sched.h 57.8 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
2 3 4
/*
 * Scheduler internal types and methods:
 */
5
#include <linux/sched.h>
6

7
#include <linux/sched/autogroup.h>
8
#include <linux/sched/clock.h>
9
#include <linux/sched/coredump.h>
10
#include <linux/sched/cpufreq.h>
11 12
#include <linux/sched/cputime.h>
#include <linux/sched/deadline.h>
13
#include <linux/sched/debug.h>
14
#include <linux/sched/hotplug.h>
15 16 17 18 19 20 21 22 23 24 25 26 27
#include <linux/sched/idle.h>
#include <linux/sched/init.h>
#include <linux/sched/isolation.h>
#include <linux/sched/jobctl.h>
#include <linux/sched/loadavg.h>
#include <linux/sched/mm.h>
#include <linux/sched/nohz.h>
#include <linux/sched/numa_balancing.h>
#include <linux/sched/prio.h>
#include <linux/sched/rt.h>
#include <linux/sched/signal.h>
#include <linux/sched/stat.h>
#include <linux/sched/sysctl.h>
28
#include <linux/sched/task.h>
29
#include <linux/sched/task_stack.h>
30 31 32 33 34 35
#include <linux/sched/topology.h>
#include <linux/sched/user.h>
#include <linux/sched/wake_q.h>
#include <linux/sched/xacct.h>

#include <uapi/linux/sched/types.h>
36

37
#include <linux/binfmts.h>
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
#include <linux/blkdev.h>
#include <linux/compat.h>
#include <linux/context_tracking.h>
#include <linux/cpufreq.h>
#include <linux/cpuidle.h>
#include <linux/cpuset.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/delayacct.h>
#include <linux/init_task.h>
#include <linux/kprobes.h>
#include <linux/kthread.h>
#include <linux/membarrier.h>
#include <linux/migrate.h>
#include <linux/mmu_context.h>
#include <linux/nmi.h>
#include <linux/proc_fs.h>
#include <linux/prefetch.h>
#include <linux/profile.h>
#include <linux/rcupdate_wait.h>
#include <linux/security.h>
#include <linux/stackprotector.h>
60
#include <linux/stop_machine.h>
61 62 63 64 65 66 67
#include <linux/suspend.h>
#include <linux/swait.h>
#include <linux/syscalls.h>
#include <linux/task_work.h>
#include <linux/tsacct_kern.h>

#include <asm/tlb.h>
68

69
#ifdef CONFIG_PARAVIRT
70
# include <asm/paravirt.h>
71 72
#endif

73
#include "cpupri.h"
74
#include "cpudeadline.h"
75

76
#ifdef CONFIG_SCHED_DEBUG
77
# define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
78
#else
79
# define SCHED_WARN_ON(x)	({ (void)(x), 0; })
80 81
#endif

82
struct rq;
83
struct cpuidle_state;
84

85 86
/* task_struct::on_rq states: */
#define TASK_ON_RQ_QUEUED	1
87
#define TASK_ON_RQ_MIGRATING	2
88

89 90
extern __read_mostly int scheduler_running;

91 92 93
extern unsigned long calc_load_update;
extern atomic_long_t calc_load_tasks;

94
extern void calc_global_load_tick(struct rq *this_rq);
95
extern long calc_load_fold_active(struct rq *this_rq, long adjust);
96 97

#ifdef CONFIG_SMP
98
extern void cpu_load_update_active(struct rq *this_rq);
99
#else
100
static inline void cpu_load_update_active(struct rq *this_rq) { }
101
#endif
102

103 104 105 106 107
/*
 * Helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))

108 109 110 111 112 113 114 115
/*
 * Increase resolution of nice-level calculations for 64-bit architectures.
 * The extra resolution improves shares distribution and load balancing of
 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 * hierarchies, especially on larger systems. This is not a user-visible change
 * and does not change the user-interface for setting shares/weights.
 *
 * We increase resolution only if we have enough bits to allow this increased
116 117
 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
 * are pretty high and the returns do not justify the increased costs.
118
 *
119 120
 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
 * increase coverage and consistency always enable it on 64-bit platforms.
121
 */
122
#ifdef CONFIG_64BIT
123
# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
124 125
# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
# define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
126
#else
127
# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
128 129 130 131
# define scale_load(w)		(w)
# define scale_load_down(w)	(w)
#endif

132
/*
133 134 135 136 137 138 139
 * Task weight (visible to users) and its load (invisible to users) have
 * independent resolution, but they should be well calibrated. We use
 * scale_load() and scale_load_down(w) to convert between them. The
 * following must be true:
 *
 *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
 *
140
 */
141
#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
142

143 144 145 146 147
/*
 * Single value that decides SCHED_DEADLINE internal math precision.
 * 10 -> just above 1us
 * 9  -> just above 0.5us
 */
148
#define DL_SCALE		10
149 150

/*
151
 * Single value that denotes runtime == period, ie unlimited time.
152
 */
153
#define RUNTIME_INF		((u64)~0ULL)
154

155 156 157 158
static inline int idle_policy(int policy)
{
	return policy == SCHED_IDLE;
}
159 160 161 162 163
static inline int fair_policy(int policy)
{
	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
}

164 165
static inline int rt_policy(int policy)
{
166
	return policy == SCHED_FIFO || policy == SCHED_RR;
167 168
}

169 170 171 172
static inline int dl_policy(int policy)
{
	return policy == SCHED_DEADLINE;
}
173 174 175 176 177
static inline bool valid_policy(int policy)
{
	return idle_policy(policy) || fair_policy(policy) ||
		rt_policy(policy) || dl_policy(policy);
}
178

179 180 181 182 183
static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

184 185 186 187 188
static inline int task_has_dl_policy(struct task_struct *p)
{
	return dl_policy(p->policy);
}

189 190
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/*
 * !! For sched_setattr_nocheck() (kernel) only !!
 *
 * This is actually gross. :(
 *
 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
 * tasks, but still be able to sleep. We need this on platforms that cannot
 * atomically change clock frequency. Remove once fast switching will be
 * available on such platforms.
 *
 * SUGOV stands for SchedUtil GOVernor.
 */
#define SCHED_FLAG_SUGOV	0x10000000

static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
{
#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
#else
	return false;
#endif
}

214 215 216
/*
 * Tells if entity @a should preempt entity @b.
 */
217 218
static inline bool
dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
219
{
220 221
	return dl_entity_is_special(a) ||
	       dl_time_before(a->deadline, b->deadline);
222 223
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * This is the priority-queue data structure of the RT scheduling class:
 */
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct rt_bandwidth {
	/* nests inside the rq lock: */
	raw_spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
P
Peter Zijlstra 已提交
238
	unsigned int		rt_period_active;
239
};
240 241 242

void __dl_clear_params(struct task_struct *p);

