hugetlb.c 130.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
8
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
9 10
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
11
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
12
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/compiler.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/mmdebug.h>
22
#include <linux/sched/signal.h>
23
#include <linux/rmap.h>
24
#include <linux/string_helpers.h>
25 26
#include <linux/swap.h>
#include <linux/swapops.h>
27
#include <linux/jhash.h>
28

D
David Gibson 已提交
29 30
#include <asm/page.h>
#include <asm/pgtable.h>
31
#include <asm/tlb.h>
D
David Gibson 已提交
32

33
#include <linux/io.h>
D
David Gibson 已提交
34
#include <linux/hugetlb.h>
35
#include <linux/hugetlb_cgroup.h>
36
#include <linux/node.h>
37
#include <linux/userfaultfd_k.h>
38
#include <linux/page_owner.h>
39
#include "internal.h"
L
Linus Torvalds 已提交
40

41
int hugetlb_max_hstate __read_mostly;
42 43
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
44 45 46 47 48
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
49

50 51
__initdata LIST_HEAD(huge_boot_pages);

52 53 54
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
55
static unsigned long __initdata default_hstate_size;
56
static bool __initdata parsed_valid_hugepagesz = true;
57

58
/*
59 60
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
61
 */
62
DEFINE_SPINLOCK(hugetlb_lock);
63

64 65 66 67 68
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
69
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70

71 72 73
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

74 75 76 77 78 79 80
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
81 82 83 84 85 86
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
87
		kfree(spool);
88
	}
89 90
}

91 92
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
93 94 95
{
	struct hugepage_subpool *spool;

96
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97 98 99 100 101
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
102 103 104 105 106 107 108 109 110
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
111 112 113 114 115 116 117 118 119 120 121 122

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

123 124 125 126 127 128 129 130 131
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132 133
				      long delta)
{
134
	long ret = delta;
135 136

	if (!spool)
137
		return ret;
138 139

	spin_lock(&spool->lock);
140 141 142 143 144 145 146 147

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
148 149
	}

150 151
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
167 168 169
	return ret;
}

170 171 172 173 174 175 176
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177 178
				       long delta)
{
179 180
	long ret = delta;

181
	if (!spool)
182
		return delta;
183 184

	spin_lock(&spool->lock);
185 186 187 188

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

189 190
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 192 193 194 195 196 197 198 199 200 201 202 203 204
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
205
	unlock_or_release_subpool(spool);
206 207

	return ret;
208 209 210 211 212 213 214 215 216
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
217
	return subpool_inode(file_inode(vma->vm_file));
218 219
}

220 221 222
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
223
 *
224 225 226 227 228 229 230 231 232 233 234 235 236 237
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
238 239 240 241 242 243 244
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

245 246
/*
 * Add the huge page range represented by [f, t) to the reserve
247 248 249 250 251 252 253 254
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
255 256 257
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
258
 */
259
static long region_add(struct resv_map *resv, long f, long t)
260
{
261
	struct list_head *head = &resv->regions;
262
	struct file_region *rg, *nrg, *trg;
263
	long add = 0;
264

265
	spin_lock(&resv->lock);
266 267 268 269 270
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
311 312 313 314 315
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
316 317 318 319
			list_del(&rg->link);
			kfree(rg);
		}
	}
320 321

	add += (nrg->from - f);		/* Added to beginning of region */
322
	nrg->from = f;
323
	add += t - nrg->to;		/* Added to end of region */
324
	nrg->to = t;
325

326 327
out_locked:
	resv->adds_in_progress--;
328
	spin_unlock(&resv->lock);
329 330
	VM_BUG_ON(add < 0);
	return add;
331 332
}

333 334 335 336 337 338 339 340 341 342 343 344 345
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
346 347 348 349 350 351 352 353
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
354
 */
355
static long region_chg(struct resv_map *resv, long f, long t)
356
{
357
	struct list_head *head = &resv->regions;
358
	struct file_region *rg, *nrg = NULL;
359 360
	long chg = 0;

361 362
retry:
	spin_lock(&resv->lock);
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379 380
		if (!trg) {
			kfree(nrg);
381
			return -ENOMEM;
382
		}
383 384 385 386 387 388 389

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

390 391 392 393 394 395 396 397 398
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
399
		if (!nrg) {
400
			resv->adds_in_progress--;
401 402 403 404 405 406 407 408 409 410
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
411

412 413 414
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
415 416 417 418 419 420 421 422 423 424 425 426
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
427
			goto out;
428

L
Lucas De Marchi 已提交
429
		/* We overlap with this area, if it extends further than
430 431 432 433 434 435 436 437
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
438 439 440 441 442 443 444 445

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
446 447 448
	return chg;
}

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

468
/*
469 470 471 472 473 474 475 476 477 478 479 480
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
481
 */
482
static long region_del(struct resv_map *resv, long f, long t)
483
{
484
	struct list_head *head = &resv->regions;
485
	struct file_region *rg, *trg;
486 487
	struct file_region *nrg = NULL;
	long del = 0;
488

489
retry:
490
	spin_lock(&resv->lock);
491
	list_for_each_entry_safe(rg, trg, head, link) {
492 493 494 495 496 497 498 499
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500
			continue;
501

502
		if (rg->from >= t)
503 504
			break;

505 506 507 508 509 510 511 512 513 514 515 516 517
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
518

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
539
			break;
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
556
	}
557 558

	spin_unlock(&resv->lock);
559 560
	kfree(nrg);
	return del;
561 562
}

563 564 565 566 567 568 569 570 571
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
572
void hugetlb_fix_reserve_counts(struct inode *inode)
573 574 575 576 577
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578
	if (rsv_adjust) {
579 580 581 582 583 584
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

585 586 587 588
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
589
static long region_count(struct resv_map *resv, long f, long t)
590
{
591
	struct list_head *head = &resv->regions;
592 593 594
	struct file_region *rg;
	long chg = 0;

595
	spin_lock(&resv->lock);
596 597
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
598 599
		long seg_from;
		long seg_to;
600 601 602 603 604 605 606 607 608 609 610

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
611
	spin_unlock(&resv->lock);
612 613 614 615

	return chg;
}

616 617 618 619
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
620 621
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
622
{
623 624
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
625 626
}

627 628 629 630 631
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
632
EXPORT_SYMBOL_GPL(linear_hugepage_index);
633

634 635 636 637 638 639
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
640 641 642
	if (vma->vm_ops && vma->vm_ops->pagesize)
		return vma->vm_ops->pagesize(vma);
	return PAGE_SIZE;
643
}
644
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
645

646 647 648
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
649 650
 * architectures where it differs, an architecture-specific 'strong'
 * version of this symbol is required.
651
 */
652
__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
653 654 655 656
{
	return vma_kernel_pagesize(vma);
}

657 658 659 660 661 662 663
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
664
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
665

666 667 668 669 670 671 672 673 674
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
675 676 677 678 679 680 681 682 683
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
684
 */
685 686 687 688 689 690 691 692 693 694 695
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

696
struct resv_map *resv_map_alloc(void)
697 698
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
699 700 701 702 703
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
704
		return NULL;
705
	}
706 707

	kref_init(&resv_map->refs);
708
	spin_lock_init(&resv_map->lock);
709 710
	INIT_LIST_HEAD(&resv_map->regions);

711 712 713 714 715 716
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

717 718 719
	return resv_map;
}

720
void resv_map_release(struct kref *ref)
721 722
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
723 724
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
725 726

	/* Clear out any active regions before we release the map. */
727
	region_del(resv_map, 0, LONG_MAX);
728 729 730 731 732 733 734 735 736

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

737 738 739
	kfree(resv_map);
}

740 741 742 743 744
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

745
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
746
{
747
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
748 749 750 751 752 753 754
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
755 756
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
757
	}
758 759
}

760
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
761
{
762 763
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
764

765 766
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
767 768 769 770
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
771 772
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
773 774

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
775 776 777 778
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
779
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 781

	return (get_vma_private_data(vma) & flag) != 0;
782 783
}

784
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
785 786
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
787
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
788
	if (!(vma->vm_flags & VM_MAYSHARE))
789 790 791 792
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
793
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
794
{
795 796 797 798 799 800 801 802 803 804 805
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
806
			return true;
807
		else
808
			return false;
809
	}
810 811

	/* Shared mappings always use reserves */
812 813 814 815 816 817 818 819 820 821 822 823 824
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
825 826 827 828 829

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
851

852
	return false;
853 854
}

855
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
856 857
{
	int nid = page_to_nid(page);
858
	list_move(&page->lru, &h->hugepage_freelists[nid]);
859 860
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
861 862
}

863
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
864 865 866
{
	struct page *page;

867
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
868
		if (!PageHWPoison(page))
869 870 871 872 873 874
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
875
		return NULL;
876
	list_move(&page->lru, &h->hugepage_activelist);
877
	set_page_refcounted(page);
878 879 880 881 882
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

883 884
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
		nodemask_t *nmask)
885
{
886 887 888 889 890
	unsigned int cpuset_mems_cookie;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
	int node = -1;
891

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
	zonelist = node_zonelist(nid, gfp_mask);

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
		struct page *page;

		if (!cpuset_zone_allowed(zone, gfp_mask))
			continue;
		/*
		 * no need to ask again on the same node. Pool is node rather than
		 * zone aware
		 */
		if (zone_to_nid(zone) == node)
			continue;
		node = zone_to_nid(zone);
908 909 910 911 912

		page = dequeue_huge_page_node_exact(h, node);
		if (page)
			return page;
	}
913 914 915
	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;

916 917 918
	return NULL;
}

919 920 921
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
922
	if (hugepage_migration_supported(h))
923 924 925 926 927
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

928 929
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
930 931
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
932
{
933
	struct page *page;
934
	struct mempolicy *mpol;
935
	gfp_t gfp_mask;
936
	nodemask_t *nodemask;
937
	int nid;
L
Linus Torvalds 已提交
938

