sched.h 44.3 KB
Newer Older
1 2

#include <linux/sched.h>
3
#include <linux/sched/sysctl.h>
4
#include <linux/sched/rt.h>
5
#include <linux/sched/deadline.h>
6 7 8
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/stop_machine.h>
9
#include <linux/irq_work.h>
10
#include <linux/tick.h>
11
#include <linux/slab.h>
12

13
#include "cpupri.h"
14
#include "cpudeadline.h"
15
#include "cpuacct.h"
16

17
struct rq;
18
struct cpuidle_state;
19

20 21
/* task_struct::on_rq states: */
#define TASK_ON_RQ_QUEUED	1
22
#define TASK_ON_RQ_MIGRATING	2
23

24 25
extern __read_mostly int scheduler_running;

26 27 28
extern unsigned long calc_load_update;
extern atomic_long_t calc_load_tasks;

29
extern void calc_global_load_tick(struct rq *this_rq);
30
extern long calc_load_fold_active(struct rq *this_rq);
31 32

#ifdef CONFIG_SMP
33
extern void update_cpu_load_active(struct rq *this_rq);
34 35 36
#else
static inline void update_cpu_load_active(struct rq *this_rq) { }
#endif
37

38 39 40 41 42
/*
 * Helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
/*
 * Increase resolution of nice-level calculations for 64-bit architectures.
 * The extra resolution improves shares distribution and load balancing of
 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 * hierarchies, especially on larger systems. This is not a user-visible change
 * and does not change the user-interface for setting shares/weights.
 *
 * We increase resolution only if we have enough bits to allow this increased
 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
 * increased costs.
 */
#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
# define SCHED_LOAD_RESOLUTION	10
# define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION)
# define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION)
#else
# define SCHED_LOAD_RESOLUTION	0
# define scale_load(w)		(w)
# define scale_load_down(w)	(w)
#endif

#define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION)
#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)

68 69 70
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

71 72 73 74 75 76 77
/*
 * Single value that decides SCHED_DEADLINE internal math precision.
 * 10 -> just above 1us
 * 9  -> just above 0.5us
 */
#define DL_SCALE (10)

78 79 80 81 82 83 84 85 86
/*
 * These are the 'tuning knobs' of the scheduler:
 */

/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

87 88 89 90 91
static inline int fair_policy(int policy)
{
	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
}

92 93
static inline int rt_policy(int policy)
{
94
	return policy == SCHED_FIFO || policy == SCHED_RR;
95 96
}

97 98 99 100 101
static inline int dl_policy(int policy)
{
	return policy == SCHED_DEADLINE;
}

102 103 104 105 106
static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

107 108 109 110 111
static inline int task_has_dl_policy(struct task_struct *p)
{
	return dl_policy(p->policy);
}

112
static inline bool dl_time_before(u64 a, u64 b)
113 114 115 116 117 118 119
{
	return (s64)(a - b) < 0;
}

/*
 * Tells if entity @a should preempt entity @b.
 */
120 121
static inline bool
dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
122 123 124 125
{
	return dl_time_before(a->deadline, b->deadline);
}

126 127 128 129 130 131 132 133 134 135 136 137 138 139
/*
 * This is the priority-queue data structure of the RT scheduling class:
 */
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct rt_bandwidth {
	/* nests inside the rq lock: */
	raw_spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
P
Peter Zijlstra 已提交
140
	unsigned int		rt_period_active;
141
};
142 143 144

void __dl_clear_params(struct task_struct *p);

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * To keep the bandwidth of -deadline tasks and groups under control
 * we need some place where:
 *  - store the maximum -deadline bandwidth of the system (the group);
 *  - cache the fraction of that bandwidth that is currently allocated.
 *
 * This is all done in the data structure below. It is similar to the
 * one used for RT-throttling (rt_bandwidth), with the main difference
 * that, since here we are only interested in admission control, we
 * do not decrease any runtime while the group "executes", neither we
 * need a timer to replenish it.
 *
 * With respect to SMP, the bandwidth is given on a per-CPU basis,
 * meaning that:
 *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
 *  - dl_total_bw array contains, in the i-eth element, the currently
 *    allocated bandwidth on the i-eth CPU.
 * Moreover, groups consume bandwidth on each CPU, while tasks only
 * consume bandwidth on the CPU they're running on.
 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
 * that will be shown the next time the proc or cgroup controls will
 * be red. It on its turn can be changed by writing on its own
 * control.
 */
struct dl_bandwidth {
	raw_spinlock_t dl_runtime_lock;
	u64 dl_runtime;
	u64 dl_period;
};

static inline int dl_bandwidth_enabled(void)
{
177
	return sysctl_sched_rt_runtime >= 0;
178 179 180 181 182 183 184 185 186
}

extern struct dl_bw *dl_bw_of(int i);

struct dl_bw {
	raw_spinlock_t lock;
	u64 bw, total_bw;
};