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
/*
 * To keep the bandwidth of -deadline tasks and groups under control
 * we need some place where:
 *  - store the maximum -deadline bandwidth of the system (the group);
 *  - cache the fraction of that bandwidth that is currently allocated.
 *
 * This is all done in the data structure below. It is similar to the
 * one used for RT-throttling (rt_bandwidth), with the main difference
 * that, since here we are only interested in admission control, we
 * do not decrease any runtime while the group "executes", neither we
 * need a timer to replenish it.
 *
 * With respect to SMP, the bandwidth is given on a per-CPU basis,
 * meaning that:
 *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
 *  - dl_total_bw array contains, in the i-eth element, the currently
 *    allocated bandwidth on the i-eth CPU.
 * Moreover, groups consume bandwidth on each CPU, while tasks only
 * consume bandwidth on the CPU they're running on.
 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
 * that will be shown the next time the proc or cgroup controls will
 * be red. It on its turn can be changed by writing on its own
 * control.
 */
struct dl_bandwidth {
268 269 270
	raw_spinlock_t		dl_runtime_lock;
	u64			dl_runtime;
	u64			dl_period;
271 272 273 274
};

static inline int dl_bandwidth_enabled(void)
{
275
	return sysctl_sched_rt_runtime >= 0;
276 277 278
}

struct dl_bw {
279 280 281
	raw_spinlock_t		lock;
	u64			bw;
	u64			total_bw;
282 283
};

284 285
static inline void __dl_update(struct dl_bw *dl_b, s64 bw);

286
static inline
287
void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
288 289
{
	dl_b->total_bw -= tsk_bw;
290
	__dl_update(dl_b, (s32)tsk_bw / cpus);
291 292 293
}

static inline
294
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
295 296
{
	dl_b->total_bw += tsk_bw;
297
	__dl_update(dl_b, -((s32)tsk_bw / cpus));
298 299 300 301 302 303 304 305 306
}

static inline
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
{
	return dl_b->bw != -1 &&
	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}

307
extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
308
extern void init_dl_bw(struct dl_bw *dl_b);
309
extern int  sched_dl_global_validate(void);
310
extern void sched_dl_do_global(void);
311
extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
312 313 314 315
extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
extern bool __checkparam_dl(const struct sched_attr *attr);
extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
316 317
extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
318
extern bool dl_cpu_busy(unsigned int cpu);
319 320 321 322 323 324 325 326

#ifdef CONFIG_CGROUP_SCHED

#include <linux/cgroup.h>

struct cfs_rq;
struct rt_rq;

327
extern struct list_head task_groups;
328 329 330

struct cfs_bandwidth {
#ifdef CONFIG_CFS_BANDWIDTH
331 332 333 334 335 336
	raw_spinlock_t		lock;
	ktime_t			period;
	u64			quota;
	u64			runtime;
	s64			hierarchical_quota;
	u64			runtime_expires;
337
	int			expires_seq;
338

339 340
	short			idle;
	short			period_active;
341 342 343 344 345 346 347 348
	struct hrtimer		period_timer;
	struct hrtimer		slack_timer;
	struct list_head	throttled_cfs_rq;

	/* Statistics: */
	int			nr_periods;
	int			nr_throttled;
	u64			throttled_time;
349 350 351
#endif
};

352
/* Task group related information */
353 354 355 356
struct task_group {
	struct cgroup_subsys_state css;

#ifdef CONFIG_FAIR_GROUP_SCHED
357 358 359 360 361
	/* schedulable entities of this group on each CPU */
	struct sched_entity	**se;
	/* runqueue "owned" by this group on each CPU */
	struct cfs_rq		**cfs_rq;
	unsigned long		shares;
362

363
#ifdef	CONFIG_SMP
364 365 366 367 368
	/*
	 * load_avg can be heavily contended at clock tick time, so put
	 * it in its own cacheline separated from the fields above which
	 * will also be accessed at each tick.
	 */
369
	atomic_long_t		load_avg ____cacheline_aligned;
370
#endif
371
#endif
372 373

#ifdef CONFIG_RT_GROUP_SCHED
374 375
	struct sched_rt_entity	**rt_se;
	struct rt_rq		**rt_rq;
376

377
	struct rt_bandwidth	rt_bandwidth;
378 379
#endif

380 381
	struct rcu_head		rcu;
	struct list_head	list;
382

383 384 385
	struct task_group	*parent;
	struct list_head	siblings;
	struct list_head	children;
386 387

#ifdef CONFIG_SCHED_AUTOGROUP
388
	struct autogroup	*autogroup;
389 390
#endif

391
	struct cfs_bandwidth	cfs_bandwidth;
392 393 394 395 396 397 398 399 400 401 402 403 404
};

#ifdef CONFIG_FAIR_GROUP_SCHED
#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD

/*
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
405 406
#define MIN_SHARES		(1UL <<  1)
#define MAX_SHARES		(1UL << 18)
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
#endif

typedef int (*tg_visitor)(struct task_group *, void *);

extern int walk_tg_tree_from(struct task_group *from,
			     tg_visitor down, tg_visitor up, void *data);

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
 */
static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
{
	return walk_tg_tree_from(&root_task_group, down, up, data);
}

extern int tg_nop(struct task_group *tg, void *data);

extern void free_fair_sched_group(struct task_group *tg);
extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
429
extern void online_fair_sched_group(struct task_group *tg);
430
extern void unregister_fair_sched_group(struct task_group *tg);
431 432 433 434 435 436
extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent);
extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);

extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
P
Peter Zijlstra 已提交
437
extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
438 439 440 441 442 443 444
extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);

extern void free_rt_sched_group(struct task_group *tg);
extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent);
445 446 447 448 449
extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
extern long sched_group_rt_runtime(struct task_group *tg);
extern long sched_group_rt_period(struct task_group *tg);
extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
450

451 452 453 454 455 456 457 458 459 460
extern struct task_group *sched_create_group(struct task_group *parent);
extern void sched_online_group(struct task_group *tg,
			       struct task_group *parent);
extern void sched_destroy_group(struct task_group *tg);
extern void sched_offline_group(struct task_group *tg);

extern void sched_move_task(struct task_struct *tsk);

#ifdef CONFIG_FAIR_GROUP_SCHED
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
461 462 463 464 465 466 467 468 469

#ifdef CONFIG_SMP
extern void set_task_rq_fair(struct sched_entity *se,
			     struct cfs_rq *prev, struct cfs_rq *next);
#else /* !CONFIG_SMP */
static inline void set_task_rq_fair(struct sched_entity *se,
			     struct cfs_rq *prev, struct cfs_rq *next) { }
#endif /* CONFIG_SMP */
#endif /* CONFIG_FAIR_GROUP_SCHED */
470

471 472 473 474 475 476 477 478
#else /* CONFIG_CGROUP_SCHED */

struct cfs_bandwidth { };

#endif	/* CONFIG_CGROUP_SCHED */

/* CFS-related fields in a runqueue */
struct cfs_rq {
479 480 481 482
	struct load_weight	load;
	unsigned long		runnable_weight;
	unsigned int		nr_running;
	unsigned int		h_nr_running;
483

484 485
	u64			exec_clock;
	u64			min_vruntime;
486
#ifndef CONFIG_64BIT
487
	u64			min_vruntime_copy;
488 489
#endif

490
	struct rb_root_cached	tasks_timeline;
491 492 493 494 495

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
496 497 498 499
	struct sched_entity	*curr;
	struct sched_entity	*next;
	struct sched_entity	*last;
	struct sched_entity	*skip;
500 501

