hugetlb.c 81.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

D
David Gibson 已提交
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <asm/tlb.h>
D
David Gibson 已提交
28

29
#include <linux/io.h>
D
David Gibson 已提交
30
#include <linux/hugetlb.h>
31
#include <linux/hugetlb_cgroup.h>
32
#include <linux/node.h>
33
#include <linux/hugetlb_cgroup.h>
34
#include "internal.h"
L
Linus Torvalds 已提交
35 36

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 38
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
39

40
int hugetlb_max_hstate __read_mostly;
41 42 43
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

44 45
__initdata LIST_HEAD(huge_boot_pages);

46 47 48
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
49
static unsigned long __initdata default_hstate_size;
50

51 52 53
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
54
DEFINE_SPINLOCK(hugetlb_lock);
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
	return subpool_inode(vma->vm_file->f_dentry->d_inode);
}

134 135 136
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
137 138 139 140 141 142
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
143
 *	down_write(&mm->mmap_sem);
144
 * or
145 146
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
227
		/* We overlap with this area, if it extends further than
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

269 270 271 272 273 274 275
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
276 277
		long seg_from;
		long seg_to;
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

293 294 295 296
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
297 298
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
299
{
300 301
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
302 303
}

304 305 306 307 308 309
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
325
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326

327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

340 341 342 343 344 345 346
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
347
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348

349 350 351 352 353 354 355 356 357
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
358 359 360 361 362 363 364 365 366
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
367
 */
368 369 370 371 372 373 374 375 376 377 378
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

379 380 381 382 383
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

384
static struct resv_map *resv_map_alloc(void)
385 386 387 388 389 390 391 392 393 394 395
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

396
static void resv_map_release(struct kref *ref)
397 398 399 400 401 402 403 404 405
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 407
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
408
	if (!(vma->vm_flags & VM_MAYSHARE))
409 410
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
411
	return NULL;
412 413
}

414
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 416
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
417
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418

419 420
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
421 422 423 424 425
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
426
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427 428

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 430 431 432 433
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434 435

	return (get_vma_private_data(vma) & flag) != 0;
436 437 438
}

/* Decrement the reserved pages in the hugepage pool by one */
439 440
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
441
{
442 443 444
	if (vma->vm_flags & VM_NORESERVE)
		return;

445
	if (vma->vm_flags & VM_MAYSHARE) {
446
		/* Shared mappings always use reserves */
447
		h->resv_huge_pages--;
448
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449 450 451 452
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
453
		h->resv_huge_pages--;
454 455 456
	}
}

457
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 459 460
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
461
	if (!(vma->vm_flags & VM_MAYSHARE))
462 463 464 465
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
466
static int vma_has_reserves(struct vm_area_struct *vma)
467
{
468
	if (vma->vm_flags & VM_MAYSHARE)
469 470 471 472
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
473 474
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

509
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
510 511
{
	int nid = page_to_nid(page);
512
	list_move(&page->lru, &h->hugepage_freelists[nid]);
513 514
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
515 516
}

517 518 519 520 521 522 523
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	if (list_empty(&h->hugepage_freelists[nid]))
		return NULL;
	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524
	list_move(&page->lru, &h->hugepage_activelist);
525
	set_page_refcounted(page);
526 527 528 529 530
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

531 532
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
533
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
534
{
535
	struct page *page = NULL;
536
	struct mempolicy *mpol;
537
	nodemask_t *nodemask;
538
	struct zonelist *zonelist;
539 540
	struct zone *zone;
	struct zoneref *z;
541
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
542

543 544
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
545 546
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);
547 548 549 550 551
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
552
	if (!vma_has_reserves(vma) &&
553
			h->free_huge_pages - h->resv_huge_pages == 0)
554
		goto err;
555

556
	/* If reserves cannot be used, ensure enough pages are in the pool */
557
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558
		goto err;
559

560 561
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
562 563 564 565 566 567 568
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
				if (!avoid_reserve)
					decrement_hugepage_resv_vma(h, vma);
				break;
			}
A
Andrew Morton 已提交
569
		}
L
Linus Torvalds 已提交
570
	}
571

572
	mpol_cond_put(mpol);
573 574
	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
		goto retry_cpuset;
L
Linus Torvalds 已提交
575
	return page;
576 577 578 579

err:
	mpol_cond_put(mpol);
	return NULL;
L
Linus Torvalds 已提交
580 581
}

582
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
583 584
{
	int i;
585

586 587
	VM_BUG_ON(h->order >= MAX_ORDER);

588 589 590
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
591 592 593 594
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
595
	}
596
	VM_BUG_ON(hugetlb_cgroup_from_page(page));
A
Adam Litke 已提交
597 598
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
599
	arch_release_hugepage(page);
600
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
601 602
}

603 604 605 606 607 608 609 610 611 612 613
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

614 615
static void free_huge_page(struct page *page)
{
616 617 618 619
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
620
	struct hstate *h = page_hstate(page);
621
	int nid = page_to_nid(page);
622 623
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
624

625
	set_page_private(page, 0);
626
	page->mapping = NULL;
627
	BUG_ON(page_count(page));
628
	BUG_ON(page_mapcount(page));
629 630

	spin_lock(&hugetlb_lock);
631 632
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
633
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
634 635
		/* remove the page from active list */
		list_del(&page->lru);
636 637 638
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
639
	} else {
640
		arch_clear_hugepage_flags(page);
641
		enqueue_huge_page(h, page);
642
	}
643
	spin_unlock(&hugetlb_lock);
644
	hugepage_subpool_put_pages(spool, 1);
645 646
}