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
static inline
void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw -= tsk_bw;
}

static inline
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw += tsk_bw;
}

static inline
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
{
	return dl_b->bw != -1 &&
	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}

206 207 208 209 210 211 212 213 214
extern struct mutex sched_domains_mutex;

#ifdef CONFIG_CGROUP_SCHED

#include <linux/cgroup.h>

struct cfs_rq;
struct rt_rq;

215
extern struct list_head task_groups;
216 217 218 219 220 221

struct cfs_bandwidth {
#ifdef CONFIG_CFS_BANDWIDTH
	raw_spinlock_t lock;
	ktime_t period;
	u64 quota, runtime;
222
	s64 hierarchical_quota;
223 224
	u64 runtime_expires;

P
Peter Zijlstra 已提交
225
	int idle, period_active;
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
	struct hrtimer period_timer, slack_timer;
	struct list_head throttled_cfs_rq;

	/* statistics */
	int nr_periods, nr_throttled;
	u64 throttled_time;
#endif
};

/* task group related information */
struct task_group {
	struct cgroup_subsys_state css;

#ifdef CONFIG_FAIR_GROUP_SCHED
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;

246
#ifdef	CONFIG_SMP
247
	atomic_long_t load_avg;
248
	atomic_t runnable_avg;
249
#endif
250
#endif
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

	struct rt_bandwidth rt_bandwidth;
#endif

	struct rcu_head rcu;
	struct list_head list;

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup *autogroup;
#endif

	struct cfs_bandwidth cfs_bandwidth;
};

#ifdef CONFIG_FAIR_GROUP_SCHED
#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD

/*
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
#define MIN_SHARES	(1UL <<  1)
#define MAX_SHARES	(1UL << 18)
#endif

typedef int (*tg_visitor)(struct task_group *, void *);

extern int walk_tg_tree_from(struct task_group *from,
			     tg_visitor down, tg_visitor up, void *data);

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
 */
static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
{
	return walk_tg_tree_from(&root_task_group, down, up, data);
}

extern int tg_nop(struct task_group *tg, void *data);

extern void free_fair_sched_group(struct task_group *tg);
extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent);
extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);

extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
P
Peter Zijlstra 已提交
316
extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
317 318 319 320 321 322 323 324
extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);

extern void free_rt_sched_group(struct task_group *tg);
extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent);

325 326 327 328 329 330 331 332 333 334 335 336
extern struct task_group *sched_create_group(struct task_group *parent);
extern void sched_online_group(struct task_group *tg,
			       struct task_group *parent);
extern void sched_destroy_group(struct task_group *tg);
extern void sched_offline_group(struct task_group *tg);

extern void sched_move_task(struct task_struct *tsk);

#ifdef CONFIG_FAIR_GROUP_SCHED
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
#endif

337 338 339 340 341 342 343 344 345
#else /* CONFIG_CGROUP_SCHED */

struct cfs_bandwidth { };

#endif	/* CONFIG_CGROUP_SCHED */

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
346
	unsigned int nr_running, h_nr_running;
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

	u64 exec_clock;
	u64 min_vruntime;
#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
#endif

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr, *next, *last, *skip;

#ifdef	CONFIG_SCHED_DEBUG
	unsigned int nr_spread_over;
#endif

367 368 369 370 371 372
#ifdef CONFIG_SMP
	/*
	 * CFS Load tracking
	 * Under CFS, load is tracked on a per-entity basis and aggregated up.
	 * This allows for the description of both thread and group usage (in
	 * the FAIR_GROUP_SCHED case).
373 374 375 376 377 378
	 * runnable_load_avg is the sum of the load_avg_contrib of the
	 * sched_entities on the rq.
	 * blocked_load_avg is similar to runnable_load_avg except that its
	 * the blocked sched_entities on the rq.
	 * utilization_load_avg is the sum of the average running time of the
	 * sched_entities on the rq.
379
	 */
380
	unsigned long runnable_load_avg, blocked_load_avg, utilization_load_avg;
381
	atomic64_t decay_counter;
382
	u64 last_decay;
383
	atomic_long_t removed_load;
384

