hugetlb.c 126.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
8
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
9 10
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
11
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
12
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/compiler.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/sched/signal.h>
22
#include <linux/rmap.h>
23
#include <linux/string_helpers.h>
24 25
#include <linux/swap.h>
#include <linux/swapops.h>
26
#include <linux/jhash.h>
27

D
David Gibson 已提交
28 29
#include <asm/page.h>
#include <asm/pgtable.h>
30
#include <asm/tlb.h>
D
David Gibson 已提交
31

32
#include <linux/io.h>
D
David Gibson 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/hugetlb_cgroup.h>
35
#include <linux/node.h>
36
#include <linux/userfaultfd_k.h>
37
#include "internal.h"
L
Linus Torvalds 已提交
38

39
int hugepages_treat_as_movable;
40

41
int hugetlb_max_hstate __read_mostly;
42 43
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
44 45 46 47 48
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
49

50 51
__initdata LIST_HEAD(huge_boot_pages);

52 53 54
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
55
static unsigned long __initdata default_hstate_size;
56
static bool __initdata parsed_valid_hugepagesz = true;
57

58
/*
59 60
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
61
 */
62
DEFINE_SPINLOCK(hugetlb_lock);
63

64 65 66 67 68
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
69
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70

71 72 73
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

74 75 76 77 78 79 80
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
81 82 83 84 85 86
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
87
		kfree(spool);
88
	}
89 90
}

91 92
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
93 94 95
{
	struct hugepage_subpool *spool;

96
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97 98 99 100 101
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
102 103 104 105 106 107 108 109 110
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
111 112 113 114 115 116 117 118 119 120 121 122

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

123 124 125 126 127 128 129 130 131
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132 133
				      long delta)
{
134
	long ret = delta;
135 136

	if (!spool)
137
		return ret;
138 139

	spin_lock(&spool->lock);
140 141 142 143 144 145 146 147

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
148 149
	}

150 151
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
167 168 169
	return ret;
}

170 171 172 173 174 175 176
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177 178
				       long delta)
{
179 180
	long ret = delta;

181
	if (!spool)
182
		return delta;
183 184

	spin_lock(&spool->lock);
185 186 187 188

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

189 190
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 192 193 194 195 196 197 198 199 200 201 202 203 204
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
205
	unlock_or_release_subpool(spool);
206 207

	return ret;
208 209 210 211 212 213 214 215 216
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
217
	return subpool_inode(file_inode(vma->vm_file));
218 219
}

220 221 222
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
223
 *
224 225 226 227 228 229 230 231 232 233 234 235 236 237
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
238 239 240 241 242 243 244
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

245 246
/*
 * Add the huge page range represented by [f, t) to the reserve
247 248 249 250 251 252 253 254
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
255 256 257
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
258
 */
259
static long region_add(struct resv_map *resv, long f, long t)
260
{
261
	struct list_head *head = &resv->regions;
262
	struct file_region *rg, *nrg, *trg;
263
	long add = 0;
264

265
	spin_lock(&resv->lock);
266 267 268 269 270
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
311 312 313 314 315
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
316 317 318 319
			list_del(&rg->link);
			kfree(rg);
		}
	}
320 321

	add += (nrg->from - f);		/* Added to beginning of region */
322
	nrg->from = f;
323
	add += t - nrg->to;		/* Added to end of region */
324
	nrg->to = t;
325

326 327
out_locked:
	resv->adds_in_progress--;
328
	spin_unlock(&resv->lock);
329 330
	VM_BUG_ON(add < 0);
	return add;
331 332
}

333 334 335 336 337 338 339 340 341 342 343 344 345
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
346 347 348 349 350 351 352 353
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
354
 */
355
static long region_chg(struct resv_map *resv, long f, long t)
356
{
357
	struct list_head *head = &resv->regions;
358
	struct file_region *rg, *nrg = NULL;
359 360
	long chg = 0;

361 362
retry:
	spin_lock(&resv->lock);
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379 380
		if (!trg) {
			kfree(nrg);
381
			return -ENOMEM;
382
		}
383 384 385 386 387 388 389

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

390 391 392 393 394 395 396 397 398
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
399
		if (!nrg) {
400
			resv->adds_in_progress--;
401 402 403 404 405 406 407 408 409 410
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
411

412 413 414
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
415 416 417 418 419 420 421 422 423 424 425 426
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
427
			goto out;
428

L
Lucas De Marchi 已提交
429
		/* We overlap with this area, if it extends further than
430 431 432 433 434 435 436 437
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
438 439 440 441 442 443 444 445

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
446 447 448
	return chg;
}

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

468
/*
469 470 471 472 473 474 475 476 477 478 479 480
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
481
 */
482
static long region_del(struct resv_map *resv, long f, long t)
483
{
484
	struct list_head *head = &resv->regions;
485
	struct file_region *rg, *trg;
486 487
	struct file_region *nrg = NULL;
	long del = 0;
488

489
retry:
490
	spin_lock(&resv->lock);
491
	list_for_each_entry_safe(rg, trg, head, link) {
492 493 494 495 496 497 498 499
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500
			continue;
501

502
		if (rg->from >= t)
503 504
			break;

505 506 507 508 509 510 511 512 513 514 515 516 517
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
518

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
539
			break;
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
556
	}
557 558

	spin_unlock(&resv->lock);
559 560
	kfree(nrg);
	return del;
561 562
}

563 564 565 566 567 568 569 570 571
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
572
void hugetlb_fix_reserve_counts(struct inode *inode)
573 574 575 576 577
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578
	if (rsv_adjust) {
579 580 581 582 583 584
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

585 586 587 588
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
589
static long region_count(struct resv_map *resv, long f, long t)
590
{
591
	struct list_head *head = &resv->regions;
592 593 594
	struct file_region *rg;
	long chg = 0;

595
	spin_lock(&resv->lock);
596 597
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
598 599
		long seg_from;
		long seg_to;
600 601 602 603 604 605 606 607 608 609 610

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
611
	spin_unlock(&resv->lock);
612 613 614 615

	return chg;
}

616 617 618 619
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
620 621
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
622
{
623 624
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
625 626
}

627 628 629 630 631
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
632
EXPORT_SYMBOL_GPL(linear_hugepage_index);
633

634 635 636 637 638 639 640 641 642 643 644 645 646
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

647
	return 1UL << huge_page_shift(hstate);
648
}
649
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
650

651 652 653 654 655 656 657 658 659 660 661 662 663
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

664 665 666 667 668 669 670
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
671
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672

673 674 675 676 677 678 679 680 681
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
682 683 684 685 686 687 688 689 690
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
691
 */
692 693 694 695 696 697 698 699 700 701 702
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

703
struct resv_map *resv_map_alloc(void)
704 705
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
706 707 708 709 710
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
711
		return NULL;
712
	}
713 714

	kref_init(&resv_map->refs);
715
	spin_lock_init(&resv_map->lock);
716 717
	INIT_LIST_HEAD(&resv_map->regions);

718 719 720 721 722 723
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

724 725 726
	return resv_map;
}

727
void resv_map_release(struct kref *ref)
728 729
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
730 731
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
732 733

	/* Clear out any active regions before we release the map. */
734
	region_del(resv_map, 0, LONG_MAX);
735 736 737 738 739 740 741 742 743

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

744 745 746
	kfree(resv_map);
}

747 748 749 750 751
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

752
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
753
{
754
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755 756 757 758 759 760 761
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
762 763
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
764
	}
765 766
}

767
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
768
{
769 770
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
771

772 773
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
774 775 776 777
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
778 779
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
780 781

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
782 783 784 785
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
786
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
787 788

	return (get_vma_private_data(vma) & flag) != 0;
789 790
}

791
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
792 793
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
794
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
795
	if (!(vma->vm_flags & VM_MAYSHARE))
796 797 798 799
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
800
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
801
{
802 803 804 805 806 807 808 809 810 811 812
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
813
			return true;
814
		else
815
			return false;
816
	}
817 818

	/* Shared mappings always use reserves */
819 820 821 822 823 824 825 826 827 828 829 830 831
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
832 833 834 835 836

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
858

859
	return false;
860 861
}

862
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
863 864
{
	int nid = page_to_nid(page);
865
	list_move(&page->lru, &h->hugepage_freelists[nid]);
866 867
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
868 869
}

870
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
871 872 873
{
	struct page *page;

874
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
875
		if (!PageHWPoison(page))
876 877 878 879 880 881
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
882
		return NULL;
883
	list_move(&page->lru, &h->hugepage_activelist);
884
	set_page_refcounted(page);
885 886 887 888 889
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

890 891
static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
		nodemask_t *nmask)
892
{
893 894 895 896 897
	unsigned int cpuset_mems_cookie;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
	int node = -1;
898

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
	zonelist = node_zonelist(nid, gfp_mask);

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();
	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
		struct page *page;

		if (!cpuset_zone_allowed(zone, gfp_mask))
			continue;
		/*
		 * no need to ask again on the same node. Pool is node rather than
		 * zone aware
		 */
		if (zone_to_nid(zone) == node)
			continue;
		node = zone_to_nid(zone);
915 916 917 918 919

		page = dequeue_huge_page_node_exact(h, node);
		if (page)
			return page;
	}
920 921 922
	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;

923 924 925
	return NULL;
}

926 927 928
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
929
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
930 931 932 933 934
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

935 936
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
937 938
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
939
{
940
	struct page *page;
941
	struct mempolicy *mpol;
942
	gfp_t gfp_mask;
943
	nodemask_t *nodemask;
944
	int nid;
L
Linus Torvalds 已提交
945

946 947 948 949 950
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
951
	if (!vma_has_reserves(vma, chg) &&
952
			h->free_huge_pages - h->resv_huge_pages == 0)
953
		goto err;
954

955
	/* If reserves cannot be used, ensure enough pages are in the pool */
956
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
957
		goto err;
958

959 960
	gfp_mask = htlb_alloc_mask(h);
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
961 962 963 964
	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
		SetPagePrivate(page);
		h->resv_huge_pages--;
L
Linus Torvalds 已提交
965
	}
966

967
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
968
	return page;
969 970 971

err:
	return NULL;
L
Linus Torvalds 已提交
972 973
}

974 975 976 977 978 979 980 981 982
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
983
	nid = next_node_in(nid, *nodes_allowed);
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1045
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1046
static void destroy_compound_gigantic_page(struct page *page,
1047
					unsigned int order)
1048 1049 1050 1051 1052
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1053
	atomic_set(compound_mapcount_ptr(page), 0);
1054
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1055
		clear_compound_head(p);
1056 1057 1058 1059 1060 1061 1062
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

1063
static void free_gigantic_page(struct page *page, unsigned int order)
1064 1065 1066 1067 1068 1069 1070 1071
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
1072 1073
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
				  GFP_KERNEL);
1074 1075
}

1076 1077
static bool pfn_range_valid_gigantic(struct zone *z,
			unsigned long start_pfn, unsigned long nr_pages)
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

1088 1089 1090
		if (page_zone(page) != z)
			return false;

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

1111
static struct page *alloc_gigantic_page(int nid, unsigned int order)
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1123
			if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1147
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

1177
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1178
static inline bool gigantic_page_supported(void) { return false; }
1179
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1180
static inline void destroy_compound_gigantic_page(struct page *page,
1181
						unsigned int order) { }
1182 1183 1184 1185
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

1186
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1187 1188
{
	int i;
1189

1190 1191
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
1192

1193 1194 1195
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1196 1197
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1198 1199
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1200
	}
1201
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1202
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1203
	set_page_refcounted(page);
1204 1205 1206 1207 1208 1209
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1210 1211
}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1248
void free_huge_page(struct page *page)
1249
{
1250 1251 1252 1253
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1254
	struct hstate *h = page_hstate(page);
1255
	int nid = page_to_nid(page);
1256 1257
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1258
	bool restore_reserve;
1259

1260
	set_page_private(page, 0);
1261
	page->mapping = NULL;
1262 1263
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1264
	restore_reserve = PagePrivate(page);
1265
	ClearPagePrivate(page);
1266

1267 1268 1269 1270 1271 1272 1273 1274
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1275
	spin_lock(&hugetlb_lock);
1276
	clear_page_huge_active(page);
1277 1278
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1279 1280 1281
	if (restore_reserve)
		h->resv_huge_pages++;

1282
	if (h->surplus_huge_pages_node[nid]) {
1283 1284
		/* remove the page from active list */
		list_del(&page->lru);
1285 1286 1287
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1288
	} else {
1289
		arch_clear_hugepage_flags(page);
1290
		enqueue_huge_page(h, page);
1291
	}
1292 1293 1294
	spin_unlock(&hugetlb_lock);
}

1295
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1296
{
1297
	INIT_LIST_HEAD(&page->lru);
1298
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1299
	spin_lock(&hugetlb_lock);
1300
	set_hugetlb_cgroup(page, NULL);
1301 1302
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1303 1304 1305 1306
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

1307
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1308 1309 1310 1311 1312 1313 1314
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1315
	__ClearPageReserved(page);
1316
	__SetPageHead(page);
1317
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1331
		set_page_count(p, 0);
1332
		set_compound_head(p, page);
1333
	}
1334
	atomic_set(compound_mapcount_ptr(page), -1);
1335 1336
}

A
Andrew Morton 已提交
1337 1338 1339 1340 1341
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1342 1343 1344 1345 1346 1347
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1348
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1349
}
1350 1351
EXPORT_SYMBOL_GPL(PageHuge);

1352 1353 1354 1355 1356 1357 1358 1359 1360
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1361
	return get_compound_page_dtor(page_head) == free_huge_page;
1362 1363
}

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1381
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1382 1383
{
	struct page *page;
1384

1385
	page = __alloc_pages_node(nid,
1386
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1387
						__GFP_RETRY_MAYFAIL|__GFP_NOWARN,
1388
		huge_page_order(h));
L
Linus Torvalds 已提交
1389
	if (page) {
1390
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1391
	}
1392 1393 1394 1395

	return page;
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1418 1419 1420 1421 1422 1423
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1424 1425
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1426
{
1427
	int nr_nodes, node;
1428 1429
	int ret = 0;

1430
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1431 1432 1433 1434
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1435 1436
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1437
			struct page *page =
1438
				list_entry(h->hugepage_freelists[node].next,
1439 1440 1441
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1442
			h->free_huge_pages_node[node]--;
1443 1444
			if (acct_surplus) {
				h->surplus_huge_pages--;
1445
				h->surplus_huge_pages_node[node]--;
1446
			}
1447 1448
			update_and_free_page(h, page);
			ret = 1;
1449
			break;
1450
		}
1451
	}
1452 1453 1454 1455

	return ret;
}

1456 1457
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
1458 1459 1460
 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
 * number of free hugepages would be reduced below the number of reserved
 * hugepages.
1461
 */
1462
int dissolve_free_huge_page(struct page *page)
1463
{
1464 1465
	int rc = 0;

1466 1467
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
1468 1469 1470
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
		int nid = page_to_nid(head);
1471 1472 1473 1474
		if (h->free_huge_pages - h->resv_huge_pages == 0) {
			rc = -EBUSY;
			goto out;
		}
1475 1476 1477 1478 1479 1480 1481 1482
		/*
		 * Move PageHWPoison flag from head page to the raw error page,
		 * which makes any subpages rather than the error page reusable.
		 */
		if (PageHWPoison(head) && page != head) {
			SetPageHWPoison(page);
			ClearPageHWPoison(head);
		}
1483
		list_del(&head->lru);
1484 1485
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
1486
		h->max_huge_pages--;
1487
		update_and_free_page(h, head);
1488
	}
1489
out:
1490
	spin_unlock(&hugetlb_lock);
1491
	return rc;
1492 1493 1494 1495 1496
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
1497 1498
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
1499 1500
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
1501
 */
1502
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1503 1504
{
	unsigned long pfn;
1505
	struct page *page;
1506
	int rc = 0;
1507

1508
	if (!hugepages_supported())
1509
		return rc;
1510

1511 1512 1513 1514 1515 1516 1517 1518
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
		if (PageHuge(page) && !page_count(page)) {
			rc = dissolve_free_huge_page(page);
			if (rc)
				break;
		}
	}
1519 1520

	return rc;
1521 1522
}

1523
static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1524
		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1525 1526 1527
{
	int order = huge_page_order(h);

1528
	gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1529 1530 1531
	if (nid == NUMA_NO_NODE)
		nid = numa_mem_id();
	return __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1532 1533
}

1534 1535
static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask,
		int nid, nodemask_t *nmask)
1536 1537
{
	struct page *page;
1538
	unsigned int r_nid;
1539

1540
	if (hstate_is_gigantic(h))
1541 1542
		return NULL;

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1567
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1568 1569 1570
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1571 1572
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1573 1574 1575
	}
	spin_unlock(&hugetlb_lock);

1576
	page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask);
1577 1578

	spin_lock(&hugetlb_lock);
1579
	if (page) {
1580
		INIT_LIST_HEAD(&page->lru);
1581
		r_nid = page_to_nid(page);
1582
		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1583
		set_hugetlb_cgroup(page, NULL);
1584 1585 1586
		/*
		 * We incremented the global counters already
		 */
1587 1588
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1589
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1590
	} else {
1591 1592
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1593
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1594
	}
1595
	spin_unlock(&hugetlb_lock);
1596 1597 1598 1599

	return page;
}

1600 1601 1602
/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1603
static
1604 1605 1606
struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr)
{
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
	struct page *page;
	struct mempolicy *mpol;
	gfp_t gfp_mask = htlb_alloc_mask(h);
	int nid;
	nodemask_t *nodemask;

	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
	page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask);
	mpol_cond_put(mpol);

	return page;
1618 1619
}

1620 1621 1622 1623 1624 1625 1626
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1627
	gfp_t gfp_mask = htlb_alloc_mask(h);
1628
	struct page *page = NULL;
1629

1630 1631 1632
	if (nid != NUMA_NO_NODE)
		gfp_mask |= __GFP_THISNODE;

1633
	spin_lock(&hugetlb_lock);
1634
	if (h->free_huge_pages - h->resv_huge_pages > 0)
1635
		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1636 1637
	spin_unlock(&hugetlb_lock);

1638
	if (!page)
1639
		page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL);
1640 1641 1642 1643

	return page;
}

1644 1645 1646

struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
		nodemask_t *nmask)
1647
{
1648
	gfp_t gfp_mask = htlb_alloc_mask(h);
1649 1650 1651

	spin_lock(&hugetlb_lock);
	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1652 1653 1654 1655 1656 1657
		struct page *page;

		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
		if (page) {
			spin_unlock(&hugetlb_lock);
			return page;
1658 1659 1660 1661 1662
		}
	}
	spin_unlock(&hugetlb_lock);

	/* No reservations, try to overcommit */
1663 1664

	return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask);
1665 1666
}

1667
/*
L
Lucas De Marchi 已提交
1668
 * Increase the hugetlb pool such that it can accommodate a reservation
1669 1670
 * of size 'delta'.
 */
1671
static int gather_surplus_pages(struct hstate *h, int delta)
1672 1673 1674 1675 1676
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1677
	bool alloc_ok = true;
1678

1679
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1680
	if (needed <= 0) {
1681
		h->resv_huge_pages += delta;
1682
		return 0;
1683
	}
1684 1685 1686 1687 1688 1689 1690 1691

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1692 1693
		page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h),
				NUMA_NO_NODE, NULL);
1694 1695 1696 1697
		if (!page) {
			alloc_ok = false;
			break;
		}
1698
		list_add(&page->lru, &surplus_list);
1699
		cond_resched();
1700
	}
1701
	allocated += i;
1702 1703 1704 1705 1706 1707

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1708 1709
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1720 1721
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1722
	 * needed to accommodate the reservation.  Add the appropriate number
1723
	 * of pages to the hugetlb pool and free the extras back to the buddy
1724 1725 1726
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1727 1728
	 */
	needed += allocated;
1729
	h->resv_huge_pages += delta;
1730
	ret = 0;
1731

1732
	/* Free the needed pages to the hugetlb pool */
1733
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1734 1735
		if ((--needed) < 0)
			break;
1736 1737 1738 1739 1740
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1741
		VM_BUG_ON_PAGE(page_count(page), page);
1742
		enqueue_huge_page(h, page);
1743
	}
1744
free:
1745
	spin_unlock(&hugetlb_lock);
1746 1747

	/* Free unnecessary surplus pages to the buddy allocator */
1748 1749
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1750
	spin_lock(&hugetlb_lock);
1751 1752 1753 1754 1755

	return ret;
}

/*
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
 *
 * Called with hugetlb_lock held.  However, the lock could be dropped (and
 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
 * we must make sure nobody else can claim pages we are in the process of
 * freeing.  Do this by ensuring resv_huge_page always is greater than the
 * number of huge pages we plan to free when dropping the lock.
1768
 */
1769 1770
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1771 1772 1773
{
	unsigned long nr_pages;

1774
	/* Cannot return gigantic pages currently */
1775
	if (hstate_is_gigantic(h))
1776
		goto out;
1777

1778 1779 1780 1781
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
1782
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1783

1784 1785
	/*
	 * We want to release as many surplus pages as possible, spread
1786 1787 1788 1789 1790
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1791 1792 1793 1794
	 *
	 * Note that we decrement resv_huge_pages as we free the pages.  If
	 * we drop the lock, resv_huge_pages will still be sufficiently large
	 * to cover subsequent pages we may free.
1795 1796
	 */
	while (nr_pages--) {
1797 1798
		h->resv_huge_pages--;
		unused_resv_pages--;
1799
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1800
			goto out;
1801
		cond_resched_lock(&hugetlb_lock);
1802
	}
1803 1804 1805 1806

out:
	/* Fully uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
1807 1808
}

1809

1810
/*
1811
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1812
 * are used by the huge page allocation routines to manage reservations.
1813 1814 1815 1816 1817 1818
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1819 1820 1821
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1822 1823 1824 1825 1826 1827
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1828 1829 1830 1831 1832
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
1833
 */
1834 1835 1836
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1837
	VMA_END_RESV,
1838
	VMA_ADD_RESV,
1839
};
1840 1841
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1842
				enum vma_resv_mode mode)
1843
{
1844 1845
	struct resv_map *resv;
	pgoff_t idx;
1846
	long ret;
1847

1848 1849
	resv = vma_resv_map(vma);
	if (!resv)
1850
		return 1;
1851

1852
	idx = vma_hugecache_offset(h, vma, addr);
1853 1854
	switch (mode) {
	case VMA_NEEDS_RESV:
1855
		ret = region_chg(resv, idx, idx + 1);
1856 1857 1858 1859
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1860
	case VMA_END_RESV:
1861 1862 1863
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
1864 1865 1866 1867 1868 1869 1870 1871
	case VMA_ADD_RESV:
		if (vma->vm_flags & VM_MAYSHARE)
			ret = region_add(resv, idx, idx + 1);
		else {
			region_abort(resv, idx, idx + 1);
			ret = region_del(resv, idx, idx + 1);
		}
		break;
1872 1873 1874
	default:
		BUG();
	}
1875

1876
	if (vma->vm_flags & VM_MAYSHARE)
1877
		return ret;
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
1897
	else
1898
		return ret < 0 ? ret : 0;
1899
}
1900 1901

static long vma_needs_reservation(struct hstate *h,
1902
			struct vm_area_struct *vma, unsigned long addr)
1903
{
1904
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1905
}
1906

1907 1908 1909
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1910 1911 1912
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1913
static void vma_end_reservation(struct hstate *h,
1914 1915
			struct vm_area_struct *vma, unsigned long addr)
{
1916
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1917 1918
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

/*
 * This routine is called to restore a reservation on error paths.  In the
 * specific error paths, a huge page was allocated (via alloc_huge_page)
 * and is about to be freed.  If a reservation for the page existed,
 * alloc_huge_page would have consumed the reservation and set PagePrivate
 * in the newly allocated page.  When the page is freed via free_huge_page,
 * the global reservation count will be incremented if PagePrivate is set.
 * However, free_huge_page can not adjust the reserve map.  Adjust the
 * reserve map here to be consistent with global reserve count adjustments
 * to be made by free_huge_page.
 */
static void restore_reserve_on_error(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address,
			struct page *page)
{
	if (unlikely(PagePrivate(page))) {
		long rc = vma_needs_reservation(h, vma, address);

		if (unlikely(rc < 0)) {
			/*
			 * Rare out of memory condition in reserve map
			 * manipulation.  Clear PagePrivate so that
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
			ClearPagePrivate(page);
		} else if (rc) {
			rc = vma_add_reservation(h, vma, address);
			if (unlikely(rc < 0))
				/*
				 * See above comment about rare out of
				 * memory condition.
				 */
				ClearPagePrivate(page);
		} else
			vma_end_reservation(h, vma, address);
	}
}

1969
struct page *alloc_huge_page(struct vm_area_struct *vma,
1970
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1971
{
1972
	struct hugepage_subpool *spool = subpool_vma(vma);
1973
	struct hstate *h = hstate_vma(vma);
1974
	struct page *page;
1975 1976
	long map_chg, map_commit;
	long gbl_chg;
1977 1978
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1979

1980
	idx = hstate_index(h);
1981
	/*
1982 1983 1984
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
1985
	 */
1986 1987
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
1988
		return ERR_PTR(-ENOMEM);
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
2000
			vma_end_reservation(h, vma, addr);
2001
			return ERR_PTR(-ENOSPC);
2002
		}
L
Linus Torvalds 已提交
2003

