huge_memory.c 83.7 KB
Newer Older
1 2 3 4 5 6 7
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 */

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11
#include <linux/mm.h>
#include <linux/sched.h>
12
#include <linux/sched/coredump.h>
13
#include <linux/sched/numa_balancing.h>
14 15 16 17 18
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
19
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
20
#include <linux/mm_inline.h>
21
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
22
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
23
#include <linux/khugepaged.h>
24
#include <linux/freezer.h>
25
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
26
#include <linux/mman.h>
27
#include <linux/memremap.h>
R
Ralf Baechle 已提交
28
#include <linux/pagemap.h>
29
#include <linux/debugfs.h>
30
#include <linux/migrate.h>
31
#include <linux/hashtable.h>
32
#include <linux/userfaultfd_k.h>
33
#include <linux/page_idle.h>
34
#include <linux/shmem_fs.h>
35
#include <linux/oom.h>
36
#include <linux/page_owner.h>
37

38 39 40 41
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
42
/*
43 44 45 46
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
47 48
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
49
 */
50
unsigned long transparent_hugepage_flags __read_mostly =
51
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
52
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 54 55 56
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
57
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 59
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
60

61
static struct shrinker deferred_split_shrinker;
62

63
static atomic_t huge_zero_refcount;
64
struct page *huge_zero_page __read_mostly;
65

66
static struct page *get_huge_zero_page(void)
67 68 69 70
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
71
		return READ_ONCE(huge_zero_page);
72 73

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
74
			HPAGE_PMD_ORDER);
75 76
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
77
		return NULL;
78 79
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
80
	preempt_disable();
81
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
82
		preempt_enable();
83
		__free_pages(zero_page, compound_order(zero_page));
84 85 86 87 88 89
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
90
	return READ_ONCE(huge_zero_page);
91 92
}

93
static void put_huge_zero_page(void)
94
{
95 96 97 98 99
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
100 101
}

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

122 123
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
124
{
125 126 127
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
128

129 130 131
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
132
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
133 134
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
135
		__free_pages(zero_page, compound_order(zero_page));
136
		return HPAGE_PMD_NR;
137 138 139
	}

	return 0;
140 141
}

142
static struct shrinker huge_zero_page_shrinker = {
143 144
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
145 146 147
	.seeks = DEFAULT_SEEKS,
};

148 149 150 151
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
152 153 154 155 156 157
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
158
}
159

160 161 162 163
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
164
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
165

166 167 168 169 170 171 172 173 174 175 176 177 178 179
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
180 181

	if (ret > 0) {
182
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
183 184 185 186
		if (err)
			ret = err;
	}
	return ret;
187 188 189 190
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

191
ssize_t single_hugepage_flag_show(struct kobject *kobj,
192 193 194
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
195 196
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
197
}
198

199
ssize_t single_hugepage_flag_store(struct kobject *kobj,
200 201 202 203
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
204 205 206 207 208 209 210 211 212 213
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
214
		set_bit(flag, &transparent_hugepage_flags);
215
	else
216 217 218 219 220 221 222 223
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
224
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
225
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
226
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
227 228 229 230 231 232
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
233
}
234

235 236 237 238
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
239 240 241 242 243 244 245 246 247 248 249 250
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("defer+madvise", buf,
		    min(sizeof("defer+madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
251 252 253 254 255 256
	} else if (!memcmp("defer", buf,
		    min(sizeof("defer")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
273 274 275 276
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

277 278 279
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
280
	return single_hugepage_flag_show(kobj, attr, buf,
281 282 283 284 285
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
286
	return single_hugepage_flag_store(kobj, attr, buf, count,
287 288 289 290
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
291 292 293 294 295 296 297 298 299

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

300 301 302 303
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
304
	return single_hugepage_flag_show(kobj, attr, buf,
305 306 307 308 309 310
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
311
	return single_hugepage_flag_store(kobj, attr, buf, count,
312 313 314 315 316 317 318 319 320
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
321
	&use_zero_page_attr.attr,
322
	&hpage_pmd_size_attr.attr,
323
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
324 325
	&shmem_enabled_attr.attr,
#endif
326 327 328 329 330 331
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

332
static const struct attribute_group hugepage_attr_group = {
333
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
334 335
};

S
Shaohua Li 已提交
336
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
337 338 339
{
	int err;

S
Shaohua Li 已提交
340 341
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
342
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
343
		return -ENOMEM;
A
Andrea Arcangeli 已提交
344 345
	}

S
Shaohua Li 已提交
346
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
347
	if (err) {
348
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
349
		goto delete_obj;
A
Andrea Arcangeli 已提交
350 351
	}

S
Shaohua Li 已提交
352
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
353
	if (err) {
354
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
355
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
356
	}
S
Shaohua Li 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

394 395 396 397 398 399 400 401 402 403
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
404 405
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
406
		goto err_sysfs;
A
Andrea Arcangeli 已提交
407

408
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
409
	if (err)
410
		goto err_slab;
A
Andrea Arcangeli 已提交
411

412 413 414
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
415 416 417
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
418

419 420 421 422 423
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
424
	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
425
		transparent_hugepage_flags = 0;
426 427
		return 0;
	}
428

429
	err = start_stop_khugepaged();
430 431
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
432

S
Shaohua Li 已提交
433
	return 0;
434
err_khugepaged:
435 436
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
437 438
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
439
	khugepaged_destroy();
440
err_slab:
S
Shaohua Li 已提交
441
	hugepage_exit_sysfs(hugepage_kobj);
442
err_sysfs:
A
Andrea Arcangeli 已提交
443
	return err;
444
}
445
subsys_initcall(hugepage_init);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
473
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
474 475 476 477
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