385
#ifdef CONFIG_FAIR_GROUP_SCHED
386
	/* Required to track per-cpu representation of a task_group */
387
	u32 tg_runnable_contrib;
388
	unsigned long tg_load_contrib;
389 390 391 392 393 394 395 396

	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
397 398 399
	u64 last_h_load_update;
	struct sched_entity *h_load_next;
#endif /* CONFIG_FAIR_GROUP_SCHED */
400 401
#endif /* CONFIG_SMP */

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	int on_list;
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */

#ifdef CONFIG_CFS_BANDWIDTH
	int runtime_enabled;
	u64 runtime_expires;
	s64 runtime_remaining;

422 423
	u64 throttled_clock, throttled_clock_task;
	u64 throttled_clock_task_time;
424 425 426 427 428 429 430 431 432 433 434
	int throttled, throttle_count;
	struct list_head throttled_list;
#endif /* CONFIG_CFS_BANDWIDTH */
#endif /* CONFIG_FAIR_GROUP_SCHED */
};

static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
}

435 436 437 438 439
/* RT IPI pull logic requires IRQ_WORK */
#ifdef CONFIG_IRQ_WORK
# define HAVE_RT_PUSH_IPI
#endif

440 441 442
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
443
	unsigned int rt_nr_running;
444 445 446 447 448 449 450 451 452 453 454 455 456
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
	struct {
		int curr; /* highest queued rt task prio */
#ifdef CONFIG_SMP
		int next; /* next highest */
#endif
	} highest_prio;
#endif
#ifdef CONFIG_SMP
	unsigned long rt_nr_migratory;
	unsigned long rt_nr_total;
	int overloaded;
	struct plist_head pushable_tasks;
457 458 459 460 461
#ifdef HAVE_RT_PUSH_IPI
	int push_flags;
	int push_cpu;
	struct irq_work push_work;
	raw_spinlock_t push_lock;
462
#endif
463
#endif /* CONFIG_SMP */
464 465
	int rt_queued;

466 467 468 469 470 471 472 473 474 475 476 477 478 479
	int rt_throttled;
	u64 rt_time;
	u64 rt_runtime;
	/* Nests inside the rq lock: */
	raw_spinlock_t rt_runtime_lock;

#ifdef CONFIG_RT_GROUP_SCHED
	unsigned long rt_nr_boosted;

	struct rq *rq;
	struct task_group *tg;
#endif
};

480 481 482 483 484 485 486
/* Deadline class' related fields in a runqueue */
struct dl_rq {
	/* runqueue is an rbtree, ordered by deadline */
	struct rb_root rb_root;
	struct rb_node *rb_leftmost;

	unsigned long dl_nr_running;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

#ifdef CONFIG_SMP
	/*
	 * Deadline values of the currently executing and the
	 * earliest ready task on this rq. Caching these facilitates
	 * the decision wether or not a ready but not running task
	 * should migrate somewhere else.
	 */
	struct {
		u64 curr;
		u64 next;
	} earliest_dl;

	unsigned long dl_nr_migratory;
	int overloaded;

	/*
	 * Tasks on this rq that can be pushed away. They are kept in
	 * an rb-tree, ordered by tasks' deadlines, with caching
	 * of the leftmost (earliest deadline) element.
	 */
	struct rb_root pushable_dl_tasks_root;
	struct rb_node *pushable_dl_tasks_leftmost;
510 511
#else
	struct dl_bw dl_bw;
512
#endif
513 514
};

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	atomic_t rto_count;
	struct rcu_head rcu;
	cpumask_var_t span;
	cpumask_var_t online;

532 533 534
	/* Indicate more than one runnable task for any CPU */
	bool overload;

535 536 537 538 539 540
	/*
	 * The bit corresponding to a CPU gets set here if such CPU has more
	 * than one runnable -deadline task (as it is below for RT tasks).
	 */
	cpumask_var_t dlo_mask;
	atomic_t dlo_count;
541
	struct dl_bw dl_bw;
542
	struct cpudl cpudl;
543

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	/*
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_var_t rto_mask;
	struct cpupri cpupri;
};

extern struct root_domain def_root_domain;

