hugetlb.c 55.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/cpuset.h>
16
#include <linux/mutex.h>
17
#include <linux/bootmem.h>
18
#include <linux/sysfs.h>
19

D
David Gibson 已提交
20 21 22 23
#include <asm/page.h>
#include <asm/pgtable.h>

#include <linux/hugetlb.h>
24
#include "internal.h"
L
Linus Torvalds 已提交
25 26

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
27 28
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
29

30 31 32 33 34 35 36 37 38 39
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
40

41 42 43 44
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
45

46 47 48
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
49 50 51 52 53 54 55 56 57 58
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

205 206 207 208
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
209 210
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
211
{
212 213
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
214 215
}

216 217 218 219 220 221 222
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
223
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
224

225 226 227 228 229 230 231 232 233
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
234 235 236 237 238 239 240 241 242
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
243
 */
244 245 246 247 248 249 250 251 252 253 254
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

struct resv_map *resv_map_alloc(void)
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

void resv_map_release(struct kref *ref)
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
282 283 284
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
285 286
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
287 288 289
	return 0;
}

290
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
291 292 293 294
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

295 296
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
297 298 299 300 301
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
302 303 304
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
305 306 307 308 309
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
310 311

	return (get_vma_private_data(vma) & flag) != 0;
312 313 314
}

/* Decrement the reserved pages in the hugepage pool by one */
315 316
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
317
{
318 319 320
	if (vma->vm_flags & VM_NORESERVE)
		return;

321 322
	if (vma->vm_flags & VM_SHARED) {
		/* Shared mappings always use reserves */
323
		h->resv_huge_pages--;
324
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
325 326 327 328
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
329
		h->resv_huge_pages--;
330 331 332
	}
}

333
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
334 335 336 337 338 339 340 341 342 343 344 345
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
static int vma_has_private_reserves(struct vm_area_struct *vma)
{
	if (vma->vm_flags & VM_SHARED)
		return 0;
346
	if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER))
347 348 349 350
		return 0;
	return 1;
}

351 352
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
353 354 355 356
{
	int i;

	might_sleep();
357
	for (i = 0; i < sz/PAGE_SIZE; i++) {
358
		cond_resched();
359
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
360 361 362 363
	}
}

static void copy_huge_page(struct page *dst, struct page *src,
364
			   unsigned long addr, struct vm_area_struct *vma)
365 366
{
	int i;
367
	struct hstate *h = hstate_vma(vma);
368 369

	might_sleep();
370
	for (i = 0; i < pages_per_huge_page(h); i++) {
371
		cond_resched();
372
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
373 374 375
	}
}

376
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
377 378
{
	int nid = page_to_nid(page);
379 380 381
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
382 383
}

384
static struct page *dequeue_huge_page(struct hstate *h)
385 386 387 388 389
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
390 391
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
392 393
					  struct page, lru);
			list_del(&page->lru);
394 395
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
396 397 398 399 400 401
			break;
		}
	}
	return page;
}

402 403
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
404
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
405
{
406
	int nid;
L
Linus Torvalds 已提交
407
	struct page *page = NULL;
408
	struct mempolicy *mpol;
409
	nodemask_t *nodemask;
410
	struct zonelist *zonelist = huge_zonelist(vma, address,
411
					htlb_alloc_mask, &mpol, &nodemask);
412 413
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
414

415 416 417 418 419 420
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
	if (!vma_has_private_reserves(vma) &&
421
			h->free_huge_pages - h->resv_huge_pages == 0)
422 423
		return NULL;

424
	/* If reserves cannot be used, ensure enough pages are in the pool */
425
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
426 427
		return NULL;

428 429
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
430 431
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
432 433
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
A
Andrew Morton 已提交
434 435
					  struct page, lru);
			list_del(&page->lru);
436 437
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
438 439

			if (!avoid_reserve)
440
				decrement_hugepage_resv_vma(h, vma);
441

K
Ken Chen 已提交
442
			break;
A
Andrew Morton 已提交
443
		}
L
Linus Torvalds 已提交
444
	}
445
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
446 447 448
	return page;
}

449
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
450 451
{
	int i;
452 453 454 455

	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
456 457 458 459 460 461
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
462
	arch_release_hugepage(page);
463
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
464 465
}