#ifdef	CONFIG_SCHED_DEBUG
502
	unsigned int		nr_spread_over;
503 504
#endif

505 506
#ifdef CONFIG_SMP
	/*
507
	 * CFS load tracking
508
	 */
509
	struct sched_avg	avg;
510
#ifndef CONFIG_64BIT
511
	u64			load_last_update_time_copy;
512
#endif
513 514 515 516 517
	struct {
		raw_spinlock_t	lock ____cacheline_aligned;
		int		nr;
		unsigned long	load_avg;
		unsigned long	util_avg;
518
		unsigned long	runnable_sum;
519
	} removed;
520

521
#ifdef CONFIG_FAIR_GROUP_SCHED
522 523 524
	unsigned long		tg_load_avg_contrib;
	long			propagate;
	long			prop_runnable_sum;
525

526 527 528 529 530 531
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
532 533 534
	unsigned long		h_load;
	u64			last_h_load_update;
	struct sched_entity	*h_load_next;
535
#endif /* CONFIG_FAIR_GROUP_SCHED */
536 537
#endif /* CONFIG_SMP */

538
#ifdef CONFIG_FAIR_GROUP_SCHED
539
	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
540 541 542 543 544 545

	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
546 547
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
	 * This list is used during load balance.
548
	 */
549 550 551
	int			on_list;
	struct list_head	leaf_cfs_rq_list;
	struct task_group	*tg;	/* group that "owns" this runqueue */
552 553

#ifdef CONFIG_CFS_BANDWIDTH
554
	int			runtime_enabled;
555
	int			expires_seq;
556 557 558 559 560 561 562 563 564
	u64			runtime_expires;
	s64			runtime_remaining;

	u64			throttled_clock;
	u64			throttled_clock_task;
	u64			throttled_clock_task_time;
	int			throttled;
	int			throttle_count;
	struct list_head	throttled_list;
565 566 567 568 569 570 571 572 573
#endif /* CONFIG_CFS_BANDWIDTH */
#endif /* CONFIG_FAIR_GROUP_SCHED */
};

static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
}

574
/* RT IPI pull logic requires IRQ_WORK */
575
#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
576 577 578
# define HAVE_RT_PUSH_IPI
#endif

579 580
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
581 582 583
	struct rt_prio_array	active;
	unsigned int		rt_nr_running;
	unsigned int		rr_nr_running;
584 585
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
	struct {
586
		int		curr; /* highest queued rt task prio */
587
#ifdef CONFIG_SMP
588
		int		next; /* next highest */
589 590 591 592
#endif
	} highest_prio;
#endif
#ifdef CONFIG_SMP
593 594 595 596
	unsigned long		rt_nr_migratory;
	unsigned long		rt_nr_total;
	int			overloaded;
	struct plist_head	pushable_tasks;
597

598
#endif /* CONFIG_SMP */
599
	int			rt_queued;
600

601 602 603
	int			rt_throttled;
	u64			rt_time;
	u64			rt_runtime;
604
	/* Nests inside the rq lock: */
605
	raw_spinlock_t		rt_runtime_lock;
606 607

#ifdef CONFIG_RT_GROUP_SCHED
608
	unsigned long		rt_nr_boosted;
609

610 611
	struct rq		*rq;
	struct task_group	*tg;
612 613 614
#endif
};

615 616 617 618 619
static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
{
	return rt_rq->rt_queued && rt_rq->rt_nr_running;
}

620 621 622
/* Deadline class' related fields in a runqueue */
struct dl_rq {
	/* runqueue is an rbtree, ordered by deadline */
623
	struct rb_root_cached	root;
624

625
	unsigned long		dl_nr_running;
626 627 628 629 630 631 632 633 634

#ifdef CONFIG_SMP
	/*
	 * Deadline values of the currently executing and the
	 * earliest ready task on this rq. Caching these facilitates
	 * the decision wether or not a ready but not running task
	 * should migrate somewhere else.
	 */
	struct {
635 636
		u64		curr;
		u64		next;
637 638
	} earliest_dl;

639 640
	unsigned long		dl_nr_migratory;
	int			overloaded;
641 642 643 644 645 646

	/*
	 * Tasks on this rq that can be pushed away. They are kept in
	 * an rb-tree, ordered by tasks' deadlines, with caching
	 * of the leftmost (earliest deadline) element.
	 */
647
	struct rb_root_cached	pushable_dl_tasks_root;
648
#else
649
	struct dl_bw		dl_bw;
650
#endif
651 652 653 654 655
	/*
	 * "Active utilization" for this runqueue: increased when a
	 * task wakes up (becomes TASK_RUNNING) and decreased when a
	 * task blocks
	 */
656
	u64			running_bw;
657

658 659 660 661 662 663 664 665 666
	/*
	 * Utilization of the tasks "assigned" to this runqueue (including
	 * the tasks that are in runqueue and the tasks that executed on this
	 * CPU and blocked). Increased when a task moves to this runqueue, and
	 * decreased when the task moves away (migrates, changes scheduling
	 * policy, or terminates).
	 * This is needed to compute the "inactive utilization" for the
	 * runqueue (inactive utilization = this_bw - running_bw).
	 */
667 668
	u64			this_bw;
	u64			extra_bw;
669

670 671 672 673
	/*
	 * Inverse of the fraction of CPU utilization that can be reclaimed
	 * by the GRUB algorithm.
	 */
674
	u64			bw_ratio;
675 676
};

677 678 679 680 681 682 683
#ifdef CONFIG_FAIR_GROUP_SCHED
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
#else
#define entity_is_task(se)	1
#endif

684
#ifdef CONFIG_SMP
685 686 687 688 689 690 691 692 693 694 695 696
/*
 * XXX we want to get rid of these helpers and use the full load resolution.
 */
static inline long se_weight(struct sched_entity *se)
{
	return scale_load_down(se->load.weight);
}

static inline long se_runnable(struct sched_entity *se)
{
	return scale_load_down(se->runnable_weight);
}
697

T
Tim Chen 已提交
698 699 700 701 702
static inline bool sched_asym_prefer(int a, int b)
{
	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
}

703 704 705
/*
 * We add the notion of a root-domain which will be used to define per-domain
 * variables. Each exclusive cpuset essentially defines an island domain by
706
 * fully partitioning the member CPUs from any other cpuset. Whenever a new
707 708 709 710 711
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
712 713 714 715 716
	atomic_t		refcount;
	atomic_t		rto_count;
	struct rcu_head		rcu;
	cpumask_var_t		span;
	cpumask_var_t		online;
717

718
	/* Indicate more than one runnable task for any CPU */
719
	bool			overload;
720

721 722 723 724
	/*
	 * The bit corresponding to a CPU gets set here if such CPU has more
	 * than one runnable -deadline task (as it is below for RT tasks).
	 */
725 726 727 728
	cpumask_var_t		dlo_mask;
	atomic_t		dlo_count;
	struct dl_bw		dl_bw;
	struct cpudl		cpudl;
729

730 731 732 733
#ifdef HAVE_RT_PUSH_IPI
	/*
	 * For IPI pull requests, loop across the rto_mask.
	 */
734 735
	struct irq_work		rto_push_work;
	raw_spinlock_t		rto_lock;
736
	/* These are only updated and read within rto_lock */
737 738
	int			rto_loop;
	int			rto_cpu;
739
	/* These atomics are updated outside of a lock */
740 741
	atomic_t		rto_loop_next;
	atomic_t		rto_loop_start;
742
#endif
743 744 745 746
	/*
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
747 748
	cpumask_var_t		rto_mask;
	struct cpupri		cpupri;
749

750
	unsigned long		max_cpu_capacity;
751 752 753
};

extern struct root_domain def_root_domain;
754 755 756
extern struct mutex sched_domains_mutex;

extern void init_defrootdomain(void);
P
Peter Zijlstra 已提交
757
extern int sched_init_domains(const struct cpumask *cpu_map);
758
extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
759 760
extern void sched_get_rd(struct root_domain *rd);
extern void sched_put_rd(struct root_domain *rd);
761

762 763 764
#ifdef HAVE_RT_PUSH_IPI
extern void rto_push_irq_work_func(struct irq_work *work);
#endif
765 766 767 768 769 770 771 772 773 774 775
#endif /* CONFIG_SMP */

/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
struct rq {
	/* runqueue lock: */
776
	raw_spinlock_t		lock;
777 778 779 780 781

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
782
	unsigned int		nr_running;
783
#ifdef CONFIG_NUMA_BALANCING
784 785
	unsigned int		nr_numa_running;
	unsigned int		nr_preferred_running;
786
	unsigned int		numa_migrate_on;
787
#endif
788
	#define CPU_LOAD_IDX_MAX 5
789
	unsigned long		cpu_load[CPU_LOAD_IDX_MAX];
790
#ifdef CONFIG_NO_HZ_COMMON
791
#ifdef CONFIG_SMP
792
	unsigned long		last_load_update_tick;
793
	unsigned long		last_blocked_load_update_tick;
794
	unsigned int		has_blocked_load;
795
#endif /* CONFIG_SMP */
796
	unsigned int		nohz_tick_stopped;
797
	atomic_t nohz_flags;
798
#endif /* CONFIG_NO_HZ_COMMON */
799

800 801 802 803
	/* capture load from *all* tasks on this CPU: */
	struct load_weight	load;
	unsigned long		nr_load_updates;
	u64			nr_switches;
804

805 806 807
	struct cfs_rq		cfs;
	struct rt_rq		rt;
	struct dl_rq		dl;
808 809

#ifdef CONFIG_FAIR_GROUP_SCHED
810 811 812
	/* list of leaf cfs_rq on this CPU: */
	struct list_head	leaf_cfs_rq_list;
	struct list_head	*tmp_alone_branch;
813 814
#endif /* CONFIG_FAIR_GROUP_SCHED */

815 816 817 818 819 820
	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
821
	unsigned long		nr_uninterruptible;
822

823 824 825 826 827
	struct task_struct	*curr;
	struct task_struct	*idle;
	struct task_struct	*stop;
	unsigned long		next_balance;
	struct mm_struct	*prev_mm;
828

829 830 831
	unsigned int		clock_update_flags;
	u64			clock;
	u64			clock_task;
832

833
	atomic_t		nr_iowait;
834 835

#ifdef CONFIG_SMP
836 837 838 839 840
	struct root_domain	*rd;
	struct sched_domain	*sd;

	unsigned long		cpu_capacity;
	unsigned long		cpu_capacity_orig;
841

842
	struct callback_head	*balance_callback;
843

844
	unsigned char		idle_balance;
845

846
	/* For active balancing */
847 848 849 850 851 852 853
	int			active_balance;
	int			push_cpu;
	struct cpu_stop_work	active_balance_work;

	/* CPU of this runqueue: */
	int			cpu;
	int			online;
854

855 856
	struct list_head cfs_tasks;

857
	struct sched_avg	avg_rt;
858
	struct sched_avg	avg_dl;
859
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
860
#define HAVE_SCHED_AVG_IRQ
861 862
	struct sched_avg	avg_irq;
#endif
863 864
	u64			idle_stamp;
	u64			avg_idle;
865 866

	/* This is used to determine avg_idle's max value */
867
	u64			max_idle_balance_cost;
868 869 870
#endif

#ifdef CONFIG_IRQ_TIME_ACCOUNTING
871
	u64			prev_irq_time;
872 873
#endif
#ifdef CONFIG_PARAVIRT
874
	u64			prev_steal_time;
875 876
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
877
	u64			prev_steal_time_rq;
878 879 880
#endif

	/* calc_load related fields */
881 882
	unsigned long		calc_load_update;
	long			calc_load_active;
883 884 885

#ifdef CONFIG_SCHED_HRTICK
#ifdef CONFIG_SMP
886 887
	int			hrtick_csd_pending;
	call_single_data_t	hrtick_csd;
888
#endif
889
	struct hrtimer		hrtick_timer;
890 891 892 893
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
894 895
	struct sched_info	rq_sched_info;
	unsigned long long	rq_cpu_time;
896 897 898
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */

	/* sys_sched_yield() stats */
899
	unsigned int		yld_count;
900 901

	/* schedule() stats */
902 903
	unsigned int		sched_count;
	unsigned int		sched_goidle;
904 905

	/* try_to_wake_up() stats */
906 907
	unsigned int		ttwu_count;
	unsigned int		ttwu_local;
908 909 910
#endif

#ifdef CONFIG_SMP
911
	struct llist_head	wake_list;
912
#endif
913 914 915

#ifdef CONFIG_CPU_IDLE
	/* Must be inspected within a rcu lock section */
916
	struct cpuidle_state	*idle_state;
917
#endif
918 919 920 921 922 923 924 925 926 927 928
};

static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

P
Peter Zijlstra 已提交
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945

#ifdef CONFIG_SCHED_SMT

extern struct static_key_false sched_smt_present;

extern void __update_idle_core(struct rq *rq);

static inline void update_idle_core(struct rq *rq)
{
	if (static_branch_unlikely(&sched_smt_present))
		__update_idle_core(rq);
}

#else
static inline void update_idle_core(struct rq *rq) { }
#endif

946
DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
947

948
#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
949
#define this_rq()		this_cpu_ptr(&runqueues)
950 951
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
952
#define raw_rq()		raw_cpu_ptr(&runqueues)
953

954 955
static inline u64 __rq_clock_broken(struct rq *rq)
{
956
	return READ_ONCE(rq->clock);
957 958
}

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
/*
 * rq::clock_update_flags bits
 *
 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
 *  call to __schedule(). This is an optimisation to avoid
 *  neighbouring rq clock updates.
 *
 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
 *  in effect and calls to update_rq_clock() are being ignored.
 *
 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
 *  made to update_rq_clock() since the last time rq::lock was pinned.
 *
 * If inside of __schedule(), clock_update_flags will have been
 * shifted left (a left shift is a cheap operation for the fast path
 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
 *
 *	if (rq-clock_update_flags >= RQCF_UPDATED)
 *
 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
 * one position though, because the next rq_unpin_lock() will shift it
 * back.
 */
982 983 984
#define RQCF_REQ_SKIP		0x01
#define RQCF_ACT_SKIP		0x02
#define RQCF_UPDATED		0x04
985 986 987 988 989 990 991 992 993 994

static inline void assert_clock_updated(struct rq *rq)
{
	/*
	 * The only reason for not seeing a clock update since the
	 * last rq_pin_lock() is if we're currently skipping updates.
	 */
	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
}

995 996
static inline u64 rq_clock(struct rq *rq)
{
997
	lockdep_assert_held(&rq->lock);
998 999
	assert_clock_updated(rq);

1000 1001 1002 1003 1004
	return rq->clock;
}

static inline u64 rq_clock_task(struct rq *rq)
{
1005
	lockdep_assert_held(&rq->lock);
1006 1007
	assert_clock_updated(rq);

1008 1009 1010
	return rq->clock_task;
}

1011
static inline void rq_clock_skip_update(struct rq *rq)
1012 1013
{
	lockdep_assert_held(&rq->lock);
1014 1015 1016 1017
	rq->clock_update_flags |= RQCF_REQ_SKIP;
}

/*
D
Davidlohr Bueso 已提交
1018
 * See rt task throttling, which is the only time a skip
1019 1020 1021 1022 1023 1024
 * request is cancelled.
 */
static inline void rq_clock_cancel_skipupdate(struct rq *rq)
{
	lockdep_assert_held(&rq->lock);
	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1025 1026
}

1027 1028 1029
struct rq_flags {
	unsigned long flags;
	struct pin_cookie cookie;
1030 1031 1032 1033 1034 1035 1036 1037
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
	 * current pin context is stashed here in case it needs to be
	 * restored in rq_repin_lock().
	 */
	unsigned int clock_update_flags;
#endif
1038 1039 1040 1041 1042
};

static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
{
	rf->cookie = lockdep_pin_lock(&rq->lock);
1043 1044 1045 1046 1047

#ifdef CONFIG_SCHED_DEBUG
	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
	rf->clock_update_flags = 0;
#endif
1048 1049 1050 1051
}

static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
{
1052 1053 1054 1055 1056
#ifdef CONFIG_SCHED_DEBUG
	if (rq->clock_update_flags > RQCF_ACT_SKIP)
		rf->clock_update_flags = RQCF_UPDATED;
#endif

1057 1058 1059 1060 1061 1062
	lockdep_unpin_lock(&rq->lock, rf->cookie);
}

static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
{
	lockdep_repin_lock(&rq->lock, rf->cookie);
1063 1064 1065 1066 1067 1068 1069

#ifdef CONFIG_SCHED_DEBUG
	/*
	 * Restore the value we stashed in @rf for this pin context.
	 */
	rq->clock_update_flags |= rf->clock_update_flags;
#endif
1070 1071
}

1072
#ifdef CONFIG_NUMA
1073 1074 1075 1076 1077 1078
enum numa_topology_type {
	NUMA_DIRECT,
	NUMA_GLUELESS_MESH,
	NUMA_BACKPLANE,
};
extern enum numa_topology_type sched_numa_topology_type;
1079 1080 1081 1082
extern int sched_max_numa_distance;
extern bool find_numa_distance(int distance);
#endif

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
#ifdef CONFIG_NUMA
extern void sched_init_numa(void);
extern void sched_domains_numa_masks_set(unsigned int cpu);
extern void sched_domains_numa_masks_clear(unsigned int cpu);
#else
static inline void sched_init_numa(void) { }
static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
#endif

1093
#ifdef CONFIG_NUMA_BALANCING
1094 1095 1096 1097 1098 1099 1100
/* The regions in numa_faults array from task_struct */
enum numa_faults_stats {
	NUMA_MEM = 0,
	NUMA_CPU,
	NUMA_MEMBUF,
	NUMA_CPUBUF
};
1101
extern void sched_setnuma(struct task_struct *p, int node);
1102
extern int migrate_task_to(struct task_struct *p, int cpu);
1103 1104
extern int migrate_swap(struct task_struct *p, struct task_struct *t,
			int cpu, int scpu);
1105 1106 1107 1108 1109 1110
extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
#else
static inline void
init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
{
}
1111 1112
#endif /* CONFIG_NUMA_BALANCING */

1113 1114
#ifdef CONFIG_SMP

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
static inline void
queue_balance_callback(struct rq *rq,
		       struct callback_head *head,
		       void (*func)(struct rq *rq))
{
	lockdep_assert_held(&rq->lock);

	if (unlikely(head->next))
		return;

	head->func = (void (*)(struct callback_head *))func;
	head->next = rq->balance_callback;
	rq->balance_callback = head;
}

1130 1131
extern void sched_ttwu_pending(void);

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
#define rcu_dereference_check_sched_domain(p) \
	rcu_dereference_check((p), \
			      lockdep_is_held(&sched_domains_mutex))

/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 * See detach_destroy_domains: synchronize_sched for details.
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
#define for_each_domain(cpu, __sd) \
1144 1145
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
			__sd; __sd = __sd->parent)
1146

1147 1148
#define for_each_lower_domain(sd) for (; sd; sd = sd->child)

1149 1150
/**
 * highest_flag_domain - Return highest sched_domain containing flag.
1151
 * @cpu:	The CPU whose highest level of sched domain is to
1152 1153
 *		be returned.
 * @flag:	The flag to check for the highest sched_domain
1154
 *		for the given CPU.
1155
 *
1156
 * Returns the highest sched_domain of a CPU which contains the given flag.
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
 */
static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd, *hsd = NULL;

	for_each_domain(cpu, sd) {
		if (!(sd->flags & flag))
			break;
		hsd = sd;
	}

	return hsd;
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		if (sd->flags & flag)
			break;
	}

	return sd;
}

1183
DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1184
DECLARE_PER_CPU(int, sd_llc_size);
1185
DECLARE_PER_CPU(int, sd_llc_id);
1186
DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1187
DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1188
DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1189

1190
struct sched_group_capacity {
1191
	atomic_t		ref;
1192
	/*
1193
	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1194
	 * for a single CPU.
1195
	 */
1196 1197 1198 1199
	unsigned long		capacity;
	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
	unsigned long		next_update;
	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1200

1201
#ifdef CONFIG_SCHED_DEBUG
1202
	int			id;
1203 1204
#endif

1205
	unsigned long		cpumask[0];		/* Balance mask */
1206 1207 1208
};

struct sched_group {
1209 1210
	struct sched_group	*next;			/* Must be a circular list */
	atomic_t		ref;
1211

1212
	unsigned int		group_weight;
1213
	struct sched_group_capacity *sgc;
1214
	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1215 1216 1217 1218 1219 1220 1221 1222

	/*
	 * The CPUs this group covers.
	 *
	 * NOTE: this field is variable length. (Allocated dynamically
	 * by attaching extra space to the end of the structure,
	 * depending on how many CPUs the kernel has booted up with)
	 */
1223
	unsigned long		cpumask[0];
1224 1225
};

1226
static inline struct cpumask *sched_group_span(struct sched_group *sg)
1227 1228 1229 1230 1231
{
	return to_cpumask(sg->cpumask);
}

/*
1232
 * See build_balance_mask().
1233
 */
1234
static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1235
{
1236
	return to_cpumask(sg->sgc->cpumask);
1237 1238 1239
}

/**
1240 1241
 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
 * @group: The group whose first CPU is to be returned.
1242 1243 1244
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
1245
	return cpumask_first(sched_group_span(group));
1246 1247
}

P
Peter Zijlstra 已提交
1248 1249
extern int group_balance_cpu(struct sched_group *sg);

1250 1251
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
void register_sched_domain_sysctl(void);
1252
void dirty_sched_domain_sysctl(int cpu);
1253 1254 1255 1256 1257
void unregister_sched_domain_sysctl(void);
#else
static inline void register_sched_domain_sysctl(void)
{
}
1258 1259 1260
static inline void dirty_sched_domain_sysctl(int cpu)
{
}
1261 1262 1263 1264 1265
static inline void unregister_sched_domain_sysctl(void)
{
}
#endif

1266 1267 1268 1269
#else

static inline void sched_ttwu_pending(void) { }

1270
#endif /* CONFIG_SMP */
1271

1272
#include "stats.h"
1273
#include "autogroup.h"
1274 1275 1276 1277 1278 1279

#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
1280 1281 1282
 * We cannot use task_css() and friends because the cgroup subsystem
 * changes that value before the cgroup_subsys::attach() method is called,
 * therefore we cannot pin it and might observe the wrong value.
P
Peter Zijlstra 已提交
1283 1284 1285 1286 1287 1288
 *
 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 * core changes this before calling sched_move_task().
 *
 * Instead we use a 'copy' which is updated from sched_move_task() while
 * holding both task_struct::pi_lock and rq::lock.
1289 1290 1291
 */
static inline struct task_group *task_group(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1292
	return p->sched_task_group;
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
	struct task_group *tg = task_group(p);
#endif

#ifdef CONFIG_FAIR_GROUP_SCHED
1303
	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	p->se.cfs_rq = tg->cfs_rq[cpu];
	p->se.parent = tg->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = tg->rt_rq[cpu];
	p->rt.parent = tg->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
1334 1335 1336
#ifdef CONFIG_THREAD_INFO_IN_TASK
	p->cpu = cpu;
#else
1337
	task_thread_info(p)->cpu = cpu;
1338
#endif
1339
	p->wake_cpu = cpu;
1340 1341 1342 1343 1344 1345 1346
#endif
}

/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
1347
# include <linux/static_key.h>
1348 1349 1350 1351 1352 1353 1354 1355 1356
# define const_debug __read_mostly
#else
# define const_debug const
#endif

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

enum {
1357
#include "features.h"
1358
	__SCHED_FEAT_NR,
1359 1360 1361 1362
};

#undef SCHED_FEAT

1363
#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1364 1365 1366 1367 1368 1369 1370

/*
 * To support run-time toggling of sched features, all the translation units
 * (but core.c) reference the sysctl_sched_features defined in core.c.
 */
extern const_debug unsigned int sysctl_sched_features;

1371
#define SCHED_FEAT(name, enabled)					\
1372
static __always_inline bool static_branch_##name(struct static_key *key) \
1373
{									\
1374
	return static_key_##enabled(key);				\
1375 1376 1377 1378 1379
}

#include "features.h"
#undef SCHED_FEAT

1380
extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1381
#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1382

1383
#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396

/*
 * Each translation unit has its own copy of sysctl_sched_features to allow
 * constants propagation at compile time and compiler optimization based on
 * features default.
 */
#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |
static const_debug __maybe_unused unsigned int sysctl_sched_features =
#include "features.h"
	0;
#undef SCHED_FEAT

1397
#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1398

1399
#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1400

1401
extern struct static_key_false sched_numa_balancing;
1402
extern struct static_key_false sched_schedstats;
1403

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_runtime < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}

static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

static inline int task_running(struct rq *rq, struct task_struct *p)
{
#ifdef CONFIG_SMP
	return p->on_cpu;
#else
	return task_current(rq, p);
#endif
}

1431 1432 1433 1434
static inline int task_on_rq_queued(struct task_struct *p)
{
	return p->on_rq == TASK_ON_RQ_QUEUED;
}
1435

1436 1437 1438 1439 1440
static inline int task_on_rq_migrating(struct task_struct *p)
{
	return p->on_rq == TASK_ON_RQ_MIGRATING;
}

1441 1442 1443
/*
 * wake flags
 */
1444 1445 1446
#define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
#define WF_FORK			0x02		/* Child wakeup after fork */
#define WF_MIGRATED		0x4		/* Internal use, task got migrated */
1447

1448 1449 1450 1451 1452 1453 1454 1455 1456
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

1457 1458
#define WEIGHT_IDLEPRIO		3
#define WMULT_IDLEPRIO		1431655765
1459

1460 1461
extern const int		sched_prio_to_weight[40];
extern const u32		sched_prio_to_wmult[40];
1462

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
/*
 * {de,en}queue flags:
 *
 * DEQUEUE_SLEEP  - task is no longer runnable
 * ENQUEUE_WAKEUP - task just became runnable
 *
 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
 *                are in a known state which allows modification. Such pairs
 *                should preserve as much state as possible.
 *
 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
 *        in the runqueue.
 *
 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1478
 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1479 1480 1481 1482
 *
 */

#define DEQUEUE_SLEEP		0x01
1483 1484 1485
#define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
#define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
#define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1486

1487
#define ENQUEUE_WAKEUP		0x01
1488 1489
#define ENQUEUE_RESTORE		0x02
#define ENQUEUE_MOVE		0x04
1490
#define ENQUEUE_NOCLOCK		0x08
1491

1492 1493
#define ENQUEUE_HEAD		0x10
#define ENQUEUE_REPLENISH	0x20
1494
#ifdef CONFIG_SMP
1495
#define ENQUEUE_MIGRATED	0x40
1496
#else
1497
#define ENQUEUE_MIGRATED	0x00
1498 1499
#endif

1500 1501
#define RETRY_TASK		((void *)-1UL)

1502 1503 1504 1505 1506
struct sched_class {
	const struct sched_class *next;

	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1507 1508
	void (*yield_task)   (struct rq *rq);
	bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1509

1510
	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1511

1512 1513 1514 1515
	/*
	 * It is the responsibility of the pick_next_task() method that will
	 * return the next task to call put_prev_task() on the @prev task or
	 * something equivalent.
1516 1517 1518
	 *
	 * May return RETRY_TASK when it finds a higher prio class has runnable
	 * tasks.
1519
	 */
1520 1521 1522 1523
	struct task_struct * (*pick_next_task)(struct rq *rq,
					       struct task_struct *prev,
					       struct rq_flags *rf);
	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1524 1525

#ifdef CONFIG_SMP
1526
	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1527
	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1528

1529
	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1530 1531 1532 1533 1534 1535 1536 1537

	void (*set_cpus_allowed)(struct task_struct *p,
				 const struct cpumask *newmask);

	void (*rq_online)(struct rq *rq);
	void (*rq_offline)(struct rq *rq);
#endif

1538 1539 1540 1541
	void (*set_curr_task)(struct rq *rq);
	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
	void (*task_fork)(struct task_struct *p);
	void (*task_dead)(struct task_struct *p);
1542

1543 1544 1545 1546 1547
	/*
	 * The switched_from() call is allowed to drop rq->lock, therefore we
	 * cannot assume the switched_from/switched_to pair is serliazed by
	 * rq->lock. They are however serialized by p->pi_lock.
	 */
1548 1549
	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1550
	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1551
			      int oldprio);
1552

1553 1554
	unsigned int (*get_rr_interval)(struct rq *rq,
					struct task_struct *task);
1555

1556
	void (*update_curr)(struct rq *rq);
1557

1558 1559
#define TASK_SET_GROUP		0
#define TASK_MOVE_GROUP		1
1560

1561
#ifdef CONFIG_FAIR_GROUP_SCHED
1562
	void (*task_change_group)(struct task_struct *p, int type);
1563 1564
#endif
};
1565

1566 1567 1568 1569 1570
static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	prev->sched_class->put_prev_task(rq, prev);
}

1571 1572 1573 1574 1575
static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
{
	curr->sched_class->set_curr_task(rq);
}

1576
#ifdef CONFIG_SMP
1577
#define sched_class_highest (&stop_sched_class)
1578 1579 1580
#else
#define sched_class_highest (&dl_sched_class)
#endif
1581 1582 1583 1584
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)

extern const struct sched_class stop_sched_class;
1585
extern const struct sched_class dl_sched_class;
1586 1587 1588 1589 1590 1591 1592
extern const struct sched_class rt_sched_class;
extern const struct sched_class fair_sched_class;
extern const struct sched_class idle_sched_class;


#ifdef CONFIG_SMP

1593
extern void update_group_capacity(struct sched_domain *sd, int cpu);
1594

1595
extern void trigger_load_balance(struct rq *rq);
1596

1597 1598
extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);

1599 1600
#endif

1601 1602 1603 1604 1605 1606 1607 1608 1609
#ifdef CONFIG_CPU_IDLE
static inline void idle_set_state(struct rq *rq,
				  struct cpuidle_state *idle_state)
{
	rq->idle_state = idle_state;
}

static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
1610
	SCHED_WARN_ON(!rcu_read_lock_held());
1611

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	return rq->idle_state;
}
#else
static inline void idle_set_state(struct rq *rq,
				  struct cpuidle_state *idle_state)
{
}

static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
	return NULL;
}
#endif

1626 1627
extern void schedule_idle(void);

1628 1629 1630
extern void sysrq_sched_debug_show(void);
extern void sched_init_granularity(void);
extern void update_max_interval(void);
1631 1632

extern void init_sched_dl_class(void);
1633 1634 1635
extern void init_sched_rt_class(void);
extern void init_sched_fair_class(void);

1636 1637
extern void reweight_task(struct task_struct *p, int prio);

1638
extern void resched_curr(struct rq *rq);
1639 1640 1641 1642 1643
extern void resched_cpu(int cpu);

extern struct rt_bandwidth def_rt_bandwidth;
extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);

1644 1645
extern struct dl_bandwidth def_dl_bandwidth;
extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1646
extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1647
extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1648
extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1649

1650 1651 1652
#define BW_SHIFT		20
#define BW_UNIT			(1 << BW_SHIFT)
#define RATIO_SHIFT		8
1653 1654
unsigned long to_ratio(u64 period, u64 runtime);

1655
extern void init_entity_runnable_average(struct sched_entity *se);
1656
extern void post_init_entity_util_avg(struct sched_entity *se);
1657

1658 1659
#ifdef CONFIG_NO_HZ_FULL
extern bool sched_can_stop_tick(struct rq *rq);
1660
extern int __init sched_tick_offload_init(void);
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684

/*
 * Tick may be needed by tasks in the runqueue depending on their policy and
 * requirements. If tick is needed, lets send the target an IPI to kick it out of
 * nohz mode if necessary.
 */
static inline void sched_update_tick_dependency(struct rq *rq)
{
	int cpu;

	if (!tick_nohz_full_enabled())
		return;

	cpu = cpu_of(rq);

	if (!tick_nohz_full_cpu(cpu))
		return;

	if (sched_can_stop_tick(rq))
		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
	else
		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
}
#else
1685
static inline int sched_tick_offload_init(void) { return 0; }
1686 1687 1688
static inline void sched_update_tick_dependency(struct rq *rq) { }
#endif

1689
static inline void add_nr_running(struct rq *rq, unsigned count)
1690
{
1691 1692 1693
	unsigned prev_nr = rq->nr_running;

	rq->nr_running = prev_nr + count;
1694

1695
	if (prev_nr < 2 && rq->nr_running >= 2) {
1696 1697 1698 1699 1700
#ifdef CONFIG_SMP
		if (!rq->rd->overload)
			rq->rd->overload = true;
#endif
	}
1701 1702

	sched_update_tick_dependency(rq);
1703 1704
}

1705
static inline void sub_nr_running(struct rq *rq, unsigned count)
1706
{
1707
	rq->nr_running -= count;
1708 1709
	/* Check if we still need preemption */
	sched_update_tick_dependency(rq);
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
}

extern void update_rq_clock(struct rq *rq);

extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);

extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);

extern const_debug unsigned int sysctl_sched_nr_migrate;
extern const_debug unsigned int sysctl_sched_migration_cost;

#ifdef CONFIG_SCHED_HRTICK

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	if (!cpu_active(cpu_of(rq)))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

void hrtick_start(struct rq *rq, u64 delay);

1740 1741 1742 1743 1744 1745 1746
#else

static inline int hrtick_enabled(struct rq *rq)
{
	return 0;
}

1747 1748
#endif /* CONFIG_SCHED_HRTICK */

1749 1750
#ifndef arch_scale_freq_capacity
static __always_inline
1751
unsigned long arch_scale_freq_capacity(int cpu)
1752 1753 1754 1755
{
	return SCHED_CAPACITY_SCALE;
}
#endif
1756

1757
#ifdef CONFIG_SMP
1758 1759 1760 1761
#ifndef arch_scale_cpu_capacity
static __always_inline
unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
{
1762
	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1763 1764 1765 1766 1767
		return sd->smt_gain / sd->span_weight;

	return SCHED_CAPACITY_SCALE;
}
#endif
1768
#else
1769 1770 1771 1772 1773 1774 1775
#ifndef arch_scale_cpu_capacity
static __always_inline
unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
{
	return SCHED_CAPACITY_SCALE;
}
#endif
1776 1777
#endif

1778
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1779
	__acquires(rq->lock);
1780

1781
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1782
	__acquires(p->pi_lock)
1783
	__acquires(rq->lock);
1784

1785
static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1786 1787
	__releases(rq->lock)
{
1788
	rq_unpin_lock(rq, rf);
1789 1790 1791 1792
	raw_spin_unlock(&rq->lock);
}

static inline void
1793
task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1794 1795 1796
	__releases(rq->lock)
	__releases(p->pi_lock)
{
1797
	rq_unpin_lock(rq, rf);
1798
	raw_spin_unlock(&rq->lock);
1799
	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1800 1801
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
static inline void
rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
	__acquires(rq->lock)
{
	raw_spin_lock_irqsave(&rq->lock, rf->flags);
	rq_pin_lock(rq, rf);
}

static inline void
rq_lock_irq(struct rq *rq, struct rq_flags *rf)
	__acquires(rq->lock)
{
	raw_spin_lock_irq(&rq->lock);
	rq_pin_lock(rq, rf);
}

static inline void
rq_lock(struct rq *rq, struct rq_flags *rf)
	__acquires(rq->lock)
{
	raw_spin_lock(&rq->lock);
	rq_pin_lock(rq, rf);
}

static inline void
rq_relock(struct rq *rq, struct rq_flags *rf)
	__acquires(rq->lock)
{
	raw_spin_lock(&rq->lock);
	rq_repin_lock(rq, rf);
}

static inline void
rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
	__releases(rq->lock)
{
	rq_unpin_lock(rq, rf);
	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
}

static inline void
rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
	__releases(rq->lock)
{
	rq_unpin_lock(rq, rf);
	raw_spin_unlock_irq(&rq->lock);
}

static inline void
rq_unlock(struct rq *rq, struct rq_flags *rf)
	__releases(rq->lock)
{
	rq_unpin_lock(rq, rf);
	raw_spin_unlock(&rq->lock);
}