#endif /* CONFIG_SMP */

/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
struct rq {
	/* runqueue lock: */
	raw_spinlock_t lock;

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
571
	unsigned int nr_running;
572 573 574 575
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
576 577 578
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
	unsigned long last_load_update_tick;
579
#ifdef CONFIG_NO_HZ_COMMON
580
	u64 nohz_stamp;
581
	unsigned long nohz_flags;
582 583 584
#endif
#ifdef CONFIG_NO_HZ_FULL
	unsigned long last_sched_tick;
585 586 587 588 589 590 591 592
#endif
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
	struct rt_rq rt;
593
	struct dl_rq dl;
594 595 596 597

#ifdef CONFIG_FAIR_GROUP_SCHED
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
598 599

	struct sched_avg avg;
600 601
#endif /* CONFIG_FAIR_GROUP_SCHED */

602 603 604 605 606 607 608 609 610 611 612 613
	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

	struct task_struct *curr, *idle, *stop;
	unsigned long next_balance;
	struct mm_struct *prev_mm;

614
	unsigned int clock_skip_update;
615 616 617 618 619 620 621 622 623
	u64 clock;
	u64 clock_task;

	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct root_domain *rd;
	struct sched_domain *sd;

624
	unsigned long cpu_capacity;
625
	unsigned long cpu_capacity_orig;
626 627 628 629 630 631 632 633 634 635 636

	unsigned char idle_balance;
	/* For active balancing */
	int post_schedule;
	int active_balance;
	int push_cpu;
	struct cpu_stop_work active_balance_work;
	/* cpu of this runqueue: */
	int cpu;
	int online;

637 638
	struct list_head cfs_tasks;

639 640 641 642
	u64 rt_avg;
	u64 age_stamp;
	u64 idle_stamp;
	u64 avg_idle;
643 644 645

	/* This is used to determine avg_idle's max value */
	u64 max_idle_balance_cost;
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
#endif

#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64 prev_irq_time;
#endif
#ifdef CONFIG_PARAVIRT
	u64 prev_steal_time;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	u64 prev_steal_time_rq;
#endif

	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

#ifdef CONFIG_SCHED_HRTICK
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
	struct hrtimer hrtick_timer;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */

	/* sys_sched_yield() stats */
	unsigned int yld_count;

	/* schedule() stats */
	unsigned int sched_count;
	unsigned int sched_goidle;

	/* try_to_wake_up() stats */
	unsigned int ttwu_count;
	unsigned int ttwu_local;
#endif

#ifdef CONFIG_SMP
	struct llist_head wake_list;
#endif
691 692 693 694 695

#ifdef CONFIG_CPU_IDLE
	/* Must be inspected within a rcu lock section */
	struct cpuidle_state *idle_state;
#endif
696 697 698 699 700 701 702 703 704 705 706
};

static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

707
DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
708

709
#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
710
#define this_rq()		this_cpu_ptr(&runqueues)
711 712
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
713
#define raw_rq()		raw_cpu_ptr(&runqueues)
714

715 716
static inline u64 __rq_clock_broken(struct rq *rq)
{
717
	return READ_ONCE(rq->clock);
718 719
}

720 721
static inline u64 rq_clock(struct rq *rq)
{
722
	lockdep_assert_held(&rq->lock);
723 724 725 726 727
	return rq->clock;
}

static inline u64 rq_clock_task(struct rq *rq)
{
728
	lockdep_assert_held(&rq->lock);
729 730 731
	return rq->clock_task;
}

732 733 734 735 736 737 738 739 740 741 742 743
#define RQCF_REQ_SKIP	0x01
#define RQCF_ACT_SKIP	0x02

static inline void rq_clock_skip_update(struct rq *rq, bool skip)
{
	lockdep_assert_held(&rq->lock);
	if (skip)
		rq->clock_skip_update |= RQCF_REQ_SKIP;
	else
		rq->clock_skip_update &= ~RQCF_REQ_SKIP;
}

744
#ifdef CONFIG_NUMA
745 746 747 748 749 750
enum numa_topology_type {
	NUMA_DIRECT,
	NUMA_GLUELESS_MESH,
	NUMA_BACKPLANE,
};
extern enum numa_topology_type sched_numa_topology_type;
751 752 753 754
extern int sched_max_numa_distance;
extern bool find_numa_distance(int distance);
#endif