647
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
648
{
649
	INIT_LIST_HEAD(&page->lru);
650 651
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
652
	set_hugetlb_cgroup(page, NULL);
653 654
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
655 656 657 658
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

659 660 661 662 663 664 665 666 667 668 669
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
670
		set_page_count(p, 0);
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}
687 688
EXPORT_SYMBOL_GPL(PageHuge);

689
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
690 691
{
	struct page *page;
692

693 694 695
	if (h->order >= MAX_ORDER)
		return NULL;

696
	page = alloc_pages_exact_node(nid,
697 698
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
699
		huge_page_order(h));
L
Linus Torvalds 已提交
700
	if (page) {
701
		if (arch_prepare_hugepage(page)) {
702
			__free_pages(page, huge_page_order(h));
703
			return NULL;
704
		}
705
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
706
	}
707 708 709 710

	return page;
}

711
/*
712 713 714 715 716
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
717
 */
718
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
719
{
720
	nid = next_node(nid, *nodes_allowed);
721
	if (nid == MAX_NUMNODES)
722
		nid = first_node(*nodes_allowed);
723 724 725 726 727
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

728 729 730 731 732 733 734
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

735
/*
736 737 738 739
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
740
 */
741 742
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
743
{
744 745 746 747 748 749
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
750 751

	return nid;
752 753
}

754
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
755 756 757 758 759 760
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

761
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
762
	next_nid = start_nid;
763 764

	do {
765
		page = alloc_fresh_huge_page_node(h, next_nid);
766
		if (page) {
767
			ret = 1;
768 769
			break;
		}
770
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
771
	} while (next_nid != start_nid);
772

773 774 775 776 777
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

778
	return ret;
L
Linus Torvalds 已提交
779 780
}

781
/*
782 783 784 785
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
786
 */
787
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
788
{
789 790 791 792 793 794
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
795 796

	return nid;
797 798 799 800 801 802 803 804
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
805 806
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
807 808 809 810 811
{
	int start_nid;
	int next_nid;
	int ret = 0;

812
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
813 814 815
	next_nid = start_nid;

	do {
816 817 818 819 820 821
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
822 823 824 825 826 827
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
828 829 830 831
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
832 833
			update_and_free_page(h, page);
			ret = 1;
834
			break;
835
		}
836
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
837
	} while (next_nid != start_nid);
838 839 840 841

	return ret;
}

842
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
843 844
{
	struct page *page;
845
	unsigned int r_nid;
846

847 848 849
	if (h->order >= MAX_ORDER)
		return NULL;

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
874
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
875 876 877
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
878 879
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
880 881 882
	}
	spin_unlock(&hugetlb_lock);

883 884 885 886 887 888 889 890
	if (nid == NUMA_NO_NODE)
		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
891

892 893
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
894
		page = NULL;
895 896
	}

897
	spin_lock(&hugetlb_lock);
898
	if (page) {
899
		INIT_LIST_HEAD(&page->lru);
900
		r_nid = page_to_nid(page);
901
		set_compound_page_dtor(page, free_huge_page);
902
		set_hugetlb_cgroup(page, NULL);
903 904 905
		/*
		 * We incremented the global counters already
		 */
906 907
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
908
		__count_vm_event(HTLB_BUDDY_PGALLOC);
909
	} else {
910 911
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
912
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
913
	}
914
	spin_unlock(&hugetlb_lock);
915 916 917 918

	return page;
}

919 920 921 922 923 924 925 926 927 928 929 930 931
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	spin_lock(&hugetlb_lock);
	page = dequeue_huge_page_node(h, nid);
	spin_unlock(&hugetlb_lock);

932
	if (!page)
933 934 935 936 937
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

938
/*
L
Lucas De Marchi 已提交
939
 * Increase the hugetlb pool such that it can accommodate a reservation
940 941
 * of size 'delta'.
 */
942
static int gather_surplus_pages(struct hstate *h, int delta)
943 944 945 946 947
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
948
	bool alloc_ok = true;
949

950
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
951
	if (needed <= 0) {
952
		h->resv_huge_pages += delta;
953
		return 0;
954
	}
955 956 957 958 959 960 961 962

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
963
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
964 965 966 967
		if (!page) {
			alloc_ok = false;
			break;
		}
968 969
		list_add(&page->lru, &surplus_list);
	}
970
	allocated += i;
971 972 973 974 975 976

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
977 978
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
979 980 981 982 983 984 985 986 987 988
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
989 990
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
991
	 * needed to accommodate the reservation.  Add the appropriate number
992
	 * of pages to the hugetlb pool and free the extras back to the buddy
993 994 995
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
996 997
	 */
	needed += allocated;
998
	h->resv_huge_pages += delta;
999
	ret = 0;
1000

1001
	/* Free the needed pages to the hugetlb pool */
1002
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1003 1004
		if ((--needed) < 0)
			break;
1005 1006 1007 1008 1009 1010
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
1011
		enqueue_huge_page(h, page);
1012
	}
1013
free:
1014
	spin_unlock(&hugetlb_lock);
1015 1016 1017 1018