939 940 941 942 943
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
944
	if (!vma_has_reserves(vma, chg) &&
945
			h->free_huge_pages - h->resv_huge_pages == 0)
946
		goto err;
947

948
	/* If reserves cannot be used, ensure enough pages are in the pool */
949
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
950
		goto err;
951

952 953
	gfp_mask = htlb_alloc_mask(h);
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
954 955 956 957
	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
		SetPagePrivate(page);
		h->resv_huge_pages--;
L
Linus Torvalds 已提交
958
	}
959

960
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
961
	return page;
962 963 964

err:
	return NULL;
L
Linus Torvalds 已提交
965 966
}

967 968 969 970 971 972 973 974 975
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
976
	nid = next_node_in(nid, *nodes_allowed);
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1038
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1039
static void destroy_compound_gigantic_page(struct page *page,
1040
					unsigned int order)
1041 1042 1043 1044 1045
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1046
	atomic_set(compound_mapcount_ptr(page), 0);
1047
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1048
		clear_compound_head(p);
1049 1050 1051 1052 1053 1054 1055
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

1056
static void free_gigantic_page(struct page *page, unsigned int order)
1057 1058 1059 1060 1061
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
1062
				unsigned long nr_pages, gfp_t gfp_mask)
1063 1064
{
	unsigned long end_pfn = start_pfn + nr_pages;
1065
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1066
				  gfp_mask);
1067 1068
}

1069 1070
static bool pfn_range_valid_gigantic(struct zone *z,
			unsigned long start_pfn, unsigned long nr_pages)
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

1081 1082 1083
		if (page_zone(page) != z)
			return false;

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

1104 1105
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nodemask)
1106
{
1107
	unsigned int order = huge_page_order(h);
1108 1109
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
1110 1111 1112
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
1113

1114
	zonelist = node_zonelist(nid, gfp_mask);
1115
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1116
		spin_lock_irqsave(&zone->lock, flags);
1117

1118 1119 1120
		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
			if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1121 1122 1123 1124 1125 1126 1127
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
1128 1129
				spin_unlock_irqrestore(&zone->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1130 1131
				if (!ret)
					return pfn_to_page(pfn);
1132
				spin_lock_irqsave(&zone->lock, flags);
1133 1134 1135 1136
			}
			pfn += nr_pages;
		}

1137
		spin_unlock_irqrestore(&zone->lock, flags);
1138 1139 1140 1141 1142 1143
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1144
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1145

1146
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1147
static inline bool gigantic_page_supported(void) { return false; }
1148 1149
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nodemask) { return NULL; }
1150
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1151
static inline void destroy_compound_gigantic_page(struct page *page,
1152
						unsigned int order) { }
1153 1154
#endif

1155
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1156 1157
{
	int i;
1158

1159 1160
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
1161

1162 1163 1164
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1165 1166
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1167 1168
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1169
	}
1170
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1171
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1172
	set_page_refcounted(page);
1173 1174 1175 1176 1177 1178
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1179 1180
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
/*
 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
 * code
 */
static inline bool PageHugeTemporary(struct page *page)
{
	if (!PageHuge(page))
		return false;

	return (unsigned long)page[2].mapping == -1U;
}

static inline void SetPageHugeTemporary(struct page *page)
{
	page[2].mapping = (void *)-1U;
}

static inline void ClearPageHugeTemporary(struct page *page)
{
	page[2].mapping = NULL;
}

1239
void free_huge_page(struct page *page)
1240
{
1241 1242 1243 1244
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1245
	struct hstate *h = page_hstate(page);
1246
	int nid = page_to_nid(page);
1247 1248
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1249
	bool restore_reserve;
1250

1251
	set_page_private(page, 0);
1252
	page->mapping = NULL;
1253 1254
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1255
	restore_reserve = PagePrivate(page);
1256
	ClearPagePrivate(page);
1257

1258 1259 1260 1261 1262 1263 1264 1265
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1266
	spin_lock(&hugetlb_lock);
1267
	clear_page_huge_active(page);
1268 1269
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1270 1271 1272
	if (restore_reserve)
		h->resv_huge_pages++;

1273 1274 1275 1276 1277
	if (PageHugeTemporary(page)) {
		list_del(&page->lru);
		ClearPageHugeTemporary(page);
		update_and_free_page(h, page);
	} else if (h->surplus_huge_pages_node[nid]) {
1278 1279
		/* remove the page from active list */
		list_del(&page->lru);
1280 1281 1282
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1283
	} else {
1284
		arch_clear_hugepage_flags(page);
1285
		enqueue_huge_page(h, page);
1286
	}
1287 1288 1289
	spin_unlock(&hugetlb_lock);
}

1290
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1291
{
1292
	INIT_LIST_HEAD(&page->lru);
1293
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1294
	spin_lock(&hugetlb_lock);
1295
	set_hugetlb_cgroup(page, NULL);
1296 1297
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1298 1299 1300
	spin_unlock(&hugetlb_lock);
}

1301
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1302 1303 1304 1305 1306 1307 1308
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1309
	__ClearPageReserved(page);
1310
	__SetPageHead(page);
1311
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1325
		set_page_count(p, 0);
1326
		set_compound_head(p, page);
1327
	}
1328
	atomic_set(compound_mapcount_ptr(page), -1);
1329 1330
}

A
Andrew Morton 已提交
1331 1332 1333 1334 1335
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1336 1337 1338 1339 1340 1341
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1342
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1343
}
1344 1345
EXPORT_SYMBOL_GPL(PageHuge);

1346 1347 1348 1349 1350 1351 1352 1353 1354
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1355
	return get_compound_page_dtor(page_head) == free_huge_page;
1356 1357
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1375
static struct page *alloc_buddy_huge_page(struct hstate *h,
1376
		gfp_t gfp_mask, int nid, nodemask_t *nmask)
L
Linus Torvalds 已提交
1377
{
1378
	int order = huge_page_order(h);
L
Linus Torvalds 已提交
1379
	struct page *page;
1380

1381 1382 1383 1384 1385 1386 1387 1388
	gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
	if (page)
		__count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1389 1390 1391 1392

	return page;
}

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
/*
 * Common helper to allocate a fresh hugetlb page. All specific allocators
 * should use this function to get new hugetlb pages
 */
static struct page *alloc_fresh_huge_page(struct hstate *h,
		gfp_t gfp_mask, int nid, nodemask_t *nmask)
{
	struct page *page;

	if (hstate_is_gigantic(h))
		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
	else
		page = alloc_buddy_huge_page(h, gfp_mask,
				nid, nmask);
	if (!page)
		return NULL;

	if (hstate_is_gigantic(h))
		prep_compound_gigantic_page(page, huge_page_order(h));
	prep_new_huge_page(h, page, page_to_nid(page));

	return page;
}

1417 1418 1419 1420
/*
 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
 * manner.
 */
1421
static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1422 1423 1424
{
	struct page *page;
	int nr_nodes, node;
1425
	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1426 1427

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1428
		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1429
		if (page)
1430 1431 1432
			break;
	}

1433 1434
	if (!page)
		return 0;
1435

1436 1437 1438
	put_page(page); /* free it into the hugepage allocator */

	return 1;
1439 1440
}

1441 1442 1443 1444 1445 1446
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1447 1448
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1449
{
1450
	int nr_nodes, node;
1451 1452
	int ret = 0;

1453
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1454 1455 1456 1457
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1458 1459
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1460
			struct page *page =
1461
				list_entry(h->hugepage_freelists[node].next,
1462 1463 1464
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1465
			h->free_huge_pages_node[node]--;
1466 1467
			if (acct_surplus) {
				h->surplus_huge_pages--;
1468
				h->surplus_huge_pages_node[node]--;
1469
			}
1470 1471
			update_and_free_page(h, page);
			ret = 1;
1472
			break;
1473
		}
1474
	}
1475 1476 1477 1478

	return ret;
}

1479 1480
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
1481
 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1482 1483
 * dissolution fails because a give page is not a free hugepage, or because
 * free hugepages are fully reserved.
1484
 */
1485
int dissolve_free_huge_page(struct page *page)
1486
{
1487
	int rc = -EBUSY;
1488

1489 1490
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
1491 1492 1493
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
		int nid = page_to_nid(head);
1494
		if (h->free_huge_pages - h->resv_huge_pages == 0)
1495
			goto out;
1496 1497 1498 1499 1500 1501 1502 1503
		/*
		 * Move PageHWPoison flag from head page to the raw error page,
		 * which makes any subpages rather than the error page reusable.
		 */
		if (PageHWPoison(head) && page != head) {
			SetPageHWPoison(page);
			ClearPageHWPoison(head);
		}
1504
		list_del(&head->lru);
1505 1506
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
1507
		h->max_huge_pages--;
1508
		update_and_free_page(h, head);
1509
		rc = 0;
1510
	}
1511
out:
1512
	spin_unlock(&hugetlb_lock);
1513
	return rc;
1514 1515 1516 1517 1518
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
1519 1520
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
1521 1522
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
1523
 */
1524
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1525 1526
{
	unsigned long pfn;
1527
	struct page *page;
1528
	int rc = 0;
1529

1530
	if (!hugepages_supported())
1531
		return rc;
1532

1533 1534 1535 1536 1537 1538 1539 1540
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
		if (PageHuge(page) && !page_count(page)) {
			rc = dissolve_free_huge_page(page);
			if (rc)
				break;
		}
	}
1541 1542

	return rc;
1543 1544
}

1545 1546 1547
/*
 * Allocates a fresh surplus page from the page allocator.
 */
1548
static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1549
		int nid, nodemask_t *nmask)
1550
{
1551
	struct page *page = NULL;
1552

1553
	if (hstate_is_gigantic(h))
1554 1555
		return NULL;

1556
	spin_lock(&hugetlb_lock);
1557 1558
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
		goto out_unlock;
1559 1560
	spin_unlock(&hugetlb_lock);