755
#ifdef CONFIG_NUMA_BALANCING
756 757 758 759 760 761 762
/* The regions in numa_faults array from task_struct */
enum numa_faults_stats {
	NUMA_MEM = 0,
	NUMA_CPU,
	NUMA_MEMBUF,
	NUMA_CPUBUF
};
763
extern void sched_setnuma(struct task_struct *p, int node);
764
extern int migrate_task_to(struct task_struct *p, int cpu);
765
extern int migrate_swap(struct task_struct *, struct task_struct *);
766 767
#endif /* CONFIG_NUMA_BALANCING */

768 769
#ifdef CONFIG_SMP

770 771
extern void sched_ttwu_pending(void);

772 773 774 775 776 777 778 779 780 781 782 783
#define rcu_dereference_check_sched_domain(p) \
	rcu_dereference_check((p), \
			      lockdep_is_held(&sched_domains_mutex))

/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 * See detach_destroy_domains: synchronize_sched for details.
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
#define for_each_domain(cpu, __sd) \
784 785
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
			__sd; __sd = __sd->parent)
786

787 788
#define for_each_lower_domain(sd) for (; sd; sd = sd->child)

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
/**
 * highest_flag_domain - Return highest sched_domain containing flag.
 * @cpu:	The cpu whose highest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the highest sched_domain
 *		for the given cpu.
 *
 * Returns the highest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd, *hsd = NULL;

	for_each_domain(cpu, sd) {
		if (!(sd->flags & flag))
			break;
		hsd = sd;
	}

	return hsd;
}

811 812 813 814 815 816 817 818 819 820 821 822
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		if (sd->flags & flag)
			break;
	}

	return sd;
}

823
DECLARE_PER_CPU(struct sched_domain *, sd_llc);
824
DECLARE_PER_CPU(int, sd_llc_size);
825
DECLARE_PER_CPU(int, sd_llc_id);
826
DECLARE_PER_CPU(struct sched_domain *, sd_numa);
827 828
DECLARE_PER_CPU(struct sched_domain *, sd_busy);
DECLARE_PER_CPU(struct sched_domain *, sd_asym);
829

830
struct sched_group_capacity {
831 832
	atomic_t ref;
	/*
833 834
	 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
	 * for a single CPU.
835
	 */
836
	unsigned int capacity;
837
	unsigned long next_update;
838
	int imbalance; /* XXX unrelated to capacity but shared group state */
839 840 841 842 843 844 845 846 847 848 849 850 851
	/*
	 * Number of busy cpus in this group.
	 */
	atomic_t nr_busy_cpus;

	unsigned long cpumask[0]; /* iteration mask */
};

struct sched_group {
	struct sched_group *next;	/* Must be a circular list */
	atomic_t ref;

	unsigned int group_weight;
852
	struct sched_group_capacity *sgc;
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874

	/*
	 * The CPUs this group covers.
	 *
	 * NOTE: this field is variable length. (Allocated dynamically
	 * by attaching extra space to the end of the structure,
	 * depending on how many CPUs the kernel has booted up with)
	 */
	unsigned long cpumask[0];
};

static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
{
	return to_cpumask(sg->cpumask);
}

/*
 * cpumask masking which cpus in the group are allowed to iterate up the domain
 * tree.
 */
static inline struct cpumask *sched_group_mask(struct sched_group *sg)
{
875
	return to_cpumask(sg->sgc->cpumask);
876 877 878 879 880 881 882 883 884 885 886
}

/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

P
Peter Zijlstra 已提交
887 888
extern int group_balance_cpu(struct sched_group *sg);

889 890 891 892
#else

static inline void sched_ttwu_pending(void) { }

893
#endif /* CONFIG_SMP */
894

895 896
#include "stats.h"
#include "auto_group.h"
897 898 899 900 901 902

#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
903 904 905
 * We cannot use task_css() and friends because the cgroup subsystem
 * changes that value before the cgroup_subsys::attach() method is called,
 * therefore we cannot pin it and might observe the wrong value.
P
Peter Zijlstra 已提交
906 907 908 909 910 911
 *
 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 * core changes this before calling sched_move_task().
 *
 * Instead we use a 'copy' which is updated from sched_move_task() while
 * holding both task_struct::pi_lock and rq::lock.
912 913 914
 */
static inline struct task_group *task_group(struct task_struct *p)
{
P
Peter Zijlstra 已提交
915
	return p->sched_task_group;
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
	struct task_group *tg = task_group(p);
#endif

