amba-pl08x.c 57.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (c) 2006 ARM Ltd.
 * Copyright (c) 2010 ST-Ericsson SA
 *
 * Author: Peter Pearse <peter.pearse@arm.com>
 * Author: Linus Walleij <linus.walleij@stericsson.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
22 23
 * The full GNU General Public License is in this distribution in the file
 * called COPYING.
24 25
 *
 * Documentation: ARM DDI 0196G == PL080
26
 * Documentation: ARM DDI 0218E == PL081
27
 *
28 29
 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
 * channel.
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 *
 * The PL080 has 8 channels available for simultaneous use, and the PL081
 * has only two channels. So on these DMA controllers the number of channels
 * and the number of incoming DMA signals are two totally different things.
 * It is usually not possible to theoretically handle all physical signals,
 * so a multiplexing scheme with possible denial of use is necessary.
 *
 * The PL080 has a dual bus master, PL081 has a single master.
 *
 * Memory to peripheral transfer may be visualized as
 *	Get data from memory to DMAC
 *	Until no data left
 *		On burst request from peripheral
 *			Destination burst from DMAC to peripheral
 *			Clear burst request
 *	Raise terminal count interrupt
 *
 * For peripherals with a FIFO:
 * Source      burst size == half the depth of the peripheral FIFO
 * Destination burst size == the depth of the peripheral FIFO
 *
 * (Bursts are irrelevant for mem to mem transfers - there are no burst
 * signals, the DMA controller will simply facilitate its AHB master.)
 *
 * ASSUMES default (little) endianness for DMA transfers
 *
56 57 58 59 60 61 62 63 64 65 66 67 68
 * The PL08x has two flow control settings:
 *  - DMAC flow control: the transfer size defines the number of transfers
 *    which occur for the current LLI entry, and the DMAC raises TC at the
 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
 *    to both the BREQ and SREQ signals (contrary to documented),
 *    transferring data if either is active.  The LBREQ and LSREQ signals
 *    are ignored.
 *
 *  - Peripheral flow control: the transfer size is ignored (and should be
 *    zero).  The data is transferred from the current LLI entry, until
 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
 *    will then move to the next LLI entry.
 *
69 70 71
 * Global TODO:
 * - Break out common code from arch/arm/mach-s3c64xx and share
 */
72
#include <linux/amba/bus.h>
73 74
#include <linux/amba/pl08x.h>
#include <linux/debugfs.h>
75 76 77 78
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
V
Vinod Koul 已提交
79
#include <linux/dma-mapping.h>
80 81 82
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
83
#include <linux/pm_runtime.h>
84
#include <linux/seq_file.h>
85
#include <linux/slab.h>
86 87
#include <asm/hardware/pl080.h>

88 89
#include "dmaengine.h"

90 91
#define DRIVER_NAME	"pl08xdmac"

92
static struct amba_driver pl08x_amba_driver;
93
struct pl08x_driver_data;
94

95
/**
96
 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
97
 * @channels: the number of channels available in this variant
98
 * @dualmaster: whether this version supports dual AHB masters or not.
99 100 101
 * @nomadik: whether the channels have Nomadik security extension bits
 *	that need to be checked for permission before use and some registers are
 *	missing
102 103 104 105
 */
struct vendor_data {
	u8 channels;
	bool dualmaster;
106
	bool nomadik;
107 108 109 110
};

/*
 * PL08X private data structures
111
 * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
112 113
 * start & end do not - their bus bit info is in cctl.  Also note that these
 * are fixed 32-bit quantities.
114
 */
115
struct pl08x_lli {
116 117
	u32 src;
	u32 dst;
118
	u32 lli;
119 120 121
	u32 cctl;
};

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
/**
 * struct pl08x_bus_data - information of source or destination
 * busses for a transfer
 * @addr: current address
 * @maxwidth: the maximum width of a transfer on this bus
 * @buswidth: the width of this bus in bytes: 1, 2 or 4
 */
struct pl08x_bus_data {
	dma_addr_t addr;
	u8 maxwidth;
	u8 buswidth;
};

/**
 * struct pl08x_phy_chan - holder for the physical channels
 * @id: physical index to this channel
 * @lock: a lock to use when altering an instance of this struct
 * @serving: the virtual channel currently being served by this physical
 * channel
141 142
 * @locked: channel unavailable for the system, e.g. dedicated to secure
 * world
143 144 145 146 147 148
 */
struct pl08x_phy_chan {
	unsigned int id;
	void __iomem *base;
	spinlock_t lock;
	struct pl08x_dma_chan *serving;
149
	bool locked;
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
};

/**
 * struct pl08x_sg - structure containing data per sg
 * @src_addr: src address of sg
 * @dst_addr: dst address of sg
 * @len: transfer len in bytes
 * @node: node for txd's dsg_list
 */
struct pl08x_sg {
	dma_addr_t src_addr;
	dma_addr_t dst_addr;
	size_t len;
	struct list_head node;
};

/**
 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
 * @tx: async tx descriptor
 * @node: node for txd list for channels
 * @dsg_list: list of children sg's
 * @llis_bus: DMA memory address (physical) start for the LLIs
 * @llis_va: virtual memory address start for the LLIs
 * @cctl: control reg values for current txd
 * @ccfg: config reg values for current txd
 */
struct pl08x_txd {
	struct dma_async_tx_descriptor tx;
	struct list_head node;
	struct list_head dsg_list;
	dma_addr_t llis_bus;
	struct pl08x_lli *llis_va;
	/* Default cctl value for LLIs */
	u32 cctl;
	/*
	 * Settings to be put into the physical channel when we
	 * trigger this txd.  Other registers are in llis_va[0].
	 */
	u32 ccfg;
};

/**
 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
 * states
 * @PL08X_CHAN_IDLE: the channel is idle
 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
 * channel and is running a transfer on it
 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
 * channel, but the transfer is currently paused
 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
 * channel to become available (only pertains to memcpy channels)
 */
enum pl08x_dma_chan_state {
	PL08X_CHAN_IDLE,
	PL08X_CHAN_RUNNING,
	PL08X_CHAN_PAUSED,
	PL08X_CHAN_WAITING,
};

/**
 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
 * @chan: wrappped abstract channel
 * @phychan: the physical channel utilized by this channel, if there is one
 * @tasklet: tasklet scheduled by the IRQ to handle actual work etc
 * @name: name of channel
 * @cd: channel platform data
 * @runtime_addr: address for RX/TX according to the runtime config
 * @pend_list: queued transactions pending on this channel
218
 * @issued_list: issued transactions for this channel
219
 * @done_list: list of completed transactions
220 221 222 223 224
 * @at: active transaction on this channel
 * @lock: a lock for this channel data
 * @host: a pointer to the host (internal use)
 * @state: whether the channel is idle, paused, running etc
 * @slave: whether this channel is a device (slave) or for memcpy
225
 * @signal: the physical DMA request signal which this channel is using
226
 * @mux_use: count of descriptors using this DMA request signal setting
227 228 229 230 231
 */
struct pl08x_dma_chan {
	struct dma_chan chan;
	struct pl08x_phy_chan *phychan;
	struct tasklet_struct tasklet;
232
	const char *name;
233
	const struct pl08x_channel_data *cd;
234
	struct dma_slave_config cfg;
235
	struct list_head pend_list;
236
	struct list_head issued_list;
237
	struct list_head done_list;
238 239 240 241 242
	struct pl08x_txd *at;
	spinlock_t lock;
	struct pl08x_driver_data *host;
	enum pl08x_dma_chan_state state;
	bool slave;
243
	int signal;
244
	unsigned mux_use;
245 246
};

247 248 249 250 251 252 253 254 255 256 257
/**
 * struct pl08x_driver_data - the local state holder for the PL08x
 * @slave: slave engine for this instance
 * @memcpy: memcpy engine for this instance
 * @base: virtual memory base (remapped) for the PL08x
 * @adev: the corresponding AMBA (PrimeCell) bus entry
 * @vd: vendor data for this PL08x variant
 * @pd: platform data passed in from the platform/machine
 * @phy_chans: array of data for the physical channels
 * @pool: a pool for the LLI descriptors
 * @pool_ctr: counter of LLIs in the pool
258 259
 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 * fetches
260
 * @mem_buses: set to indicate memory transfers on AHB2.
261 262 263 264 265 266 267
 * @lock: a spinlock for this struct
 */
struct pl08x_driver_data {
	struct dma_device slave;
	struct dma_device memcpy;
	void __iomem *base;
	struct amba_device *adev;
268
	const struct vendor_data *vd;
269 270 271 272
	struct pl08x_platform_data *pd;
	struct pl08x_phy_chan *phy_chans;
	struct dma_pool *pool;
	int pool_ctr;
273 274
	u8 lli_buses;
	u8 mem_buses;
275 276 277 278 279 280 281 282 283
};

/*
 * PL08X specific defines
 */

/* Size (bytes) of each LLI buffer allocated for one transfer */
# define PL08X_LLI_TSFR_SIZE	0x2000

284
/* Maximum times we call dma_pool_alloc on this pool without freeing */
285
#define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
286 287 288 289 290 291 292
#define PL08X_ALIGN		8

static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
{
	return container_of(chan, struct pl08x_dma_chan, chan);
}

293 294 295 296 297
static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct pl08x_txd, tx);
}

298 299 300 301 302 303 304 305
/*
 * Mux handling.
 *
 * This gives us the DMA request input to the PL08x primecell which the
 * peripheral described by the channel data will be routed to, possibly
 * via a board/SoC specific external MUX.  One important point to note
 * here is that this does not depend on the physical channel.
 */
306
static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
307 308 309 310
{
	const struct pl08x_platform_data *pd = plchan->host->pd;
	int ret;

311
	if (plchan->mux_use++ == 0 && pd->get_signal) {
312
		ret = pd->get_signal(plchan->cd);
313 314
		if (ret < 0) {
			plchan->mux_use = 0;
315
			return ret;
316
		}
317

318
		plchan->signal = ret;
319 320 321 322 323 324 325 326
	}
	return 0;
}

static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
{
	const struct pl08x_platform_data *pd = plchan->host->pd;

327 328 329 330 331 332 333
	if (plchan->signal >= 0) {
		WARN_ON(plchan->mux_use == 0);

		if (--plchan->mux_use == 0 && pd->put_signal) {
			pd->put_signal(plchan->cd, plchan->signal);
			plchan->signal = -1;
		}
334 335 336
	}
}

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/*
 * Physical channel handling
 */

/* Whether a certain channel is busy or not */
static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
{
	unsigned int val;

	val = readl(ch->base + PL080_CH_CONFIG);
	return val & PL080_CONFIG_ACTIVE;
}

/*
 * Set the initial DMA register values i.e. those for the first LLI
352
 * The next LLI pointer and the configuration interrupt bit have
353 354
 * been set when the LLIs were constructed.  Poke them into the hardware
 * and start the transfer.
355
 */
356
static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
357
{
358
	struct pl08x_driver_data *pl08x = plchan->host;
359
	struct pl08x_phy_chan *phychan = plchan->phychan;
360 361
	struct pl08x_lli *lli;
	struct pl08x_txd *txd;
362
	u32 val;
363

364
	txd = list_first_entry(&plchan->issued_list, struct pl08x_txd, node);
365 366
	list_del(&txd->node);

367
	plchan->at = txd;
368

369 370 371
	/* Wait for channel inactive */
	while (pl08x_phy_channel_busy(phychan))
		cpu_relax();
372

373 374
	lli = &txd->llis_va[0];

375 376
	dev_vdbg(&pl08x->adev->dev,
		"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
377 378
		"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
		phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
379
		txd->ccfg);
380 381 382 383 384

	writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
	writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
	writel(lli->lli, phychan->base + PL080_CH_LLI);
	writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
385
	writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
386 387 388 389

	/* Enable the DMA channel */
	/* Do not access config register until channel shows as disabled */
	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
390
		cpu_relax();
391

392 393
	/* Do not access config register until channel shows as inactive */
	val = readl(phychan->base + PL080_CH_CONFIG);
394
	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
395
		val = readl(phychan->base + PL080_CH_CONFIG);
396

397
	writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
398 399 400
}

/*
401
 * Pause the channel by setting the HALT bit.
402
 *
403 404 405
 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 * the FIFO can only drain if the peripheral is still requesting data.
 * (note: this can still timeout if the DMAC FIFO never drains of data.)
406
 *
407 408
 * For P->M transfers, disable the peripheral first to stop it filling
 * the DMAC FIFO, and then pause the DMAC.
409 410 411 412
 */
static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;
413
	int timeout;
414 415 416 417 418 419 420

	/* Set the HALT bit and wait for the FIFO to drain */
	val = readl(ch->base + PL080_CH_CONFIG);
	val |= PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);

	/* Wait for channel inactive */
421 422 423 424 425 426 427
	for (timeout = 1000; timeout; timeout--) {
		if (!pl08x_phy_channel_busy(ch))
			break;
		udelay(1);
	}
	if (pl08x_phy_channel_busy(ch))
		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
428 429 430 431 432 433 434 435 436 437 438 439
}

static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;

	/* Clear the HALT bit */
	val = readl(ch->base + PL080_CH_CONFIG);
	val &= ~PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);
}

440 441 442 443 444 445 446 447
/*
 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 * clears any pending interrupt status.  This should not be used for
 * an on-going transfer, but as a method of shutting down a channel
 * (eg, when it's no longer used) or terminating a transfer.
 */
static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
	struct pl08x_phy_chan *ch)
448
{
449
	u32 val = readl(ch->base + PL080_CH_CONFIG);
450

451 452
	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
	         PL080_CONFIG_TC_IRQ_MASK);
453 454

	writel(val, ch->base + PL080_CH_CONFIG);
455 456 457

	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
}

static inline u32 get_bytes_in_cctl(u32 cctl)
{
	/* The source width defines the number of bytes */
	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;

	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
	case PL080_WIDTH_8BIT:
		break;
	case PL080_WIDTH_16BIT:
		bytes *= 2;
		break;
	case PL080_WIDTH_32BIT:
		bytes *= 4;
		break;
	}
	return bytes;
}

/* The channel should be paused when calling this */
static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
{
	struct pl08x_phy_chan *ch;
	struct pl08x_txd *txd;
	unsigned long flags;
484
	size_t bytes = 0;
485 486 487 488 489 490

	spin_lock_irqsave(&plchan->lock, flags);
	ch = plchan->phychan;
	txd = plchan->at;

	/*
491 492
	 * Follow the LLIs to get the number of remaining
	 * bytes in the currently active transaction.
493 494
	 */
	if (ch && txd) {
495
		u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
496

497
		/* First get the remaining bytes in the active transfer */
498 499 500
		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));

		if (clli) {
501 502 503 504 505 506
			struct pl08x_lli *llis_va = txd->llis_va;
			dma_addr_t llis_bus = txd->llis_bus;
			int index;

			BUG_ON(clli < llis_bus || clli >= llis_bus +
				sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
507

508 509 510 511 512 513 514 515
			/*
			 * Locate the next LLI - as this is an array,
			 * it's simple maths to find.
			 */
			index = (clli - llis_bus) / sizeof(struct pl08x_lli);

			for (; index < MAX_NUM_TSFR_LLIS; index++) {
				bytes += get_bytes_in_cctl(llis_va[index].cctl);
516 517

				/*
518
				 * A LLI pointer of 0 terminates the LLI list
519
				 */
520 521
				if (!llis_va[index].lli)
					break;
522 523 524 525 526
			}
		}
	}

	/* Sum up all queued transactions */
527 528 529 530 531 532 533 534 535
	if (!list_empty(&plchan->issued_list)) {
		struct pl08x_txd *txdi;
		list_for_each_entry(txdi, &plchan->issued_list, node) {
			struct pl08x_sg *dsg;
			list_for_each_entry(dsg, &txd->dsg_list, node)
				bytes += dsg->len;
		}
	}

536
	if (!list_empty(&plchan->pend_list)) {
537
		struct pl08x_txd *txdi;
538
		list_for_each_entry(txdi, &plchan->pend_list, node) {
539 540 541
			struct pl08x_sg *dsg;
			list_for_each_entry(dsg, &txd->dsg_list, node)
				bytes += dsg->len;
542 543 544 545 546 547 548 549 550 551
		}
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return bytes;
}

/*
 * Allocate a physical channel for a virtual channel
552 553 554 555
 *
 * Try to locate a physical channel to be used for this transfer. If all
 * are taken return NULL and the requester will have to cope by using
 * some fallback PIO mode or retrying later.
556 557 558 559 560 561 562 563 564 565 566 567 568 569
 */
static struct pl08x_phy_chan *
pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
		      struct pl08x_dma_chan *virt_chan)
{
	struct pl08x_phy_chan *ch = NULL;
	unsigned long flags;
	int i;

	for (i = 0; i < pl08x->vd->channels; i++) {
		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);

570
		if (!ch->locked && !ch->serving) {
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
			ch->serving = virt_chan;
			spin_unlock_irqrestore(&ch->lock, flags);
			break;
		}

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	if (i == pl08x->vd->channels) {
		/* No physical channel available, cope with it */
		return NULL;
	}

	return ch;
}

587
/* Mark the physical channel as free.  Note, this write is atomic. */
588 589 590
static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
					 struct pl08x_phy_chan *ch)
{
591 592
	ch->serving = NULL;
}
593

594 595 596 597 598 599 600 601 602
/*
 * Try to allocate a physical channel.  When successful, assign it to
 * this virtual channel, and initiate the next descriptor.  The
 * virtual channel lock must be held at this point.
 */
static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
{
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_phy_chan *ch;
603

604 605 606 607 608 609
	ch = pl08x_get_phy_channel(pl08x, plchan);
	if (!ch) {
		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
		plchan->state = PL08X_CHAN_WAITING;
		return;
	}
610

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
		ch->id, plchan->name);

	plchan->phychan = ch;
	plchan->state = PL08X_CHAN_RUNNING;
	pl08x_start_next_txd(plchan);
}

static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
	struct pl08x_dma_chan *plchan)
{
	struct pl08x_driver_data *pl08x = plchan->host;

	dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
		ch->id, plchan->name);

	/*
	 * We do this without taking the lock; we're really only concerned
	 * about whether this pointer is NULL or not, and we're guaranteed
	 * that this will only be called when it _already_ is non-NULL.
	 */
	ch->serving = plchan;
	plchan->phychan = ch;
	plchan->state = PL08X_CHAN_RUNNING;
	pl08x_start_next_txd(plchan);
}

/*
 * Free a physical DMA channel, potentially reallocating it to another
 * virtual channel if we have any pending.
 */
static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
{
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_dma_chan *p, *next;

 retry:
	next = NULL;

	/* Find a waiting virtual channel for the next transfer. */
	list_for_each_entry(p, &pl08x->memcpy.channels, chan.device_node)
		if (p->state == PL08X_CHAN_WAITING) {
			next = p;
			break;
		}

	if (!next) {
		list_for_each_entry(p, &pl08x->slave.channels, chan.device_node)
			if (p->state == PL08X_CHAN_WAITING) {
				next = p;
				break;
			}
	}

	/* Ensure that the physical channel is stopped */
	pl08x_terminate_phy_chan(pl08x, plchan->phychan);

	if (next) {
		bool success;

		/*
		 * Eww.  We know this isn't going to deadlock
		 * but lockdep probably doesn't.
		 */
		spin_lock(&next->lock);
		/* Re-check the state now that we have the lock */
		success = next->state == PL08X_CHAN_WAITING;
		if (success)
			pl08x_phy_reassign_start(plchan->phychan, next);
		spin_unlock(&next->lock);

		/* If the state changed, try to find another channel */
		if (!success)
			goto retry;
	} else {
		/* No more jobs, so free up the physical channel */
		pl08x_put_phy_channel(pl08x, plchan->phychan);
	}

	plchan->phychan = NULL;
	plchan->state = PL08X_CHAN_IDLE;
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
}

/*
 * LLI handling
 */

static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
{
	switch (coded) {
	case PL080_WIDTH_8BIT:
		return 1;
	case PL080_WIDTH_16BIT:
		return 2;
	case PL080_WIDTH_32BIT:
		return 4;
	default:
		break;
	}
	BUG();
	return 0;
}

static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
715
				  size_t tsize)
716 717 718
{
	u32 retbits = cctl;

719
	/* Remove all src, dst and transfer size bits */
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;

	/* Then set the bits according to the parameters */
	switch (srcwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	switch (dstwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
	return retbits;
}

759 760 761 762 763
struct pl08x_lli_build_data {
	struct pl08x_txd *txd;
	struct pl08x_bus_data srcbus;
	struct pl08x_bus_data dstbus;
	size_t remainder;
764
	u32 lli_bus;
765 766
};

767
/*
768 769 770 771 772 773
 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
 * victim in case src & dest are not similarly aligned. i.e. If after aligning
 * masters address with width requirements of transfer (by sending few byte by
 * byte data), slave is still not aligned, then its width will be reduced to
 * BYTE.
 * - prefers the destination bus if both available
774
 * - prefers bus with fixed address (i.e. peripheral)
775
 */
776 777
static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
778 779
{
	if (!(cctl & PL080_CONTROL_DST_INCR)) {
780 781
		*mbus = &bd->dstbus;
		*sbus = &bd->srcbus;
782 783 784
	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
		*mbus = &bd->srcbus;
		*sbus = &bd->dstbus;
785
	} else {
786
		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
787 788
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
789
		} else {
790 791
			*mbus = &bd->srcbus;
			*sbus = &bd->dstbus;
792 793 794 795 796
		}
	}
}

/*
797
 * Fills in one LLI for a certain transfer descriptor and advance the counter
798
 */
799 800
static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
	int num_llis, int len, u32 cctl)
801
{
802 803
	struct pl08x_lli *llis_va = bd->txd->llis_va;
	dma_addr_t llis_bus = bd->txd->llis_bus;
804 805 806

	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);

807
	llis_va[num_llis].cctl = cctl;
808 809
	llis_va[num_llis].src = bd->srcbus.addr;
	llis_va[num_llis].dst = bd->dstbus.addr;
810 811
	llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
		sizeof(struct pl08x_lli);
812
	llis_va[num_llis].lli |= bd->lli_bus;
813 814

	if (cctl & PL080_CONTROL_SRC_INCR)
815
		bd->srcbus.addr += len;
816
	if (cctl & PL080_CONTROL_DST_INCR)
817
		bd->dstbus.addr += len;
818

819
	BUG_ON(bd->remainder < len);
820

821
	bd->remainder -= len;
822 823
}

824 825
static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
		u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
826
{
827 828 829
	*cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
	pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
	(*total_bytes) += len;
830 831 832 833 834 835 836 837 838 839 840
}

/*
 * This fills in the table of LLIs for the transfer descriptor
 * Note that we assume we never have to change the burst sizes
 * Return 0 for error
 */
static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
			      struct pl08x_txd *txd)
{
	struct pl08x_bus_data *mbus, *sbus;
841
	struct pl08x_lli_build_data bd;
842
	int num_llis = 0;
843
	u32 cctl, early_bytes = 0;
844
	size_t max_bytes_per_lli, total_bytes;
845
	struct pl08x_lli *llis_va;
846
	struct pl08x_sg *dsg;
847

848
	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
849 850 851 852 853 854 855
	if (!txd->llis_va) {
		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
		return 0;
	}

	pl08x->pool_ctr++;

856
	bd.txd = txd;
857
	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
858
	cctl = txd->cctl;
859

860
	/* Find maximum width of the source bus */
861
	bd.srcbus.maxwidth =
862 863 864 865
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
				       PL080_CONTROL_SWIDTH_SHIFT);

	/* Find maximum width of the destination bus */
866
	bd.dstbus.maxwidth =
867 868 869
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
				       PL080_CONTROL_DWIDTH_SHIFT);

870 871 872
	list_for_each_entry(dsg, &txd->dsg_list, node) {
		total_bytes = 0;
		cctl = txd->cctl;
873

874 875 876 877 878
		bd.srcbus.addr = dsg->src_addr;
		bd.dstbus.addr = dsg->dst_addr;
		bd.remainder = dsg->len;
		bd.srcbus.buswidth = bd.srcbus.maxwidth;
		bd.dstbus.buswidth = bd.dstbus.maxwidth;
879

880
		pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
881

882 883 884 885 886 887 888 889 890
		dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
			bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
			bd.srcbus.buswidth,
			bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
			bd.dstbus.buswidth,
			bd.remainder);
		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
			mbus == &bd.srcbus ? "src" : "dst",
			sbus == &bd.srcbus ? "src" : "dst");
891

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
		/*
		 * Zero length is only allowed if all these requirements are
		 * met:
		 * - flow controller is peripheral.
		 * - src.addr is aligned to src.width
		 * - dst.addr is aligned to dst.width
		 *
		 * sg_len == 1 should be true, as there can be two cases here:
		 *
		 * - Memory addresses are contiguous and are not scattered.
		 *   Here, Only one sg will be passed by user driver, with
		 *   memory address and zero length. We pass this to controller
		 *   and after the transfer it will receive the last burst
		 *   request from peripheral and so transfer finishes.
		 *
		 * - Memory addresses are scattered and are not contiguous.
		 *   Here, Obviously as DMA controller doesn't know when a lli's
		 *   transfer gets over, it can't load next lli. So in this
		 *   case, there has to be an assumption that only one lli is
		 *   supported. Thus, we can't have scattered addresses.
		 */
		if (!bd.remainder) {
			u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
				PL080_CONFIG_FLOW_CONTROL_SHIFT;
			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
917
					(fc <= PL080_FLOW_SRC2DST_SRC))) {
918 919 920 921
				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
					__func__);
				return 0;
			}
922

923
			if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
924
					(bd.dstbus.addr % bd.dstbus.buswidth)) {
925 926 927 928 929 930
				dev_err(&pl08x->adev->dev,
					"%s src & dst address must be aligned to src"
					" & dst width if peripheral is flow controller",
					__func__);
				return 0;
			}
931

932 933 934 935 936
			cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
					bd.dstbus.buswidth, 0);
			pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
			break;
		}
937 938

		/*
939 940 941
		 * Send byte by byte for following cases
		 * - Less than a bus width available
		 * - until master bus is aligned
942
		 */
943 944 945 946 947 948 949 950
		if (bd.remainder < mbus->buswidth)
			early_bytes = bd.remainder;
		else if ((mbus->addr) % (mbus->buswidth)) {
			early_bytes = mbus->buswidth - (mbus->addr) %
				(mbus->buswidth);
			if ((bd.remainder - early_bytes) < mbus->buswidth)
				early_bytes = bd.remainder;
		}
951

952 953 954 955 956 957
		if (early_bytes) {
			dev_vdbg(&pl08x->adev->dev,
				"%s byte width LLIs (remain 0x%08x)\n",
				__func__, bd.remainder);
			prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
				&total_bytes);
958 959
		}

960 961 962 963 964 965 966 967 968
		if (bd.remainder) {
			/*
			 * Master now aligned
			 * - if slave is not then we must set its width down
			 */
			if (sbus->addr % sbus->buswidth) {
				dev_dbg(&pl08x->adev->dev,
					"%s set down bus width to one byte\n",
					__func__);
969

970 971
				sbus->buswidth = 1;
			}
972 973

			/*
974 975
			 * Bytes transferred = tsize * src width, not
			 * MIN(buswidths)
976
			 */
977 978 979 980 981
			max_bytes_per_lli = bd.srcbus.buswidth *
				PL080_CONTROL_TRANSFER_SIZE_MASK;
			dev_vdbg(&pl08x->adev->dev,
				"%s max bytes per lli = %zu\n",
				__func__, max_bytes_per_lli);
982 983

			/*
984 985
			 * Make largest possible LLIs until less than one bus
			 * width left
986
			 */
987 988
			while (bd.remainder > (mbus->buswidth - 1)) {
				size_t lli_len, tsize, width;
989

990 991 992 993 994
				/*
				 * If enough left try to send max possible,
				 * otherwise try to send the remainder
				 */
				lli_len = min(bd.remainder, max_bytes_per_lli);
995

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
				/*
				 * Check against maximum bus alignment:
				 * Calculate actual transfer size in relation to
				 * bus width an get a maximum remainder of the
				 * highest bus width - 1
				 */
				width = max(mbus->buswidth, sbus->buswidth);
				lli_len = (lli_len / width) * width;
				tsize = lli_len / bd.srcbus.buswidth;

				dev_vdbg(&pl08x->adev->dev,
					"%s fill lli with single lli chunk of "
					"size 0x%08zx (remainder 0x%08zx)\n",
					__func__, lli_len, bd.remainder);

				cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1012
					bd.dstbus.buswidth, tsize);
1013 1014 1015 1016
				pl08x_fill_lli_for_desc(&bd, num_llis++,
						lli_len, cctl);
				total_bytes += lli_len;
			}
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
			/*
			 * Send any odd bytes
			 */
			if (bd.remainder) {
				dev_vdbg(&pl08x->adev->dev,
					"%s align with boundary, send odd bytes (remain %zu)\n",
					__func__, bd.remainder);
				prep_byte_width_lli(&bd, &cctl, bd.remainder,
						num_llis++, &total_bytes);
			}
1028
		}
1029

1030 1031 1032 1033 1034 1035
		if (total_bytes != dsg->len) {
			dev_err(&pl08x->adev->dev,
				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
				__func__, total_bytes, dsg->len);
			return 0;
		}
1036

1037 1038 1039 1040 1041 1042
		if (num_llis >= MAX_NUM_TSFR_LLIS) {
			dev_err(&pl08x->adev->dev,
				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
				__func__, (u32) MAX_NUM_TSFR_LLIS);
			return 0;
		}
1043
	}
1044 1045

	llis_va = txd->llis_va;
1046
	/* The final LLI terminates the LLI. */
1047
	llis_va[num_llis - 1].lli = 0;
1048
	/* The final LLI element shall also fire an interrupt. */
1049
	llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
1050 1051 1052 1053 1054

#ifdef VERBOSE_DEBUG
	{
		int i;

1055 1056 1057
		dev_vdbg(&pl08x->adev->dev,
			 "%-3s %-9s  %-10s %-10s %-10s %s\n",
			 "lli", "", "csrc", "cdst", "clli", "cctl");
1058 1059
		for (i = 0; i < num_llis; i++) {
			dev_vdbg(&pl08x->adev->dev,
1060 1061 1062
				 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
				 i, &llis_va[i], llis_va[i].src,
				 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
				);
		}
	}
#endif

	return num_llis;
}

/* You should call this with the struct pl08x lock held */
static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
			   struct pl08x_txd *txd)
{
1075 1076
	struct pl08x_sg *dsg, *_dsg;

1077
	/* Free the LLI */
1078 1079
	if (txd->llis_va)
		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1080 1081 1082

	pl08x->pool_ctr--;

1083 1084 1085 1086 1087
	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
		list_del(&dsg->node);
		kfree(dsg);
	}

1088 1089 1090 1091 1092 1093
	kfree(txd);
}

static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
				struct pl08x_dma_chan *plchan)
{
1094 1095
	LIST_HEAD(head);
	struct pl08x_txd *txd;
1096

1097 1098 1099 1100 1101 1102 1103 1104
	list_splice_tail_init(&plchan->issued_list, &head);
	list_splice_tail_init(&plchan->pend_list, &head);

	while (!list_empty(&head)) {
		txd = list_first_entry(&head, struct pl08x_txd, node);
		pl08x_release_mux(plchan);
		list_del(&txd->node);
		pl08x_free_txd(pl08x, txd);
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	}
}

/*
 * The DMA ENGINE API
 */
static int pl08x_alloc_chan_resources(struct dma_chan *chan)
{
	return 0;
}

static void pl08x_free_chan_resources(struct dma_chan *chan)
{
}

static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
1123
	struct pl08x_txd *txd = to_pl08x_txd(tx);
1124
	unsigned long flags;
1125
	dma_cookie_t cookie;
1126 1127

	spin_lock_irqsave(&plchan->lock, flags);
1128
	cookie = dma_cookie_assign(tx);
1129 1130 1131

	/* Put this onto the pending list */
	list_add_tail(&txd->node, &plchan->pend_list);
1132
	spin_unlock_irqrestore(&plchan->lock, flags);
1133

1134
	return cookie;
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
}

static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
		struct dma_chan *chan, unsigned long flags)
{
	struct dma_async_tx_descriptor *retval = NULL;

	return retval;
}

/*
1146 1147 1148
 * Code accessing dma_async_is_complete() in a tight loop may give problems.
 * If slaves are relying on interrupts to signal completion this function
 * must not be called with interrupts disabled.
1149
 */
1150 1151
static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
		dma_cookie_t cookie, struct dma_tx_state *txstate)
1152 1153 1154 1155
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	enum dma_status ret;

1156 1157
	ret = dma_cookie_status(chan, cookie, txstate);
	if (ret == DMA_SUCCESS)
1158 1159 1160 1161
		return ret;

	/*
	 * This cookie not complete yet
1162
	 * Get number of bytes left in the active transactions and queue
1163
	 */
1164
	dma_set_residue(txstate, pl08x_getbytes_chan(plchan));
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

	if (plchan->state == PL08X_CHAN_PAUSED)
		return DMA_PAUSED;

	/* Whether waiting or running, we're in progress */
	return DMA_IN_PROGRESS;
}

/* PrimeCell DMA extension */
struct burst_table {
1175
	u32 burstwords;
1176 1177 1178 1179 1180 1181
	u32 reg;
};

static const struct burst_table burst_sizes[] = {
	{
		.burstwords = 256,
1182
		.reg = PL080_BSIZE_256,
1183 1184 1185
	},
	{
		.burstwords = 128,
1186
		.reg = PL080_BSIZE_128,
1187 1188 1189
	},
	{
		.burstwords = 64,
1190
		.reg = PL080_BSIZE_64,
1191 1192 1193
	},
	{
		.burstwords = 32,
1194
		.reg = PL080_BSIZE_32,
1195 1196 1197
	},
	{
		.burstwords = 16,
1198
		.reg = PL080_BSIZE_16,
1199 1200 1201
	},
	{
		.burstwords = 8,
1202
		.reg = PL080_BSIZE_8,
1203 1204 1205
	},
	{
		.burstwords = 4,
1206
		.reg = PL080_BSIZE_4,
1207 1208
	},
	{
1209 1210
		.burstwords = 0,
		.reg = PL080_BSIZE_1,
1211 1212 1213
	},
};

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
/*
 * Given the source and destination available bus masks, select which
 * will be routed to each port.  We try to have source and destination
 * on separate ports, but always respect the allowable settings.
 */
static u32 pl08x_select_bus(u8 src, u8 dst)
{
	u32 cctl = 0;

	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
		cctl |= PL080_CONTROL_DST_AHB2;
	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
		cctl |= PL080_CONTROL_SRC_AHB2;

	return cctl;
}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
static u32 pl08x_cctl(u32 cctl)
{
	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
		  PL080_CONTROL_PROT_MASK);

	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
	return cctl | PL080_CONTROL_PROT_SYS;
}

1241 1242 1243 1244 1245 1246 1247 1248 1249
static u32 pl08x_width(enum dma_slave_buswidth width)
{
	switch (width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		return PL080_WIDTH_8BIT;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		return PL080_WIDTH_16BIT;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		return PL080_WIDTH_32BIT;
1250 1251
	default:
		return ~0;
1252 1253 1254
	}
}

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
static u32 pl08x_burst(u32 maxburst)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
		if (burst_sizes[i].burstwords <= maxburst)
			break;

	return burst_sizes[i].reg;
}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
	enum dma_slave_buswidth addr_width, u32 maxburst)
{
	u32 width, burst, cctl = 0;

	width = pl08x_width(addr_width);
	if (width == ~0)
		return ~0;

	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;

	/*
	 * If this channel will only request single transfers, set this
	 * down to ONE element.  Also select one element if no maxburst
	 * is specified.
	 */
	if (plchan->cd->single)
		maxburst = 1;

	burst = pl08x_burst(maxburst);
	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;

	return pl08x_cctl(cctl);
}

1293 1294
static int dma_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
1295 1296
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1297 1298 1299

	if (!plchan->slave)
		return -EINVAL;
1300

1301 1302 1303
	/* Reject definitely invalid configurations */
	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1304
		return -EINVAL;
1305

1306 1307
	plchan->cfg = *config;

1308
	return 0;
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
}

/*
 * Slave transactions callback to the slave device to allow
 * synchronization of slave DMA signals with the DMAC enable
 */
static void pl08x_issue_pending(struct dma_chan *chan)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&plchan->lock, flags);
1321 1322
	list_splice_tail_init(&plchan->pend_list, &plchan->issued_list);
	if (!list_empty(&plchan->issued_list)) {
1323 1324
		if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
			pl08x_phy_alloc_and_start(plchan);
1325 1326 1327 1328 1329 1330 1331 1332
	}
	spin_unlock_irqrestore(&plchan->lock, flags);
}

static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
					struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
1333
	int num_llis;
1334 1335

	num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1336
	if (!num_llis) {
1337 1338
		unsigned long flags;

1339 1340 1341
		spin_lock_irqsave(&plchan->lock, flags);
		pl08x_free_txd(pl08x, txd);
		spin_unlock_irqrestore(&plchan->lock, flags);
1342

1343
		return -EINVAL;
1344
	}
1345 1346 1347
	return 0;
}

1348 1349
static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
	unsigned long flags)
1350
{
1351
	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1352 1353 1354

	if (txd) {
		dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1355
		txd->tx.flags = flags;
1356 1357
		txd->tx.tx_submit = pl08x_tx_submit;
		INIT_LIST_HEAD(&txd->node);
1358
		INIT_LIST_HEAD(&txd->dsg_list);
1359 1360 1361 1362

		/* Always enable error and terminal interrupts */
		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
			    PL080_CONFIG_TC_IRQ_MASK;
1363 1364 1365 1366
	}
	return txd;
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
/*
 * Initialize a descriptor to be used by memcpy submit
 */
static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
		size_t len, unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
1377
	struct pl08x_sg *dsg;
1378 1379
	int ret;

1380
	txd = pl08x_get_txd(plchan, flags);
1381 1382 1383 1384 1385 1386
	if (!txd) {
		dev_err(&pl08x->adev->dev,
			"%s no memory for descriptor\n", __func__);
		return NULL;
	}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
	if (!dsg) {
		pl08x_free_txd(pl08x, txd);
		dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
				__func__);
		return NULL;
	}
	list_add_tail(&dsg->node, &txd->dsg_list);

	dsg->src_addr = src;
	dsg->dst_addr = dest;
	dsg->len = len;
1399 1400

	/* Set platform data for m2m */
1401
	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1402
	txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1403
			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1404

1405
	/* Both to be incremented or the code will break */
1406
	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1407 1408

	if (pl08x->vd->dualmaster)
1409 1410
		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
					      pl08x->mem_buses);
1411 1412 1413 1414 1415 1416 1417 1418

	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

1419
static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1420
		struct dma_chan *chan, struct scatterlist *sgl,
1421
		unsigned int sg_len, enum dma_transfer_direction direction,
1422
		unsigned long flags, void *context)
1423 1424 1425 1426
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
1427 1428
	struct pl08x_sg *dsg;
	struct scatterlist *sg;
1429
	enum dma_slave_buswidth addr_width;
1430
	dma_addr_t slave_addr;
1431
	int ret, tmp;
1432
	u8 src_buses, dst_buses;
1433
	u32 maxburst, cctl;
1434 1435

	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1436
			__func__, sg_dma_len(sgl), plchan->name);
1437

1438
	txd = pl08x_get_txd(plchan, flags);
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	if (!txd) {
		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
		return NULL;
	}

	/*
	 * Set up addresses, the PrimeCell configured address
	 * will take precedence since this may configure the
	 * channel target address dynamically at runtime.
	 */
1449
	if (direction == DMA_MEM_TO_DEV) {
1450
		cctl = PL080_CONTROL_SRC_INCR;
1451
		slave_addr = plchan->cfg.dst_addr;
1452 1453
		addr_width = plchan->cfg.dst_addr_width;
		maxburst = plchan->cfg.dst_maxburst;
1454 1455
		src_buses = pl08x->mem_buses;
		dst_buses = plchan->cd->periph_buses;
1456
	} else if (direction == DMA_DEV_TO_MEM) {
1457
		cctl = PL080_CONTROL_DST_INCR;
1458
		slave_addr = plchan->cfg.src_addr;
1459 1460
		addr_width = plchan->cfg.src_addr_width;
		maxburst = plchan->cfg.src_maxburst;
1461 1462
		src_buses = plchan->cd->periph_buses;
		dst_buses = pl08x->mem_buses;
1463
	} else {
1464
		pl08x_free_txd(pl08x, txd);
1465 1466 1467 1468 1469
		dev_err(&pl08x->adev->dev,
			"%s direction unsupported\n", __func__);
		return NULL;
	}

1470
	cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1471 1472 1473 1474 1475 1476 1477
	if (cctl == ~0) {
		pl08x_free_txd(pl08x, txd);
		dev_err(&pl08x->adev->dev,
			"DMA slave configuration botched?\n");
		return NULL;
	}

1478 1479
	txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);

1480
	if (plchan->cfg.device_fc)
1481
		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1482 1483
			PL080_FLOW_PER2MEM_PER;
	else
1484
		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1485 1486 1487 1488
			PL080_FLOW_PER2MEM;

	txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	ret = pl08x_request_mux(plchan);
	if (ret < 0) {
		pl08x_free_txd(pl08x, txd);
		dev_dbg(&pl08x->adev->dev,
			"unable to mux for transfer on %s due to platform restrictions\n",
			plchan->name);
		return NULL;
	}

	dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
		 plchan->signal, plchan->name);

	/* Assign the flow control signal to this channel */
	if (direction == DMA_MEM_TO_DEV)
		txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
	else
		txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;

1507 1508 1509
	for_each_sg(sgl, sg, sg_len, tmp) {
		dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
		if (!dsg) {
1510
			pl08x_release_mux(plchan);
1511 1512 1513 1514 1515 1516 1517 1518
			pl08x_free_txd(pl08x, txd);
			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
					__func__);
			return NULL;
		}
		list_add_tail(&dsg->node, &txd->dsg_list);

		dsg->len = sg_dma_len(sg);
1519
		if (direction == DMA_MEM_TO_DEV) {
1520
			dsg->src_addr = sg_dma_address(sg);
1521 1522 1523
			dsg->dst_addr = slave_addr;
		} else {
			dsg->src_addr = slave_addr;
1524
			dsg->dst_addr = sg_dma_address(sg);
1525 1526 1527
		}
	}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
			 unsigned long arg)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	unsigned long flags;
	int ret = 0;

	/* Controls applicable to inactive channels */
	if (cmd == DMA_SLAVE_CONFIG) {
1545 1546
		return dma_set_runtime_config(chan,
					      (struct dma_slave_config *)arg);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	}

	/*
	 * Anything succeeds on channels with no physical allocation and
	 * no queued transfers.
	 */
	spin_lock_irqsave(&plchan->lock, flags);
	if (!plchan->phychan && !plchan->at) {
		spin_unlock_irqrestore(&plchan->lock, flags);
		return 0;
	}

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		plchan->state = PL08X_CHAN_IDLE;

		if (plchan->phychan) {
			/*
			 * Mark physical channel as free and free any slave
			 * signal
			 */
1568
			pl08x_phy_free(plchan);
1569 1570 1571
		}
		/* Dequeue jobs and free LLIs */
		if (plchan->at) {
1572 1573
			/* Killing this one off, release its mux */
			pl08x_release_mux(plchan);
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
			pl08x_free_txd(pl08x, plchan->at);
			plchan->at = NULL;
		}
		/* Dequeue jobs not yet fired as well */
		pl08x_free_txd_list(pl08x, plchan);
		break;
	case DMA_PAUSE:
		pl08x_pause_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_PAUSED;
		break;
	case DMA_RESUME:
		pl08x_resume_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_RUNNING;
		break;
	default:
		/* Unknown command */
		ret = -ENXIO;
		break;
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return ret;
}

bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
{
1601
	struct pl08x_dma_chan *plchan;
1602 1603
	char *name = chan_id;

1604 1605 1606 1607 1608 1609
	/* Reject channels for devices not bound to this driver */
	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
		return false;

	plchan = to_pl08x_chan(chan);

1610 1611 1612 1613 1614 1615 1616 1617 1618
	/* Check that the channel is not taken! */
	if (!strcmp(plchan->name, name))
		return true;

	return false;
}

/*
 * Just check that the device is there and active
1619 1620 1621
 * TODO: turn this bit on/off depending on the number of physical channels
 * actually used, if it is zero... well shut it off. That will save some
 * power. Cut the clock at the same time.
1622 1623 1624
 */
static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
{
1625 1626 1627
	/* The Nomadik variant does not have the config register */
	if (pl08x->vd->nomadik)
		return;
1628
	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1629 1630
}

1631 1632 1633
static void pl08x_unmap_buffers(struct pl08x_txd *txd)
{
	struct device *dev = txd->tx.chan->device->dev;
1634
	struct pl08x_sg *dsg;
1635 1636 1637

	if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1638 1639 1640 1641 1642 1643 1644 1645
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_single(dev, dsg->src_addr, dsg->len,
						DMA_TO_DEVICE);
		else {
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_page(dev, dsg->src_addr, dsg->len,
						DMA_TO_DEVICE);
		}
1646 1647 1648
	}
	if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1649 1650 1651
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_single(dev, dsg->dst_addr, dsg->len,
						DMA_FROM_DEVICE);
1652
		else
1653 1654 1655
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_page(dev, dsg->dst_addr, dsg->len,
						DMA_FROM_DEVICE);
1656 1657 1658
	}
}

1659 1660 1661 1662
static void pl08x_tasklet(unsigned long data)
{
	struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
	struct pl08x_driver_data *pl08x = plchan->host;
1663
	unsigned long flags;
1664
	LIST_HEAD(head);
1665

1666
	spin_lock_irqsave(&plchan->lock, flags);
1667
	list_splice_tail_init(&plchan->done_list, &head);
1668
	spin_unlock_irqrestore(&plchan->lock, flags);
1669

1670 1671 1672
	while (!list_empty(&head)) {
		struct pl08x_txd *txd = list_first_entry(&head,
						struct pl08x_txd, node);
1673 1674 1675
		dma_async_tx_callback callback = txd->tx.callback;
		void *callback_param = txd->tx.callback_param;

1676 1677
		list_del(&txd->node);

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
		/* Don't try to unmap buffers on slave channels */
		if (!plchan->slave)
			pl08x_unmap_buffers(txd);

		/* Free the descriptor */
		spin_lock_irqsave(&plchan->lock, flags);
		pl08x_free_txd(pl08x, txd);
		spin_unlock_irqrestore(&plchan->lock, flags);

		/* Callback to signal completion */
		if (callback)
			callback(callback_param);
	}
1691 1692 1693 1694 1695
}

static irqreturn_t pl08x_irq(int irq, void *dev)
{
	struct pl08x_driver_data *pl08x = dev;
1696 1697 1698 1699 1700 1701 1702 1703
	u32 mask = 0, err, tc, i;

	/* check & clear - ERR & TC interrupts */
	err = readl(pl08x->base + PL080_ERR_STATUS);
	if (err) {
		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
			__func__, err);
		writel(err, pl08x->base + PL080_ERR_CLEAR);
1704
	}
1705
	tc = readl(pl08x->base + PL080_TC_STATUS);
1706 1707 1708 1709 1710 1711
	if (tc)
		writel(tc, pl08x->base + PL080_TC_CLEAR);

	if (!err && !tc)
		return IRQ_NONE;

1712
	for (i = 0; i < pl08x->vd->channels; i++) {
1713
		if (((1 << i) & err) || ((1 << i) & tc)) {
1714 1715 1716
			/* Locate physical channel */
			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
			struct pl08x_dma_chan *plchan = phychan->serving;
1717
			struct pl08x_txd *tx;
1718

1719 1720 1721 1722 1723 1724 1725
			if (!plchan) {
				dev_err(&pl08x->adev->dev,
					"%s Error TC interrupt on unused channel: 0x%08x\n",
					__func__, i);
				continue;
			}

1726 1727 1728 1729
			spin_lock(&plchan->lock);
			tx = plchan->at;
			if (tx) {
				plchan->at = NULL;
1730 1731 1732 1733 1734
				/*
				 * This descriptor is done, release its mux
				 * reservation.
				 */
				pl08x_release_mux(plchan);
1735 1736
				dma_cookie_complete(&tx->tx);
				list_add_tail(&tx->node, &plchan->done_list);
1737

1738 1739 1740 1741
				/*
				 * And start the next descriptor (if any),
				 * otherwise free this channel.
				 */
1742 1743
				if (!list_empty(&plchan->issued_list))
					pl08x_start_next_txd(plchan);
1744 1745
				else
					pl08x_phy_free(plchan);
1746 1747 1748
			}
			spin_unlock(&plchan->lock);

1749 1750 1751 1752 1753 1754 1755 1756 1757
			/* Schedule tasklet on this channel */
			tasklet_schedule(&plchan->tasklet);
			mask |= (1 << i);
		}
	}

	return mask ? IRQ_HANDLED : IRQ_NONE;
}

1758 1759 1760 1761
static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
{
	chan->slave = true;
	chan->name = chan->cd->bus_id;
1762 1763
	chan->cfg.src_addr = chan->cd->addr;
	chan->cfg.dst_addr = chan->cd->addr;
1764 1765
}

1766 1767 1768 1769 1770
/*
 * Initialise the DMAC memcpy/slave channels.
 * Make a local wrapper to hold required data
 */
static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1771
		struct dma_device *dmadev, unsigned int channels, bool slave)
1772 1773 1774 1775 1776
{
	struct pl08x_dma_chan *chan;
	int i;

	INIT_LIST_HEAD(&dmadev->channels);
1777

1778 1779 1780 1781 1782 1783
	/*
	 * Register as many many memcpy as we have physical channels,
	 * we won't always be able to use all but the code will have
	 * to cope with that situation.
	 */
	for (i = 0; i < channels; i++) {
1784
		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1785 1786 1787 1788 1789 1790 1791 1792
		if (!chan) {
			dev_err(&pl08x->adev->dev,
				"%s no memory for channel\n", __func__);
			return -ENOMEM;
		}

		chan->host = pl08x;
		chan->state = PL08X_CHAN_IDLE;
1793
		chan->signal = -1;
1794 1795 1796

		if (slave) {
			chan->cd = &pl08x->pd->slave_channels[i];
1797
			pl08x_dma_slave_init(chan);
1798 1799 1800 1801 1802 1803 1804 1805
		} else {
			chan->cd = &pl08x->pd->memcpy_channel;
			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
			if (!chan->name) {
				kfree(chan);
				return -ENOMEM;
			}
		}
1806
		dev_dbg(&pl08x->adev->dev,
1807 1808 1809 1810
			 "initialize virtual channel \"%s\"\n",
			 chan->name);

		chan->chan.device = dmadev;
1811
		dma_cookie_init(&chan->chan);
1812 1813

		spin_lock_init(&chan->lock);
1814
		INIT_LIST_HEAD(&chan->pend_list);
1815
		INIT_LIST_HEAD(&chan->issued_list);
1816
		INIT_LIST_HEAD(&chan->done_list);
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
		tasklet_init(&chan->tasklet, pl08x_tasklet,
			     (unsigned long) chan);

		list_add_tail(&chan->chan.device_node, &dmadev->channels);
	}
	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
		 i, slave ? "slave" : "memcpy");
	return i;
}

static void pl08x_free_virtual_channels(struct dma_device *dmadev)
{
	struct pl08x_dma_chan *chan = NULL;
	struct pl08x_dma_chan *next;

	list_for_each_entry_safe(chan,
				 next, &dmadev->channels, chan.device_node) {
		list_del(&chan->chan.device_node);
		kfree(chan);
	}
}

#ifdef CONFIG_DEBUG_FS
static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
{
	switch (state) {
	case PL08X_CHAN_IDLE:
		return "idle";
	case PL08X_CHAN_RUNNING:
		return "running";
	case PL08X_CHAN_PAUSED:
		return "paused";
	case PL08X_CHAN_WAITING:
		return "waiting";
	default:
		break;
	}
	return "UNKNOWN STATE";
}

static int pl08x_debugfs_show(struct seq_file *s, void *data)
{
	struct pl08x_driver_data *pl08x = s->private;
	struct pl08x_dma_chan *chan;
	struct pl08x_phy_chan *ch;
	unsigned long flags;
	int i;

	seq_printf(s, "PL08x physical channels:\n");
	seq_printf(s, "CHANNEL:\tUSER:\n");
	seq_printf(s, "--------\t-----\n");
	for (i = 0; i < pl08x->vd->channels; i++) {
		struct pl08x_dma_chan *virt_chan;

		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);
		virt_chan = ch->serving;

1876 1877 1878 1879
		seq_printf(s, "%d\t\t%s%s\n",
			   ch->id,
			   virt_chan ? virt_chan->name : "(none)",
			   ch->locked ? " LOCKED" : "");
1880 1881 1882 1883 1884 1885 1886 1887

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1888
		seq_printf(s, "%s\t\t%s\n", chan->name,
1889 1890 1891 1892 1893 1894 1895
			   pl08x_state_str(chan->state));
	}

	seq_printf(s, "\nPL08x virtual slave channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1896
		seq_printf(s, "%s\t\t%s\n", chan->name,
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
			   pl08x_state_str(chan->state));
	}

	return 0;
}

static int pl08x_debugfs_open(struct inode *inode, struct file *file)
{
	return single_open(file, pl08x_debugfs_show, inode->i_private);
}

static const struct file_operations pl08x_debugfs_operations = {
	.open		= pl08x_debugfs_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
	/* Expose a simple debugfs interface to view all clocks */
1918 1919 1920
	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
			S_IFREG | S_IRUGO, NULL, pl08x,
			&pl08x_debugfs_operations);
1921 1922 1923 1924 1925 1926 1927 1928
}

#else
static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
}
#endif

1929
static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1930 1931
{
	struct pl08x_driver_data *pl08x;
1932
	const struct vendor_data *vd = id->data;
1933 1934 1935 1936 1937 1938 1939 1940
	int ret = 0;
	int i;

	ret = amba_request_regions(adev, NULL);
	if (ret)
		return ret;

	/* Create the driver state holder */
1941
	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	if (!pl08x) {
		ret = -ENOMEM;
		goto out_no_pl08x;
	}

	/* Initialize memcpy engine */
	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
	pl08x->memcpy.dev = &adev->dev;
	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
	pl08x->memcpy.device_control = pl08x_control;

	/* Initialize slave engine */
	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
	pl08x->slave.dev = &adev->dev;
	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
	pl08x->slave.device_issue_pending = pl08x_issue_pending;
	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
	pl08x->slave.device_control = pl08x_control;

	/* Get the platform data */
	pl08x->pd = dev_get_platdata(&adev->dev);
	if (!pl08x->pd) {
		dev_err(&adev->dev, "no platform data supplied\n");
		goto out_no_platdata;
	}

	/* Assign useful pointers to the driver state */
	pl08x->adev = adev;
	pl08x->vd = vd;

1980 1981 1982 1983 1984 1985 1986 1987
	/* By default, AHB1 only.  If dualmaster, from platform */
	pl08x->lli_buses = PL08X_AHB1;
	pl08x->mem_buses = PL08X_AHB1;
	if (pl08x->vd->dualmaster) {
		pl08x->lli_buses = pl08x->pd->lli_buses;
		pl08x->mem_buses = pl08x->pd->mem_buses;
	}

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	/* A DMA memory pool for LLIs, align on 1-byte boundary */
	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
			PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
	if (!pl08x->pool) {
		ret = -ENOMEM;
		goto out_no_lli_pool;
	}

	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
	if (!pl08x->base) {
		ret = -ENOMEM;
		goto out_no_ioremap;
	}

	/* Turn on the PL08x */
	pl08x_ensure_on(pl08x);

2005
	/* Attach the interrupt handler */
2006 2007 2008 2009
	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);

	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
2010
			  DRIVER_NAME, pl08x);
2011 2012 2013 2014 2015 2016 2017
	if (ret) {
		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
			__func__, adev->irq[0]);
		goto out_no_irq;
	}

	/* Initialize physical channels */
2018
	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
			GFP_KERNEL);
	if (!pl08x->phy_chans) {
		dev_err(&adev->dev, "%s failed to allocate "
			"physical channel holders\n",
			__func__);
		goto out_no_phychans;
	}

	for (i = 0; i < vd->channels; i++) {
		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];

		ch->id = i;
		ch->base = pl08x->base + PL080_Cx_BASE(i);
		spin_lock_init(&ch->lock);
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

		/*
		 * Nomadik variants can have channels that are locked
		 * down for the secure world only. Lock up these channels
		 * by perpetually serving a dummy virtual channel.
		 */
		if (vd->nomadik) {
			u32 val;

			val = readl(ch->base + PL080_CH_CONFIG);
			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
				ch->locked = true;
			}
		}

2049 2050
		dev_dbg(&adev->dev, "physical channel %d is %s\n",
			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	}

	/* Register as many memcpy channels as there are physical channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
					      pl08x->vd->channels, false);
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			 "%s failed to enumerate memcpy channels - %d\n",
			 __func__, ret);
		goto out_no_memcpy;
	}
	pl08x->memcpy.chancnt = ret;

	/* Register slave channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2066
			pl08x->pd->num_slave_channels, true);
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to enumerate slave channels - %d\n",
				__func__, ret);
		goto out_no_slave;
	}
	pl08x->slave.chancnt = ret;

	ret = dma_async_device_register(&pl08x->memcpy);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register memcpy as an async device - %d\n",
			__func__, ret);
		goto out_no_memcpy_reg;
	}

	ret = dma_async_device_register(&pl08x->slave);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register slave as an async device - %d\n",
			__func__, ret);
		goto out_no_slave_reg;
	}

	amba_set_drvdata(adev, pl08x);
	init_pl08x_debugfs(pl08x);
2093 2094 2095
	dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
		 amba_part(adev), amba_rev(adev),
		 (unsigned long long)adev->res.start, adev->irq[0]);
2096

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	return 0;

out_no_slave_reg:
	dma_async_device_unregister(&pl08x->memcpy);
out_no_memcpy_reg:
	pl08x_free_virtual_channels(&pl08x->slave);
out_no_slave:
	pl08x_free_virtual_channels(&pl08x->memcpy);
out_no_memcpy:
	kfree(pl08x->phy_chans);
out_no_phychans:
	free_irq(adev->irq[0], pl08x);
out_no_irq:
	iounmap(pl08x->base);
out_no_ioremap:
	dma_pool_destroy(pl08x->pool);
out_no_lli_pool:
out_no_platdata:
	kfree(pl08x);
out_no_pl08x:
	amba_release_regions(adev);
	return ret;
}

/* PL080 has 8 channels and the PL080 have just 2 */
static struct vendor_data vendor_pl080 = {
	.channels = 8,
	.dualmaster = true,
};

2127 2128 2129 2130 2131 2132
static struct vendor_data vendor_nomadik = {
	.channels = 8,
	.dualmaster = true,
	.nomadik = true,
};

2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
static struct vendor_data vendor_pl081 = {
	.channels = 2,
	.dualmaster = false,
};

static struct amba_id pl08x_ids[] = {
	/* PL080 */
	{
		.id	= 0x00041080,
		.mask	= 0x000fffff,
		.data	= &vendor_pl080,
	},
	/* PL081 */
	{
		.id	= 0x00041081,
		.mask	= 0x000fffff,
		.data	= &vendor_pl081,
	},
	/* Nomadik 8815 PL080 variant */
	{
2153
		.id	= 0x00280080,
2154
		.mask	= 0x00ffffff,
2155
		.data	= &vendor_nomadik,
2156 2157 2158 2159
	},
	{ 0, 0 },
};

2160 2161
MODULE_DEVICE_TABLE(amba, pl08x_ids);

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
static struct amba_driver pl08x_amba_driver = {
	.drv.name	= DRIVER_NAME,
	.id_table	= pl08x_ids,
	.probe		= pl08x_probe,
};

static int __init pl08x_init(void)
{
	int retval;
	retval = amba_driver_register(&pl08x_amba_driver);
	if (retval)
		printk(KERN_WARNING DRIVER_NAME
2174
		       "failed to register as an AMBA device (%d)\n",
2175 2176 2177 2178
		       retval);
	return retval;
}
subsys_initcall(pl08x_init);