1561
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1562
	if (!page)
1563
		return NULL;
1564 1565

	spin_lock(&hugetlb_lock);
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	/*
	 * We could have raced with the pool size change.
	 * Double check that and simply deallocate the new page
	 * if we would end up overcommiting the surpluses. Abuse
	 * temporary page to workaround the nasty free_huge_page
	 * codeflow
	 */
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
		SetPageHugeTemporary(page);
		put_page(page);
		page = NULL;
	} else {
		h->surplus_huge_pages++;
1579
		h->surplus_huge_pages_node[page_to_nid(page)]++;
1580
	}
1581 1582

out_unlock:
1583
	spin_unlock(&hugetlb_lock);
1584 1585 1586 1587

	return page;
}

1588
static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1589 1590 1591 1592 1593 1594 1595
		int nid, nodemask_t *nmask)
{
	struct page *page;

	if (hstate_is_gigantic(h))
		return NULL;

1596
	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	if (!page)
		return NULL;

	/*
	 * We do not account these pages as surplus because they are only
	 * temporary and will be released properly on the last reference
	 */
	SetPageHugeTemporary(page);

	return page;
}

1609 1610 1611
/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1612
static
1613
struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1614 1615
		struct vm_area_struct *vma, unsigned long addr)
{
1616 1617 1618 1619 1620 1621 1622
	struct page *page;
	struct mempolicy *mpol;
	gfp_t gfp_mask = htlb_alloc_mask(h);
	int nid;
	nodemask_t *nodemask;

	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1623
	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1624 1625 1626
	mpol_cond_put(mpol);

	return page;
1627 1628
}

1629
/* page migration callback function */
1630 1631
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1632
	gfp_t gfp_mask = htlb_alloc_mask(h);
1633
	struct page *page = NULL;
1634

1635 1636 1637
	if (nid != NUMA_NO_NODE)
		gfp_mask |= __GFP_THISNODE;

1638
	spin_lock(&hugetlb_lock);
1639
	if (h->free_huge_pages - h->resv_huge_pages > 0)
1640
		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1641 1642
	spin_unlock(&hugetlb_lock);

1643
	if (!page)
1644
		page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1645 1646 1647 1648

	return page;
}

1649
/* page migration callback function */
1650 1651
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
		nodemask_t *nmask)
1652
{
1653
	gfp_t gfp_mask = htlb_alloc_mask(h);
1654 1655 1656

	spin_lock(&hugetlb_lock);
	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1657 1658 1659 1660 1661 1662
		struct page *page;

		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
		if (page) {
			spin_unlock(&hugetlb_lock);
			return page;
1663 1664 1665 1666
		}
	}
	spin_unlock(&hugetlb_lock);

1667
	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1668 1669
}

1670
/* mempolicy aware migration callback */
1671 1672
struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
		unsigned long address)
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
{
	struct mempolicy *mpol;
	nodemask_t *nodemask;
	struct page *page;
	gfp_t gfp_mask;
	int node;

	gfp_mask = htlb_alloc_mask(h);
	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
	page = alloc_huge_page_nodemask(h, node, nodemask);
	mpol_cond_put(mpol);

	return page;
}

1688
/*
L
Lucas De Marchi 已提交
1689
 * Increase the hugetlb pool such that it can accommodate a reservation
1690 1691
 * of size 'delta'.
 */
1692
static int gather_surplus_pages(struct hstate *h, int delta)
1693 1694 1695 1696 1697
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1698
	bool alloc_ok = true;
1699

1700
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1701
	if (needed <= 0) {
1702
		h->resv_huge_pages += delta;
1703
		return 0;
1704
	}
1705 1706 1707 1708 1709 1710 1711 1712

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1713
		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1714
				NUMA_NO_NODE, NULL);
1715 1716 1717 1718
		if (!page) {
			alloc_ok = false;
			break;
		}
1719
		list_add(&page->lru, &surplus_list);
1720
		cond_resched();
1721
	}
1722
	allocated += i;
1723 1724 1725 1726 1727 1728

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1729 1730
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1741 1742
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1743
	 * needed to accommodate the reservation.  Add the appropriate number
1744
	 * of pages to the hugetlb pool and free the extras back to the buddy
1745 1746 1747
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1748 1749
	 */
	needed += allocated;
1750
	h->resv_huge_pages += delta;
1751
	ret = 0;
1752

1753
	/* Free the needed pages to the hugetlb pool */
1754
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1755 1756
		if ((--needed) < 0)
			break;
1757 1758 1759 1760 1761
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1762
		VM_BUG_ON_PAGE(page_count(page), page);
1763
		enqueue_huge_page(h, page);
1764
	}
1765
free:
1766
	spin_unlock(&hugetlb_lock);
1767 1768

	/* Free unnecessary surplus pages to the buddy allocator */
1769 1770
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1771
	spin_lock(&hugetlb_lock);
1772 1773 1774 1775 1776

	return ret;
}

/*
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
 *
 * Called with hugetlb_lock held.  However, the lock could be dropped (and
 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
 * we must make sure nobody else can claim pages we are in the process of
 * freeing.  Do this by ensuring resv_huge_page always is greater than the
 * number of huge pages we plan to free when dropping the lock.
1789
 */
1790 1791
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1792 1793 1794
{
	unsigned long nr_pages;

1795
	/* Cannot return gigantic pages currently */
1796
	if (hstate_is_gigantic(h))
1797
		goto out;
1798

1799 1800 1801 1802
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
1803
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1804

1805 1806
	/*
	 * We want to release as many surplus pages as possible, spread
1807 1808 1809 1810 1811
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1812 1813 1814 1815
	 *
	 * Note that we decrement resv_huge_pages as we free the pages.  If
	 * we drop the lock, resv_huge_pages will still be sufficiently large
	 * to cover subsequent pages we may free.
1816 1817
	 */
	while (nr_pages--) {
1818 1819
		h->resv_huge_pages--;
		unused_resv_pages--;
1820
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1821
			goto out;
1822
		cond_resched_lock(&hugetlb_lock);
1823
	}
1824 1825 1826 1827

out:
	/* Fully uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
1828 1829
}

1830

1831
/*
1832
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1833
 * are used by the huge page allocation routines to manage reservations.
1834 1835 1836 1837 1838 1839
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1840 1841 1842
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1843 1844 1845 1846 1847 1848
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1849 1850 1851 1852 1853
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
1854
 */
1855 1856 1857
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1858
	VMA_END_RESV,
1859
	VMA_ADD_RESV,
1860
};
1861 1862
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1863
				enum vma_resv_mode mode)
1864
{
1865 1866
	struct resv_map *resv;
	pgoff_t idx;
1867
	long ret;
1868

1869 1870
	resv = vma_resv_map(vma);
	if (!resv)
1871
		return 1;
1872

1873
	idx = vma_hugecache_offset(h, vma, addr);
1874 1875
	switch (mode) {
	case VMA_NEEDS_RESV:
1876
		ret = region_chg(resv, idx, idx + 1);
1877 1878 1879 1880
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1881
	case VMA_END_RESV:
1882 1883 1884
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
1885 1886 1887 1888 1889 1890 1891 1892
	case VMA_ADD_RESV:
		if (vma->vm_flags & VM_MAYSHARE)
			ret = region_add(resv, idx, idx + 1);
		else {
			region_abort(resv, idx, idx + 1);
			ret = region_del(resv, idx, idx + 1);
		}
		break;
1893 1894 1895
	default:
		BUG();
	}
1896

1897
	if (vma->vm_flags & VM_MAYSHARE)
1898
		return ret;
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
1918
	else
1919
		return ret < 0 ? ret : 0;
1920
}
1921 1922

static long vma_needs_reservation(struct hstate *h,
1923
			struct vm_area_struct *vma, unsigned long addr)
1924
{
1925
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1926
}
1927

1928 1929 1930
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1931 1932 1933
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1934
static void vma_end_reservation(struct hstate *h,
1935 1936
			struct vm_area_struct *vma, unsigned long addr)
{
1937
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1938 1939
}

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

/*
 * This routine is called to restore a reservation on error paths.  In the
 * specific error paths, a huge page was allocated (via alloc_huge_page)
 * and is about to be freed.  If a reservation for the page existed,
 * alloc_huge_page would have consumed the reservation and set PagePrivate
 * in the newly allocated page.  When the page is freed via free_huge_page,
 * the global reservation count will be incremented if PagePrivate is set.
 * However, free_huge_page can not adjust the reserve map.  Adjust the
 * reserve map here to be consistent with global reserve count adjustments
 * to be made by free_huge_page.
 */
static void restore_reserve_on_error(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address,
			struct page *page)
{
	if (unlikely(PagePrivate(page))) {
		long rc = vma_needs_reservation(h, vma, address);

		if (unlikely(rc < 0)) {
			/*
			 * Rare out of memory condition in reserve map
			 * manipulation.  Clear PagePrivate so that
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
			ClearPagePrivate(page);
		} else if (rc) {
			rc = vma_add_reservation(h, vma, address);
			if (unlikely(rc < 0))
				/*
				 * See above comment about rare out of
				 * memory condition.
				 */
				ClearPagePrivate(page);
		} else
			vma_end_reservation(h, vma, address);
	}
}

1990
struct page *alloc_huge_page(struct vm_area_struct *vma,
1991
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1992
{
1993
	struct hugepage_subpool *spool = subpool_vma(vma);
1994
	struct hstate *h = hstate_vma(vma);
1995
	struct page *page;
1996 1997
	long map_chg, map_commit;
	long gbl_chg;
1998 1999
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
2000

2001
	idx = hstate_index(h);
2002
	/*
2003 2004 2005
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
2006
	 */
2007 2008
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
2009
		return ERR_PTR(-ENOMEM);
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
2021
			vma_end_reservation(h, vma, addr);
2022
			return ERR_PTR(-ENOSPC);
2023
		}
L
Linus Torvalds 已提交
2024

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2037
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2038 2039 2040
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
2041
	spin_lock(&hugetlb_lock);
2042 2043 2044 2045 2046 2047
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2048
	if (!page) {
2049
		spin_unlock(&hugetlb_lock);
2050
		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2051 2052
		if (!page)
			goto out_uncharge_cgroup;
2053 2054 2055 2056
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
2057 2058
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
2059
		/* Fall through */
K
Ken Chen 已提交
2060
	}
2061 2062
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
2063

2064
	set_page_private(page, (unsigned long)spool);
2065

2066 2067
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
2082
	return page;
2083 2084 2085 2086

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
2087
	if (map_chg || avoid_reserve)
2088
		hugepage_subpool_put_pages(spool, 1);
2089
	vma_end_reservation(h, vma, addr);
2090
	return ERR_PTR(-ENOSPC);
2091 2092
}

2093 2094 2095
int alloc_bootmem_huge_page(struct hstate *h)
	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
int __alloc_bootmem_huge_page(struct hstate *h)
2096 2097
{
	struct huge_bootmem_page *m;
2098
	int nr_nodes, node;
2099

2100
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2101 2102
		void *addr;

2103
		addr = memblock_virt_alloc_try_nid_raw(
2104 2105
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2106 2107 2108 2109 2110 2111 2112
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2113
			goto found;
2114 2115 2116 2117 2118
		}
	}
	return 0;

found:
2119
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2120
	/* Put them into a private list first because mem_map is not up yet */
2121
	INIT_LIST_HEAD(&m->list);
2122 2123 2124 2125 2126
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2127 2128
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
2129 2130 2131 2132 2133 2134 2135
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

2136 2137 2138 2139 2140 2141
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
2142
		struct page *page = virt_to_page(m);
2143
		struct hstate *h = m->hstate;
2144

2145
		WARN_ON(page_count(page) != 1);
2146
		prep_compound_huge_page(page, h->order);
2147
		WARN_ON(PageReserved(page));
2148
		prep_new_huge_page(h, page, page_to_nid(page));
2149 2150
		put_page(page); /* free it into the hugepage allocator */

2151 2152 2153 2154 2155 2156
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2157
		if (hstate_is_gigantic(h))
2158
			adjust_managed_page_count(page, 1 << h->order);
2159
		cond_resched();
2160 2161 2162
	}
}

2163
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2164 2165
{
	unsigned long i;
2166

2167
	for (i = 0; i < h->max_huge_pages; ++i) {
2168
		if (hstate_is_gigantic(h)) {
2169 2170
			if (!alloc_bootmem_huge_page(h))
				break;
2171
		} else if (!alloc_pool_huge_page(h,
2172
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
2173
			break;
2174
		cond_resched();
L
Linus Torvalds 已提交
2175
	}
2176 2177 2178
	if (i < h->max_huge_pages) {
		char buf[32];

2179
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2180 2181 2182 2183
		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
			h->max_huge_pages, buf, i);
		h->max_huge_pages = i;
	}
2184 2185 2186 2187 2188 2189 2190
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2191 2192 2193
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2194
		/* oversize hugepages were init'ed in early boot */
2195
		if (!hstate_is_gigantic(h))
2196
			hugetlb_hstate_alloc_pages(h);
2197
	}
2198
	VM_BUG_ON(minimum_order == UINT_MAX);
2199 2200 2201 2202 2203 2204 2205
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2206
		char buf[32];
2207 2208

		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2209
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2210
			buf, h->free_huge_pages);
2211 2212 2213
	}
}

L
Linus Torvalds 已提交
2214
#ifdef CONFIG_HIGHMEM
2215 2216
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2217
{
2218 2219
	int i;

2220
	if (hstate_is_gigantic(h))
2221 2222
		return;

2223
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2224
		struct page *page, *next;
2225 2226 2227
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2228
				return;
L
Linus Torvalds 已提交
2229 2230 2231
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2232
			update_and_free_page(h, page);
2233 2234
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2235 2236 2237 2238
		}
	}
}
#else
2239 2240
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2241 2242 2243 2244
{
}
#endif

2245 2246 2247 2248 2249
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2250 2251
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2252
{
2253
	int nr_nodes, node;
2254 2255 2256

	VM_BUG_ON(delta != -1 && delta != 1);

2257 2258 2259 2260
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2261
		}
2262 2263 2264 2265 2266
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2267
		}
2268 2269
	}
	return 0;
2270

2271 2272 2273 2274
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2275 2276
}

2277
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2278 2279
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2280
{
2281
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
2282

2283
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2284 2285
		return h->max_huge_pages;

2286 2287 2288 2289
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2290
	 *
2291
	 * We might race with alloc_surplus_huge_page() here and be unable
2292 2293 2294 2295
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2296
	 */
L
Linus Torvalds 已提交
2297
	spin_lock(&hugetlb_lock);
2298
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2299
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2300 2301 2302
			break;
	}

2303
	while (count > persistent_huge_pages(h)) {
2304 2305 2306 2307 2308 2309
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2310 2311 2312 2313

		/* yield cpu to avoid soft lockup */
		cond_resched();

2314
		ret = alloc_pool_huge_page(h, nodes_allowed);
2315 2316 2317 2318
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2319 2320 2321
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2322 2323 2324 2325 2326 2327 2328 2329
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2330 2331 2332 2333
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
2334
	 * alloc_surplus_huge_page() is checking the global counter,
2335 2336 2337
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2338
	 */
2339
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2340
	min_count = max(count, min_count);
2341
	try_to_free_low(h, min_count, nodes_allowed);
2342
	while (min_count < persistent_huge_pages(h)) {
2343
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2344
			break;
2345
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2346
	}
2347
	while (count < persistent_huge_pages(h)) {
2348
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2349 2350 2351
			break;
	}
out:
2352
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2353
	spin_unlock(&hugetlb_lock);
2354
	return ret;
L
Linus Torvalds 已提交
2355 2356
}

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2367 2368 2369
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2370 2371
{
	int i;
2372

2373
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2374 2375 2376
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2377
			return &hstates[i];
2378 2379 2380
		}

	return kobj_to_node_hstate(kobj, nidp);
2381 2382
}

2383
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2384 2385
					struct kobj_attribute *attr, char *buf)
{
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2397
}
2398

2399 2400 2401
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2402 2403
{
	int err;
2404
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2405

2406
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2407 2408 2409 2410
		err = -EINVAL;
		goto out;
	}

2411 2412 2413 2414 2415 2416 2417
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2418
			nodes_allowed = &node_states[N_MEMORY];
2419 2420 2421 2422 2423 2424 2425 2426 2427
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
2428
		nodes_allowed = &node_states[N_MEMORY];
2429

2430
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2431

2432
	if (nodes_allowed != &node_states[N_MEMORY])
2433 2434 2435
		NODEMASK_FREE(nodes_allowed);

	return len;
2436 2437 2438
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
2439 2440
}

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2458 2459 2460 2461 2462 2463 2464 2465 2466
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2467
	return nr_hugepages_store_common(false, kobj, buf, len);
2468 2469 2470
}
HSTATE_ATTR(nr_hugepages);

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2486
	return nr_hugepages_store_common(true, kobj, buf, len);
2487 2488 2489 2490 2491
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2492 2493 2494
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2495
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2496 2497
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2498

2499 2500 2501 2502 2503
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2504
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2505

2506
	if (hstate_is_gigantic(h))
2507 2508
		return -EINVAL;

2509
	err = kstrtoul(buf, 10, &input);
2510
	if (err)
2511
		return err;
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2535 2536 2537 2538 2539 2540
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2541
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2542 2543 2544 2545 2546 2547 2548
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2560 2561 2562 2563 2564 2565 2566 2567 2568
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2569 2570 2571
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2572 2573 2574
	NULL,
};

2575
static const struct attribute_group hstate_attr_group = {
2576 2577 2578
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2579 2580
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
2581
				    const struct attribute_group *hstate_attr_group)
2582 2583
{
	int retval;
2584
	int hi = hstate_index(h);
2585

2586 2587
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2588 2589
		return -ENOMEM;

2590
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2591
	if (retval)
2592
		kobject_put(hstate_kobjs[hi]);
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2607 2608
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2609
		if (err)
2610
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2611 2612 2613
	}
}

2614 2615 2616 2617
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2618 2619 2620
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2621 2622 2623 2624 2625 2626
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
2627
static struct node_hstate node_hstates[MAX_NUMNODES];
2628 2629

/*
2630
 * A subset of global hstate attributes for node devices
2631 2632 2633 2634 2635 2636 2637 2638
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

2639
static const struct attribute_group per_node_hstate_attr_group = {
2640 2641 2642 2643
	.attrs = per_node_hstate_attrs,
};

/*
2644
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2667
 * Unregister hstate attributes from a single node device.
2668 2669
 * No-op if no hstate attributes attached.
 */
2670
static void hugetlb_unregister_node(struct node *node)
2671 2672
{
	struct hstate *h;
2673
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2674 2675

	if (!nhs->hugepages_kobj)
2676
		return;		/* no hstate attributes */
2677

2678 2679 2680 2681 2682
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2683
		}
2684
	}
2685 2686 2687 2688 2689 2690 2691

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
2692
 * Register hstate attributes for a single node device.
2693 2694
 * No-op if attributes already registered.
 */
2695
static void hugetlb_register_node(struct node *node)
2696 2697
{
	struct hstate *h;
2698
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2699 2700 2701 2702 2703 2704
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2705
							&node->dev.kobj);
2706 2707 2708 2709 2710 2711 2712 2713
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2714 2715
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2716 2717 2718 2719 2720 2721 2722
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2723
 * hugetlb init time:  register hstate attributes for all registered node
2724 2725
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2726
 */
2727
static void __init hugetlb_register_all_nodes(void)
2728 2729 2730
{
	int nid;

2731
	for_each_node_state(nid, N_MEMORY) {
2732
		struct node *node = node_devices[nid];
2733
		if (node->dev.id == nid)
2734 2735 2736 2737
			hugetlb_register_node(node);
	}

	/*
2738
	 * Let the node device driver know we're here so it can
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

2758 2759
static int __init hugetlb_init(void)
{
2760 2761
	int i;

2762
	if (!hugepages_supported())
2763
		return 0;
2764

2765
	if (!size_to_hstate(default_hstate_size)) {
2766 2767 2768 2769 2770
		if (default_hstate_size != 0) {
			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
			       default_hstate_size, HPAGE_SIZE);
		}

2771 2772 2773
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2774
	}
2775
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2776 2777 2778 2779
	if (default_hstate_max_huge_pages) {
		if (!default_hstate.max_huge_pages)
			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
	}
2780 2781

	hugetlb_init_hstates();
2782
	gather_bootmem_prealloc();
2783 2784 2785
	report_hugepages();

	hugetlb_sysfs_init();
2786
	hugetlb_register_all_nodes();
2787
	hugetlb_cgroup_file_init();
2788

2789 2790 2791 2792 2793
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
2794
	hugetlb_fault_mutex_table =
2795 2796
		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
			      GFP_KERNEL);
2797
	BUG_ON(!hugetlb_fault_mutex_table);
2798 2799

	for (i = 0; i < num_fault_mutexes; i++)
2800
		mutex_init(&hugetlb_fault_mutex_table[i]);
2801 2802
	return 0;
}
2803
subsys_initcall(hugetlb_init);
2804 2805

/* Should be called on processing a hugepagesz=... option */
2806 2807 2808 2809 2810
void __init hugetlb_bad_size(void)
{
	parsed_valid_hugepagesz = false;
}

2811
void __init hugetlb_add_hstate(unsigned int order)
2812 2813
{
	struct hstate *h;
2814 2815
	unsigned long i;

2816
	if (size_to_hstate(PAGE_SIZE << order)) {
J
Joe Perches 已提交
2817
		pr_warn("hugepagesz= specified twice, ignoring\n");
2818 2819
		return;
	}
2820
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2821
	BUG_ON(order == 0);
2822
	h = &hstates[hugetlb_max_hstate++];
2823 2824
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2825 2826 2827 2828
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2829
	INIT_LIST_HEAD(&h->hugepage_activelist);
2830 2831
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
2832 2833
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2834

2835 2836 2837
	parsed_hstate = h;
}

2838
static int __init hugetlb_nrpages_setup(char *s)
2839 2840
{
	unsigned long *mhp;
2841
	static unsigned long *last_mhp;
2842

2843 2844 2845 2846 2847 2848
	if (!parsed_valid_hugepagesz) {
		pr_warn("hugepages = %s preceded by "
			"an unsupported hugepagesz, ignoring\n", s);
		parsed_valid_hugepagesz = true;
		return 1;
	}
2849
	/*
2850
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2851 2852
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2853
	else if (!hugetlb_max_hstate)
2854 2855 2856 2857
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2858
	if (mhp == last_mhp) {
J
Joe Perches 已提交
2859
		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2860 2861 2862
		return 1;
	}

2863 2864 2865
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2866 2867 2868 2869 2870
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2871
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2872 2873 2874 2875
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2876 2877
	return 1;
}
2878 2879 2880 2881 2882 2883 2884 2885
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2886

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2899 2900 2901
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2902
{
2903
	struct hstate *h = &default_hstate;
2904
	unsigned long tmp = h->max_huge_pages;
2905
	int ret;
2906

2907
	if (!hugepages_supported())
2908
		return -EOPNOTSUPP;
2909

2910 2911
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2912 2913 2914
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2915

2916 2917 2918
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2919 2920
out:
	return ret;
L
Linus Torvalds 已提交
2921
}
2922

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2940
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2941
			void __user *buffer,
2942 2943
			size_t *length, loff_t *ppos)
{
2944
	struct hstate *h = &default_hstate;
2945
	unsigned long tmp;
2946
	int ret;
2947

2948
	if (!hugepages_supported())
2949
		return -EOPNOTSUPP;
2950

2951
	tmp = h->nr_overcommit_huge_pages;
2952

2953
	if (write && hstate_is_gigantic(h))
2954 2955
		return -EINVAL;

2956 2957
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2958 2959 2960
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2961 2962 2963 2964 2965 2966

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2967 2968
out:
	return ret;
2969 2970
}

L
Linus Torvalds 已提交
2971 2972
#endif /* CONFIG_SYSCTL */

2973
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2974
{
2975 2976 2977
	struct hstate *h;
	unsigned long total = 0;

2978 2979
	if (!hugepages_supported())
		return;
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000

	for_each_hstate(h) {
		unsigned long count = h->nr_huge_pages;

		total += (PAGE_SIZE << huge_page_order(h)) * count;

		if (h == &default_hstate)
			seq_printf(m,
				   "HugePages_Total:   %5lu\n"
				   "HugePages_Free:    %5lu\n"
				   "HugePages_Rsvd:    %5lu\n"
				   "HugePages_Surp:    %5lu\n"
				   "Hugepagesize:   %8lu kB\n",
				   count,
				   h->free_huge_pages,
				   h->resv_huge_pages,
				   h->surplus_huge_pages,
				   (PAGE_SIZE << huge_page_order(h)) / 1024);
	}

	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
L
Linus Torvalds 已提交
3001 3002 3003 3004
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
3005
	struct hstate *h = &default_hstate;
3006 3007
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
3008 3009
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
3010 3011
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
3012 3013 3014
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
3015 3016
}

3017 3018 3019 3020 3021
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

3022 3023 3024
	if (!hugepages_supported())
		return;

3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

3035 3036 3037 3038 3039 3040
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
3041 3042 3043
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
3044 3045 3046 3047 3048 3049
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
3050 3051
}

3052
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
3075
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
3076 3077
			goto out;

3078 3079
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
3080 3081 3082 3083 3084 3085
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
3086
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
3087 3088 3089 3090 3091 3092

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

3093 3094
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
3095
	struct resv_map *resv = vma_resv_map(vma);
3096 3097 3098 3099 3100

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
3101
	 * has a reference to the reservation map it cannot disappear until
3102 3103 3104
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
3105
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3106
		kref_get(&resv->refs);
3107 3108
}

3109 3110
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
3111
	struct hstate *h = hstate_vma(vma);
3112
	struct resv_map *resv = vma_resv_map(vma);
3113
	struct hugepage_subpool *spool = subpool_vma(vma);
3114
	unsigned long reserve, start, end;
3115
	long gbl_reserve;
3116

3117 3118
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
3119

3120 3121
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
3122

3123
	reserve = (end - start) - region_count(resv, start, end);
3124

3125 3126 3127
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
3128 3129 3130 3131 3132 3133
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3134
	}
3135 3136
}

3137 3138 3139 3140 3141 3142 3143
static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
{
	if (addr & ~(huge_page_mask(hstate_vma(vma))))
		return -EINVAL;
	return 0;
}

3144 3145 3146 3147 3148 3149 3150
static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate = hstate_vma(vma);

	return 1UL << huge_page_shift(hstate);
}

L
Linus Torvalds 已提交
3151 3152 3153 3154 3155 3156
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
3157
static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
3158 3159
{
	BUG();
N
Nick Piggin 已提交
3160
	return 0;
L
Linus Torvalds 已提交
3161 3162
}

3163 3164 3165 3166 3167 3168 3169
/*
 * When a new function is introduced to vm_operations_struct and added
 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
 * This is because under System V memory model, mappings created via
 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
 * their original vm_ops are overwritten with shm_vm_ops.
 */
3170
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3171
	.fault = hugetlb_vm_op_fault,
3172
	.open = hugetlb_vm_op_open,
3173
	.close = hugetlb_vm_op_close,
3174
	.split = hugetlb_vm_op_split,
3175
	.pagesize = hugetlb_vm_op_pagesize,
L
Linus Torvalds 已提交
3176 3177
};

3178 3179
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3180 3181 3182
{
	pte_t entry;

3183
	if (writable) {
3184 3185
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3186
	} else {
3187 3188
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3189 3190 3191
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3192
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3193 3194 3195 3196

	return entry;
}

3197 3198 3199 3200 3201
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3202
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3203
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3204
		update_mmu_cache(vma, address, ptep);
3205 3206
}

3207
bool is_hugetlb_entry_migration(pte_t pte)
3208 3209 3210 3211
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
3212
		return false;
3213 3214
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
3215
		return true;
3216
	else
3217
		return false;
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3232

D
David Gibson 已提交
3233 3234 3235 3236 3237
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
3238
	unsigned long addr;
3239
	int cow;
3240 3241
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3242 3243 3244
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
3245 3246

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3247

3248 3249 3250 3251 3252
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

3253
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3254
		spinlock_t *src_ptl, *dst_ptl;
3255
		src_pte = huge_pte_offset(src, addr, sz);
H
Hugh Dickins 已提交
3256 3257
		if (!src_pte)
			continue;
3258
		dst_pte = huge_pte_alloc(dst, addr, sz);
3259 3260 3261 3262
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3263 3264 3265 3266 3267

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

3268 3269 3270
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
3285 3286
				set_huge_swap_pte_at(src, addr, src_pte,
						     entry, sz);
3287
			}
3288
			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3289
		} else {
3290
			if (cow) {
3291 3292 3293 3294 3295
				/*
				 * No need to notify as we are downgrading page
				 * table protection not changing it to point
				 * to a new page.
				 *
3296
				 * See Documentation/vm/mmu_notifier.rst
3297
				 */
3298
				huge_ptep_set_wrprotect(src, addr, src_pte);
3299
			}
3300
			entry = huge_ptep_get(src_pte);
3301 3302
			ptepage = pte_page(entry);
			get_page(ptepage);
3303
			page_dup_rmap(ptepage, true);
3304
			set_huge_pte_at(dst, addr, dst_pte, entry);
3305
			hugetlb_count_add(pages_per_huge_page(h), dst);
3306
		}
3307 3308
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3309 3310
	}

3311 3312 3313 3314
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
3315 3316
}

