core.c 14.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7
/*
 *  Copyright (C) 1994 Linus Torvalds
 *
 *  Pentium III FXSR, SSE support
 *  General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 */
8
#include <asm/fpu/internal.h>
9
#include <asm/fpu/regset.h>
10
#include <asm/fpu/signal.h>
11
#include <asm/fpu/types.h>
12
#include <asm/traps.h>
13

14
#include <linux/hardirq.h>
15
#include <linux/pkeys.h>
L
Linus Torvalds 已提交
16

17 18 19
#define CREATE_TRACE_POINTS
#include <asm/trace/fpu.h>

20 21 22 23
/*
 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
 * depending on the FPU hardware format:
 */
24
union fpregs_state init_fpstate __read_mostly;
25

I
Ingo Molnar 已提交
26 27 28 29 30 31 32 33 34 35 36
/*
 * Track whether the kernel is using the FPU state
 * currently.
 *
 * This flag is used:
 *
 *   - by IRQ context code to potentially use the FPU
 *     if it's unused.
 *
 *   - to debug kernel_fpu_begin()/end() correctness
 */
37 38
static DEFINE_PER_CPU(bool, in_kernel_fpu);

39
/*
40
 * Track which context is using the FPU on the CPU:
41
 */
42
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
43

44
static void kernel_fpu_disable(void)
45
{
46
	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
47 48 49
	this_cpu_write(in_kernel_fpu, true);
}

50
static void kernel_fpu_enable(void)
51
{
52
	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
53 54 55
	this_cpu_write(in_kernel_fpu, false);
}

I
Ingo Molnar 已提交
56 57 58 59 60
static bool kernel_fpu_disabled(void)
{
	return this_cpu_read(in_kernel_fpu);
}

61 62 63
/*
 * Were we in an interrupt that interrupted kernel mode?
 *
64
 * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
65 66 67 68
 * pair does nothing at all: the thread must not have fpu (so
 * that we don't try to save the FPU state), and TS must
 * be set (so that the clts/stts pair does nothing that is
 * visible in the interrupted kernel thread).
69
 *
70 71
 * Except for the eagerfpu case when we return true; in the likely case
 * the thread has FPU but we are not going to set/clear TS.
72
 */
73
static bool interrupted_kernel_fpu_idle(void)
74
{
I
Ingo Molnar 已提交
75
	if (kernel_fpu_disabled())
76 77
		return false;

78
	if (use_eager_fpu())
79
		return true;
80

81
	return !current->thread.fpu.fpregs_active && (read_cr0() & X86_CR0_TS);
82 83 84 85 86 87 88 89 90 91
}

/*
 * Were we in user mode (or vm86 mode) when we were
 * interrupted?
 *
 * Doing kernel_fpu_begin/end() is ok if we are running
 * in an interrupt context from user mode - we'll just
 * save the FPU state as required.
 */
92
static bool interrupted_user_mode(void)
93 94
{
	struct pt_regs *regs = get_irq_regs();
95
	return regs && user_mode(regs);
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
}

/*
 * Can we use the FPU in kernel mode with the
 * whole "kernel_fpu_begin/end()" sequence?
 *
 * It's always ok in process context (ie "not interrupt")
 * but it is sometimes ok even from an irq.
 */
bool irq_fpu_usable(void)
{
	return !in_interrupt() ||
		interrupted_user_mode() ||
		interrupted_kernel_fpu_idle();
}
EXPORT_SYMBOL(irq_fpu_usable);

113
void __kernel_fpu_begin(void)
114
{
115
	struct fpu *fpu = &current->thread.fpu;
116

117
	WARN_ON_FPU(!irq_fpu_usable());
118

119
	kernel_fpu_disable();
120

121
	if (fpu->fpregs_active) {
122 123 124 125
		/*
		 * Ignore return value -- we don't care if reg state
		 * is clobbered.
		 */
126
		copy_fpregs_to_fpstate(fpu);
127
	} else {
128
		this_cpu_write(fpu_fpregs_owner_ctx, NULL);
129
		__fpregs_activate_hw();
130 131
	}
}
132
EXPORT_SYMBOL(__kernel_fpu_begin);
133

134
void __kernel_fpu_end(void)
135
{
136
	struct fpu *fpu = &current->thread.fpu;
137

138
	if (fpu->fpregs_active)
139
		copy_kernel_to_fpregs(&fpu->state);
140
	else
141
		__fpregs_deactivate_hw();
142

143
	kernel_fpu_enable();
144
}
145
EXPORT_SYMBOL(__kernel_fpu_end);
146

147 148 149 150 151 152 153 154 155 156 157 158 159 160
void kernel_fpu_begin(void)
{
	preempt_disable();
	__kernel_fpu_begin();
}
EXPORT_SYMBOL_GPL(kernel_fpu_begin);

void kernel_fpu_end(void)
{
	__kernel_fpu_end();
	preempt_enable();
}
EXPORT_SYMBOL_GPL(kernel_fpu_end);

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * CR0::TS save/restore functions:
 */
int irq_ts_save(void)
{
	/*
	 * If in process context and not atomic, we can take a spurious DNA fault.
	 * Otherwise, doing clts() in process context requires disabling preemption
	 * or some heavy lifting like kernel_fpu_begin()
	 */
	if (!in_atomic())
		return 0;

	if (read_cr0() & X86_CR0_TS) {
		clts();
		return 1;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(irq_ts_save);

void irq_ts_restore(int TS_state)
{
	if (TS_state)
		stts();
}
EXPORT_SYMBOL_GPL(irq_ts_restore);

190
/*
I
Ingo Molnar 已提交
191
 * Save the FPU state (mark it for reload if necessary):
192 193
 *
 * This only ever gets called for the current task.
194
 */
195
void fpu__save(struct fpu *fpu)
196
{
197
	WARN_ON_FPU(fpu != &current->thread.fpu);
198

199
	preempt_disable();
200
	trace_x86_fpu_before_save(fpu);
201
	if (fpu->fpregs_active) {
202 203 204 205 206 207
		if (!copy_fpregs_to_fpstate(fpu)) {
			if (use_eager_fpu())
				copy_kernel_to_fpregs(&fpu->state);
			else
				fpregs_deactivate(fpu);
		}
208
	}
209
	trace_x86_fpu_after_save(fpu);
210 211
	preempt_enable();
}
212
EXPORT_SYMBOL_GPL(fpu__save);
213

214 215 216
/*
 * Legacy x87 fpstate state init:
 */
217
static inline void fpstate_init_fstate(struct fregs_state *fp)
218 219 220 221 222 223 224
{
	fp->cwd = 0xffff037fu;
	fp->swd = 0xffff0000u;
	fp->twd = 0xffffffffu;
	fp->fos = 0xffff0000u;
}

225
void fpstate_init(union fpregs_state *state)
L
Linus Torvalds 已提交
226
{
227
	if (!static_cpu_has(X86_FEATURE_FPU)) {
228
		fpstate_init_soft(&state->soft);
229
		return;
230 231
	}

232
	memset(state, 0, fpu_kernel_xstate_size);
233

234 235 236 237 238 239 240
	/*
	 * XRSTORS requires that this bit is set in xcomp_bv, or
	 * it will #GP. Make sure it is replaced after the memset().
	 */
	if (static_cpu_has(X86_FEATURE_XSAVES))
		state->xsave.header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT;

241
	if (static_cpu_has(X86_FEATURE_FXSR))
242
		fpstate_init_fxstate(&state->fxsave);
243
	else
244
		fpstate_init_fstate(&state->fsave);
245
}
246
EXPORT_SYMBOL_GPL(fpstate_init);
247

248
int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
249
{
250 251 252 253
	dst_fpu->counter = 0;
	dst_fpu->fpregs_active = 0;
	dst_fpu->last_cpu = -1;

254
	if (!src_fpu->fpstate_active || !static_cpu_has(X86_FEATURE_FPU))
255 256
		return 0;

257
	WARN_ON_FPU(src_fpu != &current->thread.fpu);
258

259 260 261 262 263
	/*
	 * Don't let 'init optimized' areas of the XSAVE area
	 * leak into the child task:
	 */
	if (use_eager_fpu())
264
		memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
265 266 267 268

	/*
	 * Save current FPU registers directly into the child
	 * FPU context, without any memory-to-memory copying.
269 270 271
	 * In lazy mode, if the FPU context isn't loaded into
	 * fpregs, CR0.TS will be set and do_device_not_available
	 * will load the FPU context.
272 273 274 275 276 277 278 279 280 281 282
	 *
	 * We have to do all this with preemption disabled,
	 * mostly because of the FNSAVE case, because in that
	 * case we must not allow preemption in the window
	 * between the FNSAVE and us marking the context lazy.
	 *
	 * It shouldn't be an issue as even FNSAVE is plenty
	 * fast in terms of critical section length.
	 */
	preempt_disable();
	if (!copy_fpregs_to_fpstate(dst_fpu)) {
283 284
		memcpy(&src_fpu->state, &dst_fpu->state,
		       fpu_kernel_xstate_size);
285 286 287 288 289

		if (use_eager_fpu())
			copy_kernel_to_fpregs(&src_fpu->state);
		else
			fpregs_deactivate(src_fpu);
290
	}
291
	preempt_enable();
292

293 294 295
	trace_x86_fpu_copy_src(src_fpu);
	trace_x86_fpu_copy_dst(dst_fpu);

I
Ingo Molnar 已提交
296 297 298
	return 0;
}

299
/*
300 301
 * Activate the current task's in-memory FPU context,
 * if it has not been used before:
302
 */
303
void fpu__activate_curr(struct fpu *fpu)
304
{
305
	WARN_ON_FPU(fpu != &current->thread.fpu);
306

307
	if (!fpu->fpstate_active) {
308
		fpstate_init(&fpu->state);
309
		trace_x86_fpu_init_state(fpu);
310

311
		trace_x86_fpu_activate_state(fpu);
312 313 314
		/* Safe to do for the current task: */
		fpu->fpstate_active = 1;
	}
315
}
316
EXPORT_SYMBOL_GPL(fpu__activate_curr);
317

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
/*
 * This function must be called before we read a task's fpstate.
 *
 * If the task has not used the FPU before then initialize its
 * fpstate.
 *
 * If the task has used the FPU before then save it.
 */
void fpu__activate_fpstate_read(struct fpu *fpu)
{
	/*
	 * If fpregs are active (in the current CPU), then
	 * copy them to the fpstate:
	 */
	if (fpu->fpregs_active) {
		fpu__save(fpu);
	} else {
335
		if (!fpu->fpstate_active) {
336
			fpstate_init(&fpu->state);
337
			trace_x86_fpu_init_state(fpu);
338

339
			trace_x86_fpu_activate_state(fpu);
340 341 342 343 344 345
			/* Safe to do for current and for stopped child tasks: */
			fpu->fpstate_active = 1;
		}
	}
}

346
/*
347
 * This function must be called before we write a task's fpstate.
348
 *
349 350
 * If the task has used the FPU before then unlazy it.
 * If the task has not used the FPU before then initialize its fpstate.
351
 *
352 353 354 355 356 357
 * After this function call, after registers in the fpstate are
 * modified and the child task has woken up, the child task will
 * restore the modified FPU state from the modified context. If we
 * didn't clear its lazy status here then the lazy in-registers
 * state pending on its former CPU could be restored, corrupting
 * the modifications.
358
 */
359
void fpu__activate_fpstate_write(struct fpu *fpu)
360
{
361
	/*
362 363
	 * Only stopped child tasks can be used to modify the FPU
	 * state in the fpstate buffer:
364
	 */
365 366 367 368 369
	WARN_ON_FPU(fpu == &current->thread.fpu);

	if (fpu->fpstate_active) {
		/* Invalidate any lazy state: */
		fpu->last_cpu = -1;
370
	} else {
371
		fpstate_init(&fpu->state);
372
		trace_x86_fpu_init_state(fpu);
373

374
		trace_x86_fpu_activate_state(fpu);
375 376
		/* Safe to do for stopped child tasks: */
		fpu->fpstate_active = 1;
377
	}
L
Linus Torvalds 已提交
378 379
}

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
/*
 * This function must be called before we write the current
 * task's fpstate.
 *
 * This call gets the current FPU register state and moves
 * it in to the 'fpstate'.  Preemption is disabled so that
 * no writes to the 'fpstate' can occur from context
 * swiches.
 *
 * Must be followed by a fpu__current_fpstate_write_end().
 */
void fpu__current_fpstate_write_begin(void)
{
	struct fpu *fpu = &current->thread.fpu;

	/*
	 * Ensure that the context-switching code does not write
	 * over the fpstate while we are doing our update.
	 */
	preempt_disable();

	/*
	 * Move the fpregs in to the fpu's 'fpstate'.
	 */
	fpu__activate_fpstate_read(fpu);

	/*
	 * The caller is about to write to 'fpu'.  Ensure that no
	 * CPU thinks that its fpregs match the fpstate.  This
	 * ensures we will not be lazy and skip a XRSTOR in the
	 * future.
	 */
	fpu->last_cpu = -1;
}

/*
 * This function must be paired with fpu__current_fpstate_write_begin()
 *
 * This will ensure that the modified fpstate gets placed back in
 * the fpregs if necessary.
 *
 * Note: This function may be called whether or not an _actual_
 * write to the fpstate occurred.
 */
void fpu__current_fpstate_write_end(void)
{
	struct fpu *fpu = &current->thread.fpu;

	/*
	 * 'fpu' now has an updated copy of the state, but the
	 * registers may still be out of date.  Update them with
	 * an XRSTOR if they are active.
	 */
	if (fpregs_active())
		copy_kernel_to_fpregs(&fpu->state);

	/*
	 * Our update is done and the fpregs/fpstate are in sync
	 * if necessary.  Context switches can happen again.
	 */
	preempt_enable();
}

443
/*
444 445 446 447
 * 'fpu__restore()' is called to copy FPU registers from
 * the FPU fpstate to the live hw registers and to activate
 * access to the hardware registers, so that FPU instructions
 * can be used afterwards.
448
 *
449 450 451
 * Must be called with kernel preemption disabled (for example
 * with local interrupts disabled, as it is in the case of
 * do_device_not_available()).
452
 */
453
void fpu__restore(struct fpu *fpu)
454
{
455
	fpu__activate_curr(fpu);
456

457
	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
458
	kernel_fpu_disable();
459
	trace_x86_fpu_before_restore(fpu);
460
	fpregs_activate(fpu);
461
	copy_kernel_to_fpregs(&fpu->state);
462
	fpu->counter++;
463
	trace_x86_fpu_after_restore(fpu);
464 465
	kernel_fpu_enable();
}
466
EXPORT_SYMBOL_GPL(fpu__restore);
467

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
/*
 * Drops current FPU state: deactivates the fpregs and
 * the fpstate. NOTE: it still leaves previous contents
 * in the fpregs in the eager-FPU case.
 *
 * This function can be used in cases where we know that
 * a state-restore is coming: either an explicit one,
 * or a reschedule.
 */
void fpu__drop(struct fpu *fpu)
{
	preempt_disable();
	fpu->counter = 0;

	if (fpu->fpregs_active) {
		/* Ignore delayed exceptions from user space */
		asm volatile("1: fwait\n"
			     "2:\n"
			     _ASM_EXTABLE(1b, 2b));
		fpregs_deactivate(fpu);
	}

	fpu->fpstate_active = 0;

492 493
	trace_x86_fpu_dropped(fpu);

494 495 496
	preempt_enable();
}

497 498 499 500 501 502 503
/*
 * Clear FPU registers by setting them up from
 * the init fpstate:
 */
static inline void copy_init_fpstate_to_fpregs(void)
{
	if (use_xsave())
504
		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
505
	else if (static_cpu_has(X86_FEATURE_FXSR))
506
		copy_kernel_to_fxregs(&init_fpstate.fxsave);
507 508
	else
		copy_kernel_to_fregs(&init_fpstate.fsave);
509 510 511

	if (boot_cpu_has(X86_FEATURE_OSPKE))
		copy_init_pkru_to_fpregs();
512 513
}

514
/*
515 516 517 518
 * Clear the FPU state back to init state.
 *
 * Called by sys_execve(), by the signal handler code and by various
 * error paths.
519
 */
520
void fpu__clear(struct fpu *fpu)
521
{
522
	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
523

524
	if (!use_eager_fpu() || !static_cpu_has(X86_FEATURE_FPU)) {
525
		/* FPU state will be reallocated lazily at the first use. */
526
		fpu__drop(fpu);
527
	} else {
528
		if (!fpu->fpstate_active) {
529
			fpu__activate_curr(fpu);
530 531
			user_fpu_begin();
		}
532
		copy_init_fpstate_to_fpregs();
533 534 535
	}
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
/*
 * x87 math exception handling:
 */

int fpu__exception_code(struct fpu *fpu, int trap_nr)
{
	int err;

	if (trap_nr == X86_TRAP_MF) {
		unsigned short cwd, swd;
		/*
		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
		 * status.  0x3f is the exception bits in these regs, 0x200 is the
		 * C1 reg you need in case of a stack fault, 0x040 is the stack
		 * fault bit.  We should only be taking one exception at a time,
		 * so if this combination doesn't produce any single exception,
		 * then we have a bad program that isn't synchronizing its FPU usage
		 * and it will suffer the consequences since we won't be able to
554
		 * fully reproduce the context of the exception.
555
		 */
556 557 558 559 560 561 562
		if (boot_cpu_has(X86_FEATURE_FXSR)) {
			cwd = fpu->state.fxsave.cwd;
			swd = fpu->state.fxsave.swd;
		} else {
			cwd = (unsigned short)fpu->state.fsave.cwd;
			swd = (unsigned short)fpu->state.fsave.swd;
		}
563 564 565 566 567 568 569 570 571

		err = swd & ~cwd;
	} else {
		/*
		 * The SIMD FPU exceptions are handled a little differently, as there
		 * is only a single status/control register.  Thus, to determine which
		 * unmasked exception was caught we must mask the exception mask bits
		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
		 */
572 573 574 575 576
		unsigned short mxcsr = MXCSR_DEFAULT;

		if (boot_cpu_has(X86_FEATURE_XMM))
			mxcsr = fpu->state.fxsave.mxcsr;

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
		err = ~(mxcsr >> 7) & mxcsr;
	}

	if (err & 0x001) {	/* Invalid op */
		/*
		 * swd & 0x240 == 0x040: Stack Underflow
		 * swd & 0x240 == 0x240: Stack Overflow
		 * User must clear the SF bit (0x40) if set
		 */
		return FPE_FLTINV;
	} else if (err & 0x004) { /* Divide by Zero */
		return FPE_FLTDIV;
	} else if (err & 0x008) { /* Overflow */
		return FPE_FLTOVF;
	} else if (err & 0x012) { /* Denormal, Underflow */
		return FPE_FLTUND;
	} else if (err & 0x020) { /* Precision */
		return FPE_FLTRES;
	}

	/*
	 * If we're using IRQ 13, or supposedly even some trap
	 * X86_TRAP_MF implementations, it's possible
	 * we get a spurious trap, which is not an error.
	 */
	return 0;
}