466 467 468 469 470 471 472 473 474 475 476
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

477 478
static void free_huge_page(struct page *page)
{
479 480 481 482
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
483
	struct hstate *h = page_hstate(page);
484
	int nid = page_to_nid(page);
485
	struct address_space *mapping;
486

487
	mapping = (struct address_space *) page_private(page);
488
	set_page_private(page, 0);
489
	BUG_ON(page_count(page));
490 491 492
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
493
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
494 495 496
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
497
	} else {
498
		enqueue_huge_page(h, page);
499
	}
500
	spin_unlock(&hugetlb_lock);
501
	if (mapping)
502
		hugetlb_put_quota(mapping, 1);
503 504
}

505 506 507 508 509
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
510
static int adjust_pool_surplus(struct hstate *h, int delta)
511 512 513 514 515 516 517 518 519 520 521 522
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
523
		if (delta < 0 && !h->surplus_huge_pages_node[nid])
524 525
			continue;
		/* Surplus cannot exceed the total number of pages */
526 527
		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
						h->nr_huge_pages_node[nid])
528 529
			continue;

530 531
		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
532 533 534 535 536 537 538 539
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

540
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
541 542 543
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
544 545
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
546 547 548 549
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

550
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
551 552
{
	struct page *page;
553

554 555 556
	if (h->order >= MAX_ORDER)
		return NULL;

557
	page = alloc_pages_node(nid,
558 559
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
560
		huge_page_order(h));
L
Linus Torvalds 已提交
561
	if (page) {
562 563
		if (arch_prepare_hugepage(page)) {
			__free_pages(page, HUGETLB_PAGE_ORDER);
564
			return NULL;
565
		}
566
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
567
	}
568 569 570 571

	return page;
}

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
/*
 * Use a helper variable to find the next node and then
 * copy it back to hugetlb_next_nid afterwards:
 * otherwise there's a window in which a racer might
 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
 * But we don't need to use a spin_lock here: it really
 * doesn't matter if occasionally a racer chooses the
 * same nid as we do.  Move nid forward in the mask even
 * if we just successfully allocated a hugepage so that
 * the next caller gets hugepages on the next node.
 */
static int hstate_next_node(struct hstate *h)
{
	int next_nid;
	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
	if (next_nid == MAX_NUMNODES)
		next_nid = first_node(node_online_map);
	h->hugetlb_next_nid = next_nid;
	return next_nid;
}

593
static int alloc_fresh_huge_page(struct hstate *h)
594 595 596 597 598 599
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

600
	start_nid = h->hugetlb_next_nid;
601 602

	do {
603
		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
604 605
		if (page)
			ret = 1;
606
		next_nid = hstate_next_node(h);
607
	} while (!page && h->hugetlb_next_nid != start_nid);
608

609 610 611 612 613
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

614
	return ret;
L
Linus Torvalds 已提交
615 616
}

617 618
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
619 620
{
	struct page *page;
621
	unsigned int nid;
622

623 624 625
	if (h->order >= MAX_ORDER)
		return NULL;

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
650
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
651 652 653
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
654 655
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
656 657 658
	}
	spin_unlock(&hugetlb_lock);

659 660
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
661
					huge_page_order(h));
662 663

	spin_lock(&hugetlb_lock);
664
	if (page) {
665 666 667 668 669 670
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
671
		nid = page_to_nid(page);
672
		set_compound_page_dtor(page, free_huge_page);
673 674 675
		/*
		 * We incremented the global counters already
		 */
676 677
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
678
		__count_vm_event(HTLB_BUDDY_PGALLOC);
679
	} else {
680 681
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
682
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
683
	}
684
	spin_unlock(&hugetlb_lock);
685 686 687 688

	return page;
}

689 690 691 692
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
693
static int gather_surplus_pages(struct hstate *h, int delta)
694 695 696 697 698 699
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

700
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
701
	if (needed <= 0) {
702
		h->resv_huge_pages += delta;
703
		return 0;
704
	}
705 706 707 708 709 710 711 712

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
713
		page = alloc_buddy_huge_page(h, NULL, 0);
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
734 735
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
736 737 738 739 740 741 742
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
743 744 745
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
746 747
	 */
	needed += allocated;
748
	h->resv_huge_pages += delta;
749 750
	ret = 0;
free:
751
	/* Free the needed pages to the hugetlb pool */
752
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
753 754
		if ((--needed) < 0)
			break;
755
		list_del(&page->lru);
756
		enqueue_huge_page(h, page);
757 758 759 760 761 762 763
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
764
			/*
765 766 767
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
768 769 770
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
771
			free_huge_page(page);
772
		}
773
		spin_lock(&hugetlb_lock);
774 775 776 777 778 779 780 781 782 783
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
784 785
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
786 787 788 789 790
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

791 792 793 794 795 796 797 798
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
	unsigned long remaining_iterations = num_online_nodes();

799
	/* Uncommit the reservation */
800
	h->resv_huge_pages -= unused_resv_pages;
801

802 803 804 805
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

806
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
807

808
	while (remaining_iterations-- && nr_pages) {
809 810 811 812
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

813
		if (!h->surplus_huge_pages_node[nid])
814 815
			continue;

816 817
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
818 819
					  struct page, lru);
			list_del(&page->lru);
820 821 822 823 824
			update_and_free_page(h, page);
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
			h->surplus_huge_pages--;
			h->surplus_huge_pages_node[nid]--;
825
			nr_pages--;
826
			remaining_iterations = num_online_nodes();
827 828 829 830
		}
	}
}

831 832 833 834 835 836 837 838 839
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
840 841
static int vma_needs_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
842 843 844 845 846
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
847
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
848 849 850
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

851 852
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
853

854 855
	} else  {
		int err;
856
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
857 858 859 860 861 862 863
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
864
}
865 866
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
867 868 869 870 871
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
872
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
873
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
874 875

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
876
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
877 878 879 880
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
881 882 883
	}
}

884
static struct page *alloc_huge_page(struct vm_area_struct *vma,
885
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
886
{
887
	struct hstate *h = hstate_vma(vma);
888
	struct page *page;
889 890
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
891
	unsigned int chg;
892 893 894 895 896

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
897 898
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
899
	 */
900
	chg = vma_needs_reservation(h, vma, addr);
901 902 903
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
904 905
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
906 907

	spin_lock(&hugetlb_lock);
908
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
909
	spin_unlock(&hugetlb_lock);
910

K
Ken Chen 已提交
911
	if (!page) {
912
		page = alloc_buddy_huge_page(h, vma, addr);
K
Ken Chen 已提交
913
		if (!page) {
914
			hugetlb_put_quota(inode->i_mapping, chg);
K
Ken Chen 已提交
915 916 917
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
918

919 920
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
921

922
	vma_commit_reservation(h, vma, addr);
923

924
	return page;
925 926
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
static __initdata LIST_HEAD(huge_boot_pages);

struct huge_bootmem_page {
	struct list_head list;
	struct hstate *hstate;
};

static int __init alloc_bootmem_huge_page(struct hstate *h)
{
	struct huge_bootmem_page *m;
	int nr_nodes = nodes_weight(node_online_map);

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
				NODE_DATA(h->hugetlb_next_nid),
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
			if (m)
				goto found;
		}
		hstate_next_node(h);
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
		prep_compound_page(page, h->order);
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

984
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
985 986
{
	unsigned long i;
987

988
	for (i = 0; i < h->max_huge_pages; ++i) {
989 990 991 992
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
		} else if (!alloc_fresh_huge_page(h))
L
Linus Torvalds 已提交
993 994
			break;
	}
995
	h->max_huge_pages = i;
996 997 998 999 1000 1001 1002
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1003 1004 1005
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	}
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		printk(KERN_INFO "Total HugeTLB memory allocated, "
				"%ld %dMB pages\n",
				h->free_huge_pages,
				1 << (h->order + PAGE_SHIFT - 20));
	}
}

L
Linus Torvalds 已提交
1021 1022
#ifdef CONFIG_SYSCTL
#ifdef CONFIG_HIGHMEM
1023
static void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1024
{
1025 1026
	int i;

1027 1028 1029
	if (h->order >= MAX_ORDER)
		return;

L
Linus Torvalds 已提交
1030 1031
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
1032 1033 1034
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1035
				return;
L
Linus Torvalds 已提交
1036 1037 1038
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1039
			update_and_free_page(h, page);
1040 1041
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1042 1043 1044 1045
		}
	}
}
#else
1046
static inline void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1047 1048 1049 1050
{
}
#endif

1051
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1052
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1053
{
1054
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1055

1056 1057 1058
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1059 1060 1061 1062
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1063 1064 1065 1066 1067 1068
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1069
	 */
L
Linus Torvalds 已提交
1070
	spin_lock(&hugetlb_lock);
1071 1072
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, -1))
1073 1074 1075
			break;
	}

1076
	while (count > persistent_huge_pages(h)) {
1077 1078 1079 1080 1081 1082
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1083
		ret = alloc_fresh_huge_page(h);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1096 1097 1098 1099 1100 1101 1102 1103
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1104
	 */
1105
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1106
	min_count = max(count, min_count);
1107 1108 1109
	try_to_free_low(h, min_count);
	while (min_count < persistent_huge_pages(h)) {
		struct page *page = dequeue_huge_page(h);
L
Linus Torvalds 已提交
1110 1111
		if (!page)
			break;
1112
		update_and_free_page(h, page);
L
Linus Torvalds 已提交
1113
	}
1114 1115
	while (count < persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, 1))
1116 1117 1118
			break;
	}
out:
1119
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1120
	spin_unlock(&hugetlb_lock);
1121
	return ret;
L
Linus Torvalds 已提交
1122 1123
}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

static struct hstate *kobj_to_hstate(struct kobject *kobj)
{
	int i;
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
		if (hstate_kobjs[i] == kobj)
			return &hstates[i];
	BUG();
	return NULL;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_huge_pages);
}
static ssize_t nr_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	h->max_huge_pages = set_max_huge_pages(h, input);

	return count;
}
HSTATE_ATTR(nr_hugepages);

static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->free_huge_pages);
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
{
	int retval;

	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
							hugepages_kobj);
	if (!hstate_kobjs[h - hstates])
		return -ENOMEM;

	retval = sysfs_create_group(hstate_kobjs[h - hstates],
							&hstate_attr_group);
	if (retval)
		kobject_put(hstate_kobjs[h - hstates]);

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h);
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

static void __exit hugetlb_exit(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
	BUILD_BUG_ON(HPAGE_SHIFT == 0);

	if (!size_to_hstate(HPAGE_SIZE)) {
		hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
		parsed_hstate->max_huge_pages = default_hstate_max_huge_pages;
	}
	default_hstate_idx = size_to_hstate(HPAGE_SIZE) - hstates;

	hugetlb_init_hstates();

1287 1288
	gather_bootmem_prealloc();

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	report_hugepages();

	hugetlb_sysfs_init();

	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1301 1302
	unsigned long i;

1303 1304 1305 1306 1307 1308 1309 1310 1311
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1312 1313 1314 1315 1316
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
	h->hugetlb_next_nid = first_node(node_online_map);
1317 1318
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1319

1320 1321 1322 1323 1324 1325
	parsed_hstate = h;
}

static int __init hugetlb_setup(char *s)
{
	unsigned long *mhp;
1326
	static unsigned long *last_mhp;
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1337 1338 1339 1340 1341 1342
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1343 1344 1345
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	return 1;
}
__setup("hugepages=", hugetlb_setup);

static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

L
Linus Torvalds 已提交
1371 1372 1373 1374
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
1375 1376 1377 1378 1379 1380 1381 1382
	struct hstate *h = &default_hstate;
	unsigned long tmp;

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
L
Linus Torvalds 已提交
1383
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1384 1385 1386 1387

	if (write)
		h->max_huge_pages = set_max_huge_pages(h, tmp);

L
Linus Torvalds 已提交
1388 1389
	return 0;
}
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, file, buffer, length, ppos);
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1403 1404 1405 1406
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
1407
	struct hstate *h = &default_hstate;
1408 1409 1410 1411 1412 1413 1414
	unsigned long tmp;

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1415
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1416 1417 1418 1419 1420 1421 1422

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}

1423 1424 1425
	return 0;
}

L
Linus Torvalds 已提交
1426 1427 1428 1429
#endif /* CONFIG_SYSCTL */

int hugetlb_report_meminfo(char *buf)
{
1430
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1431 1432 1433
	return sprintf(buf,
			"HugePages_Total: %5lu\n"
			"HugePages_Free:  %5lu\n"
1434
			"HugePages_Rsvd:  %5lu\n"
1435
			"HugePages_Surp:  %5lu\n"
L
Linus Torvalds 已提交
1436
			"Hugepagesize:    %5lu kB\n",
1437 1438 1439 1440 1441
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1442 1443 1444 1445
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1446
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1447 1448
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1449 1450
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1451 1452 1453
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1454 1455 1456 1457 1458
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1459 1460
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1461 1462
}

1463
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
1486
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
1487 1488
			goto out;

1489 1490
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
1491 1492 1493 1494 1495 1496
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
1497
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
1498 1499 1500 1501 1502 1503

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

1520 1521
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
1522
	struct hstate *h = hstate_vma(vma);
1523 1524 1525 1526 1527 1528
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
1529 1530
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
1531 1532 1533 1534 1535 1536 1537

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

		if (reserve)
1538
			hugetlb_acct_memory(h, -reserve);
1539
	}
1540 1541
}

L
Linus Torvalds 已提交
1542 1543 1544 1545 1546 1547
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
1548
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
1549 1550
{
	BUG();
N
Nick Piggin 已提交
1551
	return 0;
L
Linus Torvalds 已提交
1552 1553 1554
}

struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
1555
	.fault = hugetlb_vm_op_fault,
1556
	.open = hugetlb_vm_op_open,
1557
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
1558 1559
};

1560 1561
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
1562 1563 1564
{
	pte_t entry;

1565
	if (writable) {
D
David Gibson 已提交
1566 1567 1568
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
1569
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
1570 1571 1572 1573 1574 1575 1576
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

1577 1578 1579 1580 1581
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

1582 1583
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1584 1585
		update_mmu_cache(vma, address, entry);
	}
1586 1587 1588
}


D
David Gibson 已提交
1589 1590 1591 1592 1593
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
1594
	unsigned long addr;
1595
	int cow;
1596 1597
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
1598 1599

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
1600

1601
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
1602 1603 1604
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
1605
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
1606 1607
		if (!dst_pte)
			goto nomem;
1608 1609 1610 1611 1612

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
1613
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
1614
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1615
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1616
			if (cow)
1617 1618
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
1619 1620 1621 1622 1623
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
1624
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
1625 1626 1627 1628 1629 1630 1631
	}
	return 0;

nomem:
	return -ENOMEM;
}

1632
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1633
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
1634 1635 1636
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
1637
	pte_t *ptep;
D
David Gibson 已提交
1638 1639
	pte_t pte;
	struct page *page;
1640
	struct page *tmp;
1641 1642 1643
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

1644 1645 1646 1647 1648
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
1649
	LIST_HEAD(page_list);
D
David Gibson 已提交
1650 1651

	WARN_ON(!is_vm_hugetlb_page(vma));
1652 1653
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
1654

1655
	spin_lock(&mm->page_table_lock);
1656
	for (address = start; address < end; address += sz) {
1657
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
1658
		if (!ptep)
1659 1660
			continue;

1661 1662 1663
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

1685
		pte = huge_ptep_get_and_clear(mm, address, ptep);
1686
		if (huge_pte_none(pte))
D
David Gibson 已提交
1687
			continue;
1688

D
David Gibson 已提交
1689
		page = pte_page(pte);
1690 1691
		if (pte_dirty(pte))
			set_page_dirty(page);
1692
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
1693
	}
L
Linus Torvalds 已提交
1694
	spin_unlock(&mm->page_table_lock);
1695
	flush_tlb_range(vma, start, end);
1696 1697 1698 1699
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
1700
}
D
David Gibson 已提交
1701

1702
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1703
			  unsigned long end, struct page *ref_page)
1704
{
1705 1706 1707
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1708 1709
}

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
int unmap_ref_private(struct mm_struct *mm,
					struct vm_area_struct *vma,
					struct page *page,
					unsigned long address)
{
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
	address = address & huge_page_mask(hstate_vma(vma));
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
			unmap_hugepage_range(iter_vma,
				address, address + HPAGE_SIZE,
				page);
	}

	return 1;
}

1756
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1757 1758
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
1759
{
1760
	struct hstate *h = hstate_vma(vma);
1761
	struct page *old_page, *new_page;
1762
	int avoidcopy;
1763
	int outside_reserve = 0;
1764 1765 1766

	old_page = pte_page(pte);

1767
retry_avoidcopy:
1768 1769 1770 1771 1772
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
1773
		return 0;
1774 1775
	}

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
	if (!(vma->vm_flags & VM_SHARED) &&
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

1790
	page_cache_get(old_page);
1791
	new_page = alloc_huge_page(vma, address, outside_reserve);
1792

1793
	if (IS_ERR(new_page)) {
1794
		page_cache_release(old_page);
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

1813
		return -PTR_ERR(new_page);
1814 1815 1816
	}

	spin_unlock(&mm->page_table_lock);
1817
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
1818
	__SetPageUptodate(new_page);
1819 1820
	spin_lock(&mm->page_table_lock);

1821
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1822
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1823
		/* Break COW */
1824
		huge_ptep_clear_flush(vma, address, ptep);
1825 1826 1827 1828 1829 1830 1831
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
1832
	return 0;
1833 1834
}

1835
/* Return the pagecache page at a given address within a VMA */
1836 1837
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
1838 1839
{
	struct address_space *mapping;
1840
	pgoff_t idx;
1841 1842

	mapping = vma->vm_file->f_mapping;
1843
	idx = vma_hugecache_offset(h, vma, address);
1844 1845 1846 1847

	return find_lock_page(mapping, idx);
}

1848
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1849
			unsigned long address, pte_t *ptep, int write_access)
1850
{
1851
	struct hstate *h = hstate_vma(vma);
1852
	int ret = VM_FAULT_SIGBUS;
1853
	pgoff_t idx;
A
Adam Litke 已提交
1854 1855 1856
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
1857
	pte_t new_pte;
A
Adam Litke 已提交
1858

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
1871
	mapping = vma->vm_file->f_mapping;
1872
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
1873 1874 1875 1876 1877

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
1878 1879 1880
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
1881
		size = i_size_read(mapping->host) >> huge_page_shift(h);
1882 1883
		if (idx >= size)
			goto out;
1884
		page = alloc_huge_page(vma, address, 0);
1885 1886
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
1887 1888
			goto out;
		}
1889
		clear_huge_page(page, address, huge_page_size(h));
N
Nick Piggin 已提交
1890
		__SetPageUptodate(page);
1891

1892 1893
		if (vma->vm_flags & VM_SHARED) {
			int err;
K
Ken Chen 已提交
1894
			struct inode *inode = mapping->host;
1895 1896 1897 1898 1899 1900 1901 1902

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
1903 1904

			spin_lock(&inode->i_lock);
1905
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
1906
			spin_unlock(&inode->i_lock);
1907 1908 1909
		} else
			lock_page(page);
	}
1910

1911
	spin_lock(&mm->page_table_lock);
1912
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
1913 1914 1915
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
1916
	ret = 0;
1917
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
1918 1919
		goto backout;

1920 1921 1922 1923 1924 1925
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		/* Optimization, do the COW without a second fault */
1926
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1927 1928
	}

1929
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
1930 1931
	unlock_page(page);
out:
1932
	return ret;
A
Adam Litke 已提交
1933 1934 1935 1936 1937 1938

backout:
	spin_unlock(&mm->page_table_lock);
	unlock_page(page);
	put_page(page);
	goto out;
1939 1940
}

1941 1942 1943 1944 1945
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, int write_access)
{
	pte_t *ptep;
	pte_t entry;
1946
	int ret;
1947
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1948
	struct hstate *h = hstate_vma(vma);
1949

1950
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
1951 1952 1953
	if (!ptep)
		return VM_FAULT_OOM;

1954 1955 1956 1957 1958 1959
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
1960 1961
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
1962 1963 1964 1965
		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
		mutex_unlock(&hugetlb_instantiation_mutex);
		return ret;
	}
1966

N
Nick Piggin 已提交
1967
	ret = 0;
1968 1969 1970

	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
1971
	if (likely(pte_same(entry, huge_ptep_get(ptep))))
1972 1973
		if (write_access && !pte_write(entry)) {
			struct page *page;
1974
			page = hugetlbfs_pagecache_page(h, vma, address);
1975 1976 1977 1978 1979 1980
			ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
			if (page) {
				unlock_page(page);
				put_page(page);
			}
		}
1981
	spin_unlock(&mm->page_table_lock);
1982
	mutex_unlock(&hugetlb_instantiation_mutex);
1983 1984

	return ret;
1985 1986
}

D
David Gibson 已提交
1987 1988
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
1989 1990
			unsigned long *position, int *length, int i,
			int write)
D
David Gibson 已提交
1991
{
1992 1993
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
1994
	int remainder = *length;
1995
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
1996

1997
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
1998
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
1999 2000
		pte_t *pte;
		struct page *page;
D
David Gibson 已提交
2001

A
Adam Litke 已提交
2002 2003 2004 2005 2006
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make * sure we get the
		 * first, for the page indexing below to work.
		 */
2007
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
D
David Gibson 已提交
2008

2009 2010
		if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
		    (write && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2011
			int ret;
D
David Gibson 已提交
2012

A
Adam Litke 已提交
2013
			spin_unlock(&mm->page_table_lock);
2014
			ret = hugetlb_fault(mm, vma, vaddr, write);
A
Adam Litke 已提交
2015
			spin_lock(&mm->page_table_lock);
2016
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2017
				continue;
D
David Gibson 已提交
2018

A
Adam Litke 已提交
2019 2020 2021 2022 2023 2024
			remainder = 0;
			if (!i)
				i = -EFAULT;
			break;
		}

2025
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2026
		page = pte_page(huge_ptep_get(pte));
2027
same_page:
2028 2029
		if (pages) {
			get_page(page);
2030
			pages[i] = page + pfn_offset;
2031
		}
D
David Gibson 已提交
2032 2033 2034 2035 2036

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2037
		++pfn_offset;
D
David Gibson 已提交
2038 2039
		--remainder;
		++i;
2040
		if (vaddr < vma->vm_end && remainder &&
2041
				pfn_offset < pages_per_huge_page(h)) {
2042 2043 2044 2045 2046 2047
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2048
	}
2049
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2050 2051 2052 2053 2054
	*length = remainder;
	*position = vaddr;

	return i;
}
2055 2056 2057 2058 2059 2060 2061 2062

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2063
	struct hstate *h = hstate_vma(vma);
2064 2065 2066 2067

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2068
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2069
	spin_lock(&mm->page_table_lock);
2070
	for (; address < end; address += huge_page_size(h)) {
2071 2072 2073
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2074 2075
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2076
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2077 2078 2079 2080 2081 2082
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2083
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2084 2085 2086 2087

	flush_tlb_range(vma, start, end);
}

2088 2089 2090
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
					struct vm_area_struct *vma)
2091 2092
{
	long ret, chg;
2093
	struct hstate *h = hstate_inode(inode);
2094

2095 2096 2097
	if (vma && vma->vm_flags & VM_NORESERVE)
		return 0;

2098 2099 2100 2101 2102 2103 2104 2105 2106
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
	if (!vma || vma->vm_flags & VM_SHARED)
		chg = region_chg(&inode->i_mapping->private_list, from, to);
	else {
2107 2108 2109 2110
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2111
		chg = to - from;
2112 2113

		set_vma_resv_map(vma, resv_map);
2114
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2115 2116
	}

2117 2118
	if (chg < 0)
		return chg;
2119

2120 2121
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2122
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2123 2124
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2125
		return ret;
K
Ken Chen 已提交
2126
	}
2127 2128
	if (!vma || vma->vm_flags & VM_SHARED)
		region_add(&inode->i_mapping->private_list, from, to);
2129 2130 2131 2132 2133
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2134
	struct hstate *h = hstate_inode(inode);
2135
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2136 2137

	spin_lock(&inode->i_lock);
2138
	inode->i_blocks -= blocks_per_huge_page(h);
K
Ken Chen 已提交
2139 2140
	spin_unlock(&inode->i_lock);

2141
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2142
	hugetlb_acct_memory(h, -(chg - freed));
2143
}