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
#ifdef CONFIG_SMP
#ifdef CONFIG_PREEMPT

static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);

/*
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
 */
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	raw_spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
1886 1887
 * already in proper order on entry.  This favors lower CPU-ids and will
 * grant the double lock to lower CPUs over higher ids under contention,
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
 * regardless of entry order into the function.
 */
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
	}
	return ret;
}

#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
1919
		/* printk() doesn't work well under rq->lock */
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
		raw_spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	raw_spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

1934 1935 1936 1937 1938 1939 1940 1941 1942
static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	spin_lock(l1);
	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

1943 1944 1945 1946 1947 1948 1949 1950 1951
static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	spin_lock_irq(l1);
	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

1952 1953 1954 1955 1956 1957 1958 1959 1960
static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	raw_spin_lock(l1);
	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

2003 2004 2005 2006
extern void set_rq_online (struct rq *rq);
extern void set_rq_offline(struct rq *rq);
extern bool sched_smp_initialized;

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
#else /* CONFIG_SMP */

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	BUG_ON(rq1 != rq2);
	raw_spin_lock(&rq1->lock);
	__acquire(rq2->lock);	/* Fake it out ;) */
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	BUG_ON(rq1 != rq2);
	raw_spin_unlock(&rq1->lock);
	__release(rq2->lock);
}

#endif

extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2044 2045

#ifdef	CONFIG_SCHED_DEBUG
2046 2047
extern bool sched_debug_enabled;

2048 2049
extern void print_cfs_stats(struct seq_file *m, int cpu);
extern void print_rt_stats(struct seq_file *m, int cpu);
2050
extern void print_dl_stats(struct seq_file *m, int cpu);
2051 2052 2053
extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2054 2055 2056 2057 2058 2059 2060 2061
#ifdef CONFIG_NUMA_BALANCING
extern void
show_numa_stats(struct task_struct *p, struct seq_file *m);
extern void
print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
	unsigned long tpf, unsigned long gsf, unsigned long gpf);
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
2062 2063

extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2064 2065
extern void init_rt_rq(struct rt_rq *rt_rq);
extern void init_dl_rq(struct dl_rq *dl_rq);
2066

2067 2068
extern void cfs_bandwidth_usage_inc(void);
extern void cfs_bandwidth_usage_dec(void);
2069

2070
#ifdef CONFIG_NO_HZ_COMMON
2071 2072
#define NOHZ_BALANCE_KICK_BIT	0
#define NOHZ_STATS_KICK_BIT	1
2073 2074

#define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
P
Peter Zijlstra 已提交
2075 2076 2077
#define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)

#define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2078 2079

#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2080

2081
extern void nohz_balance_exit_idle(struct rq *rq);
2082
#else
2083
static inline void nohz_balance_exit_idle(struct rq *rq) { }
2084
#endif
2085

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

#ifdef CONFIG_SMP
static inline
void __dl_update(struct dl_bw *dl_b, s64 bw)
{
	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
	int i;

	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
	for_each_cpu_and(i, rd->span, cpu_active_mask) {
		struct rq *rq = cpu_rq(i);

		rq->dl.extra_bw += bw;
	}
}
#else
static inline
void __dl_update(struct dl_bw *dl_b, s64 bw)
{
	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);

	dl->extra_bw += bw;
}
#endif


2113
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2114
struct irqtime {
2115
	u64			total;
2116
	u64			tick_delta;
2117 2118 2119
	u64			irq_start_time;
	struct u64_stats_sync	sync;
};
2120

2121
DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2122

2123 2124 2125 2126 2127
/*
 * Returns the irqtime minus the softirq time computed by ksoftirqd.
 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
 * and never move forward.
 */
2128 2129
static inline u64 irq_time_read(int cpu)
{
2130 2131 2132
	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
	unsigned int seq;
	u64 total;
2133 2134

	do {
2135
		seq = __u64_stats_fetch_begin(&irqtime->sync);
2136
		total = irqtime->total;
2137
	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2138

2139
	return total;
2140 2141
}
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2142 2143 2144 2145 2146 2147

#ifdef CONFIG_CPU_FREQ
DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);

/**
 * cpufreq_update_util - Take a note about CPU utilization changes.
2148
 * @rq: Runqueue to carry out the update for.
2149
 * @flags: Update reason flags.
2150
 *
2151 2152
 * This function is called by the scheduler on the CPU whose utilization is
 * being updated.
2153 2154 2155 2156 2157 2158
 *
 * It can only be called from RCU-sched read-side critical sections.
 *
 * The way cpufreq is currently arranged requires it to evaluate the CPU
 * performance state (frequency/voltage) on a regular basis to prevent it from
 * being stuck in a completely inadequate performance level for too long.
2159 2160 2161
 * That is not guaranteed to happen if the updates are only triggered from CFS
 * and DL, though, because they may not be coming in if only RT tasks are
 * active all the time (or there are RT tasks only).
2162
 *
2163 2164
 * As a workaround for that issue, this function is called periodically by the
 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2165
 * but that really is a band-aid.  Going forward it should be replaced with
2166
 * solutions targeted more specifically at RT tasks.
2167
 */
2168
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2169
{
2170 2171
	struct update_util_data *data;

2172 2173
	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
						  cpu_of(rq)));
2174
	if (data)
2175 2176
		data->func(data, rq_clock(rq), flags);
}
2177
#else
2178
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2179
#endif /* CONFIG_CPU_FREQ */
2180

2181
#ifdef arch_scale_freq_capacity
2182 2183 2184 2185 2186
# ifndef arch_scale_freq_invariant
#  define arch_scale_freq_invariant()	true
# endif
#else
# define arch_scale_freq_invariant()	false
2187
#endif
2188

2189
#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2190
static inline unsigned long cpu_bw_dl(struct rq *rq)
2191 2192 2193 2194
{
	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
}

2195 2196 2197 2198 2199
static inline unsigned long cpu_util_dl(struct rq *rq)
{
	return READ_ONCE(rq->avg_dl.util_avg);
}

2200 2201
static inline unsigned long cpu_util_cfs(struct rq *rq)
{
2202 2203 2204 2205 2206 2207 2208 2209
	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);

	if (sched_feat(UTIL_EST)) {
		util = max_t(unsigned long, util,
			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
	}

	return util;
2210
}
2211 2212 2213

static inline unsigned long cpu_util_rt(struct rq *rq)
{
2214
	return READ_ONCE(rq->avg_rt.util_avg);
2215
}
2216
#endif
2217

2218
#ifdef HAVE_SCHED_AVG_IRQ
2219 2220 2221 2222
static inline unsigned long cpu_util_irq(struct rq *rq)
{
	return rq->avg_irq.util_avg;
}
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232

static inline
unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
{
	util *= (max - irq);
	util /= max;

	return util;

}
2233 2234 2235 2236 2237 2238
#else
static inline unsigned long cpu_util_irq(struct rq *rq)
{
	return 0;
}

2239 2240 2241 2242 2243
static inline
unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
{
	return util;
}
2244
#endif