3317 3318 3319
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3320 3321 3322
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3323
	pte_t *ptep;
D
David Gibson 已提交
3324
	pte_t pte;
3325
	spinlock_t *ptl;
D
David Gibson 已提交
3326
	struct page *page;
3327 3328
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3329 3330
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3331

D
David Gibson 已提交
3332
	WARN_ON(!is_vm_hugetlb_page(vma));
3333 3334
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3335

3336 3337 3338 3339 3340
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
	tlb_remove_check_page_size_change(tlb, sz);
3341
	tlb_start_vma(tlb, vma);
3342
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3343 3344
	address = start;
	for (; address < end; address += sz) {
3345
		ptep = huge_pte_offset(mm, address, sz);
A
Adam Litke 已提交
3346
		if (!ptep)
3347 3348
			continue;

3349
		ptl = huge_pte_lock(h, mm, ptep);
3350 3351 3352 3353
		if (huge_pmd_unshare(mm, &address, ptep)) {
			spin_unlock(ptl);
			continue;
		}
3354

3355
		pte = huge_ptep_get(ptep);
3356 3357 3358 3359
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
3360 3361

		/*
3362 3363
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3364
		 */
3365
		if (unlikely(!pte_present(pte))) {
3366
			huge_pte_clear(mm, address, ptep, sz);
3367 3368
			spin_unlock(ptl);
			continue;
3369
		}
3370 3371

		page = pte_page(pte);
3372 3373 3374 3375 3376 3377
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
3378 3379 3380 3381
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
3382 3383 3384 3385 3386 3387 3388 3389
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3390
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3391
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3392
		if (huge_pte_dirty(pte))
3393
			set_page_dirty(page);
3394

3395
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3396
		page_remove_rmap(page, true);
3397

3398
		spin_unlock(ptl);
3399
		tlb_remove_page_size(tlb, page, huge_page_size(h));
3400 3401 3402 3403 3404
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
3405
	}
3406
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3407
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3408
}
D
David Gibson 已提交
3409

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3422
	 * is to clear it before releasing the i_mmap_rwsem. This works
3423
	 * because in the context this is called, the VMA is about to be
3424
	 * destroyed and the i_mmap_rwsem is held.
3425 3426 3427 3428
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3429
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3430
			  unsigned long end, struct page *ref_page)
3431
{
3432 3433 3434 3435 3436
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

3437
	tlb_gather_mmu(&tlb, mm, start, end);
3438 3439
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
3440 3441
}

3442 3443 3444 3445 3446 3447
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3448 3449
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3450
{
3451
	struct hstate *h = hstate_vma(vma);
3452 3453 3454 3455 3456 3457 3458 3459
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3460
	address = address & huge_page_mask(h);
3461 3462
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
3463
	mapping = vma->vm_file->f_mapping;
3464

3465 3466 3467 3468 3469
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3470
	i_mmap_lock_write(mapping);
3471
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3472 3473 3474 3475
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

3476 3477 3478 3479 3480 3481 3482 3483
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

3484 3485 3486 3487 3488 3489 3490 3491
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3492 3493
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3494
	}
3495
	i_mmap_unlock_write(mapping);
3496 3497
}

3498 3499
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3500 3501 3502
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3503
 */
3504
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3505
		       unsigned long address, pte_t *ptep,
3506
		       struct page *pagecache_page, spinlock_t *ptl)
3507
{
3508
	pte_t pte;
3509
	struct hstate *h = hstate_vma(vma);
3510
	struct page *old_page, *new_page;
3511
	int ret = 0, outside_reserve = 0;
3512 3513
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
3514
	unsigned long haddr = address & huge_page_mask(h);
3515

3516
	pte = huge_ptep_get(ptep);
3517 3518
	old_page = pte_page(pte);

3519
retry_avoidcopy:
3520 3521
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3522
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3523
		page_move_anon_rmap(old_page, vma);
3524
		set_huge_ptep_writable(vma, haddr, ptep);
N
Nick Piggin 已提交
3525
		return 0;
3526 3527
	}

3528 3529 3530 3531 3532 3533 3534 3535 3536
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3537
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3538 3539 3540
			old_page != pagecache_page)
		outside_reserve = 1;

3541
	get_page(old_page);
3542

3543 3544 3545 3546
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3547
	spin_unlock(ptl);
3548
	new_page = alloc_huge_page(vma, haddr, outside_reserve);
3549

3550
	if (IS_ERR(new_page)) {
3551 3552 3553 3554 3555 3556 3557 3558
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3559
			put_page(old_page);
3560
			BUG_ON(huge_pte_none(pte));
3561
			unmap_ref_private(mm, vma, old_page, haddr);
3562 3563
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
3564
			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3565 3566 3567 3568 3569 3570 3571 3572
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3573 3574
		}

3575 3576 3577
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3578 3579
	}

3580 3581 3582 3583
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3584
	if (unlikely(anon_vma_prepare(vma))) {
3585 3586
		ret = VM_FAULT_OOM;
		goto out_release_all;
3587
	}
3588

3589
	copy_user_huge_page(new_page, old_page, address, vma,
A
Andrea Arcangeli 已提交
3590
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3591
	__SetPageUptodate(new_page);
3592
	set_page_huge_active(new_page);
3593

3594
	mmun_start = haddr;
3595 3596
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3597

3598
	/*
3599
	 * Retake the page table lock to check for racing updates
3600 3601
	 * before the page tables are altered
	 */
3602
	spin_lock(ptl);
3603
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3604
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3605 3606
		ClearPagePrivate(new_page);

3607
		/* Break COW */
3608
		huge_ptep_clear_flush(vma, haddr, ptep);
3609
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3610
		set_huge_pte_at(mm, haddr, ptep,
3611
				make_huge_pte(vma, new_page, 1));
3612
		page_remove_rmap(old_page, true);
3613
		hugepage_add_new_anon_rmap(new_page, vma, haddr);
3614 3615 3616
		/* Make the old page be freed below */
		new_page = old_page;
	}
3617
	spin_unlock(ptl);
3618
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3619
out_release_all:
3620
	restore_reserve_on_error(h, vma, haddr, new_page);
3621
	put_page(new_page);
3622
out_release_old:
3623
	put_page(old_page);
3624

3625 3626
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3627 3628
}

3629
/* Return the pagecache page at a given address within a VMA */
3630 3631
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3632 3633
{
	struct address_space *mapping;
3634
	pgoff_t idx;
3635 3636

	mapping = vma->vm_file->f_mapping;
3637
	idx = vma_hugecache_offset(h, vma, address);
3638 3639 3640 3641

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3642 3643 3644 3645 3646
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

3679
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3680 3681
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3682
{
3683
	struct hstate *h = hstate_vma(vma);
3684
	int ret = VM_FAULT_SIGBUS;
3685
	int anon_rmap = 0;
A
Adam Litke 已提交
3686 3687
	unsigned long size;
	struct page *page;
3688
	pte_t new_pte;
3689
	spinlock_t *ptl;
3690
	unsigned long haddr = address & huge_page_mask(h);
A
Adam Litke 已提交
3691

3692 3693 3694
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3695
	 * COW. Warn that such a situation has occurred as it may not be obvious
3696 3697
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3698
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3699
			   current->pid);
3700 3701 3702
		return ret;
	}

A
Adam Litke 已提交
3703 3704 3705 3706
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3707 3708 3709
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3710
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3711 3712
		if (idx >= size)
			goto out;
3713 3714 3715 3716 3717 3718 3719 3720

		/*
		 * Check for page in userfault range
		 */
		if (userfaultfd_missing(vma)) {
			u32 hash;
			struct vm_fault vmf = {
				.vma = vma,
3721
				.address = haddr,
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
				.flags = flags,
				/*
				 * Hard to debug if it ends up being
				 * used by a callee that assumes
				 * something about the other
				 * uninitialized fields... same as in
				 * memory.c
				 */
			};

			/*
			 * hugetlb_fault_mutex must be dropped before
			 * handling userfault.  Reacquire after handling
			 * fault to make calling code simpler.
			 */
			hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3738
							idx, haddr);
3739 3740 3741 3742 3743 3744
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
			goto out;
		}

3745
		page = alloc_huge_page(vma, haddr, 0);
3746
		if (IS_ERR(page)) {
3747 3748 3749 3750 3751
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3752 3753
			goto out;
		}
A
Andrea Arcangeli 已提交
3754
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3755
		__SetPageUptodate(page);
3756
		set_page_huge_active(page);
3757

3758
		if (vma->vm_flags & VM_MAYSHARE) {
3759
			int err = huge_add_to_page_cache(page, mapping, idx);
3760 3761 3762 3763 3764 3765
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3766
		} else {
3767
			lock_page(page);
3768 3769 3770 3771
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3772
			anon_rmap = 1;
3773
		}
3774
	} else {
3775 3776 3777 3778 3779 3780
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3781
			ret = VM_FAULT_HWPOISON |
3782
				VM_FAULT_SET_HINDEX(hstate_index(h));
3783 3784
			goto backout_unlocked;
		}
3785
	}
3786

3787 3788 3789 3790 3791 3792
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3793
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3794
		if (vma_needs_reservation(h, vma, haddr) < 0) {
3795 3796 3797
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3798
		/* Just decrements count, does not deallocate */
3799
		vma_end_reservation(h, vma, haddr);
3800
	}
3801

3802
	ptl = huge_pte_lock(h, mm, ptep);
3803
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3804 3805 3806
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3807
	ret = 0;
3808
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3809 3810
		goto backout;

3811 3812
	if (anon_rmap) {
		ClearPagePrivate(page);
3813
		hugepage_add_new_anon_rmap(page, vma, haddr);
3814
	} else
3815
		page_dup_rmap(page, true);
3816 3817
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
3818
	set_huge_pte_at(mm, haddr, ptep, new_pte);
3819

3820
	hugetlb_count_add(pages_per_huge_page(h), mm);
3821
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3822
		/* Optimization, do the COW without a second fault */
3823
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3824 3825
	}

3826
	spin_unlock(ptl);
A
Adam Litke 已提交
3827 3828
	unlock_page(page);
out:
3829
	return ret;
A
Adam Litke 已提交
3830 3831

backout:
3832
	spin_unlock(ptl);
3833
backout_unlocked:
A
Adam Litke 已提交
3834
	unlock_page(page);
3835
	restore_reserve_on_error(h, vma, haddr, page);
A
Adam Litke 已提交
3836 3837
	put_page(page);
	goto out;
3838 3839
}

3840
#ifdef CONFIG_SMP
3841
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
3866
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3867 3868 3869 3870 3871 3872 3873 3874
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3875
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3876
			unsigned long address, unsigned int flags)
3877
{
3878
	pte_t *ptep, entry;
3879
	spinlock_t *ptl;
3880
	int ret;
3881 3882
	u32 hash;
	pgoff_t idx;
3883
	struct page *page = NULL;
3884
	struct page *pagecache_page = NULL;
3885
	struct hstate *h = hstate_vma(vma);
3886
	struct address_space *mapping;
3887
	int need_wait_lock = 0;
3888
	unsigned long haddr = address & huge_page_mask(h);
3889

3890
	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3891 3892
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3893
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3894
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3895 3896
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3897
			return VM_FAULT_HWPOISON_LARGE |
3898
				VM_FAULT_SET_HINDEX(hstate_index(h));
3899
	} else {
3900
		ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3901 3902
		if (!ptep)
			return VM_FAULT_OOM;
3903 3904
	}

3905
	mapping = vma->vm_file->f_mapping;
3906
	idx = vma_hugecache_offset(h, vma, haddr);
3907

3908 3909 3910 3911 3912
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3913
	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
3914
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3915

3916 3917
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3918
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3919
		goto out_mutex;
3920
	}
3921

N
Nick Piggin 已提交
3922
	ret = 0;
3923

3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3934 3935 3936 3937 3938 3939 3940 3941
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3942
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3943
		if (vma_needs_reservation(h, vma, haddr) < 0) {
3944
			ret = VM_FAULT_OOM;
3945
			goto out_mutex;
3946
		}
3947
		/* Just decrements count, does not deallocate */
3948
		vma_end_reservation(h, vma, haddr);
3949

3950
		if (!(vma->vm_flags & VM_MAYSHARE))
3951
			pagecache_page = hugetlbfs_pagecache_page(h,
3952
								vma, haddr);
3953 3954
	}

3955 3956 3957 3958 3959 3960
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3961 3962 3963 3964 3965 3966 3967
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3968 3969 3970 3971
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3972

3973
	get_page(page);
3974

3975
	if (flags & FAULT_FLAG_WRITE) {
3976
		if (!huge_pte_write(entry)) {
3977
			ret = hugetlb_cow(mm, vma, address, ptep,
3978
					  pagecache_page, ptl);
3979
			goto out_put_page;
3980
		}
3981
		entry = huge_pte_mkdirty(entry);
3982 3983
	}
	entry = pte_mkyoung(entry);
3984
	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
3985
						flags & FAULT_FLAG_WRITE))
3986
		update_mmu_cache(vma, haddr, ptep);
3987 3988 3989 3990
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3991 3992
out_ptl:
	spin_unlock(ptl);
3993 3994 3995 3996 3997

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3998
out_mutex:
3999
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4000 4001 4002 4003 4004 4005 4006 4007 4008
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
4009
	return ret;
4010 4011
}

4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
			    struct page **pagep)
{
4023 4024 4025
	struct address_space *mapping;
	pgoff_t idx;
	unsigned long size;
4026
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
	struct hstate *h = hstate_vma(dst_vma);
	pte_t _dst_pte;
	spinlock_t *ptl;
	int ret;
	struct page *page;

	if (!*pagep) {
		ret = -ENOMEM;
		page = alloc_huge_page(dst_vma, dst_addr, 0);
		if (IS_ERR(page))
			goto out;

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
4041
						pages_per_huge_page(h), false);
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062

		/* fallback to copy_from_user outside mmap_sem */
		if (unlikely(ret)) {
			ret = -EFAULT;
			*pagep = page;
			/* don't free the page */
			goto out;
		}
	} else {
		page = *pagep;
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);
	set_page_huge_active(page);

4063 4064 4065
	mapping = dst_vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, dst_vma, dst_addr);

4066 4067 4068 4069
	/*
	 * If shared, add to page cache
	 */
	if (vm_shared) {
4070 4071 4072 4073
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		ret = -EFAULT;
		if (idx >= size)
			goto out_release_nounlock;
4074

4075 4076 4077 4078 4079 4080
		/*
		 * Serialization between remove_inode_hugepages() and
		 * huge_add_to_page_cache() below happens through the
		 * hugetlb_fault_mutex_table that here must be hold by
		 * the caller.
		 */
4081 4082 4083 4084 4085
		ret = huge_add_to_page_cache(page, mapping, idx);
		if (ret)
			goto out_release_nounlock;
	}

4086 4087 4088
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
	/*
	 * Recheck the i_size after holding PT lock to make sure not
	 * to leave any page mapped (as page_mapped()) beyond the end
	 * of the i_size (remove_inode_hugepages() is strict about
	 * enforcing that). If we bail out here, we'll also leave a
	 * page in the radix tree in the vm_shared case beyond the end
	 * of the i_size, but remove_inode_hugepages() will take care
	 * of it as soon as we drop the hugetlb_fault_mutex_table.
	 */
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	ret = -EFAULT;
	if (idx >= size)
		goto out_release_unlock;

4103 4104 4105 4106
	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

4107 4108 4109 4110 4111 4112
	if (vm_shared) {
		page_dup_rmap(page, true);
	} else {
		ClearPagePrivate(page);
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
	}
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128

	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
	if (dst_vma->vm_flags & VM_WRITE)
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
4129 4130
	if (vm_shared)
		unlock_page(page);
4131 4132 4133 4134 4135
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
4136 4137
	if (vm_shared)
		unlock_page(page);
4138
out_release_nounlock:
4139 4140 4141 4142
	put_page(page);
	goto out;
}

4143 4144 4145
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
4146
			 long i, unsigned int flags, int *nonblocking)
D
David Gibson 已提交
4147
{
4148 4149
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
4150
	unsigned long remainder = *nr_pages;
4151
	struct hstate *h = hstate_vma(vma);
4152
	int err = -EFAULT;
D
David Gibson 已提交
4153 4154

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
4155
		pte_t *pte;
4156
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
4157
		int absent;
A
Adam Litke 已提交
4158
		struct page *page;
D
David Gibson 已提交
4159

4160 4161 4162 4163 4164 4165 4166 4167 4168
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
4169 4170
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
4171
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
4172
		 * first, for the page indexing below to work.
4173 4174
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
4175
		 */
4176 4177
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
				      huge_page_size(h));
4178 4179
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
4180 4181 4182 4183
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
4184 4185 4186 4187
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
4188
		 */
H
Hugh Dickins 已提交
4189 4190
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4191 4192
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
4193 4194 4195
			remainder = 0;
			break;
		}
D
David Gibson 已提交
4196

4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4208 4209
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
4210
			int ret;
4211
			unsigned int fault_flags = 0;
D
David Gibson 已提交
4212

4213 4214
			if (pte)
				spin_unlock(ptl);
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
			if (flags & FOLL_WRITE)
				fault_flags |= FAULT_FLAG_WRITE;
			if (nonblocking)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
			if (flags & FOLL_NOWAIT)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_RETRY_NOWAIT;
			if (flags & FOLL_TRIED) {
				VM_WARN_ON_ONCE(fault_flags &
						FAULT_FLAG_ALLOW_RETRY);
				fault_flags |= FAULT_FLAG_TRIED;
			}
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
			if (ret & VM_FAULT_ERROR) {
4229
				err = vm_fault_to_errno(ret, flags);
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
				remainder = 0;
				break;
			}
			if (ret & VM_FAULT_RETRY) {
				if (nonblocking)
					*nonblocking = 0;
				*nr_pages = 0;
				/*
				 * VM_FAULT_RETRY must not return an
				 * error, it will return zero
				 * instead.
				 *
				 * No need to update "position" as the
				 * caller will not check it after
				 * *nr_pages is set to 0.
				 */
				return i;
			}
			continue;
A
Adam Litke 已提交
4249 4250
		}

4251
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4252
		page = pte_page(huge_ptep_get(pte));
4253
same_page:
4254
		if (pages) {
H
Hugh Dickins 已提交
4255
			pages[i] = mem_map_offset(page, pfn_offset);
4256
			get_page(pages[i]);
4257
		}
D
David Gibson 已提交
4258 4259 4260 4261 4262

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
4263
		++pfn_offset;
D
David Gibson 已提交
4264 4265
		--remainder;
		++i;
4266
		if (vaddr < vma->vm_end && remainder &&
4267
				pfn_offset < pages_per_huge_page(h)) {
4268 4269 4270 4271 4272 4273
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
4274
		spin_unlock(ptl);
D
David Gibson 已提交
4275
	}
4276
	*nr_pages = remainder;
4277 4278 4279 4280 4281
	/*
	 * setting position is actually required only if remainder is
	 * not zero but it's faster not to add a "if (remainder)"
	 * branch.
	 */
D
David Gibson 已提交
4282 4283
	*position = vaddr;

4284
	return i ? i : err;
D
David Gibson 已提交
4285
}
4286

4287 4288 4289 4290 4291 4292 4293 4294
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
/*
 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 * implement this.
 */
#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
#endif

4295
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4296 4297 4298 4299 4300 4301
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
4302
	struct hstate *h = hstate_vma(vma);
4303
	unsigned long pages = 0;
4304 4305 4306 4307