#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq = tg->cfs_rq[cpu];
	p->se.parent = tg->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = tg->rt_rq[cpu];
	p->rt.parent = tg->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
957
	p->wake_cpu = cpu;
958 959 960 961 962 963 964
#endif
}

/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
965
# include <linux/static_key.h>
966 967 968 969 970 971 972 973 974 975 976
# define const_debug __read_mostly
#else
# define const_debug const
#endif

extern const_debug unsigned int sysctl_sched_features;

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

enum {
977
#include "features.h"
978
	__SCHED_FEAT_NR,
979 980 981 982
};

#undef SCHED_FEAT

983 984
#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
#define SCHED_FEAT(name, enabled)					\
985
static __always_inline bool static_branch_##name(struct static_key *key) \
986
{									\
987
	return static_key_##enabled(key);				\
988 989 990 991 992 993
}

#include "features.h"

#undef SCHED_FEAT

994
extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
995 996
#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
997
#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
998
#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
999

1000 1001
#ifdef CONFIG_NUMA_BALANCING
#define sched_feat_numa(x) sched_feat(x)
1002 1003 1004 1005 1006
#ifdef CONFIG_SCHED_DEBUG
#define numabalancing_enabled sched_feat_numa(NUMA)
#else
extern bool numabalancing_enabled;
#endif /* CONFIG_SCHED_DEBUG */
1007 1008
#else
#define sched_feat_numa(x) (0)
1009 1010
#define numabalancing_enabled (0)
#endif /* CONFIG_NUMA_BALANCING */
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_runtime < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}

static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

static inline int task_running(struct rq *rq, struct task_struct *p)
{
#ifdef CONFIG_SMP
	return p->on_cpu;
#else
	return task_current(rq, p);
#endif
}

1039 1040 1041 1042
static inline int task_on_rq_queued(struct task_struct *p)
{
	return p->on_rq == TASK_ON_RQ_QUEUED;
}
1043

1044 1045 1046 1047 1048
static inline int task_on_rq_migrating(struct task_struct *p)
{
	return p->on_rq == TASK_ON_RQ_MIGRATING;
}

1049 1050 1051 1052 1053 1054
#ifndef prepare_arch_switch
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif
1055 1056 1057
#ifndef finish_arch_post_lock_switch
# define finish_arch_post_lock_switch()	do { } while (0)
#endif
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->on_cpu = 1;
#endif
}

static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
{
#ifdef CONFIG_SMP
	/*
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->on_cpu = 0;
#endif
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

	raw_spin_unlock_irq(&rq->lock);
}

1096 1097 1098 1099 1100 1101 1102
/*
 * wake flags
 */
#define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
#define WF_FORK		0x02		/* child wakeup after fork */
#define WF_MIGRATED	0x4		/* internal use, task got migrated */

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
static const int prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
static const u32 prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};

1156 1157 1158 1159 1160 1161 1162
#define ENQUEUE_WAKEUP		1
#define ENQUEUE_HEAD		2
#ifdef CONFIG_SMP
#define ENQUEUE_WAKING		4	/* sched_class::task_waking was called */
#else
#define ENQUEUE_WAKING		0
#endif
1163
#define ENQUEUE_REPLENISH	8
1164 1165 1166

#define DEQUEUE_SLEEP		1

1167 1168
#define RETRY_TASK		((void *)-1UL)

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
struct sched_class {
	const struct sched_class *next;

	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
	void (*yield_task) (struct rq *rq);
	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);

	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);

1179 1180 1181 1182
	/*
	 * It is the responsibility of the pick_next_task() method that will
	 * return the next task to call put_prev_task() on the @prev task or
	 * something equivalent.
1183 1184 1185
	 *
	 * May return RETRY_TASK when it finds a higher prio class has runnable
	 * tasks.
1186 1187 1188
	 */
	struct task_struct * (*pick_next_task) (struct rq *rq,
						struct task_struct *prev);
1189 1190 1191
	void (*put_prev_task) (struct rq *rq, struct task_struct *p);