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2016
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2017 2018 2019
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
2020
	spin_lock(&hugetlb_lock);
2021 2022 2023 2024 2025 2026
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2027
	if (!page) {
2028
		spin_unlock(&hugetlb_lock);
2029
		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2030 2031
		if (!page)
			goto out_uncharge_cgroup;
2032 2033 2034 2035
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
2036 2037
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
2038
		/* Fall through */
K
Ken Chen 已提交
2039
	}
2040 2041
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
2042

2043
	set_page_private(page, (unsigned long)spool);
2044

2045 2046
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
2061
	return page;
2062 2063 2064 2065

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
2066
	if (map_chg || avoid_reserve)
2067
		hugepage_subpool_put_pages(spool, 1);
2068
	vma_end_reservation(h, vma, addr);
2069
	return ERR_PTR(-ENOSPC);
2070 2071
}

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

2086
int __weak alloc_bootmem_huge_page(struct hstate *h)
2087 2088
{
	struct huge_bootmem_page *m;
2089
	int nr_nodes, node;
2090

2091
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2092 2093
		void *addr;

2094 2095 2096
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2097 2098 2099 2100 2101 2102 2103
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2104
			goto found;
2105 2106 2107 2108 2109
		}
	}
	return 0;

found:
2110
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2111 2112 2113 2114 2115 2116
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2117 2118
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
2119 2120 2121 2122 2123 2124 2125
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

2126 2127 2128 2129 2130 2131 2132
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
2133 2134 2135 2136
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2137 2138
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
2139 2140 2141
#else
		page = virt_to_page(m);
#endif
2142
		WARN_ON(page_count(page) != 1);
2143
		prep_compound_huge_page(page, h->order);
2144
		WARN_ON(PageReserved(page));
2145
		prep_new_huge_page(h, page, page_to_nid(page));
2146 2147 2148 2149 2150 2151
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2152
		if (hstate_is_gigantic(h))
2153
			adjust_managed_page_count(page, 1 << h->order);
2154 2155 2156
	}
}

2157
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2158 2159
{
	unsigned long i;
2160

2161
	for (i = 0; i < h->max_huge_pages; ++i) {
2162
		if (hstate_is_gigantic(h)) {
2163 2164
			if (!alloc_bootmem_huge_page(h))
				break;
2165
		} else if (!alloc_fresh_huge_page(h,
2166
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
2167
			break;
2168
		cond_resched();
L
Linus Torvalds 已提交
2169
	}
2170 2171 2172
	if (i < h->max_huge_pages) {
		char buf[32];

2173
		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2174 2175 2176 2177
		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
			h->max_huge_pages, buf, i);
		h->max_huge_pages = i;
	}
2178 2179 2180 2181 2182 2183 2184
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2185 2186 2187
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2188
		/* oversize hugepages were init'ed in early boot */
2189
		if (!hstate_is_gigantic(h))
2190
			hugetlb_hstate_alloc_pages(h);
2191
	}
2192
	VM_BUG_ON(minimum_order == UINT_MAX);
2193 2194 2195 2196 2197 2198 2199
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2200
		char buf[32];
2201 2202

		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2203
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2204
			buf, h->free_huge_pages);
2205 2206 2207
	}
}

L
Linus Torvalds 已提交
2208
#ifdef CONFIG_HIGHMEM
2209 2210
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2211
{
2212 2213
	int i;

2214
	if (hstate_is_gigantic(h))
2215 2216
		return;

2217
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2218
		struct page *page, *next;
2219 2220 2221
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2222
				return;
L
Linus Torvalds 已提交
2223 2224 2225
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2226
			update_and_free_page(h, page);
2227 2228
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2229 2230 2231 2232
		}
	}
}
#else
2233 2234
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2235 2236 2237 2238
{
}
#endif

2239 2240 2241 2242 2243
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2244 2245
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2246
{
2247
	int nr_nodes, node;
2248 2249 2250

	VM_BUG_ON(delta != -1 && delta != 1);

2251 2252 2253 2254
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2255
		}
2256 2257 2258 2259 2260
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2261
		}
2262 2263
	}
	return 0;
2264

2265 2266 2267 2268
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2269 2270
}

2271
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2272 2273
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2274
{
2275
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
2276

2277
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2278 2279
		return h->max_huge_pages;

2280 2281 2282 2283
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2284
	 *
N
Naoya Horiguchi 已提交
2285
	 * We might race with __alloc_buddy_huge_page() here and be unable
2286 2287 2288 2289
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2290
	 */
L
Linus Torvalds 已提交
2291
	spin_lock(&hugetlb_lock);
2292
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2293
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2294 2295 2296
			break;
	}

2297
	while (count > persistent_huge_pages(h)) {
2298 2299 2300 2301 2302 2303
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2304 2305 2306 2307

		/* yield cpu to avoid soft lockup */
		cond_resched();

2308 2309 2310 2311
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
2312 2313 2314 2315
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2316 2317 2318
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2319 2320 2321 2322 2323 2324 2325 2326
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2327 2328 2329 2330
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
N
Naoya Horiguchi 已提交
2331
	 * __alloc_buddy_huge_page() is checking the global counter,
2332 2333 2334
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2335
	 */
2336
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2337
	min_count = max(count, min_count);
2338
	try_to_free_low(h, min_count, nodes_allowed);
2339
	while (min_count < persistent_huge_pages(h)) {
2340
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2341
			break;
2342
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2343
	}
2344
	while (count < persistent_huge_pages(h)) {
2345
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2346 2347 2348
			break;
	}
out:
2349
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2350
	spin_unlock(&hugetlb_lock);
2351
	return ret;
L
Linus Torvalds 已提交
2352 2353
}

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2364 2365 2366
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2367 2368
{
	int i;
2369

2370
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2371 2372 2373
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2374
			return &hstates[i];
2375 2376 2377
		}

	return kobj_to_node_hstate(kobj, nidp);
2378 2379
}

2380
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2381 2382
					struct kobj_attribute *attr, char *buf)
{
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2394
}
2395

2396 2397 2398
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2399 2400
{
	int err;
2401
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2402

2403
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2404 2405 2406 2407
		err = -EINVAL;
		goto out;
	}

2408 2409 2410 2411 2412 2413 2414
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2415
			nodes_allowed = &node_states[N_MEMORY];
2416 2417 2418 2419 2420 2421 2422 2423 2424
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
2425
		nodes_allowed = &node_states[N_MEMORY];
2426

2427
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2428

2429
	if (nodes_allowed != &node_states[N_MEMORY])
2430 2431 2432
		NODEMASK_FREE(nodes_allowed);

	return len;
2433 2434 2435
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
2436 2437
}

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2455 2456 2457 2458 2459 2460 2461 2462 2463
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2464
	return nr_hugepages_store_common(false, kobj, buf, len);
2465 2466 2467
}
HSTATE_ATTR(nr_hugepages);

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2483
	return nr_hugepages_store_common(true, kobj, buf, len);
2484 2485 2486 2487 2488
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2489 2490 2491
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2492
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2493 2494
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2495

2496 2497 2498 2499 2500
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2501
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2502

2503
	if (hstate_is_gigantic(h))
2504 2505
		return -EINVAL;

2506
	err = kstrtoul(buf, 10, &input);
2507
	if (err)
2508
		return err;
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2532 2533 2534 2535 2536 2537
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2538
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2539 2540 2541 2542 2543 2544 2545
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2557 2558 2559 2560 2561 2562 2563 2564 2565
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2566 2567 2568
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2569 2570 2571 2572 2573 2574 2575
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2576 2577 2578
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2579 2580
{
	int retval;
2581
	int hi = hstate_index(h);
2582

2583 2584
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2585 2586
		return -ENOMEM;

2587
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2588
	if (retval)
2589
		kobject_put(hstate_kobjs[hi]);
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2604 2605
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2606
		if (err)
2607
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2608 2609 2610
	}
}

2611 2612 2613 2614
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2615 2616 2617
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2618 2619 2620 2621 2622 2623
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
2624
static struct node_hstate node_hstates[MAX_NUMNODES];
2625 2626

/*
2627
 * A subset of global hstate attributes for node devices
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2641
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2664
 * Unregister hstate attributes from a single node device.
2665 2666
 * No-op if no hstate attributes attached.
 */
2667
static void hugetlb_unregister_node(struct node *node)
2668 2669
{
	struct hstate *h;
2670
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2671 2672

	if (!nhs->hugepages_kobj)
2673
		return;		/* no hstate attributes */
2674

2675 2676 2677 2678 2679
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2680
		}
2681
	}
2682 2683 2684 2685 2686 2687 2688

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
2689
 * Register hstate attributes for a single node device.
2690 2691
 * No-op if attributes already registered.
 */
2692
static void hugetlb_register_node(struct node *node)
2693 2694
{
	struct hstate *h;
2695
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2696 2697 2698 2699 2700 2701
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2702
							&node->dev.kobj);
2703 2704 2705 2706 2707 2708 2709 2710
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2711 2712
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2713 2714 2715 2716 2717 2718 2719
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2720
 * hugetlb init time:  register hstate attributes for all registered node
2721 2722
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2723
 */
2724
static void __init hugetlb_register_all_nodes(void)
2725 2726 2727
{
	int nid;

2728
	for_each_node_state(nid, N_MEMORY) {
2729
		struct node *node = node_devices[nid];
2730
		if (node->dev.id == nid)
2731 2732 2733 2734
			hugetlb_register_node(node);
	}

	/*
2735
	 * Let the node device driver know we're here so it can
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

2755 2756
static int __init hugetlb_init(void)
{
2757 2758
	int i;

2759
	if (!hugepages_supported())
2760
		return 0;
2761

2762
	if (!size_to_hstate(default_hstate_size)) {
2763 2764 2765 2766 2767
		if (default_hstate_size != 0) {
			pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
			       default_hstate_size, HPAGE_SIZE);
		}

2768 2769 2770
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2771
	}
2772
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2773 2774 2775 2776
	if (default_hstate_max_huge_pages) {
		if (!default_hstate.max_huge_pages)
			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
	}
2777 2778

	hugetlb_init_hstates();
2779
	gather_bootmem_prealloc();
2780 2781 2782
	report_hugepages();

	hugetlb_sysfs_init();
2783
	hugetlb_register_all_nodes();
2784
	hugetlb_cgroup_file_init();
2785

2786 2787 2788 2789 2790
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
2791
	hugetlb_fault_mutex_table =
2792
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2793
	BUG_ON(!hugetlb_fault_mutex_table);
2794 2795

	for (i = 0; i < num_fault_mutexes; i++)
2796
		mutex_init(&hugetlb_fault_mutex_table[i]);
2797 2798
	return 0;
}
2799
subsys_initcall(hugetlb_init);
2800 2801

/* Should be called on processing a hugepagesz=... option */
2802 2803 2804 2805 2806
void __init hugetlb_bad_size(void)
{
	parsed_valid_hugepagesz = false;
}

2807
void __init hugetlb_add_hstate(unsigned int order)
2808 2809
{
	struct hstate *h;
2810 2811
	unsigned long i;

2812
	if (size_to_hstate(PAGE_SIZE << order)) {
J
Joe Perches 已提交
2813
		pr_warn("hugepagesz= specified twice, ignoring\n");
2814 2815
		return;
	}
2816
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2817
	BUG_ON(order == 0);
2818
	h = &hstates[hugetlb_max_hstate++];
2819 2820
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2821 2822 2823 2824
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2825
	INIT_LIST_HEAD(&h->hugepage_activelist);
2826 2827
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
2828 2829
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2830

2831 2832 2833
	parsed_hstate = h;
}

2834
static int __init hugetlb_nrpages_setup(char *s)
2835 2836
{
	unsigned long *mhp;
2837
	static unsigned long *last_mhp;
2838

2839 2840 2841 2842 2843 2844
	if (!parsed_valid_hugepagesz) {
		pr_warn("hugepages = %s preceded by "
			"an unsupported hugepagesz, ignoring\n", s);
		parsed_valid_hugepagesz = true;
		return 1;
	}
2845
	/*
2846
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2847 2848
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2849
	else if (!hugetlb_max_hstate)
2850 2851 2852 2853
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2854
	if (mhp == last_mhp) {
J
Joe Perches 已提交
2855
		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2856 2857 2858
		return 1;
	}

2859 2860 2861
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2862 2863 2864 2865 2866
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2867
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2868 2869 2870 2871
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2872 2873
	return 1;
}
2874 2875 2876 2877 2878 2879 2880 2881
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2882

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2895 2896 2897
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2898
{
2899
	struct hstate *h = &default_hstate;
2900
	unsigned long tmp = h->max_huge_pages;
2901
	int ret;
2902

2903
	if (!hugepages_supported())
2904
		return -EOPNOTSUPP;
2905

2906 2907
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2908 2909 2910
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2911

2912 2913 2914
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2915 2916
out:
	return ret;
L
Linus Torvalds 已提交
2917
}
2918

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2936
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2937
			void __user *buffer,
2938 2939
			size_t *length, loff_t *ppos)
{
2940
	struct hstate *h = &default_hstate;
2941
	unsigned long tmp;
2942
	int ret;
2943

2944
	if (!hugepages_supported())
2945
		return -EOPNOTSUPP;
2946

2947
	tmp = h->nr_overcommit_huge_pages;
2948

2949
	if (write && hstate_is_gigantic(h))
2950 2951
		return -EINVAL;

2952 2953
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2954 2955 2956
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2957 2958 2959 2960 2961 2962

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2963 2964
out:
	return ret;
2965 2966
}

L
Linus Torvalds 已提交
2967 2968
#endif /* CONFIG_SYSCTL */

2969
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2970
{
2971
	struct hstate *h = &default_hstate;
2972 2973
	if (!hugepages_supported())
		return;
2974
	seq_printf(m,
2975 2976 2977 2978 2979
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2980 2981 2982 2983 2984
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2985 2986 2987 2988
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2989
	struct hstate *h = &default_hstate;
2990 2991
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
2992 2993
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2994 2995
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2996 2997 2998
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2999 3000
}

3001 3002 3003 3004 3005
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

3006 3007 3008
	if (!hugepages_supported())
		return;

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

3019 3020 3021 3022 3023 3024
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
3025 3026 3027
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
3028 3029 3030 3031 3032 3033
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
3034 3035
}

3036
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
3059
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
3060 3061
			goto out;

3062 3063
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
3064 3065 3066 3067 3068 3069
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
3070
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
3071 3072 3073 3074 3075 3076

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

3077 3078
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
3079
	struct resv_map *resv = vma_resv_map(vma);
3080 3081 3082 3083 3084

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
3085
	 * has a reference to the reservation map it cannot disappear until
3086 3087 3088
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
3089
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3090
		kref_get(&resv->refs);
3091 3092
}

3093 3094
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
3095
	struct hstate *h = hstate_vma(vma);
3096
	struct resv_map *resv = vma_resv_map(vma);
3097
	struct hugepage_subpool *spool = subpool_vma(vma);
3098
	unsigned long reserve, start, end;
3099
	long gbl_reserve;
3100

3101 3102
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
3103

3104 3105
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
3106

3107
	reserve = (end - start) - region_count(resv, start, end);
3108

3109 3110 3111
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
3112 3113 3114 3115 3116 3117
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3118
	}
3119 3120
}

L
Linus Torvalds 已提交
3121 3122 3123 3124 3125 3126
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
3127
static int hugetlb_vm_op_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
3128 3129
{
	BUG();
N
Nick Piggin 已提交
3130
	return 0;
L
Linus Torvalds 已提交
3131 3132
}

3133
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3134
	.fault = hugetlb_vm_op_fault,
3135
	.open = hugetlb_vm_op_open,
3136
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
3137 3138
};

3139 3140
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3141 3142 3143
{
	pte_t entry;

3144
	if (writable) {
3145 3146
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3147
	} else {
3148 3149
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3150 3151 3152
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3153
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3154 3155 3156 3157

	return entry;
}

3158 3159 3160 3161 3162
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3163
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3164
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3165
		update_mmu_cache(vma, address, ptep);
3166 3167
}

3168
bool is_hugetlb_entry_migration(pte_t pte)
3169 3170 3171 3172
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
3173
		return false;
3174 3175
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
3176
		return true;
3177
	else
3178
		return false;
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3193

D
David Gibson 已提交
3194 3195 3196 3197 3198
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
3199
	unsigned long addr;
3200
	int cow;
3201 3202
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3203 3204 3205
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
3206 3207

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3208

3209 3210 3211 3212 3213
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

3214
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3215
		spinlock_t *src_ptl, *dst_ptl;
3216
		src_pte = huge_pte_offset(src, addr, sz);
H
Hugh Dickins 已提交
3217 3218
		if (!src_pte)
			continue;
3219
		dst_pte = huge_pte_alloc(dst, addr, sz);
3220 3221 3222 3223
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3224 3225 3226 3227 3228

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

3229 3230 3231
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
3246 3247
				set_huge_swap_pte_at(src, addr, src_pte,
						     entry, sz);
3248
			}
3249
			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3250
		} else {
3251
			if (cow) {
3252
				huge_ptep_set_wrprotect(src, addr, src_pte);
3253 3254 3255
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
3256
			entry = huge_ptep_get(src_pte);
3257 3258
			ptepage = pte_page(entry);
			get_page(ptepage);
3259
			page_dup_rmap(ptepage, true);
3260
			set_huge_pte_at(dst, addr, dst_pte, entry);
3261
			hugetlb_count_add(pages_per_huge_page(h), dst);
3262
		}
3263 3264
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3265 3266
	}

3267 3268 3269 3270
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
3271 3272
}

3273 3274 3275
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3276 3277 3278
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3279
	pte_t *ptep;
D
David Gibson 已提交
3280
	pte_t pte;
3281
	spinlock_t *ptl;
D
David Gibson 已提交
3282
	struct page *page;
3283 3284
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3285 3286
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3287

D
David Gibson 已提交
3288
	WARN_ON(!is_vm_hugetlb_page(vma));
3289 3290
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3291

3292 3293 3294 3295 3296
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
	tlb_remove_check_page_size_change(tlb, sz);
3297
	tlb_start_vma(tlb, vma);
3298
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3299 3300
	address = start;
	for (; address < end; address += sz) {
3301
		ptep = huge_pte_offset(mm, address, sz);
A
Adam Litke 已提交
3302
		if (!ptep)
3303 3304
			continue;

3305
		ptl = huge_pte_lock(h, mm, ptep);
3306 3307 3308 3309
		if (huge_pmd_unshare(mm, &address, ptep)) {
			spin_unlock(ptl);
			continue;
		}
3310

3311
		pte = huge_ptep_get(ptep);
3312 3313 3314 3315
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
3316 3317

		/*
3318 3319
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3320
		 */
3321
		if (unlikely(!pte_present(pte))) {
3322
			huge_pte_clear(mm, address, ptep, sz);
3323 3324
			spin_unlock(ptl);
			continue;
3325
		}
3326 3327

		page = pte_page(pte);
3328 3329 3330 3331 3332 3333
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
3334 3335 3336 3337
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
3338 3339 3340 3341 3342 3343 3344 3345
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3346
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3347
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3348
		if (huge_pte_dirty(pte))
3349
			set_page_dirty(page);
3350

3351
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3352
		page_remove_rmap(page, true);
3353

3354
		spin_unlock(ptl);
3355
		tlb_remove_page_size(tlb, page, huge_page_size(h));
3356 3357 3358 3359 3360
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
3361
	}
3362
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3363
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3364
}
D
David Gibson 已提交
3365

3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3378
	 * is to clear it before releasing the i_mmap_rwsem. This works
3379
	 * because in the context this is called, the VMA is about to be
3380
	 * destroyed and the i_mmap_rwsem is held.
3381 3382 3383 3384
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3385
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3386
			  unsigned long end, struct page *ref_page)
3387
{
3388 3389 3390 3391 3392
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

3393
	tlb_gather_mmu(&tlb, mm, start, end);
3394 3395
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
3396 3397
}

3398 3399 3400 3401 3402 3403
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3404 3405
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3406
{
3407
	struct hstate *h = hstate_vma(vma);
3408 3409 3410 3411 3412 3413 3414 3415
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3416
	address = address & huge_page_mask(h);
3417 3418
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
3419
	mapping = vma->vm_file->f_mapping;
3420

3421 3422 3423 3424 3425
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3426
	i_mmap_lock_write(mapping);
3427
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3428 3429 3430 3431
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

3432 3433 3434 3435 3436 3437 3438 3439
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

3440 3441 3442 3443 3444 3445 3446 3447
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3448 3449
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3450
	}
3451
	i_mmap_unlock_write(mapping);
3452 3453
}

3454 3455
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3456 3457 3458
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3459
 */
3460
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3461 3462
		       unsigned long address, pte_t *ptep,
		       struct page *pagecache_page, spinlock_t *ptl)
3463
{
3464
	pte_t pte;
3465
	struct hstate *h = hstate_vma(vma);
3466
	struct page *old_page, *new_page;
3467
	int ret = 0, outside_reserve = 0;
3468 3469
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
3470

3471
	pte = huge_ptep_get(ptep);
3472 3473
	old_page = pte_page(pte);

3474
retry_avoidcopy:
3475 3476
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3477
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3478
		page_move_anon_rmap(old_page, vma);
3479
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
3480
		return 0;
3481 3482
	}

3483 3484 3485 3486 3487 3488 3489 3490 3491
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3492
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3493 3494 3495
			old_page != pagecache_page)
		outside_reserve = 1;

3496
	get_page(old_page);
3497

3498 3499 3500 3501
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3502
	spin_unlock(ptl);
3503
	new_page = alloc_huge_page(vma, address, outside_reserve);
3504

3505
	if (IS_ERR(new_page)) {
3506 3507 3508 3509 3510 3511 3512 3513
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3514
			put_page(old_page);
3515
			BUG_ON(huge_pte_none(pte));
3516 3517 3518
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
3519 3520
			ptep = huge_pte_offset(mm, address & huge_page_mask(h),
					       huge_page_size(h));
3521 3522 3523 3524 3525 3526 3527 3528
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3529 3530
		}

3531 3532 3533
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3534 3535
	}

3536 3537 3538 3539
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3540
	if (unlikely(anon_vma_prepare(vma))) {
3541 3542
		ret = VM_FAULT_OOM;
		goto out_release_all;
3543
	}
3544

A
Andrea Arcangeli 已提交
3545 3546
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3547
	__SetPageUptodate(new_page);
3548
	set_page_huge_active(new_page);
3549

3550 3551 3552
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3553

3554
	/*
3555
	 * Retake the page table lock to check for racing updates
3556 3557
	 * before the page tables are altered
	 */
3558
	spin_lock(ptl);
3559 3560
	ptep = huge_pte_offset(mm, address & huge_page_mask(h),
			       huge_page_size(h));
3561
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3562 3563
		ClearPagePrivate(new_page);

3564
		/* Break COW */
3565
		huge_ptep_clear_flush(vma, address, ptep);
3566
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3567 3568
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3569
		page_remove_rmap(old_page, true);
3570
		hugepage_add_new_anon_rmap(new_page, vma, address);
3571 3572 3573
		/* Make the old page be freed below */
		new_page = old_page;
	}
3574
	spin_unlock(ptl);
3575
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3576
out_release_all:
3577
	restore_reserve_on_error(h, vma, address, new_page);
3578
	put_page(new_page);
3579
out_release_old:
3580
	put_page(old_page);
3581

3582 3583
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3584 3585
}

3586
/* Return the pagecache page at a given address within a VMA */
3587 3588
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3589 3590
{
	struct address_space *mapping;
3591
	pgoff_t idx;
3592 3593

	mapping = vma->vm_file->f_mapping;
3594
	idx = vma_hugecache_offset(h, vma, address);
3595 3596 3597 3598

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3599 3600 3601 3602 3603
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

3636
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3637 3638
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3639
{
3640
	struct hstate *h = hstate_vma(vma);
3641
	int ret = VM_FAULT_SIGBUS;
3642
	int anon_rmap = 0;
A
Adam Litke 已提交
3643 3644
	unsigned long size;
	struct page *page;
3645
	pte_t new_pte;
3646
	spinlock_t *ptl;
A
Adam Litke 已提交
3647

3648 3649 3650
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3651
	 * COW. Warn that such a situation has occurred as it may not be obvious
3652 3653
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3654
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3655
			   current->pid);
3656 3657 3658
		return ret;
	}

A
Adam Litke 已提交
3659 3660 3661 3662
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3663 3664 3665
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3666
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3667 3668
		if (idx >= size)
			goto out;
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700

		/*
		 * Check for page in userfault range
		 */
		if (userfaultfd_missing(vma)) {
			u32 hash;
			struct vm_fault vmf = {
				.vma = vma,
				.address = address,
				.flags = flags,
				/*
				 * Hard to debug if it ends up being
				 * used by a callee that assumes
				 * something about the other
				 * uninitialized fields... same as in
				 * memory.c
				 */
			};

			/*
			 * hugetlb_fault_mutex must be dropped before
			 * handling userfault.  Reacquire after handling
			 * fault to make calling code simpler.
			 */
			hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
							idx, address);
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
			goto out;
		}

3701
		page = alloc_huge_page(vma, address, 0);
3702
		if (IS_ERR(page)) {
3703 3704 3705 3706 3707
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3708 3709
			goto out;
		}
A
Andrea Arcangeli 已提交
3710
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3711
		__SetPageUptodate(page);
3712
		set_page_huge_active(page);
3713

3714
		if (vma->vm_flags & VM_MAYSHARE) {
3715
			int err = huge_add_to_page_cache(page, mapping, idx);
3716 3717 3718 3719 3720 3721
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3722
		} else {
3723
			lock_page(page);
3724 3725 3726 3727
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3728
			anon_rmap = 1;
3729
		}
3730
	} else {
3731 3732 3733 3734 3735 3736
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3737
			ret = VM_FAULT_HWPOISON |
3738
				VM_FAULT_SET_HINDEX(hstate_index(h));
3739 3740
			goto backout_unlocked;
		}
3741
	}
3742

3743 3744 3745 3746 3747 3748
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3749
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3750 3751 3752 3753
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3754
		/* Just decrements count, does not deallocate */
3755
		vma_end_reservation(h, vma, address);
3756
	}
3757

3758
	ptl = huge_pte_lock(h, mm, ptep);
3759
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3760 3761 3762
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3763
	ret = 0;
3764
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3765 3766
		goto backout;

3767 3768
	if (anon_rmap) {
		ClearPagePrivate(page);
3769
		hugepage_add_new_anon_rmap(page, vma, address);
3770
	} else
3771
		page_dup_rmap(page, true);
3772 3773 3774 3775
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3776
	hugetlb_count_add(pages_per_huge_page(h), mm);
3777
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3778
		/* Optimization, do the COW without a second fault */
3779
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3780 3781
	}

3782
	spin_unlock(ptl);
A
Adam Litke 已提交
3783 3784
	unlock_page(page);
out:
3785
	return ret;
A
Adam Litke 已提交
3786 3787

backout:
3788
	spin_unlock(ptl);
3789
backout_unlocked:
A
Adam Litke 已提交
3790
	unlock_page(page);
3791
	restore_reserve_on_error(h, vma, address, page);
A
Adam Litke 已提交
3792 3793
	put_page(page);
	goto out;
3794 3795
}

3796
#ifdef CONFIG_SMP
3797
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
3822
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3823 3824 3825 3826 3827 3828 3829 3830
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3831
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3832
			unsigned long address, unsigned int flags)
3833
{
3834
	pte_t *ptep, entry;
3835
	spinlock_t *ptl;
3836
	int ret;
3837 3838
	u32 hash;
	pgoff_t idx;
3839
	struct page *page = NULL;
3840
	struct page *pagecache_page = NULL;
3841
	struct hstate *h = hstate_vma(vma);
3842
	struct address_space *mapping;
3843
	int need_wait_lock = 0;
3844

3845 3846
	address &= huge_page_mask(h);

3847
	ptep = huge_pte_offset(mm, address, huge_page_size(h));
3848 3849
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3850
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3851
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3852 3853
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3854
			return VM_FAULT_HWPOISON_LARGE |
3855
				VM_FAULT_SET_HINDEX(hstate_index(h));
3856 3857 3858 3859
	} else {
		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
		if (!ptep)
			return VM_FAULT_OOM;
3860 3861
	}

3862 3863 3864
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3865 3866 3867 3868 3869
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3870 3871
	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3872

3873 3874
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3875
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3876
		goto out_mutex;
3877
	}
3878

N
Nick Piggin 已提交
3879
	ret = 0;
3880

3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3891 3892 3893 3894 3895 3896 3897 3898
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3899
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3900 3901
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3902
			goto out_mutex;
3903
		}
3904
		/* Just decrements count, does not deallocate */
3905
		vma_end_reservation(h, vma, address);
3906

3907
		if (!(vma->vm_flags & VM_MAYSHARE))
3908 3909 3910 3911
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3912 3913 3914 3915 3916 3917
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3918 3919 3920 3921 3922 3923 3924
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3925 3926 3927 3928
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3929

3930
	get_page(page);
3931

3932
	if (flags & FAULT_FLAG_WRITE) {
3933
		if (!huge_pte_write(entry)) {
3934 3935
			ret = hugetlb_cow(mm, vma, address, ptep,
					  pagecache_page, ptl);
3936
			goto out_put_page;
3937
		}
3938
		entry = huge_pte_mkdirty(entry);
3939 3940
	}
	entry = pte_mkyoung(entry);
3941 3942
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3943
		update_mmu_cache(vma, address, ptep);
3944 3945 3946 3947
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3948 3949
out_ptl:
	spin_unlock(ptl);
3950 3951 3952 3953 3954

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3955
out_mutex:
3956
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3957 3958 3959 3960 3961 3962 3963 3964 3965
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3966
	return ret;
3967 3968
}

3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
			    struct page **pagep)
{
3980
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
	struct hstate *h = hstate_vma(dst_vma);
	pte_t _dst_pte;
	spinlock_t *ptl;
	int ret;
	struct page *page;

	if (!*pagep) {
		ret = -ENOMEM;
		page = alloc_huge_page(dst_vma, dst_addr, 0);
		if (IS_ERR(page))
			goto out;

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
3995
						pages_per_huge_page(h), false);
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016

		/* fallback to copy_from_user outside mmap_sem */
		if (unlikely(ret)) {
			ret = -EFAULT;
			*pagep = page;
			/* don't free the page */
			goto out;
		}
	} else {
		page = *pagep;
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);
	set_page_huge_active(page);

4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
	/*
	 * If shared, add to page cache
	 */
	if (vm_shared) {
		struct address_space *mapping = dst_vma->vm_file->f_mapping;
		pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);

		ret = huge_add_to_page_cache(page, mapping, idx);
		if (ret)
			goto out_release_nounlock;
	}

4029 4030 4031 4032 4033 4034 4035
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

4036 4037 4038 4039 4040 4041
	if (vm_shared) {
		page_dup_rmap(page, true);
	} else {
		ClearPagePrivate(page);
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
	}
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057

	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
	if (dst_vma->vm_flags & VM_WRITE)
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
4058 4059
	if (vm_shared)
		unlock_page(page);
4060 4061 4062 4063 4064
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
4065 4066 4067
out_release_nounlock:
	if (vm_shared)
		unlock_page(page);
4068 4069 4070 4071
	put_page(page);
	goto out;
}

4072 4073 4074
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
4075
			 long i, unsigned int flags, int *nonblocking)
D
David Gibson 已提交
4076
{
4077 4078
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
4079
	unsigned long remainder = *nr_pages;
4080
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
4081 4082

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
4083
		pte_t *pte;
4084
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
4085
		int absent;
A
Adam Litke 已提交
4086
		struct page *page;
D
David Gibson 已提交
4087

4088 4089 4090 4091 4092 4093 4094 4095 4096
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
4097 4098
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
4099
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
4100
		 * first, for the page indexing below to work.
4101 4102
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
4103
		 */
4104 4105
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
				      huge_page_size(h));
4106 4107
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
4108 4109 4110 4111
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
4112 4113 4114 4115
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
4116
		 */
H
Hugh Dickins 已提交
4117 4118
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4119 4120
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
4121 4122 4123
			remainder = 0;
			break;
		}
D
David Gibson 已提交
4124

4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4136 4137
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
4138
			int ret;
4139
			unsigned int fault_flags = 0;
D
David Gibson 已提交
4140

4141 4142
			if (pte)
				spin_unlock(ptl);
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
			if (flags & FOLL_WRITE)
				fault_flags |= FAULT_FLAG_WRITE;
			if (nonblocking)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
			if (flags & FOLL_NOWAIT)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_RETRY_NOWAIT;
			if (flags & FOLL_TRIED) {
				VM_WARN_ON_ONCE(fault_flags &
						FAULT_FLAG_ALLOW_RETRY);
				fault_flags |= FAULT_FLAG_TRIED;
			}
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
			if (ret & VM_FAULT_ERROR) {
4157 4158 4159 4160 4161
				int err = vm_fault_to_errno(ret, flags);

				if (err)
					return err;

4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
				remainder = 0;
				break;
			}
			if (ret & VM_FAULT_RETRY) {
				if (nonblocking)
					*nonblocking = 0;
				*nr_pages = 0;
				/*
				 * VM_FAULT_RETRY must not return an
				 * error, it will return zero
				 * instead.
				 *
				 * No need to update "position" as the
				 * caller will not check it after
				 * *nr_pages is set to 0.
				 */
				return i;
			}
			continue;
A
Adam Litke 已提交
4181 4182
		}

4183
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4184
		page = pte_page(huge_ptep_get(pte));
4185
same_page:
4186
		if (pages) {
H
Hugh Dickins 已提交
4187
			pages[i] = mem_map_offset(page, pfn_offset);
4188
			get_page(pages[i]);
4189
		}
D
David Gibson 已提交
4190 4191 4192 4193 4194

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
4195
		++pfn_offset;
D
David Gibson 已提交
4196 4197
		--remainder;
		++i;
4198
		if (vaddr < vma->vm_end && remainder &&
4199
				pfn_offset < pages_per_huge_page(h)) {
4200 4201 4202 4203 4204 4205
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
4206
		spin_unlock(ptl);
D
David Gibson 已提交
4207
	}
4208
	*nr_pages = remainder;
4209 4210 4211 4212 4213
	/*
	 * setting position is actually required only if remainder is
	 * not zero but it's faster not to add a "if (remainder)"
	 * branch.
	 */
D
David Gibson 已提交
4214 4215
	*position = vaddr;

H
Hugh Dickins 已提交
4216
	return i ? i : -EFAULT;
D
David Gibson 已提交
4217
}
4218

4219 4220 4221 4222 4223 4224 4225 4226
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
/*
 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 * implement this.
 */
#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
#endif

4227
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4228 4229 4230 4231 4232 4233
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
4234
	struct hstate *h = hstate_vma(vma);
4235
	unsigned long pages = 0;
4236 4237 4238 4239

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

4240
	mmu_notifier_invalidate_range_start(mm, start, end);
4241
	i_mmap_lock_write(vma->vm_file->f_mapping);
4242
	for (; address < end; address += huge_page_size(h)) {
4243
		spinlock_t *ptl;
4244
		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4245 4246
		if (!ptep)
			continue;
4247
		ptl = huge_pte_lock(h, mm, ptep);
4248 4249
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
4250
			spin_unlock(ptl);
4251
			continue;
4252
		}
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
4266 4267
				set_huge_swap_pte_at(mm, address, ptep,
						     newpte, huge_page_size(h));
4268 4269 4270 4271 4272 4273
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
4274
			pte = huge_ptep_get_and_clear(mm, address, ptep);
4275
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4276
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4277
			set_huge_pte_at(mm, address, ptep, pte);
4278
			pages++;
4279
		}
4280
		spin_unlock(ptl);
4281
	}
4282
	/*
4283
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4284
	 * may have cleared our pud entry and done put_page on the page table:
4285
	 * once we release i_mmap_rwsem, another task can do the final put_page
4286 4287
	 * and that page table be reused and filled with junk.
	 */
4288
	flush_hugetlb_tlb_range(vma, start, end);
4289
	mmu_notifier_invalidate_range(mm, start, end);
4290
	i_mmap_unlock_write(vma->vm_file->f_mapping);
4291
	mmu_notifier_invalidate_range_end(mm, start, end);
4292 4293

	return pages << h->order;
4294 4295
}

4296 4297
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
4298
					struct vm_area_struct *vma,
4299
					vm_flags_t vm_flags)
4300
{
4301
	long ret, chg;
4302
	struct hstate *h = hstate_inode(inode);
4303
	struct hugepage_subpool *spool = subpool_inode(inode);
4304
	struct resv_map *resv_map;
4305
	long gbl_reserve;
4306

4307 4308 4309
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
4310
	 * without using reserves
4311
	 */
4312
	if (vm_flags & VM_NORESERVE)
4313 4314
		return 0;

4315 4316 4317 4318 4319 4320
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
4321
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4322
		resv_map = inode_resv_map(inode);
4323

4324
		chg = region_chg(resv_map, from, to);
4325 4326 4327

	} else {
		resv_map = resv_map_alloc();
4328 4329 4330
		if (!resv_map)
			return -ENOMEM;

4331
		chg = to - from;
4332

4333 4334 4335 4336
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

4337 4338 4339 4340
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
4341

4342 4343 4344 4345 4346 4347 4348
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
4349 4350 4351
		ret = -ENOSPC;
		goto out_err;
	}
4352 4353

	/*
4354
	 * Check enough hugepages are available for the reservation.
4355
	 * Hand the pages back to the subpool if there are not
4356
	 */
4357
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
4358
	if (ret < 0) {
4359 4360
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
4361
		goto out_err;
K
Ken Chen 已提交
4362
	}
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
4393
	return 0;
4394
out_err:
4395
	if (!vma || vma->vm_flags & VM_MAYSHARE)
4396 4397 4398
		/* Don't call region_abort if region_chg failed */
		if (chg >= 0)
			region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
4399 4400
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
4401
	return ret;
4402 4403
}

4404 4405
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
4406
{
4407
	struct hstate *h = hstate_inode(inode);
4408
	struct resv_map *resv_map = inode_resv_map(inode);
4409
	long chg = 0;
4410
	struct hugepage_subpool *spool = subpool_inode(inode);
4411
	long gbl_reserve;
K
Ken Chen 已提交
4412

4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
4424
	spin_lock(&inode->i_lock);
4425
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
4426 4427
	spin_unlock(&inode->i_lock);

4428 4429 4430 4431 4432 4433
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
4434 4435

	return 0;
4436
}
4437

4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
4449 4450
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

4464
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4465 4466 4467 4468 4469 4470 4471 4472 4473
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
4474 4475
		return true;
	return false;
4476 4477 4478 4479 4480 4481 4482
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
4483
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
4497
	spinlock_t *ptl;
4498 4499 4500 4501

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

4502
	i_mmap_lock_write(mapping);
4503 4504 4505 4506 4507 4508
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
4509 4510
			spte = huge_pte_offset(svma->vm_mm, saddr,
					       vma_mmu_pagesize(svma));
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4521
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4522
	if (pud_none(*pud)) {
4523 4524
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4525
		mm_inc_nr_pmds(mm);
4526
	} else {
4527
		put_page(virt_to_page(spte));
4528
	}
4529
	spin_unlock(ptl);
4530 4531
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4532
	i_mmap_unlock_write(mapping);
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4543
 * called with page table lock held.
4544 4545 4546 4547 4548 4549 4550
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
4551 4552
	p4d_t *p4d = p4d_offset(pgd, *addr);
	pud_t *pud = pud_offset(p4d, *addr);
4553 4554 4555 4556 4557 4558 4559

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4560
	mm_dec_nr_pmds(mm);
4561 4562 4563
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4564 4565 4566 4567 4568 4569
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4570 4571 4572 4573 4574

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4575
#define want_pmd_share()	(0)
4576 4577
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4578 4579 4580 4581 4582
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
4583
	p4d_t *p4d;
4584 4585 4586 4587
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
4588 4589
	p4d = p4d_offset(pgd, addr);
	pud = pud_alloc(mm, p4d, addr);
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
4601
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4602 4603 4604 4605

	return pte;
}

4606 4607
pte_t *huge_pte_offset(struct mm_struct *mm,
		       unsigned long addr, unsigned long sz)
4608 4609
{
	pgd_t *pgd;
4610
	p4d_t *p4d;
4611
	pud_t *pud;
4612
	pmd_t *pmd;
4613 4614

	pgd = pgd_offset(mm, addr);
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
	if (!pud_present(*pud))
		return NULL;
	if (pud_huge(*pud))
		return (pte_t *)pud;
	pmd = pmd_offset(pud, addr);
4626 4627 4628
	return (pte_t *) pmd;
}

4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

4642 4643 4644 4645 4646 4647 4648 4649
struct page * __weak
follow_huge_pd(struct vm_area_struct *vma,
	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
{
	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
	return NULL;
}

4650
struct page * __weak
4651
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4652
		pmd_t *pmd, int flags)
4653
{
4654 4655
	struct page *page = NULL;
	spinlock_t *ptl;
4656
	pte_t pte;
4657 4658 4659 4660 4661 4662 4663 4664 4665
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
4666 4667
	pte = huge_ptep_get((pte_t *)pmd);
	if (pte_present(pte)) {
4668
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4669 4670 4671
		if (flags & FOLL_GET)
			get_page(page);
	} else {
4672
		if (is_hugetlb_entry_migration(pte)) {
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
4684 4685 4686
	return page;
}

4687
struct page * __weak
4688
follow_huge_pud(struct mm_struct *mm, unsigned long address,
4689
		pud_t *pud, int flags)
4690
{
4691 4692
	if (flags & FOLL_GET)
		return NULL;
4693

4694
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4695 4696
}

4697 4698 4699 4700 4701 4702 4703 4704 4705
struct page * __weak
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
{
	if (flags & FOLL_GET)
		return NULL;

	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
}

4706 4707
bool isolate_huge_page(struct page *page, struct list_head *list)
{
4708 4709
	bool ret = true;

4710
	VM_BUG_ON_PAGE(!PageHead(page), page);
4711
	spin_lock(&hugetlb_lock);
4712 4713 4714 4715 4716
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4717
	list_move_tail(&page->lru, list);
4718
unlock:
4719
	spin_unlock(&hugetlb_lock);
4720
	return ret;
4721 4722 4723 4724
}

void putback_active_hugepage(struct page *page)
{
4725
	VM_BUG_ON_PAGE(!PageHead(page), page);
4726
	spin_lock(&hugetlb_lock);
4727
	set_page_huge_active(page);
4728 4729 4730 4731
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}