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

4308
	mmu_notifier_invalidate_range_start(mm, start, end);
4309
	i_mmap_lock_write(vma->vm_file->f_mapping);
4310
	for (; address < end; address += huge_page_size(h)) {
4311
		spinlock_t *ptl;
4312
		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4313 4314
		if (!ptep)
			continue;
4315
		ptl = huge_pte_lock(h, mm, ptep);
4316 4317
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
4318
			spin_unlock(ptl);
4319
			continue;
4320
		}
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
4334 4335
				set_huge_swap_pte_at(mm, address, ptep,
						     newpte, huge_page_size(h));
4336 4337 4338 4339 4340 4341
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
4342
			pte = huge_ptep_get_and_clear(mm, address, ptep);
4343
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4344
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4345
			set_huge_pte_at(mm, address, ptep, pte);
4346
			pages++;
4347
		}
4348
		spin_unlock(ptl);
4349
	}
4350
	/*
4351
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4352
	 * may have cleared our pud entry and done put_page on the page table:
4353
	 * once we release i_mmap_rwsem, another task can do the final put_page
4354 4355
	 * and that page table be reused and filled with junk.
	 */
4356
	flush_hugetlb_tlb_range(vma, start, end);
4357 4358 4359 4360
	/*
	 * No need to call mmu_notifier_invalidate_range() we are downgrading
	 * page table protection not changing it to point to a new page.
	 *
4361
	 * See Documentation/vm/mmu_notifier.rst
4362
	 */
4363
	i_mmap_unlock_write(vma->vm_file->f_mapping);
4364
	mmu_notifier_invalidate_range_end(mm, start, end);
4365 4366

	return pages << h->order;
4367 4368
}

4369 4370
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
4371
					struct vm_area_struct *vma,
4372
					vm_flags_t vm_flags)
4373
{
4374
	long ret, chg;
4375
	struct hstate *h = hstate_inode(inode);
4376
	struct hugepage_subpool *spool = subpool_inode(inode);
4377
	struct resv_map *resv_map;
4378
	long gbl_reserve;
4379

4380 4381 4382 4383 4384 4385
	/* This should never happen */
	if (from > to) {
		VM_WARN(1, "%s called with a negative range\n", __func__);
		return -EINVAL;
	}

4386 4387 4388
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
4389
	 * without using reserves
4390
	 */
4391
	if (vm_flags & VM_NORESERVE)
4392 4393
		return 0;

4394 4395 4396 4397 4398 4399
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
4400
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4401
		resv_map = inode_resv_map(inode);
4402

4403
		chg = region_chg(resv_map, from, to);
4404 4405 4406

	} else {
		resv_map = resv_map_alloc();
4407 4408 4409
		if (!resv_map)
			return -ENOMEM;

4410
		chg = to - from;
4411

4412 4413 4414 4415
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

4416 4417 4418 4419
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
4420

4421 4422 4423 4424 4425 4426 4427
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
4428 4429 4430
		ret = -ENOSPC;
		goto out_err;
	}
4431 4432

	/*
4433
	 * Check enough hugepages are available for the reservation.
4434
	 * Hand the pages back to the subpool if there are not
4435
	 */
4436
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
4437
	if (ret < 0) {
4438 4439
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
4440
		goto out_err;
K
Ken Chen 已提交
4441
	}
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
4472
	return 0;
4473
out_err:
4474
	if (!vma || vma->vm_flags & VM_MAYSHARE)
4475 4476 4477
		/* Don't call region_abort if region_chg failed */
		if (chg >= 0)
			region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
4478 4479
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
4480
	return ret;
4481 4482
}

4483 4484
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
4485
{
4486
	struct hstate *h = hstate_inode(inode);
4487
	struct resv_map *resv_map = inode_resv_map(inode);
4488
	long chg = 0;
4489
	struct hugepage_subpool *spool = subpool_inode(inode);
4490
	long gbl_reserve;
K
Ken Chen 已提交
4491

4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
4503
	spin_lock(&inode->i_lock);
4504
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
4505 4506
	spin_unlock(&inode->i_lock);

4507 4508 4509 4510 4511 4512
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
4513 4514

	return 0;
4515
}
4516

4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
4528 4529
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

4543
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4544 4545 4546 4547 4548 4549 4550 4551 4552
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
4553 4554
		return true;
	return false;
4555 4556 4557 4558 4559 4560 4561
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
4562
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
4576
	spinlock_t *ptl;
4577 4578 4579 4580

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

4581
	i_mmap_lock_write(mapping);
4582 4583 4584 4585 4586 4587
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
4588 4589
			spte = huge_pte_offset(svma->vm_mm, saddr,
					       vma_mmu_pagesize(svma));
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4600
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4601
	if (pud_none(*pud)) {
4602 4603
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4604
		mm_inc_nr_pmds(mm);
4605
	} else {
4606
		put_page(virt_to_page(spte));
4607
	}
4608
	spin_unlock(ptl);
4609 4610
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4611
	i_mmap_unlock_write(mapping);
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4622
 * called with page table lock held.
4623 4624 4625 4626 4627 4628 4629
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
4630 4631
	p4d_t *p4d = p4d_offset(pgd, *addr);
	pud_t *pud = pud_offset(p4d, *addr);
4632 4633 4634 4635 4636 4637 4638

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4639
	mm_dec_nr_pmds(mm);
4640 4641 4642
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4643 4644 4645 4646 4647 4648
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4649 4650 4651 4652 4653

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4654
#define want_pmd_share()	(0)
4655 4656
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4657 4658 4659 4660 4661
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
4662
	p4d_t *p4d;
4663 4664 4665 4666
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
4667 4668 4669
	p4d = p4d_alloc(mm, pgd, addr);
	if (!p4d)
		return NULL;
4670
	pud = pud_alloc(mm, p4d, addr);
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
4682
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4683 4684 4685 4686

	return pte;
}

4687 4688 4689 4690 4691 4692 4693 4694 4695
/*
 * huge_pte_offset() - Walk the page table to resolve the hugepage
 * entry at address @addr
 *
 * Return: Pointer to page table or swap entry (PUD or PMD) for
 * address @addr, or NULL if a p*d_none() entry is encountered and the
 * size @sz doesn't match the hugepage size at this level of the page
 * table.
 */
4696 4697
pte_t *huge_pte_offset(struct mm_struct *mm,
		       unsigned long addr, unsigned long sz)
4698 4699
{
	pgd_t *pgd;
4700
	p4d_t *p4d;
4701
	pud_t *pud;
4702
	pmd_t *pmd;
4703 4704

	pgd = pgd_offset(mm, addr);
4705 4706 4707 4708 4709
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;
4710

4711
	pud = pud_offset(p4d, addr);
4712
	if (sz != PUD_SIZE && pud_none(*pud))
4713
		return NULL;
4714 4715
	/* hugepage or swap? */
	if (pud_huge(*pud) || !pud_present(*pud))
4716
		return (pte_t *)pud;
4717

4718
	pmd = pmd_offset(pud, addr);
4719 4720 4721 4722 4723 4724 4725
	if (sz != PMD_SIZE && pmd_none(*pmd))
		return NULL;
	/* hugepage or swap? */
	if (pmd_huge(*pmd) || !pmd_present(*pmd))
		return (pte_t *)pmd;

	return NULL;
4726 4727
}

4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

4741 4742 4743 4744 4745 4746 4747 4748
struct page * __weak
follow_huge_pd(struct vm_area_struct *vma,
	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
{
	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
	return NULL;
}

4749
struct page * __weak
4750
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4751
		pmd_t *pmd, int flags)
4752
{
4753 4754
	struct page *page = NULL;
	spinlock_t *ptl;
4755
	pte_t pte;
4756 4757 4758 4759 4760 4761 4762 4763 4764
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
4765 4766
	pte = huge_ptep_get((pte_t *)pmd);
	if (pte_present(pte)) {
4767
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4768 4769 4770
		if (flags & FOLL_GET)
			get_page(page);
	} else {
4771
		if (is_hugetlb_entry_migration(pte)) {
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
4783 4784 4785
	return page;
}

4786
struct page * __weak
4787
follow_huge_pud(struct mm_struct *mm, unsigned long address,
4788
		pud_t *pud, int flags)
4789
{
4790 4791
	if (flags & FOLL_GET)
		return NULL;
4792

4793
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4794 4795
}

4796 4797 4798 4799 4800 4801 4802 4803 4804
struct page * __weak
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
{
	if (flags & FOLL_GET)
		return NULL;

	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
}

4805 4806
bool isolate_huge_page(struct page *page, struct list_head *list)
{
4807 4808
	bool ret = true;

4809
	VM_BUG_ON_PAGE(!PageHead(page), page);
4810
	spin_lock(&hugetlb_lock);
4811 4812 4813 4814 4815
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4816
	list_move_tail(&page->lru, list);
4817
unlock:
4818
	spin_unlock(&hugetlb_lock);
4819
	return ret;
4820 4821 4822 4823
}

void putback_active_hugepage(struct page *page)
{
4824
	VM_BUG_ON_PAGE(!PageHead(page), page);
4825
	spin_lock(&hugetlb_lock);
4826
	set_page_huge_active(page);
4827 4828 4829 4830
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863

void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
{
	struct hstate *h = page_hstate(oldpage);

	hugetlb_cgroup_migrate(oldpage, newpage);
	set_page_owner_migrate_reason(newpage, reason);

	/*
	 * transfer temporary state of the new huge page. This is
	 * reverse to other transitions because the newpage is going to
	 * be final while the old one will be freed so it takes over
	 * the temporary status.
	 *
	 * Also note that we have to transfer the per-node surplus state
	 * here as well otherwise the global surplus count will not match
	 * the per-node's.
	 */
	if (PageHugeTemporary(newpage)) {
		int old_nid = page_to_nid(oldpage);
		int new_nid = page_to_nid(newpage);

		SetPageHugeTemporary(oldpage);
		ClearPageHugeTemporary(newpage);

		spin_lock(&hugetlb_lock);
		if (h->surplus_huge_pages_node[old_nid]) {
			h->surplus_huge_pages_node[old_nid]--;
			h->surplus_huge_pages_node[new_nid]++;
		}
		spin_unlock(&hugetlb_lock);
	}
}