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1019
			put_page(page);
1020
		}
1021
	}
1022
	spin_lock(&hugetlb_lock);
1023 1024 1025 1026 1027 1028 1029 1030

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1031
 * Called with hugetlb_lock held.
1032
 */
1033 1034
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1035 1036 1037
{
	unsigned long nr_pages;

1038
	/* Uncommit the reservation */
1039
	h->resv_huge_pages -= unused_resv_pages;
1040

1041 1042 1043 1044
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1045
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1046

1047 1048
	/*
	 * We want to release as many surplus pages as possible, spread
1049 1050 1051 1052 1053
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1054 1055
	 */
	while (nr_pages--) {
1056
		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1057
			break;
1058 1059 1060
	}
}

1061 1062 1063
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1064 1065 1066 1067 1068 1069
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1070
 */
1071
static long vma_needs_reservation(struct hstate *h,
1072
			struct vm_area_struct *vma, unsigned long addr)
1073 1074 1075 1076
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1077
	if (vma->vm_flags & VM_MAYSHARE) {
1078
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1079 1080 1081
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

1082 1083
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1084

1085
	} else  {
1086
		long err;
1087
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1088 1089 1090 1091 1092 1093 1094
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
1095
}
1096 1097
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1098 1099 1100 1101
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1102
	if (vma->vm_flags & VM_MAYSHARE) {
1103
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1104
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1105 1106

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1107
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1108 1109 1110 1111
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1112 1113 1114
	}
}

1115
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1116
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1117
{
1118
	struct hugepage_subpool *spool = subpool_vma(vma);
1119
	struct hstate *h = hstate_vma(vma);
1120
	struct page *page;
1121
	long chg;
1122 1123
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1124

1125
	idx = hstate_index(h);
1126
	/*
1127 1128 1129 1130 1131 1132
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1133
	 */
1134
	chg = vma_needs_reservation(h, vma, addr);
1135
	if (chg < 0)
1136
		return ERR_PTR(-ENOMEM);
1137
	if (chg)
1138
		if (hugepage_subpool_get_pages(spool, chg))
1139
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1140

1141 1142 1143 1144 1145
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
		hugepage_subpool_put_pages(spool, chg);
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1146
	spin_lock(&hugetlb_lock);
1147
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1148 1149 1150 1151 1152 1153 1154
	if (page) {
		/* update page cgroup details */
		hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
					     h_cg, page);
		spin_unlock(&hugetlb_lock);
	} else {
		spin_unlock(&hugetlb_lock);
1155
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1156
		if (!page) {
1157 1158 1159
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1160
			hugepage_subpool_put_pages(spool, chg);
1161
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1162
		}
1163
		spin_lock(&hugetlb_lock);
1164 1165
		hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
					     h_cg, page);
1166 1167
		list_move(&page->lru, &h->hugepage_activelist);
		spin_unlock(&hugetlb_lock);
K
Ken Chen 已提交
1168
	}
1169

1170
	set_page_private(page, (unsigned long)spool);
1171

1172
	vma_commit_reservation(h, vma, addr);
1173
	return page;
1174 1175
}

1176
int __weak alloc_bootmem_huge_page(struct hstate *h)
1177 1178
{
	struct huge_bootmem_page *m;
1179
	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1180 1181 1182 1183 1184

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1185
				NODE_DATA(hstate_next_node_to_alloc(h,
1186
						&node_states[N_HIGH_MEMORY])),
1187 1188 1189 1190 1191 1192 1193 1194 1195
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1196
			goto found;
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1210 1211 1212 1213 1214 1215 1216 1217
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1218 1219 1220 1221 1222 1223 1224
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1225 1226 1227 1228 1229 1230 1231 1232 1233
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1234 1235
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1236
		prep_compound_huge_page(page, h->order);
1237
		prep_new_huge_page(h, page, page_to_nid(page));
1238 1239 1240 1241 1242 1243 1244 1245
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
			totalram_pages += 1 << h->order;
1246 1247 1248
	}
}

1249
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1250 1251
{
	unsigned long i;
1252

1253
	for (i = 0; i < h->max_huge_pages; ++i) {
1254 1255 1256
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1257 1258
		} else if (!alloc_fresh_huge_page(h,
					 &node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
1259 1260
			break;
	}
1261
	h->max_huge_pages = i;
1262 1263 1264 1265 1266 1267 1268
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1269 1270 1271
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1272 1273 1274
	}
}

A
Andi Kleen 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1286 1287 1288 1289 1290
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1291 1292 1293 1294 1295
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1296 1297 1298
	}
}

L
Linus Torvalds 已提交
1299
#ifdef CONFIG_HIGHMEM
1300 1301
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1302
{
1303 1304
	int i;

1305 1306 1307
	if (h->order >= MAX_ORDER)
		return;

1308
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1309
		struct page *page, *next;
1310 1311 1312
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1313
				return;
L
Linus Torvalds 已提交
1314 1315 1316
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1317
			update_and_free_page(h, page);
1318 1319
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1320 1321 1322 1323
		}
	}
}
#else
1324 1325
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1326 1327 1328 1329
{
}
#endif

1330 1331 1332 1333 1334
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1335 1336
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1337
{
1338
	int start_nid, next_nid;
1339 1340 1341 1342
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1343
	if (delta < 0)
1344
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1345
	else
1346
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1347 1348 1349 1350 1351 1352 1353 1354
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1355
			if (!h->surplus_huge_pages_node[nid]) {
1356 1357
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1358
				continue;
1359
			}
1360 1361 1362 1363 1364 1365
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1366
						h->nr_huge_pages_node[nid]) {
1367 1368
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1369
				continue;
1370
			}
1371
		}
1372 1373 1374 1375 1376

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1377
	} while (next_nid != start_nid);
1378 1379 1380 1381

	return ret;
}

1382
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1383 1384
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1385
{
1386
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1387

1388 1389 1390
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1391 1392 1393 1394
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1395 1396 1397 1398 1399 1400
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1401
	 */
L
Linus Torvalds 已提交
1402
	spin_lock(&hugetlb_lock);
1403
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1404
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1405 1406 1407
			break;
	}

1408
	while (count > persistent_huge_pages(h)) {
1409 1410 1411 1412 1413 1414
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1415
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1416 1417 1418 1419
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1420 1421 1422
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1423 1424 1425 1426 1427 1428 1429 1430
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1431 1432 1433 1434 1435 1436 1437 1438
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1439
	 */
1440
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1441
	min_count = max(count, min_count);
1442
	try_to_free_low(h, min_count, nodes_allowed);
1443
	while (min_count < persistent_huge_pages(h)) {
1444
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1445 1446
			break;
	}
1447
	while (count < persistent_huge_pages(h)) {
1448
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1449 1450 1451
			break;
	}
out:
1452
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1453
	spin_unlock(&hugetlb_lock);
1454
	return ret;
L
Linus Torvalds 已提交
1455 1456
}

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1467 1468 1469
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1470 1471
{
	int i;
1472

1473
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1474 1475 1476
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1477
			return &hstates[i];
1478 1479 1480
		}

	return kobj_to_node_hstate(kobj, nidp);
1481 1482
}

1483
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1484 1485
					struct kobj_attribute *attr, char *buf)
{
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1497
}
1498

1499 1500 1501
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1502 1503
{
	int err;
1504
	int nid;
1505
	unsigned long count;
1506
	struct hstate *h;
1507
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1508

1509
	err = strict_strtoul(buf, 10, &count);
1510
	if (err)
1511
		goto out;
1512

1513
	h = kobj_to_hstate(kobj, &nid);
1514 1515 1516 1517 1518
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
		nodes_allowed = &node_states[N_HIGH_MEMORY];

1538
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1539

1540
	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1541 1542 1543
		NODEMASK_FREE(nodes_allowed);

	return len;
1544 1545 1546
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1559 1560 1561
}
HSTATE_ATTR(nr_hugepages);

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1583 1584 1585
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1586
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1587 1588
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1589

1590 1591 1592 1593 1594
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1595
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1596

1597 1598 1599
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1600 1601
	err = strict_strtoul(buf, 10, &input);
	if (err)
1602
		return err;
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1626 1627 1628 1629 1630 1631
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1632
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1633 1634 1635 1636 1637 1638 1639
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1651 1652 1653 1654 1655 1656 1657 1658 1659
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1660 1661 1662
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1663 1664 1665 1666 1667 1668 1669
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1670 1671 1672
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1673 1674
{
	int retval;
1675
	int hi = hstate_index(h);
1676

1677 1678
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1679 1680
		return -ENOMEM;

1681
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1682
	if (retval)
1683
		kobject_put(hstate_kobjs[hi]);
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1698 1699
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1700 1701 1702 1703 1704 1705
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

1706 1707 1708 1709
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1710 1711 1712
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1713 1714 1715 1716 1717 1718 1719 1720 1721
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1722
 * A subset of global hstate attributes for node devices
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1736
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1759
 * Unregister hstate attributes from a single node device.
1760 1761 1762 1763 1764
 * No-op if no hstate attributes attached.
 */
void hugetlb_unregister_node(struct node *node)
{
	struct hstate *h;
1765
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1766 1767

	if (!nhs->hugepages_kobj)
1768
		return;		/* no hstate attributes */
1769

1770 1771 1772 1773 1774
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1775
		}
1776
	}
1777 1778 1779 1780 1781 1782

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1783
 * hugetlb module exit:  unregister hstate attributes from node devices
1784 1785 1786 1787 1788 1789 1790
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1791
	 * disable node device registrations.
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
		hugetlb_unregister_node(&node_devices[nid]);
}

/*
1803
 * Register hstate attributes for a single node device.
1804 1805 1806 1807 1808
 * No-op if attributes already registered.
 */
void hugetlb_register_node(struct node *node)
{
	struct hstate *h;
1809
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1810 1811 1812 1813 1814 1815
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1816
							&node->dev.kobj);
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
					" for node %d\n",
1827
						h->name, node->dev.id);
1828 1829 1830 1831 1832 1833 1834
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1835
 * hugetlb init time:  register hstate attributes for all registered node
1836 1837
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1838 1839 1840 1841 1842
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1843
	for_each_node_state(nid, N_HIGH_MEMORY) {
1844
		struct node *node = &node_devices[nid];
1845
		if (node->dev.id == nid)
1846 1847 1848 1849
			hugetlb_register_node(node);
	}

	/*
1850
	 * Let the node device driver know we're here so it can
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1872 1873 1874 1875
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1876 1877
	hugetlb_unregister_all_nodes();

1878
	for_each_hstate(h) {
1879
		kobject_put(hstate_kobjs[hstate_index(h)]);
1880 1881 1882 1883 1884 1885 1886 1887
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1888 1889 1890 1891 1892 1893
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1894

1895 1896 1897 1898
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1899
	}
1900
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1901 1902
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1903 1904 1905

	hugetlb_init_hstates();

1906 1907
	gather_bootmem_prealloc();

1908 1909 1910 1911
	report_hugepages();

	hugetlb_sysfs_init();

1912 1913
	hugetlb_register_all_nodes();

1914 1915 1916 1917 1918 1919 1920 1921
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1922 1923
	unsigned long i;

1924 1925 1926 1927
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
1928
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1929
	BUG_ON(order == 0);
1930
	h = &hstates[hugetlb_max_hstate++];
1931 1932
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1933 1934 1935 1936
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1937
	INIT_LIST_HEAD(&h->hugepage_activelist);
1938 1939
	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1940 1941
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1942 1943 1944 1945 1946 1947 1948
	/*
	 * Add cgroup control files only if the huge page consists
	 * of more than two normal pages. This is because we use
	 * page[2].lru.next for storing cgoup details.
	 */
	if (order >= HUGETLB_CGROUP_MIN_ORDER)
		hugetlb_cgroup_file_init(hugetlb_max_hstate - 1);
1949

1950 1951 1952
	parsed_hstate = h;
}

1953
static int __init hugetlb_nrpages_setup(char *s)
1954 1955
{
	unsigned long *mhp;
1956
	static unsigned long *last_mhp;
1957 1958

	/*
1959
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1960 1961
	 * so this hugepages= parameter goes to the "default hstate".
	 */
1962
	if (!hugetlb_max_hstate)
1963 1964 1965 1966
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1967 1968 1969 1970 1971 1972
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1973 1974 1975
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1976 1977 1978 1979 1980
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
1981
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1982 1983 1984 1985
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1986 1987
	return 1;
}
1988 1989 1990 1991 1992 1993 1994 1995
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1996

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2009 2010 2011
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2012
{
2013 2014
	struct hstate *h = &default_hstate;
	unsigned long tmp;
2015
	int ret;
2016

2017
	tmp = h->max_huge_pages;
2018

2019 2020 2021
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2022 2023
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2024 2025 2026
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2027

2028
	if (write) {
2029 2030
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
			NODEMASK_FREE(nodes_allowed);
	}
2041 2042
out:
	return ret;
L
Linus Torvalds 已提交
2043
}
2044

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2062
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2063
			void __user *buffer,
2064 2065
			size_t *length, loff_t *ppos)
{
2066
	proc_dointvec(table, write, buffer, length, ppos);
2067 2068 2069 2070 2071 2072 2073
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

2074
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2075
			void __user *buffer,
2076 2077
			size_t *length, loff_t *ppos)
{
2078
	struct hstate *h = &default_hstate;
2079
	unsigned long tmp;
2080
	int ret;
2081

2082
	tmp = h->nr_overcommit_huge_pages;
2083

2084 2085 2086
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2087 2088
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2089 2090 2091
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2092 2093 2094 2095 2096 2097

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2098 2099
out:
	return ret;
2100 2101
}

L
Linus Torvalds 已提交
2102 2103
#endif /* CONFIG_SYSCTL */

2104
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2105
{
2106
	struct hstate *h = &default_hstate;
2107
	seq_printf(m,
2108 2109 2110 2111 2112
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2113 2114 2115 2116 2117
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2118 2119 2120 2121
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2122
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2123 2124
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2125 2126
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2127 2128 2129
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2130 2131 2132 2133 2134
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2135 2136
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
2137 2138
}

2139
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2162
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2163 2164
			goto out;

2165 2166
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2167 2168 2169 2170 2171 2172
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2173
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2174 2175 2176 2177 2178 2179

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2180 2181 2182 2183 2184 2185 2186 2187
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2188
	 * has a reference to the reservation map it cannot disappear until
2189 2190 2191 2192 2193 2194 2195
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2196 2197 2198 2199 2200 2201 2202 2203 2204
static void resv_map_put(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	if (!reservations)
		return;
	kref_put(&reservations->refs, resv_map_release);
}

2205 2206
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2207
	struct hstate *h = hstate_vma(vma);
2208
	struct resv_map *reservations = vma_resv_map(vma);
2209
	struct hugepage_subpool *spool = subpool_vma(vma);
2210 2211 2212 2213 2214
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2215 2216
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2217 2218 2219 2220

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

2221
		resv_map_put(vma);
2222

2223
		if (reserve) {
2224
			hugetlb_acct_memory(h, -reserve);
2225
			hugepage_subpool_put_pages(spool, reserve);
2226
		}
2227
	}
2228 2229
}

L
Linus Torvalds 已提交
2230 2231 2232 2233 2234 2235
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2236
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2237 2238
{
	BUG();
N
Nick Piggin 已提交
2239
	return 0;
L
Linus Torvalds 已提交
2240 2241
}

2242
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2243
	.fault = hugetlb_vm_op_fault,
2244
	.open = hugetlb_vm_op_open,
2245
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2246 2247
};

2248 2249
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2250 2251 2252
{
	pte_t entry;

2253
	if (writable) {
D
David Gibson 已提交
2254 2255 2256
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
2257
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
2258 2259 2260
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2261
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2262 2263 2264 2265

	return entry;
}

2266 2267 2268 2269 2270
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2271
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2272
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2273
		update_mmu_cache(vma, address, ptep);
2274 2275 2276
}


D
David Gibson 已提交
2277 2278 2279 2280 2281
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2282
	unsigned long addr;
2283
	int cow;
2284 2285
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2286 2287

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2288

2289
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2290 2291 2292
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2293
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2294 2295
		if (!dst_pte)
			goto nomem;
2296 2297 2298 2299 2300

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2301
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2302
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2303
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2304
			if (cow)
2305 2306
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2307 2308
			ptepage = pte_page(entry);
			get_page(ptepage);
2309
			page_dup_rmap(ptepage);
2310 2311 2312
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2313
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2314 2315 2316 2317 2318 2319 2320
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2321 2322 2323 2324 2325 2326 2327
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2328
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2329
		return 1;
2330
	else
N
Naoya Horiguchi 已提交
2331 2332 2333
		return 0;
}

2334 2335 2336 2337 2338 2339 2340
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2341
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2342
		return 1;
2343
	else
2344 2345 2346
		return 0;
}

2347 2348 2349
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2350
{
2351
	int force_flush = 0;
D
David Gibson 已提交
2352 2353
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2354
	pte_t *ptep;
D
David Gibson 已提交
2355 2356
	pte_t pte;
	struct page *page;
2357 2358 2359
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

D
David Gibson 已提交
2360
	WARN_ON(!is_vm_hugetlb_page(vma));
2361 2362
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2363

2364
	tlb_start_vma(tlb, vma);
A
Andrea Arcangeli 已提交
2365
	mmu_notifier_invalidate_range_start(mm, start, end);
2366
again:
2367
	spin_lock(&mm->page_table_lock);
2368
	for (address = start; address < end; address += sz) {
2369
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2370
		if (!ptep)
2371 2372
			continue;

2373 2374 2375
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
			continue;

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
			continue;

		page = pte_page(pte);
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2404
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2405
		tlb_remove_tlb_entry(tlb, ptep, address);
2406 2407
		if (pte_dirty(pte))
			set_page_dirty(page);
2408

2409 2410 2411 2412
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
		if (force_flush)
			break;
2413 2414 2415
		/* Bail out after unmapping reference page if supplied */
		if (ref_page)
			break;
D
David Gibson 已提交
2416
	}
2417
	spin_unlock(&mm->page_table_lock);
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2428
	}
2429 2430
	mmu_notifier_invalidate_range_end(mm, start, end);
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2431
}
D
David Gibson 已提交
2432

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2452
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2453
			  unsigned long end, struct page *ref_page)
2454
{
2455 2456 2457 2458 2459 2460 2461 2462
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

	tlb_gather_mmu(&tlb, mm, 0);
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2463 2464
}

2465 2466 2467 2468 2469 2470
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2471 2472
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2473
{
2474
	struct hstate *h = hstate_vma(vma);
2475 2476 2477 2478 2479 2480 2481 2482 2483
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2484
	address = address & huge_page_mask(h);
2485
	pgoff = vma_hugecache_offset(h, vma, address);
2486
	mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2487

2488 2489 2490 2491 2492
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2493
	mutex_lock(&mapping->i_mmap_mutex);
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2507 2508
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2509
	}
2510
	mutex_unlock(&mapping->i_mmap_mutex);
2511 2512 2513 2514

	return 1;
}

2515 2516
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2517 2518 2519
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2520
 */
2521
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2522 2523
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2524
{
2525
	struct hstate *h = hstate_vma(vma);
2526
	struct page *old_page, *new_page;
2527
	int avoidcopy;
2528
	int outside_reserve = 0;
2529 2530 2531

	old_page = pte_page(pte);

2532
retry_avoidcopy:
2533 2534
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2535
	avoidcopy = (page_mapcount(old_page) == 1);
2536
	if (avoidcopy) {
2537 2538
		if (PageAnon(old_page))
			page_move_anon_rmap(old_page, vma, address);
2539
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2540
		return 0;
2541 2542
	}

2543 2544 2545 2546 2547 2548 2549 2550 2551
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2552
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2553 2554 2555 2556
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2557
	page_cache_get(old_page);
2558 2559 2560

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2561
	new_page = alloc_huge_page(vma, address, outside_reserve);
2562

2563
	if (IS_ERR(new_page)) {
2564
		long err = PTR_ERR(new_page);
2565
		page_cache_release(old_page);
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2578
				spin_lock(&mm->page_table_lock);
2579 2580 2581 2582 2583 2584 2585 2586
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
				 * race occurs while re-acquiring page_table_lock, and
				 * our job is done.
				 */
				return 0;
2587 2588 2589 2590
			}
			WARN_ON_ONCE(1);
		}

2591 2592
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2593 2594 2595 2596
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2597 2598
	}

2599 2600 2601 2602
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2603
	if (unlikely(anon_vma_prepare(vma))) {
2604 2605
		page_cache_release(new_page);
		page_cache_release(old_page);
2606 2607
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2608
		return VM_FAULT_OOM;
2609
	}
2610

A
Andrea Arcangeli 已提交
2611 2612
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2613
	__SetPageUptodate(new_page);
2614

2615 2616 2617 2618 2619
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2620
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2621
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2622
		/* Break COW */
2623 2624 2625
		mmu_notifier_invalidate_range_start(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2626
		huge_ptep_clear_flush(vma, address, ptep);
2627 2628
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2629
		page_remove_rmap(old_page);
2630
		hugepage_add_new_anon_rmap(new_page, vma, address);
2631 2632
		/* Make the old page be freed below */
		new_page = old_page;
2633 2634 2635
		mmu_notifier_invalidate_range_end(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2636 2637 2638
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2639
	return 0;
2640 2641
}

2642
/* Return the pagecache page at a given address within a VMA */
2643 2644
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2645 2646
{
	struct address_space *mapping;
2647
	pgoff_t idx;
2648 2649

	mapping = vma->vm_file->f_mapping;
2650
	idx = vma_hugecache_offset(h, vma, address);
2651 2652 2653 2654

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2655 2656 2657 2658 2659
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2675
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2676
			unsigned long address, pte_t *ptep, unsigned int flags)
2677
{
2678
	struct hstate *h = hstate_vma(vma);
2679
	int ret = VM_FAULT_SIGBUS;
2680
	int anon_rmap = 0;
2681
	pgoff_t idx;
A
Adam Litke 已提交
2682 2683 2684
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2685
	pte_t new_pte;
A
Adam Litke 已提交
2686

2687 2688 2689
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2690
	 * COW. Warn that such a situation has occurred as it may not be obvious
2691 2692 2693 2694 2695 2696 2697 2698
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2699
	mapping = vma->vm_file->f_mapping;
2700
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2701 2702 2703 2704 2705

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2706 2707 2708
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2709
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2710 2711
		if (idx >= size)
			goto out;
2712
		page = alloc_huge_page(vma, address, 0);
2713
		if (IS_ERR(page)) {
2714 2715 2716 2717 2718
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2719 2720
			goto out;
		}
A
Andrea Arcangeli 已提交
2721
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2722
		__SetPageUptodate(page);
2723

2724
		if (vma->vm_flags & VM_MAYSHARE) {
2725
			int err;
K
Ken Chen 已提交
2726
			struct inode *inode = mapping->host;
2727 2728 2729 2730 2731 2732 2733 2734

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2735 2736

			spin_lock(&inode->i_lock);
2737
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2738
			spin_unlock(&inode->i_lock);
2739
		} else {
2740
			lock_page(page);
2741 2742 2743 2744
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2745
			anon_rmap = 1;
2746
		}
2747
	} else {
2748 2749 2750 2751 2752 2753
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2754
			ret = VM_FAULT_HWPOISON |
2755
				VM_FAULT_SET_HINDEX(hstate_index(h));
2756 2757
			goto backout_unlocked;
		}
2758
	}
2759

2760 2761 2762 2763 2764 2765
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2766
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2767 2768 2769 2770
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2771

2772
	spin_lock(&mm->page_table_lock);
2773
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2774 2775 2776
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2777
	ret = 0;
2778
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2779 2780
		goto backout;

2781 2782 2783 2784
	if (anon_rmap)
		hugepage_add_new_anon_rmap(page, vma, address);
	else
		page_dup_rmap(page);
2785 2786 2787 2788
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2789
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2790
		/* Optimization, do the COW without a second fault */
2791
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2792 2793
	}

2794
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2795 2796
	unlock_page(page);
out:
2797
	return ret;
A
Adam Litke 已提交
2798 2799 2800

backout:
	spin_unlock(&mm->page_table_lock);
2801
backout_unlocked:
A
Adam Litke 已提交
2802 2803 2804
	unlock_page(page);
	put_page(page);
	goto out;
2805 2806
}

2807
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2808
			unsigned long address, unsigned int flags)
2809 2810 2811
{
	pte_t *ptep;
	pte_t entry;
2812
	int ret;
2813
	struct page *page = NULL;
2814
	struct page *pagecache_page = NULL;
2815
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2816
	struct hstate *h = hstate_vma(vma);
2817

2818 2819
	address &= huge_page_mask(h);

2820 2821 2822
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2823 2824 2825 2826
		if (unlikely(is_hugetlb_entry_migration(entry))) {
			migration_entry_wait(mm, (pmd_t *)ptep, address);
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2827
			return VM_FAULT_HWPOISON_LARGE |
2828
				VM_FAULT_SET_HINDEX(hstate_index(h));
2829 2830
	}

2831
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2832 2833 2834
	if (!ptep)
		return VM_FAULT_OOM;

2835 2836 2837 2838 2839 2840
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2841 2842
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2843
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2844
		goto out_mutex;
2845
	}
2846

N
Nick Piggin 已提交
2847
	ret = 0;
2848

2849 2850 2851 2852 2853 2854 2855 2856
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2857
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2858 2859
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2860
			goto out_mutex;
2861
		}
2862

2863
		if (!(vma->vm_flags & VM_MAYSHARE))
2864 2865 2866 2867
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2868 2869 2870 2871 2872 2873 2874 2875
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2876
	get_page(page);
2877
	if (page != pagecache_page)
2878 2879
		lock_page(page);

2880 2881
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2882 2883 2884 2885
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2886
	if (flags & FAULT_FLAG_WRITE) {
2887
		if (!pte_write(entry)) {
2888 2889
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2890 2891 2892 2893 2894
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2895 2896
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2897
		update_mmu_cache(vma, address, ptep);
2898 2899

out_page_table_lock:
2900
	spin_unlock(&mm->page_table_lock);
2901 2902 2903 2904 2905

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2906 2907
	if (page != pagecache_page)
		unlock_page(page);
2908
	put_page(page);
2909

2910
out_mutex:
2911
	mutex_unlock(&hugetlb_instantiation_mutex);
2912 2913

	return ret;
2914 2915
}

A
Andi Kleen 已提交
2916 2917 2918 2919 2920 2921 2922 2923 2924
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2925 2926
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2927
			unsigned long *position, int *length, int i,
H
Hugh Dickins 已提交
2928
			unsigned int flags)
D
David Gibson 已提交
2929
{
2930 2931
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2932
	int remainder = *length;
2933
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2934

2935
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2936
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2937
		pte_t *pte;
H
Hugh Dickins 已提交
2938
		int absent;
A
Adam Litke 已提交
2939
		struct page *page;
D
David Gibson 已提交
2940

A
Adam Litke 已提交
2941 2942
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2943
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2944 2945
		 * first, for the page indexing below to work.
		 */
2946
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2947 2948 2949 2950
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2951 2952 2953 2954
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2955
		 */
H
Hugh Dickins 已提交
2956 2957
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2958 2959 2960
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2961

H
Hugh Dickins 已提交
2962 2963
		if (absent ||
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2964
			int ret;
D
David Gibson 已提交
2965

A
Adam Litke 已提交
2966
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2967 2968
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2969
			spin_lock(&mm->page_table_lock);
2970
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2971
				continue;
D
David Gibson 已提交
2972

A
Adam Litke 已提交
2973 2974 2975 2976
			remainder = 0;
			break;
		}

2977
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2978
		page = pte_page(huge_ptep_get(pte));
2979
same_page:
2980
		if (pages) {
H
Hugh Dickins 已提交
2981
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2982
			get_page(pages[i]);
2983
		}
D
David Gibson 已提交
2984 2985 2986 2987 2988

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2989
		++pfn_offset;
D
David Gibson 已提交
2990 2991
		--remainder;
		++i;
2992
		if (vaddr < vma->vm_end && remainder &&
2993
				pfn_offset < pages_per_huge_page(h)) {
2994 2995 2996 2997 2998 2999
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
3000
	}
3001
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
3002 3003 3004
	*length = remainder;
	*position = vaddr;

H
Hugh Dickins 已提交
3005
	return i ? i : -EFAULT;
D
David Gibson 已提交
3006
}
3007 3008 3009 3010 3011 3012 3013 3014

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3015
	struct hstate *h = hstate_vma(vma);
3016 3017 3018 3019

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3020
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3021
	spin_lock(&mm->page_table_lock);
3022
	for (; address < end; address += huge_page_size(h)) {
3023 3024 3025
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3026 3027
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
3028
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3029 3030 3031 3032 3033 3034
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
3035 3036 3037 3038 3039 3040
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3041
	flush_tlb_range(vma, start, end);
3042
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3043 3044
}

3045 3046
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3047
					struct vm_area_struct *vma,
3048
					vm_flags_t vm_flags)
3049
{
3050
	long ret, chg;
3051
	struct hstate *h = hstate_inode(inode);
3052
	struct hugepage_subpool *spool = subpool_inode(inode);
3053

3054 3055 3056
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3057
	 * without using reserves
3058
	 */
3059
	if (vm_flags & VM_NORESERVE)
3060 3061
		return 0;

3062 3063 3064 3065 3066 3067
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3068
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3069
		chg = region_chg(&inode->i_mapping->private_list, from, to);
3070 3071 3072 3073 3074
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

3075
		chg = to - from;
3076

3077 3078 3079 3080
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3081 3082 3083 3084
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3085

3086
	/* There must be enough pages in the subpool for the mapping */
3087 3088 3089 3090
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3091 3092

	/*
3093
	 * Check enough hugepages are available for the reservation.
3094
	 * Hand the pages back to the subpool if there are not
3095
	 */
3096
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3097
	if (ret < 0) {
3098
		hugepage_subpool_put_pages(spool, chg);
3099
		goto out_err;
K
Ken Chen 已提交
3100
	}
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3113
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3114
		region_add(&inode->i_mapping->private_list, from, to);
3115
	return 0;
3116
out_err:
3117 3118
	if (vma)
		resv_map_put(vma);
3119
	return ret;
3120 3121 3122 3123
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3124
	struct hstate *h = hstate_inode(inode);
3125
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3126
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3127 3128

	spin_lock(&inode->i_lock);
3129
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3130 3131
	spin_unlock(&inode->i_lock);

3132
	hugepage_subpool_put_pages(spool, (chg - freed));
3133
	hugetlb_acct_memory(h, -(chg - freed));
3134
}
3135

3136 3137
#ifdef CONFIG_MEMORY_FAILURE

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3152 3153 3154 3155
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3156
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3157 3158 3159
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3160
	int ret = -EBUSY;
3161 3162

	spin_lock(&hugetlb_lock);
3163 3164
	if (is_hugepage_on_freelist(hpage)) {
		list_del(&hpage->lru);
3165
		set_page_refcounted(hpage);
3166 3167 3168 3169
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3170
	spin_unlock(&hugetlb_lock);
3171
	return ret;
3172
}
3173
#endif