#ifdef CONFIG_SMP
1192
	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	void (*migrate_task_rq)(struct task_struct *p, int next_cpu);

	void (*post_schedule) (struct rq *this_rq);
	void (*task_waking) (struct task_struct *task);
	void (*task_woken) (struct rq *this_rq, struct task_struct *task);

	void (*set_cpus_allowed)(struct task_struct *p,
				 const struct cpumask *newmask);

	void (*rq_online)(struct rq *rq);
	void (*rq_offline)(struct rq *rq);
#endif

	void (*set_curr_task) (struct rq *rq);
	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
	void (*task_fork) (struct task_struct *p);
1209
	void (*task_dead) (struct task_struct *p);
1210

1211 1212 1213 1214 1215
	/*
	 * The switched_from() call is allowed to drop rq->lock, therefore we
	 * cannot assume the switched_from/switched_to pair is serliazed by
	 * rq->lock. They are however serialized by p->pi_lock.
	 */
1216 1217 1218 1219 1220 1221 1222 1223
	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
			     int oldprio);

	unsigned int (*get_rr_interval) (struct rq *rq,
					 struct task_struct *task);

1224 1225
	void (*update_curr) (struct rq *rq);

1226 1227 1228 1229
#ifdef CONFIG_FAIR_GROUP_SCHED
	void (*task_move_group) (struct task_struct *p, int on_rq);
#endif
};
1230

1231 1232 1233 1234 1235
static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	prev->sched_class->put_prev_task(rq, prev);
}

1236 1237 1238 1239 1240
#define sched_class_highest (&stop_sched_class)
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)

extern const struct sched_class stop_sched_class;
1241
extern const struct sched_class dl_sched_class;
1242 1243 1244 1245 1246 1247 1248
extern const struct sched_class rt_sched_class;
extern const struct sched_class fair_sched_class;
extern const struct sched_class idle_sched_class;


#ifdef CONFIG_SMP

1249
extern void update_group_capacity(struct sched_domain *sd, int cpu);
1250

1251
extern void trigger_load_balance(struct rq *rq);
1252

1253 1254 1255
extern void idle_enter_fair(struct rq *this_rq);
extern void idle_exit_fair(struct rq *this_rq);

P
Peter Zijlstra 已提交
1256 1257 1258 1259 1260
#else

static inline void idle_enter_fair(struct rq *rq) { }
static inline void idle_exit_fair(struct rq *rq) { }

1261 1262
#endif

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
#ifdef CONFIG_CPU_IDLE
static inline void idle_set_state(struct rq *rq,
				  struct cpuidle_state *idle_state)
{
	rq->idle_state = idle_state;
}

static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
	WARN_ON(!rcu_read_lock_held());
	return rq->idle_state;
}
#else
static inline void idle_set_state(struct rq *rq,
				  struct cpuidle_state *idle_state)
{
}

static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
	return NULL;
}
#endif

1287 1288 1289
extern void sysrq_sched_debug_show(void);
extern void sched_init_granularity(void);
extern void update_max_interval(void);
1290 1291

extern void init_sched_dl_class(void);
1292 1293
extern void init_sched_rt_class(void);
extern void init_sched_fair_class(void);
1294
extern void init_sched_dl_class(void);
1295

1296
extern void resched_curr(struct rq *rq);
1297 1298 1299 1300 1301
extern void resched_cpu(int cpu);

extern struct rt_bandwidth def_rt_bandwidth;
extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);

1302 1303
extern struct dl_bandwidth def_dl_bandwidth;
extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1304 1305
extern void init_dl_task_timer(struct sched_dl_entity *dl_se);

1306 1307
unsigned long to_ratio(u64 period, u64 runtime);

1308 1309
extern void init_task_runnable_average(struct task_struct *p);

1310
static inline void add_nr_running(struct rq *rq, unsigned count)
1311
{
1312 1313 1314
	unsigned prev_nr = rq->nr_running;

	rq->nr_running = prev_nr + count;
1315

1316
	if (prev_nr < 2 && rq->nr_running >= 2) {
1317 1318 1319 1320 1321 1322
#ifdef CONFIG_SMP
		if (!rq->rd->overload)
			rq->rd->overload = true;
#endif

#ifdef CONFIG_NO_HZ_FULL
1323
		if (tick_nohz_full_cpu(rq->cpu)) {
1324 1325 1326 1327 1328 1329 1330 1331
			/*
			 * Tick is needed if more than one task runs on a CPU.
			 * Send the target an IPI to kick it out of nohz mode.
			 *
			 * We assume that IPI implies full memory barrier and the
			 * new value of rq->nr_running is visible on reception
			 * from the target.
			 */
1332
			tick_nohz_full_kick_cpu(rq->cpu);
1333 1334
		}
#endif
1335
	}
1336 1337
}

1338
static inline void sub_nr_running(struct rq *rq, unsigned count)
1339
{
1340
	rq->nr_running -= count;
1341 1342
}

1343 1344 1345 1346 1347 1348 1349
static inline void rq_last_tick_reset(struct rq *rq)
{
#ifdef CONFIG_NO_HZ_FULL
	rq->last_sched_tick = jiffies;
#endif
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
extern void update_rq_clock(struct rq *rq);

extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);

extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);

extern const_debug unsigned int sysctl_sched_time_avg;
extern const_debug unsigned int sysctl_sched_nr_migrate;
extern const_debug unsigned int sysctl_sched_migration_cost;

static inline u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

#ifdef CONFIG_SCHED_HRTICK

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	if (!cpu_active(cpu_of(rq)))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

void hrtick_start(struct rq *rq, u64 delay);

1384 1385 1386 1387 1388 1389 1390
#else

static inline int hrtick_enabled(struct rq *rq)
{
	return 0;
}

1391 1392 1393 1394
#endif /* CONFIG_SCHED_HRTICK */

#ifdef CONFIG_SMP
extern void sched_avg_update(struct rq *rq);
1395 1396 1397 1398 1399 1400 1401 1402

#ifndef arch_scale_freq_capacity
static __always_inline
unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
{
	return SCHED_CAPACITY_SCALE;
}
#endif
1403

1404 1405
static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
1406
	rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1407 1408 1409 1410 1411 1412 1413
	sched_avg_update(rq);
}
#else
static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
static inline void sched_avg_update(struct rq *rq) { }
#endif

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
static inline struct rq *__task_rq_lock(struct task_struct *p)
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
			return rq;
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
		 * If we observe the old cpu in task_rq_lock, the acquire of
		 * the old rq->lock will fully serialize against the stores.
		 *
		 * If we observe the new cpu in task_rq_lock, the acquire will
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
			return rq;
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

static inline void __task_rq_unlock(struct rq *rq)
	__releases(rq->lock)
{
	raw_spin_unlock(&rq->lock);
}

static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
	__releases(rq->lock)
	__releases(p->pi_lock)
{
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
}

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
#ifdef CONFIG_SMP
#ifdef CONFIG_PREEMPT

static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);

/*
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
 */
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	raw_spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
	}
	return ret;
}

#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		raw_spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	raw_spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

1566 1567 1568 1569 1570 1571 1572 1573 1574
static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	spin_lock(l1);
	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

1575 1576 1577 1578 1579 1580 1581 1582 1583
static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	spin_lock_irq(l1);
	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

1584 1585 1586 1587 1588 1589 1590 1591 1592
static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	raw_spin_lock(l1);
	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

#else /* CONFIG_SMP */

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	BUG_ON(rq1 != rq2);
	raw_spin_lock(&rq1->lock);
	__acquire(rq2->lock);	/* Fake it out ;) */
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	BUG_ON(rq1 != rq2);
	raw_spin_unlock(&rq1->lock);
	__release(rq2->lock);
}

#endif

extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
extern void print_cfs_stats(struct seq_file *m, int cpu);
extern void print_rt_stats(struct seq_file *m, int cpu);
1674
extern void print_dl_stats(struct seq_file *m, int cpu);
1675 1676

extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1677 1678
extern void init_rt_rq(struct rt_rq *rt_rq);
extern void init_dl_rq(struct dl_rq *dl_rq);
1679

1680 1681
extern void cfs_bandwidth_usage_inc(void);
extern void cfs_bandwidth_usage_dec(void);
1682

1683
#ifdef CONFIG_NO_HZ_COMMON
1684 1685 1686 1687 1688 1689 1690
enum rq_nohz_flag_bits {
	NOHZ_TICK_STOPPED,
	NOHZ_BALANCE_KICK,
};

#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
#endif
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

#ifdef CONFIG_IRQ_TIME_ACCOUNTING

DECLARE_PER_CPU(u64, cpu_hardirq_time);
DECLARE_PER_CPU(u64, cpu_softirq_time);

#ifndef CONFIG_64BIT
DECLARE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
#endif /* CONFIG_64BIT */
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */