
	rq->nr_running -= count;
1707 1708
	/* Check if we still need preemption */
	sched_update_tick_dependency(rq);
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
}

extern void update_rq_clock(struct rq *rq);

extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);

extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);

extern const_debug unsigned int sysctl_sched_nr_migrate;
extern const_debug unsigned int sysctl_sched_migration_cost;

#ifdef CONFIG_SCHED_HRTICK

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	if (!cpu_active(cpu_of(rq)))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

void hrtick_start(struct rq *rq, u64 delay);

1739 1740 1741 1742 1743 1744 1745
#else

static inline int hrtick_enabled(struct rq *rq)
{
	return 0;
}

1746 1747
#endif /* CONFIG_SCHED_HRTICK */

1748 1749
#ifndef arch_scale_freq_capacity
static __always_inline
1750
unsigned long arch_scale_freq_capacity(int cpu)
1751 1752 1753 1754
{
	return SCHED_CAPACITY_SCALE;
}
#endif
1755

1756
#ifdef CONFIG_SMP
1757 1758 1759 1760
#ifndef arch_scale_cpu_capacity
static __always_inline
unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
{
1761
	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1762 1763 1764 1765 1766
		return sd->smt_gain / sd->span_weight;

	return SCHED_CAPACITY_SCALE;
}
#endif
1767
#else
1768 1769 1770 1771 1772 1773 1774
#ifndef arch_scale_cpu_capacity
static __always_inline
unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
{
	return SCHED_CAPACITY_SCALE;
}
#endif
1775 1776
#endif

1777
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1778
	__acquires(rq->lock);
1779

1780
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1781
	__acquires(p->pi_lock)
1782
	__acquires(rq->lock);
1783

1784
static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1785 1786
	__releases(rq->lock)
{
1787
	rq_unpin_lock(rq, rf);
1788 1789 1790 1791
	raw_spin_unlock(&rq->lock);
}

static inline void
1792
task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1793 1794 1795
	__releases(rq->lock)
	__releases(p->pi_lock)
{
1796
	rq_unpin_lock(rq, rf);
1797
	raw_spin_unlock(&rq->lock);
1798
	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1799 1800
}

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
static inline void
rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
	__acquires(rq->lock)
{
	raw_spin_lock_irqsave(&rq->lock, rf->flags);
	rq_pin_lock(rq, rf);
}

static inline void
rq_lock_irq(struct rq *rq, struct rq_flags *rf)
	__acquires(rq->lock)
{
	raw_spin_lock_irq(&rq->lock);
	rq_pin_lock(rq, rf);
}

static inline void
rq_lock(struct rq *rq, struct rq_flags *rf)
	__acquires(rq->lock)
{
	raw_spin_lock(&rq->lock);
	rq_pin_lock(rq, rf);
}

static inline void
rq_relock(struct rq *rq, struct rq_flags *rf)
	__acquires(rq->lock)
{
	raw_spin_lock(&rq->lock);
	rq_repin_lock(rq, rf);
}

static inline void
rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
	__releases(rq->lock)
{
	rq_unpin_lock(rq, rf);
	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
}

static inline void
rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
	__releases(rq->lock)
{
	rq_unpin_lock(rq, rf);
	raw_spin_unlock_irq(&rq->lock);
}

static inline void
rq_unlock(struct rq *rq, struct rq_flags *rf)
	__releases(rq->lock)
{
	rq_unpin_lock(rq, rf);
	raw_spin_unlock(&rq->lock);
}

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
#ifdef CONFIG_SMP
#ifdef CONFIG_PREEMPT

static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);

/*
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
 */
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	raw_spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
1885 1886
 * already in proper order on entry.  This favors lower CPU-ids and will
 * grant the double lock to lower CPUs over higher ids under contention,
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
 * regardless of entry order into the function.
 */
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
	}
	return ret;
}

#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
1918
		/* printk() doesn't work well under rq->lock */
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
		raw_spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	raw_spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

1933 1934 1935 1936 1937 1938 1939 1940 1941
static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	spin_lock(l1);
	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

1942 1943 1944 1945 1946 1947 1948 1949 1950
static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	spin_lock_irq(l1);
	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

1951 1952 1953 1954 1955 1956 1957 1958 1959
static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	raw_spin_lock(l1);
	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

2002 2003 2004 2005
extern void set_rq_online (struct rq *rq);
extern void set_rq_offline(struct rq *rq);
extern bool sched_smp_initialized;

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
#else /* CONFIG_SMP */

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	BUG_ON(rq1 != rq2);
	raw_spin_lock(&rq1->lock);
	__acquire(rq2->lock);	/* Fake it out ;) */
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	BUG_ON(rq1 != rq2);
	raw_spin_unlock(&rq1->lock);
	__release(rq2->lock);
}

#endif

extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2043 2044

#ifdef	CONFIG_SCHED_DEBUG
2045 2046
extern bool sched_debug_enabled;

2047 2048
extern void print_cfs_stats(struct seq_file *m, int cpu);
extern void print_rt_stats(struct seq_file *m, int cpu);
2049
extern void print_dl_stats(struct seq_file *m, int cpu);
2050 2051 2052
extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2053 2054 2055 2056 2057 2058 2059 2060
#ifdef CONFIG_NUMA_BALANCING
extern void
show_numa_stats(struct task_struct *p, struct seq_file *m);
extern void
print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
	unsigned long tpf, unsigned long gsf, unsigned long gpf);
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
2061 2062

extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2063 2064
extern void init_rt_rq(struct rt_rq *rt_rq);
extern void init_dl_rq(struct dl_rq *dl_rq);
2065

2066 2067
extern void cfs_bandwidth_usage_inc(void);
extern void cfs_bandwidth_usage_dec(void);
2068

2069
#ifdef CONFIG_NO_HZ_COMMON
2070 2071
#define NOHZ_BALANCE_KICK_BIT	0
#define NOHZ_STATS_KICK_BIT	1
2072 2073

#define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
P
Peter Zijlstra 已提交
2074 2075 2076
#define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)

#define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2077 2078

#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2079

2080
extern void nohz_balance_exit_idle(struct rq *rq);
2081
#else
2082
static inline void nohz_balance_exit_idle(struct rq *rq) { }
2083
#endif
2084

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

#ifdef CONFIG_SMP
static inline
void __dl_update(struct dl_bw *dl_b, s64 bw)
{
	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
	int i;

	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
	for_each_cpu_and(i, rd->span, cpu_active_mask) {
		struct rq *rq = cpu_rq(i);

		rq->dl.extra_bw += bw;
	}
}
#else
static inline
void __dl_update(struct dl_bw *dl_b, s64 bw)
{
	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);

	dl->extra_bw += bw;
}
#endif


2112
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2113
struct irqtime {
2114
	u64			total;
2115
	u64			tick_delta;
2116 2117 2118
	u64			irq_start_time;
	struct u64_stats_sync	sync;
};
2119

2120
DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2121

2122 2123 2124 2125 2126
/*
 * Returns the irqtime minus the softirq time computed by ksoftirqd.
 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
 * and never move forward.
 */
2127 2128
static inline u64 irq_time_read(int cpu)
{
2129 2130 2131
	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
	unsigned int seq;
	u64 total;
2132 2133

	do {
2134
		seq = __u64_stats_fetch_begin(&irqtime->sync);
2135
		total = irqtime->total;
2136
	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2137

2138
	return total;
2139 2140
}
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2141 2142 2143 2144 2145 2146

#ifdef CONFIG_CPU_FREQ
DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);

/**
 * cpufreq_update_util - Take a note about CPU utilization changes.
2147
 * @rq: Runqueue to carry out the update for.
2148
 * @flags: Update reason flags.
2149
 *
2150 2151
 * This function is called by the scheduler on the CPU whose utilization is
 * being updated.
2152 2153 2154 2155 2156 2157
 *
 * It can only be called from RCU-sched read-side critical sections.
 *
 * The way cpufreq is currently arranged requires it to evaluate the CPU
 * performance state (frequency/voltage) on a regular basis to prevent it from
 * being stuck in a completely inadequate performance level for too long.
2158 2159 2160
 * That is not guaranteed to happen if the updates are only triggered from CFS
 * and DL, though, because they may not be coming in if only RT tasks are
 * active all the time (or there are RT tasks only).
2161
 *
2162 2163
 * As a workaround for that issue, this function is called periodically by the
 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2164
 * but that really is a band-aid.  Going forward it should be replaced with
2165
 * solutions targeted more specifically at RT tasks.
2166
 */
2167
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2168
{
2169 2170
	struct update_util_data *data;

2171 2172
	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
						  cpu_of(rq)));
2173
	if (data)
2174 2175
		data->func(data, rq_clock(rq), flags);
}
2176
#else
2177
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2178
#endif /* CONFIG_CPU_FREQ */
2179

2180
#ifdef arch_scale_freq_capacity
2181 2182 2183 2184 2185
# ifndef arch_scale_freq_invariant
#  define arch_scale_freq_invariant()	true
# endif
#else
# define arch_scale_freq_invariant()	false
2186
#endif
2187

2188
#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2189
static inline unsigned long cpu_bw_dl(struct rq *rq)
2190 2191 2192 2193
{
	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
}

2194 2195 2196 2197 2198
static inline unsigned long cpu_util_dl(struct rq *rq)
{
	return READ_ONCE(rq->avg_dl.util_avg);
}

2199 2200
static inline unsigned long cpu_util_cfs(struct rq *rq)
{
2201 2202 2203 2204 2205 2206 2207 2208
	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);

	if (sched_feat(UTIL_EST)) {
		util = max_t(unsigned long, util,
			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
	}

	return util;
2209
}
2210 2211 2212

static inline unsigned long cpu_util_rt(struct rq *rq)
{
2213
	return READ_ONCE(rq->avg_rt.util_avg);
2214
}
2215
#endif
2216

2217
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2218 2219 2220 2221
static inline unsigned long cpu_util_irq(struct rq *rq)
{
	return rq->avg_irq.util_avg;
}
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231

static inline
unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
{
	util *= (max - irq);
	util /= max;

	return util;

}
2232 2233 2234 2235 2236 2237
#else
static inline unsigned long cpu_util_irq(struct rq *rq)
{
	return 0;
}

2238 2239 2240 2241 2242
static inline
unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
{
	return util;
}
2243
#endif