478
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
479
{
480
	if (likely(vma->vm_flags & VM_WRITE))
481 482 483 484
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

485 486
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
487
{
488 489 490 491 492 493 494
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
495
}
496 497 498 499 500 501 502 503
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
504 505 506 507 508 509 510 511 512 513 514 515

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
		loff_t off, unsigned long flags, unsigned long size)
{
	unsigned long addr;
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
	unsigned long len_pad;

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
					      off >> PAGE_SHIFT, flags);
	if (IS_ERR_VALUE(addr))
		return 0;

	addr += (off - addr) & (size - 1);
	return addr;
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (addr)
		goto out;
	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
	if (addr)
		return addr;

 out:
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

559 560
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
561
{
J
Jan Kara 已提交
562
	struct vm_area_struct *vma = vmf->vma;
563
	struct mem_cgroup *memcg;
564
	pgtable_t pgtable;
J
Jan Kara 已提交
565
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
566
	vm_fault_t ret = 0;
567

568
	VM_BUG_ON_PAGE(!PageCompound(page), page);
569

570
	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
571 572 573 574
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
575

K
Kirill A. Shutemov 已提交
576
	pgtable = pte_alloc_one(vma->vm_mm, haddr);
577
	if (unlikely(!pgtable)) {
578 579
		ret = VM_FAULT_OOM;
		goto release;
580
	}
581

582
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
583 584 585 586 587
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
588 589
	__SetPageUptodate(page);

J
Jan Kara 已提交
590 591
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
592
		goto unlock_release;
593 594
	} else {
		pmd_t entry;
595

596 597 598 599
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

600 601
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
602
			vm_fault_t ret2;
603

J
Jan Kara 已提交
604
			spin_unlock(vmf->ptl);
605
			mem_cgroup_cancel_charge(page, memcg, true);
606
			put_page(page);
K
Kirill A. Shutemov 已提交
607
			pte_free(vma->vm_mm, pgtable);
608 609 610
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
611 612
		}

613
		entry = mk_huge_pmd(page, vma->vm_page_prot);
614
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
615
		page_add_new_anon_rmap(page, vma, haddr, true);
616
		mem_cgroup_commit_charge(page, memcg, false, true);
617
		lru_cache_add_active_or_unevictable(page, vma);
J
Jan Kara 已提交
618 619
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
620
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
621
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
622
		spin_unlock(vmf->ptl);
623
		count_vm_event(THP_FAULT_ALLOC);
624 625
	}

626
	return 0;
627 628 629 630 631 632 633 634 635
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	mem_cgroup_cancel_charge(page, memcg, true);
	put_page(page);
	return ret;

636 637
}

638
/*
639 640 641 642 643 644 645
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
646 647 648
 */
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
{
649
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
650

651
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
652
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
653 654 655 656 657 658 659 660
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     __GFP_KSWAPD_RECLAIM);
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     0);
661
	return GFP_TRANSHUGE_LIGHT;
662 663
}

664
/* Caller must hold page table lock. */
665
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
666
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
667
		struct page *zero_page)
668 669
{
	pmd_t entry;
A
Andrew Morton 已提交
670 671
	if (!pmd_none(*pmd))
		return false;
672
	entry = mk_pmd(zero_page, vma->vm_page_prot);
673
	entry = pmd_mkhuge(entry);
674 675
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
676
	set_pmd_at(mm, haddr, pmd, entry);
677
	mm_inc_nr_ptes(mm);
A
Andrew Morton 已提交
678
	return true;
679 680
}

681
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
682
{
J
Jan Kara 已提交
683
	struct vm_area_struct *vma = vmf->vma;
684
	gfp_t gfp;
685
	struct page *page;
J
Jan Kara 已提交
686
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
687

688
	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
689
		return VM_FAULT_FALLBACK;
690 691
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
692
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
693
		return VM_FAULT_OOM;
J
Jan Kara 已提交
694
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
695
			!mm_forbids_zeropage(vma->vm_mm) &&
696 697 698 699
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
700
		vm_fault_t ret;
K
Kirill A. Shutemov 已提交
701
		pgtable = pte_alloc_one(vma->vm_mm, haddr);
702
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
703
			return VM_FAULT_OOM;
704
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
705
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
706
			pte_free(vma->vm_mm, pgtable);
707
			count_vm_event(THP_FAULT_FALLBACK);
708
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
709
		}
J
Jan Kara 已提交
710
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
711 712
		ret = 0;
		set = false;
J
Jan Kara 已提交
713
		if (pmd_none(*vmf->pmd)) {
714 715 716 717
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
718 719
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
720 721
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
722
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
723 724
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
725 726 727
				set = true;
			}
		} else
J
Jan Kara 已提交
728
			spin_unlock(vmf->ptl);
729
		if (!set)
K
Kirill A. Shutemov 已提交
730
			pte_free(vma->vm_mm, pgtable);
731
		return ret;
732
	}
733
	gfp = alloc_hugepage_direct_gfpmask(vma);
734
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
735 736
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
737
		return VM_FAULT_FALLBACK;
738
	}
739
	prep_transhuge_page(page);
J
Jan Kara 已提交
740
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
741 742
}

743
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
744 745
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
746 747 748 749 750 751
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

767 768 769
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
770
	if (write) {
771 772
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
773
	}
774 775 776

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
777
		mm_inc_nr_ptes(mm);
778
		pgtable = NULL;
779 780
	}

781 782
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
783 784

out_unlock:
M
Matthew Wilcox 已提交
785
	spin_unlock(ptl);
786 787
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
788 789
}

790
vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
M
Matthew Wilcox 已提交
791
{
792 793
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
M
Matthew Wilcox 已提交
794
	pgprot_t pgprot = vma->vm_page_prot;
795
	pgtable_t pgtable = NULL;
796

M
Matthew Wilcox 已提交
797 798 799 800 801
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
802 803
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
804 805 806 807 808 809
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
810

811 812 813 814 815 816
	if (arch_needs_pgtable_deposit()) {
		pgtable = pte_alloc_one(vma->vm_mm, addr);
		if (!pgtable)
			return VM_FAULT_OOM;
	}

817 818
	track_pfn_insert(vma, &pgprot, pfn);

819
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
820
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
821
}
822
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
M
Matthew Wilcox 已提交
823

824
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
825
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
826
{
827
	if (likely(vma->vm_flags & VM_WRITE))
828 829 830 831 832 833 834 835 836 837 838 839
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
840 841 842 843 844 845 846 847 848 849 850 851 852 853
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

854 855 856 857
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
858 859
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
860 861 862
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
863 864

out_unlock:
865 866 867
	spin_unlock(ptl);
}

868
vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
869
{
870 871
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;
872
	pgprot_t pgprot = vma->vm_page_prot;
873

874 875 876 877 878
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
879 880
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
881 882 883 884 885 886 887 888 889
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

890
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
891 892 893 894 895
	return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

896
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
897
		pmd_t *pmd, int flags)
898 899 900
{
	pmd_t _pmd;

901 902 903
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
904
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
905
				pmd, _pmd, flags & FOLL_WRITE))
906 907 908 909 910 911 912 913 914 915 916 917 918
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd, int flags)
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

919 920 921 922 923 924
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

925
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
926 927 928 929 930 931 932 933
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
934
		touch_pmd(vma, addr, pmd, flags);
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

954 955 956 957
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
958
	spinlock_t *dst_ptl, *src_ptl;
959 960
	struct page *src_page;
	pmd_t pmd;
961
	pgtable_t pgtable = NULL;
962
	int ret = -ENOMEM;
963

964 965 966 967 968 969 970
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

	pgtable = pte_alloc_one(dst_mm, addr);
	if (unlikely(!pgtable))
		goto out;
971

972 973 974
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
975 976 977

	ret = -EAGAIN;
	pmd = *src_pmd;
978 979 980 981 982 983 984 985 986

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
987 988
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
989 990
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
991
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
992
		mm_inc_nr_ptes(dst_mm);
993
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
994 995 996 997 998 999
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1000
	if (unlikely(!pmd_trans_huge(pmd))) {
1001 1002 1003
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1004
	/*
1005
	 * When page table lock is held, the huge zero pmd should not be
1006 1007 1008 1009
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1010
		struct page *zero_page;
1011 1012 1013 1014 1015
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1016
		zero_page = mm_get_huge_zero_page(dst_mm);
1017
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1018
				zero_page);
1019 1020 1021
		ret = 0;
		goto out_unlock;
	}
1022

1023 1024 1025 1026 1027
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1028
	mm_inc_nr_ptes(dst_mm);
1029
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1030 1031 1032 1033 1034 1035 1036

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1037 1038
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1039 1040 1041 1042
out:
	return ret;
}

1043 1044
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1045
		pud_t *pud, int flags)
1046 1047 1048
{
	pud_t _pud;

1049 1050 1051
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1052
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1053
				pud, _pud, flags & FOLL_WRITE))
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, int flags)
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1067
	if (flags & FOLL_WRITE && !pud_write(*pud))
1068 1069 1070 1071 1072 1073 1074 1075
		return NULL;

	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1076
		touch_pud(vma, addr, pud, flags);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1155
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1156 1157 1158
{
	pmd_t entry;
	unsigned long haddr;
1159
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1160

J
Jan Kara 已提交
1161 1162
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1163 1164 1165
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1166 1167
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1168
	haddr = vmf->address & HPAGE_PMD_MASK;
1169
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1170
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1171 1172

unlock:
J
Jan Kara 已提交
1173
	spin_unlock(vmf->ptl);
1174 1175
}

1176 1177
static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
			pmd_t orig_pmd, struct page *page)
1178
{
J
Jan Kara 已提交
1179 1180
	struct vm_area_struct *vma = vmf->vma;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1181
	struct mem_cgroup *memcg;
1182 1183
	pgtable_t pgtable;
	pmd_t _pmd;
1184 1185
	int i;
	vm_fault_t ret = 0;
1186
	struct page **pages;
1187 1188
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1189

1190 1191
	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
			      GFP_KERNEL);
1192 1193 1194 1195 1196 1197
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
M
Michal Hocko 已提交
1198
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
J
Jan Kara 已提交
1199
					       vmf->address, page_to_nid(page));
A
Andrea Arcangeli 已提交
1200
		if (unlikely(!pages[i] ||
1201
			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
K
Kirill A. Shutemov 已提交
1202
				     GFP_KERNEL, &memcg, false))) {
A
Andrea Arcangeli 已提交
1203
			if (pages[i])
1204
				put_page(pages[i]);
A
Andrea Arcangeli 已提交
1205
			while (--i >= 0) {
1206 1207
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
1208 1209
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
A
Andrea Arcangeli 已提交
1210 1211
				put_page(pages[i]);
			}
1212 1213 1214 1215
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
1216
		set_page_private(pages[i], (unsigned long)memcg);
1217 1218 1219 1220
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
1221
				   haddr + PAGE_SIZE * i, vma);
1222 1223 1224 1225
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

1226 1227
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1228
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1229

J
Jan Kara 已提交
1230 1231
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1232
		goto out_free_pages;
1233
	VM_BUG_ON_PAGE(!PageHead(page), page);
1234

1235 1236 1237 1238 1239 1240
	/*
	 * Leave pmd empty until pte is filled note we must notify here as
	 * concurrent CPU thread might write to new page before the call to
	 * mmu_notifier_invalidate_range_end() happens which can lead to a
	 * device seeing memory write in different order than CPU.
	 *
1241
	 * See Documentation/vm/mmu_notifier.rst
1242
	 */
J
Jan Kara 已提交
1243
	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1244

J
Jan Kara 已提交
1245
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
K
Kirill A. Shutemov 已提交
1246
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1247 1248

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
K
Kirill A. Shutemov 已提交
1249
		pte_t entry;
1250 1251
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1252 1253
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
J
Jan Kara 已提交
1254
		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1255
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1256
		lru_cache_add_active_or_unevictable(pages[i], vma);
J
Jan Kara 已提交
1257 1258 1259 1260
		vmf->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*vmf->pte));
		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
		pte_unmap(vmf->pte);
1261 1262 1263 1264
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
J
Jan Kara 已提交
1265
	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1266
	page_remove_rmap(page, true);
J
Jan Kara 已提交
1267
	spin_unlock(vmf->ptl);
1268

1269 1270 1271 1272 1273 1274
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
						mmun_end);
1275

1276 1277 1278 1279 1280 1281 1282
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
J
Jan Kara 已提交
1283
	spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
1284
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
1285
	for (i = 0; i < HPAGE_PMD_NR; i++) {
1286 1287
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
1288
		mem_cgroup_cancel_charge(pages[i], memcg, false);
1289
		put_page(pages[i]);
A
Andrea Arcangeli 已提交
1290
	}
1291 1292 1293 1294
	kfree(pages);
	goto out;
}

1295
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1296
{
J
Jan Kara 已提交
1297
	struct vm_area_struct *vma = vmf->vma;
1298
	struct page *page = NULL, *new_page;
1299
	struct mem_cgroup *memcg;
J
Jan Kara 已提交
1300
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1301 1302
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1303
	gfp_t huge_gfp;			/* for allocation and charge */
1304
	vm_fault_t ret = 0;
1305

J
Jan Kara 已提交
1306
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1307
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1308 1309
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
J
Jan Kara 已提交
1310 1311
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1312 1313 1314
		goto out_unlock;

	page = pmd_page(orig_pmd);
1315
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1316 1317
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
1318
	 * part.
1319
	 */
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
			unlock_page(page);
			put_page(page);
			goto out_unlock;
		}
		put_page(page);
	}
	if (reuse_swap_page(page, NULL)) {
1333 1334
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1335
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1336 1337
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1338
		ret |= VM_FAULT_WRITE;
1339
		unlock_page(page);
1340 1341
		goto out_unlock;
	}
1342
	unlock_page(page);
1343
	get_page(page);
J
Jan Kara 已提交
1344
	spin_unlock(vmf->ptl);
1345
alloc:
1346
	if (transparent_hugepage_enabled(vma) &&
1347
	    !transparent_hugepage_debug_cow()) {
1348
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1349
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1350
	} else
1351 1352
		new_page = NULL;

1353 1354 1355
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
1356
		if (!page) {
J
Jan Kara 已提交
1357
			split_huge_pmd(vma, vmf->pmd, vmf->address);
1358
			ret |= VM_FAULT_FALLBACK;
1359
		} else {
J
Jan Kara 已提交
1360
			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1361
			if (ret & VM_FAULT_OOM) {
J
Jan Kara 已提交
1362
				split_huge_pmd(vma, vmf->pmd, vmf->address);
1363 1364
				ret |= VM_FAULT_FALLBACK;
			}
1365
			put_page(page);
1366
		}
1367
		count_vm_event(THP_FAULT_FALLBACK);
1368 1369 1370
		goto out;
	}

1371
	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1372
					huge_gfp, &memcg, true))) {
A
Andrea Arcangeli 已提交
1373
		put_page(new_page);
J
Jan Kara 已提交
1374
		split_huge_pmd(vma, vmf->pmd, vmf->address);
K
Kirill A. Shutemov 已提交
1375
		if (page)
1376
			put_page(page);
1377
		ret |= VM_FAULT_FALLBACK;
1378
		count_vm_event(THP_FAULT_FALLBACK);
A
Andrea Arcangeli 已提交
1379 1380 1381
		goto out;
	}

1382 1383
	count_vm_event(THP_FAULT_ALLOC);

1384
	if (!page)
1385
		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1386
	else
1387 1388
		copy_user_huge_page(new_page, page, vmf->address,
				    vma, HPAGE_PMD_NR);
1389 1390
	__SetPageUptodate(new_page);

1391 1392
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1393
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1394

J
Jan Kara 已提交
1395
	spin_lock(vmf->ptl);
1396
	if (page)
1397
		put_page(page);
J
Jan Kara 已提交
1398 1399
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
1400
		mem_cgroup_cancel_charge(new_page, memcg, true);
1401
		put_page(new_page);
1402
		goto out_mn;
A
Andrea Arcangeli 已提交
1403
	} else {
1404
		pmd_t entry;
1405
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1406
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1407
		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1408
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1409
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1410
		lru_cache_add_active_or_unevictable(new_page, vma);
J
Jan Kara 已提交
1411 1412
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1413
		if (!page) {
K
Kirill A. Shutemov 已提交
1414
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1415
		} else {
1416
			VM_BUG_ON_PAGE(!PageHead(page), page);
1417
			page_remove_rmap(page, true);
1418 1419
			put_page(page);
		}
1420 1421
		ret |= VM_FAULT_WRITE;
	}
J
Jan Kara 已提交
1422
	spin_unlock(vmf->ptl);
1423
out_mn:
1424 1425 1426 1427 1428 1429
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
					       mmun_end);
1430 1431
out:
	return ret;
1432
out_unlock:
J
Jan Kara 已提交
1433
	spin_unlock(vmf->ptl);
1434
	return ret;
1435 1436
}

1437 1438 1439 1440 1441 1442
/*
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1443
	return pmd_write(pmd) ||
1444 1445 1446
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
}

1447
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1448 1449 1450 1451
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1452
	struct mm_struct *mm = vma->vm_mm;
1453 1454
	struct page *page = NULL;

1455
	assert_spin_locked(pmd_lockptr(mm, pmd));
1456

1457
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1458 1459
		goto out;

1460 1461 1462 1463
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1464
	/* Full NUMA hinting faults to serialise migration in fault paths */
1465
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1466 1467
		goto out;

1468
	page = pmd_page(*pmd);
1469
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1470
	if (flags & FOLL_TOUCH)
1471
		touch_pmd(vma, addr, pmd, flags);
E
Eric B Munson 已提交
1472
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1473 1474 1475 1476
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1477 1478
		 * For anon THP:
		 *
1479 1480 1481 1482 1483 1484 1485
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1486 1487 1488 1489 1490 1491
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1492
		 */
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1504
	}
1505
skip_mlock:
1506
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1507
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1508
	if (flags & FOLL_GET)
1509
		get_page(page);
1510 1511 1512 1513 1514

out:
	return page;
}

1515
/* NUMA hinting page fault entry point for trans huge pmds */
1516
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1517
{
J
Jan Kara 已提交
1518
	struct vm_area_struct *vma = vmf->vma;
1519
	struct anon_vma *anon_vma = NULL;
1520
	struct page *page;
J
Jan Kara 已提交
1521
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1522
	int page_nid = -1, this_nid = numa_node_id();
1523
	int target_nid, last_cpupid = -1;
1524 1525
	bool page_locked;
	bool migrated = false;
1526
	bool was_writable;
1527
	int flags = 0;
1528

J
Jan Kara 已提交
1529 1530
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1531 1532
		goto out_unlock;

1533 1534 1535 1536 1537
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1538 1539
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1540 1541
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1542
		spin_unlock(vmf->ptl);
1543
		wait_on_page_locked(page);
1544
		put_page(page);
1545 1546 1547
		goto out;
	}

1548
	page = pmd_page(pmd);
1549
	BUG_ON(is_huge_zero_page(page));
1550
	page_nid = page_to_nid(page);
1551
	last_cpupid = page_cpupid_last(page);
1552
	count_vm_numa_event(NUMA_HINT_FAULTS);
1553
	if (page_nid == this_nid) {
1554
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1555 1556
		flags |= TNF_FAULT_LOCAL;
	}
1557

1558
	/* See similar comment in do_numa_page for explanation */
1559
	if (!pmd_savedwrite(pmd))
1560 1561
		flags |= TNF_NO_GROUP;

1562 1563 1564 1565
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1566 1567 1568 1569
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
	if (target_nid == -1) {
		/* If the page was locked, there are no parallel migrations */
1570
		if (page_locked)
1571
			goto clear_pmdnuma;
1572
	}
1573

1574
	/* Migration could have started since the pmd_trans_migrating check */
1575
	if (!page_locked) {
1576 1577 1578
		page_nid = -1;
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1579
		spin_unlock(vmf->ptl);
1580
		wait_on_page_locked(page);
1581
		put_page(page);
1582 1583 1584
		goto out;
	}

1585 1586 1587 1588
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1589
	get_page(page);
J
Jan Kara 已提交
1590
	spin_unlock(vmf->ptl);
1591
	anon_vma = page_lock_anon_vma_read(page);
1592

P
Peter Zijlstra 已提交
1593
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1594 1595
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1596 1597
		unlock_page(page);
		put_page(page);
1598
		page_nid = -1;
1599
		goto out_unlock;
1600
	}
1601

1602 1603 1604 1605 1606 1607 1608
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
		page_nid = -1;
		goto clear_pmdnuma;
	}

1609 1610 1611 1612 1613 1614
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1615 1616 1617 1618
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1619 1620
	 */
	if (mm_tlb_flush_pending(vma->vm_mm))
1621
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1622

1623 1624
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1625
	 * and access rights restored.
1626
	 */
J
Jan Kara 已提交
1627
	spin_unlock(vmf->ptl);
1628

K
Kirill A. Shutemov 已提交
1629
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1630
				vmf->pmd, pmd, vmf->address, page, target_nid);
1631 1632
	if (migrated) {
		flags |= TNF_MIGRATED;
1633
		page_nid = target_nid;
1634 1635
	} else
		flags |= TNF_MIGRATE_FAIL;
1636

1637
	goto out;
1638
clear_pmdnuma:
1639
	BUG_ON(!PageLocked(page));
1640
	was_writable = pmd_savedwrite(pmd);
1641
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1642
	pmd = pmd_mkyoung(pmd);
1643 1644
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1645 1646
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1647
	unlock_page(page);
1648
out_unlock:
J
Jan Kara 已提交
1649
	spin_unlock(vmf->ptl);
1650 1651 1652 1653 1654

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1655
	if (page_nid != -1)
J
Jan Kara 已提交
1656
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1657
				flags);
1658

1659 1660 1661
	return 0;
}

1662 1663 1664 1665 1666
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1667 1668 1669 1670 1671 1672
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1673
	bool ret = false;
1674

1675 1676
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1677 1678
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1679
		goto out_unlocked;
1680 1681

	orig_pmd = *pmd;
1682
	if (is_huge_zero_pmd(orig_pmd))
1683 1684
		goto out;

1685 1686 1687 1688 1689 1690
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1709
		split_huge_page(page);
1710
		unlock_page(page);
1711
		put_page(page);
1712 1713 1714 1715 1716 1717 1718 1719
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1720
		pmdp_invalidate(vma, addr, pmd);
1721 1722 1723 1724 1725 1726
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1727 1728

	mark_page_lazyfree(page);
1729
	ret = true;
1730 1731 1732 1733 1734 1735
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1736 1737 1738 1739 1740 1741
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1742
	mm_dec_nr_ptes(mm);
1743 1744
}

1745
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1746
		 pmd_t *pmd, unsigned long addr)
1747
{
1748
	pmd_t orig_pmd;
1749
	spinlock_t *ptl;
1750

1751 1752
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1753 1754
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	if (vma_is_dax(vma)) {
1766 1767
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1768 1769
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1770
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1771
	} else if (is_huge_zero_pmd(orig_pmd)) {
1772
		zap_deposited_table(tlb->mm, pmd);
1773
		spin_unlock(ptl);
1774
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1775
	} else {
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1794
		if (PageAnon(page)) {
1795
			zap_deposited_table(tlb->mm, pmd);
1796 1797
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1798 1799
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1800
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1801
		}
1802

1803
		spin_unlock(ptl);
1804 1805
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1806
	}
1807
	return 1;
1808 1809
}

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1836
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1837
		  unsigned long new_addr, unsigned long old_end,
1838
		  pmd_t *old_pmd, pmd_t *new_pmd)
1839
{
1840
	spinlock_t *old_ptl, *new_ptl;
1841 1842
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1843
	bool force_flush = false;
1844 1845 1846

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1847
	    old_end - old_addr < HPAGE_PMD_SIZE)
1848
		return false;
1849 1850 1851 1852 1853 1854 1855

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1856
		return false;
1857 1858
	}

1859 1860 1861 1862
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1863 1864
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1865 1866 1867
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1868
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1869
		if (pmd_present(pmd))
1870
			force_flush = true;
1871
		VM_BUG_ON(!pmd_none(*new_pmd));
1872

1873
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1874
			pgtable_t pgtable;
1875 1876 1877
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1878 1879
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1880 1881
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1882 1883
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1884
		spin_unlock(old_ptl);
1885
		return true;
1886
	}
1887
	return false;
1888 1889
}

1890 1891 1892 1893 1894 1895
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1896
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1897
		unsigned long addr, pgprot_t newprot, int prot_numa)
1898 1899
{
	struct mm_struct *mm = vma->vm_mm;
1900
	spinlock_t *ptl;
1901 1902 1903
	pmd_t entry;
	bool preserve_write;
	int ret;
1904

1905
	ptl = __pmd_trans_huge_lock(pmd, vma);
1906 1907
	if (!ptl)
		return 0;
1908

1909 1910
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1925 1926
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1927 1928 1929 1930 1931 1932
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1933 1934 1935 1936 1937 1938 1939
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1940

1941 1942 1943
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
	/*
	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
	 * which is also under down_read(mmap_sem):
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1965
	entry = pmdp_invalidate(vma, addr, pmd);
1966

1967 1968 1969 1970 1971 1972 1973 1974
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1975 1976 1977 1978
	return ret;
}

/*
1979
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1980
 *
1981 1982
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1983
 */
1984
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1985
{
1986 1987
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1988 1989
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1990 1991 1992
		return ptl;
	spin_unlock(ptl);
	return NULL;
1993 1994
}

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	pud_t orig_pud;
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
			tlb->fullmm);
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

2049
	count_vm_event(THP_SPLIT_PUD);
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PUD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
	ptl = pud_lock(mm, pud);
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
	__split_huge_pud_locked(vma, pud, haddr);

out:
	spin_unlock(ptl);
2069 2070 2071 2072 2073 2074
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
					       HPAGE_PUD_SIZE);
2075 2076 2077
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

2078 2079 2080 2081 2082 2083 2084 2085
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

2086 2087 2088 2089 2090 2091
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
2092
	 * See Documentation/vm/mmu_notifier.rst
2093 2094
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2113
		unsigned long haddr, bool freeze)
2114 2115 2116 2117
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2118
	pmd_t old_pmd, _pmd;
2119
	bool young, write, soft_dirty, pmd_migration = false;
2120
	unsigned long addr;
2121 2122 2123 2124 2125
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2126 2127
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2128 2129 2130

	count_vm_event(THP_SPLIT_PMD);

2131 2132
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2133 2134 2135 2136 2137 2138
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2139 2140 2141
		if (vma_is_dax(vma))
			return;
		page = pmd_page(_pmd);
2142 2143
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2144 2145 2146 2147
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2148
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2149 2150
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
2151 2152 2153 2154 2155 2156 2157 2158 2159
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2160 2161 2162
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2186
	if (unlikely(pmd_migration)) {
2187 2188
		swp_entry_t entry;

2189
		entry = pmd_to_swp_entry(old_pmd);
2190
		page = pfn_to_page(swp_offset(entry));
2191 2192 2193 2194
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
	} else {
2195
		page = pmd_page(old_pmd);
2196 2197 2198 2199 2200 2201
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
	}
2202
	VM_BUG_ON_PAGE(!page_count(page), page);
2203
	page_ref_add(page, HPAGE_PMD_NR - 1);
2204

2205 2206 2207 2208
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2209 2210 2211
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2212
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2213 2214 2215 2216 2217 2218
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2219
		if (freeze || pmd_migration) {
2220 2221 2222
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2223 2224
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2225
		} else {
2226
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2227
			entry = maybe_mkwrite(entry, vma);
2228 2229 2230 2231
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2232 2233
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2234
		}
2235
		pte = pte_offset_map(&_pmd, addr);
2236
		BUG_ON(!pte_none(*pte));
2237
		set_pte_at(mm, addr, pte, entry);
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
2253
		__dec_node_page_state(page, NR_ANON_THPS);
2254 2255 2256 2257 2258 2259 2260 2261 2262
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2263 2264

	if (freeze) {
2265
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2266 2267 2268 2269
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2270 2271 2272
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2273
		unsigned long address, bool freeze, struct page *page)
2274 2275 2276 2277 2278 2279 2280
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PMD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
	ptl = pmd_lock(mm, pmd);
2281 2282 2283 2284 2285 2286 2287 2288 2289

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

2290
	if (pmd_trans_huge(*pmd)) {
2291
		page = pmd_page(*pmd);
2292
		if (PageMlocked(page))
2293
			clear_page_mlock(page);
2294
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2295
		goto out;
2296
	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2297
out:
2298
	spin_unlock(ptl);
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
					       HPAGE_PMD_SIZE);
2314 2315
}

2316 2317
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2318
{
2319
	pgd_t *pgd;
2320
	p4d_t *p4d;
2321
	pud_t *pud;
2322 2323
	pmd_t *pmd;

2324
	pgd = pgd_offset(vma->vm_mm, address);
2325 2326 2327
	if (!pgd_present(*pgd))
		return;

2328 2329 2330 2331 2332
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2333 2334 2335 2336
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2337

2338
	__split_huge_pmd(vma, pmd, address, freeze, page);
2339 2340
}

2341
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2354
		split_huge_pmd_address(vma, start, false, NULL);
2355 2356 2357 2358 2359 2360 2361 2362 2363

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2364
		split_huge_pmd_address(vma, end, false, NULL);
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2378
			split_huge_pmd_address(next, nstart, false, NULL);
2379 2380
	}
}
2381

2382
static void unmap_page(struct page *page)
2383
{
2384
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2385
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2386
	bool unmap_success;
2387 2388 2389

	VM_BUG_ON_PAGE(!PageHead(page), page);

2390
	if (PageAnon(page))
2391
		ttu_flags |= TTU_SPLIT_FREEZE;
2392

M
Minchan Kim 已提交
2393 2394
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2395 2396
}

2397
static void remap_page(struct page *page)
2398
{
2399
	int i;
2400 2401 2402 2403 2404 2405
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2406 2407
}

2408
static void __split_huge_page_tail(struct page *head, int tail,
2409 2410 2411 2412
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2413
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2414 2415

	/*
2416 2417 2418 2419
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
	 * for exmaple lock_page() which set PG_waiters.
2420 2421 2422 2423 2424
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2425
			 (1L << PG_swapcache) |
2426 2427 2428
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2429
			 (1L << PG_workingset) |
2430
			 (1L << PG_locked) |
2431 2432
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
2433

2434 2435 2436 2437 2438 2439
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2440
	/* Page flags must be visible before we make the page non-compound. */
2441 2442
	smp_wmb();

2443 2444 2445 2446 2447 2448
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2449 2450
	clear_compound_head(page_tail);

2451 2452 2453 2454
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2455 2456 2457 2458 2459 2460
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2461 2462 2463 2464 2465 2466

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2467 2468 2469
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2470
static void __split_huge_page(struct page *page, struct list_head *list,
2471
		pgoff_t end, unsigned long flags)
2472 2473 2474 2475
{
	struct page *head = compound_head(page);
	struct zone *zone = page_zone(head);
	struct lruvec *lruvec;
2476
	int i;
2477

M
Mel Gorman 已提交
2478
	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2479 2480 2481 2482

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2483
	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2484
		__split_huge_page_tail(head, i, lruvec, list);
2485 2486
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2487
			ClearPageDirty(head + i);
2488
			__delete_from_page_cache(head + i, NULL);
2489 2490
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2491 2492 2493
			put_page(head + i);
		}
	}
2494 2495

	ClearPageCompound(head);
2496 2497 2498

	split_page_owner(head, HPAGE_PMD_ORDER);

2499 2500
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
2501 2502 2503 2504 2505
		/* Additional pin to radix tree of swap cache */
		if (PageSwapCache(head))
			page_ref_add(head, 2);
		else
			page_ref_inc(head);
2506 2507 2508
	} else {
		/* Additional pin to radix tree */
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2509
		xa_unlock(&head->mapping->i_pages);
2510 2511
	}

2512
	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2513

2514
	remap_page(head);
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2533 2534
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
2535
	int i, compound, ret;
2536 2537 2538 2539 2540 2541

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2542
	compound = compound_mapcount(page);
2543
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2544 2545
		return compound;
	ret = compound;
2546 2547
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2548 2549 2550
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2551 2552 2553 2554 2555
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

	/* Additional pins from radix tree */
	if (PageAnon(page))
		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
	else
		extra_pins = HPAGE_PMD_NR;
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2651
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2652
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2653 2654 2655
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2656
	bool mlocked;
2657
	unsigned long flags;
2658
	pgoff_t end;
2659 2660 2661 2662 2663

	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageCompound(page), page);

2664 2665 2666
	if (PageWriteback(page))
		return -EBUSY;

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2681
		end = -1;
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2695 2696 2697 2698 2699 2700 2701 2702 2703

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2704 2705 2706
	}

	/*
2707
	 * Racy check if we can split the page, before unmap_page() will
2708 2709
	 * split PMDs
	 */
2710
	if (!can_split_huge_page(head, &extra_pins)) {
2711 2712 2713 2714
		ret = -EBUSY;
		goto out_unlock;
	}

2715
	mlocked = PageMlocked(page);
2716
	unmap_page(head);
2717 2718
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2719 2720 2721 2722
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2723
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2724
	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2725 2726 2727 2728

	if (mapping) {
		void **pslot;

M
Matthew Wilcox 已提交
2729 2730
		xa_lock(&mapping->i_pages);
		pslot = radix_tree_lookup_slot(&mapping->i_pages,
2731 2732 2733 2734 2735 2736
				page_index(head));
		/*
		 * Check if the head page is present in radix tree.
		 * We assume all tail are present too, if head is there.
		 */
		if (radix_tree_deref_slot_protected(pslot,
M
Matthew Wilcox 已提交
2737
					&mapping->i_pages.xa_lock) != head)
2738 2739 2740
			goto fail;
	}

2741
	/* Prevent deferred_split_scan() touching ->_refcount */
2742
	spin_lock(&ds_queue->split_queue_lock);
2743 2744
	count = page_count(head);
	mapcount = total_mapcount(head);
2745
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2746
		if (!list_empty(page_deferred_list(head))) {
2747
			ds_queue->split_queue_len--;
2748 2749
			list_del(page_deferred_list(head));
		}
2750
		if (mapping)
2751
			__dec_node_page_state(page, NR_SHMEM_THPS);
2752
		spin_unlock(&ds_queue->split_queue_lock);
2753
		__split_huge_page(page, list, end, flags);
2754 2755 2756 2757 2758 2759
		if (PageSwapCache(head)) {
			swp_entry_t entry = { .val = page_private(head) };

			ret = split_swap_cluster(entry);
		} else
			ret = 0;
2760
	} else {
2761 2762 2763 2764 2765 2766 2767 2768
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
2769
		spin_unlock(&ds_queue->split_queue_lock);
2770
fail:		if (mapping)
M
Matthew Wilcox 已提交
2771
			xa_unlock(&mapping->i_pages);
2772
		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2773
		remap_page(head);
2774 2775 2776 2777
		ret = -EBUSY;
	}

out_unlock:
2778 2779 2780 2781 2782 2783
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2784 2785 2786 2787
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2788 2789 2790

void free_transhuge_page(struct page *page)
{
2791
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2792 2793
	unsigned long flags;

2794
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2795
	if (!list_empty(page_deferred_list(page))) {
2796
		ds_queue->split_queue_len--;
2797 2798
		list_del(page_deferred_list(page));
	}
2799
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2800 2801 2802 2803 2804
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2805 2806 2807 2808
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
#endif
2809 2810 2811 2812
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2826
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2827
	if (list_empty(page_deferred_list(page))) {
2828
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2829 2830
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2831 2832 2833 2834 2835
#ifdef CONFIG_MEMCG
		if (memcg)
			memcg_set_shrinker_bit(memcg, page_to_nid(page),
					       deferred_split_shrinker.id);
#endif
2836
	}
2837
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2838 2839 2840 2841 2842
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2843
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2844
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2845 2846 2847 2848 2849

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2850
	return READ_ONCE(ds_queue->split_queue_len);
2851 2852 2853 2854 2855
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2856
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2857
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2858 2859 2860 2861 2862
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2863 2864 2865 2866 2867
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2868
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2869
	/* Take pin on all head pages to avoid freeing them under us */
2870
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2871 2872
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2873 2874 2875 2876
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2877
			list_del_init(page_deferred_list(page));
2878
			ds_queue->split_queue_len--;
2879
		}
2880 2881
		if (!--sc->nr_to_scan)
			break;
2882
	}
2883
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2884 2885 2886

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2887 2888
		if (!trylock_page(page))
			goto next;
2889 2890 2891 2892
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2893
next:
2894 2895 2896
		put_page(page);
	}

2897 2898 2899
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2900

2901 2902 2903 2904
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2905
	if (!split && list_empty(&ds_queue->split_queue))
2906 2907
		return SHRINK_STOP;
	return split;
2908 2909 2910 2911 2912 2913
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2914 2915
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2916
};
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2942
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2955
	pr_info("%lu of %lu THP split\n", split, total);
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
	void *ret;

2966
	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2967 2968 2969 2970 2971 2972 2973
			&split_huge_pages_fops);
	if (!ret)
		pr_warn("Failed to create split_huge_pages in debugfs");
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
2984
	pmd_t pmdswp;
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
	pmdval = *pvmw->pmd;
	pmdp_invalidate(vma, address, pvmw->pmd);
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
2995 2996 2997 2998
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3018 3019
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3020
	if (is_write_migration_entry(entry))
3021
		pmde = maybe_pmd_mkwrite(pmde, vma);
3022 3023

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3024 3025 3026 3027
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
3028
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3029
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3030 3031 3032 3033
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif