amba-pl08x.c 58.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (c) 2006 ARM Ltd.
 * Copyright (c) 2010 ST-Ericsson SA
 *
 * Author: Peter Pearse <peter.pearse@arm.com>
 * Author: Linus Walleij <linus.walleij@stericsson.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
22 23
 * The full GNU General Public License is in this distribution in the file
 * called COPYING.
24 25
 *
 * Documentation: ARM DDI 0196G == PL080
26
 * Documentation: ARM DDI 0218E == PL081
27
 *
28 29
 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
 * channel.
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 *
 * The PL080 has 8 channels available for simultaneous use, and the PL081
 * has only two channels. So on these DMA controllers the number of channels
 * and the number of incoming DMA signals are two totally different things.
 * It is usually not possible to theoretically handle all physical signals,
 * so a multiplexing scheme with possible denial of use is necessary.
 *
 * The PL080 has a dual bus master, PL081 has a single master.
 *
 * Memory to peripheral transfer may be visualized as
 *	Get data from memory to DMAC
 *	Until no data left
 *		On burst request from peripheral
 *			Destination burst from DMAC to peripheral
 *			Clear burst request
 *	Raise terminal count interrupt
 *
 * For peripherals with a FIFO:
 * Source      burst size == half the depth of the peripheral FIFO
 * Destination burst size == the depth of the peripheral FIFO
 *
 * (Bursts are irrelevant for mem to mem transfers - there are no burst
 * signals, the DMA controller will simply facilitate its AHB master.)
 *
 * ASSUMES default (little) endianness for DMA transfers
 *
56 57 58 59 60 61 62 63 64 65 66 67 68
 * The PL08x has two flow control settings:
 *  - DMAC flow control: the transfer size defines the number of transfers
 *    which occur for the current LLI entry, and the DMAC raises TC at the
 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
 *    to both the BREQ and SREQ signals (contrary to documented),
 *    transferring data if either is active.  The LBREQ and LSREQ signals
 *    are ignored.
 *
 *  - Peripheral flow control: the transfer size is ignored (and should be
 *    zero).  The data is transferred from the current LLI entry, until
 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
 *    will then move to the next LLI entry.
 *
69 70 71
 * Global TODO:
 * - Break out common code from arch/arm/mach-s3c64xx and share
 */
72
#include <linux/amba/bus.h>
73 74
#include <linux/amba/pl08x.h>
#include <linux/debugfs.h>
75 76 77 78
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
V
Vinod Koul 已提交
79
#include <linux/dma-mapping.h>
80 81 82
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
83
#include <linux/pm_runtime.h>
84
#include <linux/seq_file.h>
85
#include <linux/slab.h>
86 87
#include <asm/hardware/pl080.h>

88 89
#include "dmaengine.h"

90 91
#define DRIVER_NAME	"pl08xdmac"

92
static struct amba_driver pl08x_amba_driver;
93
struct pl08x_driver_data;
94

95
/**
96
 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
97
 * @channels: the number of channels available in this variant
98
 * @dualmaster: whether this version supports dual AHB masters or not.
99 100 101
 * @nomadik: whether the channels have Nomadik security extension bits
 *	that need to be checked for permission before use and some registers are
 *	missing
102 103 104 105
 */
struct vendor_data {
	u8 channels;
	bool dualmaster;
106
	bool nomadik;
107 108 109 110
};

/*
 * PL08X private data structures
111
 * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
112 113
 * start & end do not - their bus bit info is in cctl.  Also note that these
 * are fixed 32-bit quantities.
114
 */
115
struct pl08x_lli {
116 117
	u32 src;
	u32 dst;
118
	u32 lli;
119 120 121
	u32 cctl;
};

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
/**
 * struct pl08x_bus_data - information of source or destination
 * busses for a transfer
 * @addr: current address
 * @maxwidth: the maximum width of a transfer on this bus
 * @buswidth: the width of this bus in bytes: 1, 2 or 4
 */
struct pl08x_bus_data {
	dma_addr_t addr;
	u8 maxwidth;
	u8 buswidth;
};

/**
 * struct pl08x_phy_chan - holder for the physical channels
 * @id: physical index to this channel
 * @lock: a lock to use when altering an instance of this struct
 * @signal: the physical signal (aka channel) serving this physical channel
 * right now
 * @serving: the virtual channel currently being served by this physical
 * channel
 */
struct pl08x_phy_chan {
	unsigned int id;
	void __iomem *base;
	spinlock_t lock;
	int signal;
	struct pl08x_dma_chan *serving;
};

/**
 * struct pl08x_sg - structure containing data per sg
 * @src_addr: src address of sg
 * @dst_addr: dst address of sg
 * @len: transfer len in bytes
 * @node: node for txd's dsg_list
 */
struct pl08x_sg {
	dma_addr_t src_addr;
	dma_addr_t dst_addr;
	size_t len;
	struct list_head node;
};

/**
 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
 * @tx: async tx descriptor
 * @node: node for txd list for channels
 * @dsg_list: list of children sg's
 * @direction: direction of transfer
 * @llis_bus: DMA memory address (physical) start for the LLIs
 * @llis_va: virtual memory address start for the LLIs
 * @cctl: control reg values for current txd
 * @ccfg: config reg values for current txd
 */
struct pl08x_txd {
	struct dma_async_tx_descriptor tx;
	struct list_head node;
	struct list_head dsg_list;
	enum dma_transfer_direction direction;
	dma_addr_t llis_bus;
	struct pl08x_lli *llis_va;
	/* Default cctl value for LLIs */
	u32 cctl;
	/*
	 * Settings to be put into the physical channel when we
	 * trigger this txd.  Other registers are in llis_va[0].
	 */
	u32 ccfg;
};

/**
 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
 * states
 * @PL08X_CHAN_IDLE: the channel is idle
 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
 * channel and is running a transfer on it
 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
 * channel, but the transfer is currently paused
 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
 * channel to become available (only pertains to memcpy channels)
 */
enum pl08x_dma_chan_state {
	PL08X_CHAN_IDLE,
	PL08X_CHAN_RUNNING,
	PL08X_CHAN_PAUSED,
	PL08X_CHAN_WAITING,
};

/**
 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
 * @chan: wrappped abstract channel
 * @phychan: the physical channel utilized by this channel, if there is one
 * @phychan_hold: if non-zero, hold on to the physical channel even if we
 * have no pending entries
 * @tasklet: tasklet scheduled by the IRQ to handle actual work etc
 * @name: name of channel
 * @cd: channel platform data
 * @runtime_addr: address for RX/TX according to the runtime config
 * @runtime_direction: current direction of this channel according to
 * runtime config
 * @pend_list: queued transactions pending on this channel
 * @at: active transaction on this channel
 * @lock: a lock for this channel data
 * @host: a pointer to the host (internal use)
 * @state: whether the channel is idle, paused, running etc
 * @slave: whether this channel is a device (slave) or for memcpy
 * @device_fc: Flow Controller Settings for ccfg register. Only valid for slave
 * channels. Fill with 'true' if peripheral should be flow controller. Direction
 * will be selected at Runtime.
 * @waiting: a TX descriptor on this channel which is waiting for a physical
 * channel to become available
 */
struct pl08x_dma_chan {
	struct dma_chan chan;
	struct pl08x_phy_chan *phychan;
	int phychan_hold;
	struct tasklet_struct tasklet;
	char *name;
	const struct pl08x_channel_data *cd;
	dma_addr_t src_addr;
	dma_addr_t dst_addr;
	u32 src_cctl;
	u32 dst_cctl;
	enum dma_transfer_direction runtime_direction;
	struct list_head pend_list;
	struct pl08x_txd *at;
	spinlock_t lock;
	struct pl08x_driver_data *host;
	enum pl08x_dma_chan_state state;
	bool slave;
	bool device_fc;
	struct pl08x_txd *waiting;
};

257 258 259 260 261 262 263 264 265 266 267
/**
 * struct pl08x_driver_data - the local state holder for the PL08x
 * @slave: slave engine for this instance
 * @memcpy: memcpy engine for this instance
 * @base: virtual memory base (remapped) for the PL08x
 * @adev: the corresponding AMBA (PrimeCell) bus entry
 * @vd: vendor data for this PL08x variant
 * @pd: platform data passed in from the platform/machine
 * @phy_chans: array of data for the physical channels
 * @pool: a pool for the LLI descriptors
 * @pool_ctr: counter of LLIs in the pool
268 269
 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 * fetches
270
 * @mem_buses: set to indicate memory transfers on AHB2.
271 272 273 274 275 276 277
 * @lock: a spinlock for this struct
 */
struct pl08x_driver_data {
	struct dma_device slave;
	struct dma_device memcpy;
	void __iomem *base;
	struct amba_device *adev;
278
	const struct vendor_data *vd;
279 280 281 282
	struct pl08x_platform_data *pd;
	struct pl08x_phy_chan *phy_chans;
	struct dma_pool *pool;
	int pool_ctr;
283 284
	u8 lli_buses;
	u8 mem_buses;
285 286 287 288 289 290 291 292 293
};

/*
 * PL08X specific defines
 */

/* Size (bytes) of each LLI buffer allocated for one transfer */
# define PL08X_LLI_TSFR_SIZE	0x2000

294
/* Maximum times we call dma_pool_alloc on this pool without freeing */
295
#define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
296 297 298 299 300 301 302
#define PL08X_ALIGN		8

static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
{
	return container_of(chan, struct pl08x_dma_chan, chan);
}

303 304 305 306 307
static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct pl08x_txd, tx);
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
/*
 * Physical channel handling
 */

/* Whether a certain channel is busy or not */
static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
{
	unsigned int val;

	val = readl(ch->base + PL080_CH_CONFIG);
	return val & PL080_CONFIG_ACTIVE;
}

/*
 * Set the initial DMA register values i.e. those for the first LLI
323
 * The next LLI pointer and the configuration interrupt bit have
324 325
 * been set when the LLIs were constructed.  Poke them into the hardware
 * and start the transfer.
326
 */
327 328
static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
	struct pl08x_txd *txd)
329
{
330
	struct pl08x_driver_data *pl08x = plchan->host;
331
	struct pl08x_phy_chan *phychan = plchan->phychan;
332
	struct pl08x_lli *lli = &txd->llis_va[0];
333
	u32 val;
334 335

	plchan->at = txd;
336

337 338 339
	/* Wait for channel inactive */
	while (pl08x_phy_channel_busy(phychan))
		cpu_relax();
340

341 342
	dev_vdbg(&pl08x->adev->dev,
		"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
343 344
		"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
		phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
345
		txd->ccfg);
346 347 348 349 350

	writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
	writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
	writel(lli->lli, phychan->base + PL080_CH_LLI);
	writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
351
	writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
352 353 354 355

	/* Enable the DMA channel */
	/* Do not access config register until channel shows as disabled */
	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
356
		cpu_relax();
357

358 359
	/* Do not access config register until channel shows as inactive */
	val = readl(phychan->base + PL080_CH_CONFIG);
360
	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
361
		val = readl(phychan->base + PL080_CH_CONFIG);
362

363
	writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
364 365 366
}

/*
367
 * Pause the channel by setting the HALT bit.
368
 *
369 370 371
 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 * the FIFO can only drain if the peripheral is still requesting data.
 * (note: this can still timeout if the DMAC FIFO never drains of data.)
372
 *
373 374
 * For P->M transfers, disable the peripheral first to stop it filling
 * the DMAC FIFO, and then pause the DMAC.
375 376 377 378
 */
static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;
379
	int timeout;
380 381 382 383 384 385 386

	/* Set the HALT bit and wait for the FIFO to drain */
	val = readl(ch->base + PL080_CH_CONFIG);
	val |= PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);

	/* Wait for channel inactive */
387 388 389 390 391 392 393
	for (timeout = 1000; timeout; timeout--) {
		if (!pl08x_phy_channel_busy(ch))
			break;
		udelay(1);
	}
	if (pl08x_phy_channel_busy(ch))
		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
394 395 396 397 398 399 400 401 402 403 404 405
}

static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;

	/* Clear the HALT bit */
	val = readl(ch->base + PL080_CH_CONFIG);
	val &= ~PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);
}

406 407 408 409 410 411 412 413
/*
 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 * clears any pending interrupt status.  This should not be used for
 * an on-going transfer, but as a method of shutting down a channel
 * (eg, when it's no longer used) or terminating a transfer.
 */
static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
	struct pl08x_phy_chan *ch)
414
{
415
	u32 val = readl(ch->base + PL080_CH_CONFIG);
416

417 418
	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
	         PL080_CONFIG_TC_IRQ_MASK);
419 420

	writel(val, ch->base + PL080_CH_CONFIG);
421 422 423

	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
}

static inline u32 get_bytes_in_cctl(u32 cctl)
{
	/* The source width defines the number of bytes */
	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;

	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
	case PL080_WIDTH_8BIT:
		break;
	case PL080_WIDTH_16BIT:
		bytes *= 2;
		break;
	case PL080_WIDTH_32BIT:
		bytes *= 4;
		break;
	}
	return bytes;
}

/* The channel should be paused when calling this */
static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
{
	struct pl08x_phy_chan *ch;
	struct pl08x_txd *txd;
	unsigned long flags;
450
	size_t bytes = 0;
451 452 453 454 455 456

	spin_lock_irqsave(&plchan->lock, flags);
	ch = plchan->phychan;
	txd = plchan->at;

	/*
457 458
	 * Follow the LLIs to get the number of remaining
	 * bytes in the currently active transaction.
459 460
	 */
	if (ch && txd) {
461
		u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
462

463
		/* First get the remaining bytes in the active transfer */
464 465 466
		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));

		if (clli) {
467 468 469 470 471 472
			struct pl08x_lli *llis_va = txd->llis_va;
			dma_addr_t llis_bus = txd->llis_bus;
			int index;

			BUG_ON(clli < llis_bus || clli >= llis_bus +
				sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
473

474 475 476 477 478 479 480 481
			/*
			 * Locate the next LLI - as this is an array,
			 * it's simple maths to find.
			 */
			index = (clli - llis_bus) / sizeof(struct pl08x_lli);

			for (; index < MAX_NUM_TSFR_LLIS; index++) {
				bytes += get_bytes_in_cctl(llis_va[index].cctl);
482 483

				/*
484
				 * A LLI pointer of 0 terminates the LLI list
485
				 */
486 487
				if (!llis_va[index].lli)
					break;
488 489 490 491 492
			}
		}
	}

	/* Sum up all queued transactions */
493
	if (!list_empty(&plchan->pend_list)) {
494
		struct pl08x_txd *txdi;
495
		list_for_each_entry(txdi, &plchan->pend_list, node) {
496 497 498
			struct pl08x_sg *dsg;
			list_for_each_entry(dsg, &txd->dsg_list, node)
				bytes += dsg->len;
499 500 501 502 503 504 505 506 507 508
		}
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return bytes;
}

/*
 * Allocate a physical channel for a virtual channel
509 510 511 512
 *
 * Try to locate a physical channel to be used for this transfer. If all
 * are taken return NULL and the requester will have to cope by using
 * some fallback PIO mode or retrying later.
513 514 515 516 517 518 519 520 521 522 523 524 525 526
 */
static struct pl08x_phy_chan *
pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
		      struct pl08x_dma_chan *virt_chan)
{
	struct pl08x_phy_chan *ch = NULL;
	unsigned long flags;
	int i;

	for (i = 0; i < pl08x->vd->channels; i++) {
		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);

527
		if (!ch->locked && !ch->serving) {
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
			ch->serving = virt_chan;
			ch->signal = -1;
			spin_unlock_irqrestore(&ch->lock, flags);
			break;
		}

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	if (i == pl08x->vd->channels) {
		/* No physical channel available, cope with it */
		return NULL;
	}

	return ch;
}

static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
					 struct pl08x_phy_chan *ch)
{
	unsigned long flags;

550 551
	spin_lock_irqsave(&ch->lock, flags);

552
	/* Stop the channel and clear its interrupts */
553
	pl08x_terminate_phy_chan(pl08x, ch);
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

	/* Mark it as free */
	ch->serving = NULL;
	spin_unlock_irqrestore(&ch->lock, flags);
}

/*
 * LLI handling
 */

static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
{
	switch (coded) {
	case PL080_WIDTH_8BIT:
		return 1;
	case PL080_WIDTH_16BIT:
		return 2;
	case PL080_WIDTH_32BIT:
		return 4;
	default:
		break;
	}
	BUG();
	return 0;
}

static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
581
				  size_t tsize)
582 583 584
{
	u32 retbits = cctl;

585
	/* Remove all src, dst and transfer size bits */
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;

	/* Then set the bits according to the parameters */
	switch (srcwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	switch (dstwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
	return retbits;
}

625 626 627 628 629
struct pl08x_lli_build_data {
	struct pl08x_txd *txd;
	struct pl08x_bus_data srcbus;
	struct pl08x_bus_data dstbus;
	size_t remainder;
630
	u32 lli_bus;
631 632
};

633
/*
634 635 636 637 638 639
 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
 * victim in case src & dest are not similarly aligned. i.e. If after aligning
 * masters address with width requirements of transfer (by sending few byte by
 * byte data), slave is still not aligned, then its width will be reduced to
 * BYTE.
 * - prefers the destination bus if both available
640
 * - prefers bus with fixed address (i.e. peripheral)
641
 */
642 643
static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
644 645
{
	if (!(cctl & PL080_CONTROL_DST_INCR)) {
646 647
		*mbus = &bd->dstbus;
		*sbus = &bd->srcbus;
648 649 650
	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
		*mbus = &bd->srcbus;
		*sbus = &bd->dstbus;
651
	} else {
652
		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
653 654
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
655
		} else {
656 657
			*mbus = &bd->srcbus;
			*sbus = &bd->dstbus;
658 659 660 661 662
		}
	}
}

/*
663
 * Fills in one LLI for a certain transfer descriptor and advance the counter
664
 */
665 666
static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
	int num_llis, int len, u32 cctl)
667
{
668 669
	struct pl08x_lli *llis_va = bd->txd->llis_va;
	dma_addr_t llis_bus = bd->txd->llis_bus;
670 671 672

	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);

673
	llis_va[num_llis].cctl = cctl;
674 675
	llis_va[num_llis].src = bd->srcbus.addr;
	llis_va[num_llis].dst = bd->dstbus.addr;
676 677
	llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
		sizeof(struct pl08x_lli);
678
	llis_va[num_llis].lli |= bd->lli_bus;
679 680

	if (cctl & PL080_CONTROL_SRC_INCR)
681
		bd->srcbus.addr += len;
682
	if (cctl & PL080_CONTROL_DST_INCR)
683
		bd->dstbus.addr += len;
684

685
	BUG_ON(bd->remainder < len);
686

687
	bd->remainder -= len;
688 689
}

690 691
static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
		u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
692
{
693 694 695
	*cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
	pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
	(*total_bytes) += len;
696 697 698 699 700 701 702 703 704 705 706
}

/*
 * This fills in the table of LLIs for the transfer descriptor
 * Note that we assume we never have to change the burst sizes
 * Return 0 for error
 */
static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
			      struct pl08x_txd *txd)
{
	struct pl08x_bus_data *mbus, *sbus;
707
	struct pl08x_lli_build_data bd;
708
	int num_llis = 0;
709
	u32 cctl, early_bytes = 0;
710
	size_t max_bytes_per_lli, total_bytes;
711
	struct pl08x_lli *llis_va;
712
	struct pl08x_sg *dsg;
713

714
	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
715 716 717 718 719 720 721
	if (!txd->llis_va) {
		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
		return 0;
	}

	pl08x->pool_ctr++;

722
	bd.txd = txd;
723
	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
724
	cctl = txd->cctl;
725

726
	/* Find maximum width of the source bus */
727
	bd.srcbus.maxwidth =
728 729 730 731
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
				       PL080_CONTROL_SWIDTH_SHIFT);

	/* Find maximum width of the destination bus */
732
	bd.dstbus.maxwidth =
733 734 735
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
				       PL080_CONTROL_DWIDTH_SHIFT);

736 737 738
	list_for_each_entry(dsg, &txd->dsg_list, node) {
		total_bytes = 0;
		cctl = txd->cctl;
739

740 741 742 743 744
		bd.srcbus.addr = dsg->src_addr;
		bd.dstbus.addr = dsg->dst_addr;
		bd.remainder = dsg->len;
		bd.srcbus.buswidth = bd.srcbus.maxwidth;
		bd.dstbus.buswidth = bd.dstbus.maxwidth;
745

746
		pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
747

748 749 750 751 752 753 754 755 756
		dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
			bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
			bd.srcbus.buswidth,
			bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
			bd.dstbus.buswidth,
			bd.remainder);
		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
			mbus == &bd.srcbus ? "src" : "dst",
			sbus == &bd.srcbus ? "src" : "dst");
757

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
		/*
		 * Zero length is only allowed if all these requirements are
		 * met:
		 * - flow controller is peripheral.
		 * - src.addr is aligned to src.width
		 * - dst.addr is aligned to dst.width
		 *
		 * sg_len == 1 should be true, as there can be two cases here:
		 *
		 * - Memory addresses are contiguous and are not scattered.
		 *   Here, Only one sg will be passed by user driver, with
		 *   memory address and zero length. We pass this to controller
		 *   and after the transfer it will receive the last burst
		 *   request from peripheral and so transfer finishes.
		 *
		 * - Memory addresses are scattered and are not contiguous.
		 *   Here, Obviously as DMA controller doesn't know when a lli's
		 *   transfer gets over, it can't load next lli. So in this
		 *   case, there has to be an assumption that only one lli is
		 *   supported. Thus, we can't have scattered addresses.
		 */
		if (!bd.remainder) {
			u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
				PL080_CONFIG_FLOW_CONTROL_SHIFT;
			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
783
					(fc <= PL080_FLOW_SRC2DST_SRC))) {
784 785 786 787
				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
					__func__);
				return 0;
			}
788

789
			if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
790
					(bd.dstbus.addr % bd.dstbus.buswidth)) {
791 792 793 794 795 796
				dev_err(&pl08x->adev->dev,
					"%s src & dst address must be aligned to src"
					" & dst width if peripheral is flow controller",
					__func__);
				return 0;
			}
797

798 799 800 801 802
			cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
					bd.dstbus.buswidth, 0);
			pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
			break;
		}
803 804

		/*
805 806 807
		 * Send byte by byte for following cases
		 * - Less than a bus width available
		 * - until master bus is aligned
808
		 */
809 810 811 812 813 814 815 816
		if (bd.remainder < mbus->buswidth)
			early_bytes = bd.remainder;
		else if ((mbus->addr) % (mbus->buswidth)) {
			early_bytes = mbus->buswidth - (mbus->addr) %
				(mbus->buswidth);
			if ((bd.remainder - early_bytes) < mbus->buswidth)
				early_bytes = bd.remainder;
		}
817

818 819 820 821 822 823
		if (early_bytes) {
			dev_vdbg(&pl08x->adev->dev,
				"%s byte width LLIs (remain 0x%08x)\n",
				__func__, bd.remainder);
			prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
				&total_bytes);
824 825
		}

826 827 828 829 830 831 832 833 834
		if (bd.remainder) {
			/*
			 * Master now aligned
			 * - if slave is not then we must set its width down
			 */
			if (sbus->addr % sbus->buswidth) {
				dev_dbg(&pl08x->adev->dev,
					"%s set down bus width to one byte\n",
					__func__);
835

836 837
				sbus->buswidth = 1;
			}
838 839

			/*
840 841
			 * Bytes transferred = tsize * src width, not
			 * MIN(buswidths)
842
			 */
843 844 845 846 847
			max_bytes_per_lli = bd.srcbus.buswidth *
				PL080_CONTROL_TRANSFER_SIZE_MASK;
			dev_vdbg(&pl08x->adev->dev,
				"%s max bytes per lli = %zu\n",
				__func__, max_bytes_per_lli);
848 849

			/*
850 851
			 * Make largest possible LLIs until less than one bus
			 * width left
852
			 */
853 854
			while (bd.remainder > (mbus->buswidth - 1)) {
				size_t lli_len, tsize, width;
855

856 857 858 859 860
				/*
				 * If enough left try to send max possible,
				 * otherwise try to send the remainder
				 */
				lli_len = min(bd.remainder, max_bytes_per_lli);
861

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
				/*
				 * Check against maximum bus alignment:
				 * Calculate actual transfer size in relation to
				 * bus width an get a maximum remainder of the
				 * highest bus width - 1
				 */
				width = max(mbus->buswidth, sbus->buswidth);
				lli_len = (lli_len / width) * width;
				tsize = lli_len / bd.srcbus.buswidth;

				dev_vdbg(&pl08x->adev->dev,
					"%s fill lli with single lli chunk of "
					"size 0x%08zx (remainder 0x%08zx)\n",
					__func__, lli_len, bd.remainder);

				cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
878
					bd.dstbus.buswidth, tsize);
879 880 881 882
				pl08x_fill_lli_for_desc(&bd, num_llis++,
						lli_len, cctl);
				total_bytes += lli_len;
			}
883

884 885 886 887 888 889 890 891 892 893
			/*
			 * Send any odd bytes
			 */
			if (bd.remainder) {
				dev_vdbg(&pl08x->adev->dev,
					"%s align with boundary, send odd bytes (remain %zu)\n",
					__func__, bd.remainder);
				prep_byte_width_lli(&bd, &cctl, bd.remainder,
						num_llis++, &total_bytes);
			}
894
		}
895

896 897 898 899 900 901
		if (total_bytes != dsg->len) {
			dev_err(&pl08x->adev->dev,
				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
				__func__, total_bytes, dsg->len);
			return 0;
		}
902

903 904 905 906 907 908
		if (num_llis >= MAX_NUM_TSFR_LLIS) {
			dev_err(&pl08x->adev->dev,
				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
				__func__, (u32) MAX_NUM_TSFR_LLIS);
			return 0;
		}
909
	}
910 911

	llis_va = txd->llis_va;
912
	/* The final LLI terminates the LLI. */
913
	llis_va[num_llis - 1].lli = 0;
914
	/* The final LLI element shall also fire an interrupt. */
915
	llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
916 917 918 919 920

#ifdef VERBOSE_DEBUG
	{
		int i;

921 922 923
		dev_vdbg(&pl08x->adev->dev,
			 "%-3s %-9s  %-10s %-10s %-10s %s\n",
			 "lli", "", "csrc", "cdst", "clli", "cctl");
924 925
		for (i = 0; i < num_llis; i++) {
			dev_vdbg(&pl08x->adev->dev,
926 927 928
				 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
				 i, &llis_va[i], llis_va[i].src,
				 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
929 930 931 932 933 934 935 936 937 938 939 940
				);
		}
	}
#endif

	return num_llis;
}

/* You should call this with the struct pl08x lock held */
static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
			   struct pl08x_txd *txd)
{
941 942
	struct pl08x_sg *dsg, *_dsg;

943
	/* Free the LLI */
944 945
	if (txd->llis_va)
		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
946 947 948

	pl08x->pool_ctr--;

949 950 951 952 953
	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
		list_del(&dsg->node);
		kfree(dsg);
	}

954 955 956 957 958 959 960 961 962
	kfree(txd);
}

static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
				struct pl08x_dma_chan *plchan)
{
	struct pl08x_txd *txdi = NULL;
	struct pl08x_txd *next;

963
	if (!list_empty(&plchan->pend_list)) {
964
		list_for_each_entry_safe(txdi,
965
					 next, &plchan->pend_list, node) {
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
			list_del(&txdi->node);
			pl08x_free_txd(pl08x, txdi);
		}
	}
}

/*
 * The DMA ENGINE API
 */
static int pl08x_alloc_chan_resources(struct dma_chan *chan)
{
	return 0;
}

static void pl08x_free_chan_resources(struct dma_chan *chan)
{
}

/*
 * This should be called with the channel plchan->lock held
 */
static int prep_phy_channel(struct pl08x_dma_chan *plchan,
			    struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_phy_chan *ch;
	int ret;

	/* Check if we already have a channel */
995 996 997 998
	if (plchan->phychan) {
		ch = plchan->phychan;
		goto got_channel;
	}
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

	ch = pl08x_get_phy_channel(pl08x, plchan);
	if (!ch) {
		/* No physical channel available, cope with it */
		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
		return -EBUSY;
	}

	/*
	 * OK we have a physical channel: for memcpy() this is all we
	 * need, but for slaves the physical signals may be muxed!
	 * Can the platform allow us to use this channel?
	 */
1012
	if (plchan->slave && pl08x->pd->get_signal) {
1013
		ret = pl08x->pd->get_signal(plchan->cd);
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
		if (ret < 0) {
			dev_dbg(&pl08x->adev->dev,
				"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
				ch->id, plchan->name);
			/* Release physical channel & return */
			pl08x_put_phy_channel(pl08x, ch);
			return -EBUSY;
		}
		ch->signal = ret;
	}

1025
	plchan->phychan = ch;
1026 1027 1028 1029 1030
	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
		 ch->id,
		 ch->signal,
		 plchan->name);

1031 1032 1033 1034 1035 1036 1037
got_channel:
	/* Assign the flow control signal to this channel */
	if (txd->direction == DMA_MEM_TO_DEV)
		txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
	else if (txd->direction == DMA_DEV_TO_MEM)
		txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;

1038
	plchan->phychan_hold++;
1039 1040 1041 1042

	return 0;
}

1043 1044 1045 1046 1047
static void release_phy_channel(struct pl08x_dma_chan *plchan)
{
	struct pl08x_driver_data *pl08x = plchan->host;

	if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
1048
		pl08x->pd->put_signal(plchan->cd, plchan->phychan->signal);
1049 1050 1051 1052 1053 1054
		plchan->phychan->signal = -1;
	}
	pl08x_put_phy_channel(pl08x, plchan->phychan);
	plchan->phychan = NULL;
}

1055 1056 1057
static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
1058
	struct pl08x_txd *txd = to_pl08x_txd(tx);
1059
	unsigned long flags;
1060
	dma_cookie_t cookie;
1061 1062

	spin_lock_irqsave(&plchan->lock, flags);
1063
	cookie = dma_cookie_assign(tx);
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

	/* Put this onto the pending list */
	list_add_tail(&txd->node, &plchan->pend_list);

	/*
	 * If there was no physical channel available for this memcpy,
	 * stack the request up and indicate that the channel is waiting
	 * for a free physical channel.
	 */
	if (!plchan->slave && !plchan->phychan) {
		/* Do this memcpy whenever there is a channel ready */
		plchan->state = PL08X_CHAN_WAITING;
		plchan->waiting = txd;
1077 1078
	} else {
		plchan->phychan_hold--;
1079 1080
	}

1081
	spin_unlock_irqrestore(&plchan->lock, flags);
1082

1083
	return cookie;
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
}

static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
		struct dma_chan *chan, unsigned long flags)
{
	struct dma_async_tx_descriptor *retval = NULL;

	return retval;
}

/*
1095 1096 1097
 * Code accessing dma_async_is_complete() in a tight loop may give problems.
 * If slaves are relying on interrupts to signal completion this function
 * must not be called with interrupts disabled.
1098
 */
1099 1100
static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
		dma_cookie_t cookie, struct dma_tx_state *txstate)
1101 1102 1103 1104
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	enum dma_status ret;

1105 1106
	ret = dma_cookie_status(chan, cookie, txstate);
	if (ret == DMA_SUCCESS)
1107 1108 1109 1110
		return ret;

	/*
	 * This cookie not complete yet
1111
	 * Get number of bytes left in the active transactions and queue
1112
	 */
1113
	dma_set_residue(txstate, pl08x_getbytes_chan(plchan));
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

	if (plchan->state == PL08X_CHAN_PAUSED)
		return DMA_PAUSED;

	/* Whether waiting or running, we're in progress */
	return DMA_IN_PROGRESS;
}

/* PrimeCell DMA extension */
struct burst_table {
1124
	u32 burstwords;
1125 1126 1127 1128 1129 1130
	u32 reg;
};

static const struct burst_table burst_sizes[] = {
	{
		.burstwords = 256,
1131
		.reg = PL080_BSIZE_256,
1132 1133 1134
	},
	{
		.burstwords = 128,
1135
		.reg = PL080_BSIZE_128,
1136 1137 1138
	},
	{
		.burstwords = 64,
1139
		.reg = PL080_BSIZE_64,
1140 1141 1142
	},
	{
		.burstwords = 32,
1143
		.reg = PL080_BSIZE_32,
1144 1145 1146
	},
	{
		.burstwords = 16,
1147
		.reg = PL080_BSIZE_16,
1148 1149 1150
	},
	{
		.burstwords = 8,
1151
		.reg = PL080_BSIZE_8,
1152 1153 1154
	},
	{
		.burstwords = 4,
1155
		.reg = PL080_BSIZE_4,
1156 1157
	},
	{
1158 1159
		.burstwords = 0,
		.reg = PL080_BSIZE_1,
1160 1161 1162
	},
};

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
/*
 * Given the source and destination available bus masks, select which
 * will be routed to each port.  We try to have source and destination
 * on separate ports, but always respect the allowable settings.
 */
static u32 pl08x_select_bus(u8 src, u8 dst)
{
	u32 cctl = 0;

	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
		cctl |= PL080_CONTROL_DST_AHB2;
	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
		cctl |= PL080_CONTROL_SRC_AHB2;

	return cctl;
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
static u32 pl08x_cctl(u32 cctl)
{
	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
		  PL080_CONTROL_PROT_MASK);

	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
	return cctl | PL080_CONTROL_PROT_SYS;
}

1190 1191 1192 1193 1194 1195 1196 1197 1198
static u32 pl08x_width(enum dma_slave_buswidth width)
{
	switch (width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		return PL080_WIDTH_8BIT;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		return PL080_WIDTH_16BIT;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		return PL080_WIDTH_32BIT;
1199 1200
	default:
		return ~0;
1201 1202 1203
	}
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
static u32 pl08x_burst(u32 maxburst)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
		if (burst_sizes[i].burstwords <= maxburst)
			break;

	return burst_sizes[i].reg;
}

1215 1216
static int dma_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
1217 1218 1219 1220
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	enum dma_slave_buswidth addr_width;
1221
	u32 width, burst, maxburst;
1222
	u32 cctl = 0;
1223 1224 1225

	if (!plchan->slave)
		return -EINVAL;
1226 1227 1228

	/* Transfer direction */
	plchan->runtime_direction = config->direction;
1229
	if (config->direction == DMA_MEM_TO_DEV) {
1230 1231
		addr_width = config->dst_addr_width;
		maxburst = config->dst_maxburst;
1232
	} else if (config->direction == DMA_DEV_TO_MEM) {
1233 1234 1235 1236 1237
		addr_width = config->src_addr_width;
		maxburst = config->src_maxburst;
	} else {
		dev_err(&pl08x->adev->dev,
			"bad runtime_config: alien transfer direction\n");
1238
		return -EINVAL;
1239 1240
	}

1241 1242
	width = pl08x_width(addr_width);
	if (width == ~0) {
1243 1244
		dev_err(&pl08x->adev->dev,
			"bad runtime_config: alien address width\n");
1245
		return -EINVAL;
1246 1247
	}

1248 1249 1250
	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;

1251
	/*
1252 1253 1254
	 * If this channel will only request single transfers, set this
	 * down to ONE element.  Also select one element if no maxburst
	 * is specified.
1255
	 */
1256 1257 1258 1259 1260 1261
	if (plchan->cd->single)
		maxburst = 1;

	burst = pl08x_burst(maxburst);
	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1262

1263 1264
	plchan->device_fc = config->device_fc;

1265
	if (plchan->runtime_direction == DMA_DEV_TO_MEM) {
1266
		plchan->src_addr = config->src_addr;
1267 1268 1269
		plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
			pl08x_select_bus(plchan->cd->periph_buses,
					 pl08x->mem_buses);
1270 1271
	} else {
		plchan->dst_addr = config->dst_addr;
1272 1273 1274
		plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
			pl08x_select_bus(pl08x->mem_buses,
					 plchan->cd->periph_buses);
1275
	}
1276

1277 1278
	dev_dbg(&pl08x->adev->dev,
		"configured channel %s (%s) for %s, data width %d, "
1279
		"maxburst %d words, LE, CCTL=0x%08x\n",
1280
		dma_chan_name(chan), plchan->name,
1281
		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
1282 1283
		addr_width,
		maxburst,
1284
		cctl);
1285 1286

	return 0;
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
}

/*
 * Slave transactions callback to the slave device to allow
 * synchronization of slave DMA signals with the DMAC enable
 */
static void pl08x_issue_pending(struct dma_chan *chan)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&plchan->lock, flags);
1299 1300 1301
	/* Something is already active, or we're waiting for a channel... */
	if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
		spin_unlock_irqrestore(&plchan->lock, flags);
1302
		return;
1303
	}
1304 1305

	/* Take the first element in the queue and execute it */
1306
	if (!list_empty(&plchan->pend_list)) {
1307 1308
		struct pl08x_txd *next;

1309
		next = list_first_entry(&plchan->pend_list,
1310 1311 1312 1313 1314
					struct pl08x_txd,
					node);
		list_del(&next->node);
		plchan->state = PL08X_CHAN_RUNNING;

1315
		pl08x_start_txd(plchan, next);
1316 1317 1318 1319 1320 1321 1322 1323 1324
	}

	spin_unlock_irqrestore(&plchan->lock, flags);
}

static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
					struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
1325 1326
	unsigned long flags;
	int num_llis, ret;
1327 1328

	num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1329
	if (!num_llis) {
1330 1331 1332
		spin_lock_irqsave(&plchan->lock, flags);
		pl08x_free_txd(pl08x, txd);
		spin_unlock_irqrestore(&plchan->lock, flags);
1333
		return -EINVAL;
1334
	}
1335

1336
	spin_lock_irqsave(&plchan->lock, flags);
1337 1338 1339 1340 1341 1342 1343 1344

	/*
	 * See if we already have a physical channel allocated,
	 * else this is the time to try to get one.
	 */
	ret = prep_phy_channel(plchan, txd);
	if (ret) {
		/*
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
		 * No physical channel was available.
		 *
		 * memcpy transfers can be sorted out at submission time.
		 *
		 * Slave transfers may have been denied due to platform
		 * channel muxing restrictions.  Since there is no guarantee
		 * that this will ever be resolved, and the signal must be
		 * acquired AFTER acquiring the physical channel, we will let
		 * them be NACK:ed with -EBUSY here. The drivers can retry
		 * the prep() call if they are eager on doing this using DMA.
1355 1356 1357
		 */
		if (plchan->slave) {
			pl08x_free_txd_list(pl08x, plchan);
1358
			pl08x_free_txd(pl08x, txd);
1359
			spin_unlock_irqrestore(&plchan->lock, flags);
1360 1361 1362 1363
			return -EBUSY;
		}
	} else
		/*
1364 1365 1366 1367
		 * Else we're all set, paused and ready to roll, status
		 * will switch to PL08X_CHAN_RUNNING when we call
		 * issue_pending(). If there is something running on the
		 * channel already we don't change its state.
1368 1369 1370 1371
		 */
		if (plchan->state == PL08X_CHAN_IDLE)
			plchan->state = PL08X_CHAN_PAUSED;

1372
	spin_unlock_irqrestore(&plchan->lock, flags);
1373 1374 1375 1376

	return 0;
}

1377 1378
static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
	unsigned long flags)
1379
{
1380
	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1381 1382 1383

	if (txd) {
		dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1384
		txd->tx.flags = flags;
1385 1386
		txd->tx.tx_submit = pl08x_tx_submit;
		INIT_LIST_HEAD(&txd->node);
1387
		INIT_LIST_HEAD(&txd->dsg_list);
1388 1389 1390 1391

		/* Always enable error and terminal interrupts */
		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
			    PL080_CONFIG_TC_IRQ_MASK;
1392 1393 1394 1395
	}
	return txd;
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
/*
 * Initialize a descriptor to be used by memcpy submit
 */
static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
		size_t len, unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
1406
	struct pl08x_sg *dsg;
1407 1408
	int ret;

1409
	txd = pl08x_get_txd(plchan, flags);
1410 1411 1412 1413 1414 1415
	if (!txd) {
		dev_err(&pl08x->adev->dev,
			"%s no memory for descriptor\n", __func__);
		return NULL;
	}

1416 1417 1418 1419 1420 1421 1422 1423 1424
	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
	if (!dsg) {
		pl08x_free_txd(pl08x, txd);
		dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
				__func__);
		return NULL;
	}
	list_add_tail(&dsg->node, &txd->dsg_list);

1425
	txd->direction = DMA_MEM_TO_MEM;
1426 1427 1428
	dsg->src_addr = src;
	dsg->dst_addr = dest;
	dsg->len = len;
1429 1430

	/* Set platform data for m2m */
1431
	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1432 1433
	txd->cctl = pl08x->pd->memcpy_channel.cctl &
			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1434

1435
	/* Both to be incremented or the code will break */
1436
	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1437 1438

	if (pl08x->vd->dualmaster)
1439 1440
		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
					      pl08x->mem_buses);
1441 1442 1443 1444 1445 1446 1447 1448

	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

1449
static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1450
		struct dma_chan *chan, struct scatterlist *sgl,
1451
		unsigned int sg_len, enum dma_transfer_direction direction,
1452
		unsigned long flags, void *context)
1453 1454 1455 1456
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
1457 1458 1459
	struct pl08x_sg *dsg;
	struct scatterlist *sg;
	dma_addr_t slave_addr;
1460
	int ret, tmp;
1461 1462

	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1463
			__func__, sg_dma_len(sgl), plchan->name);
1464

1465
	txd = pl08x_get_txd(plchan, flags);
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	if (!txd) {
		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
		return NULL;
	}

	if (direction != plchan->runtime_direction)
		dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
			"the direction configured for the PrimeCell\n",
			__func__);

	/*
	 * Set up addresses, the PrimeCell configured address
	 * will take precedence since this may configure the
	 * channel target address dynamically at runtime.
	 */
	txd->direction = direction;
1482

1483
	if (direction == DMA_MEM_TO_DEV) {
1484
		txd->cctl = plchan->dst_cctl;
1485
		slave_addr = plchan->dst_addr;
1486
	} else if (direction == DMA_DEV_TO_MEM) {
1487
		txd->cctl = plchan->src_cctl;
1488
		slave_addr = plchan->src_addr;
1489
	} else {
1490
		pl08x_free_txd(pl08x, txd);
1491 1492 1493 1494 1495
		dev_err(&pl08x->adev->dev,
			"%s direction unsupported\n", __func__);
		return NULL;
	}

1496
	if (plchan->device_fc)
1497
		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1498 1499
			PL080_FLOW_PER2MEM_PER;
	else
1500
		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1501 1502 1503 1504
			PL080_FLOW_PER2MEM;

	txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	for_each_sg(sgl, sg, sg_len, tmp) {
		dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
		if (!dsg) {
			pl08x_free_txd(pl08x, txd);
			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
					__func__);
			return NULL;
		}
		list_add_tail(&dsg->node, &txd->dsg_list);

		dsg->len = sg_dma_len(sg);
1516
		if (direction == DMA_MEM_TO_DEV) {
1517
			dsg->src_addr = sg_dma_address(sg);
1518 1519 1520
			dsg->dst_addr = slave_addr;
		} else {
			dsg->src_addr = slave_addr;
1521
			dsg->dst_addr = sg_dma_address(sg);
1522 1523 1524
		}
	}

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
			 unsigned long arg)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	unsigned long flags;
	int ret = 0;

	/* Controls applicable to inactive channels */
	if (cmd == DMA_SLAVE_CONFIG) {
1542 1543
		return dma_set_runtime_config(chan,
					      (struct dma_slave_config *)arg);
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	}

	/*
	 * Anything succeeds on channels with no physical allocation and
	 * no queued transfers.
	 */
	spin_lock_irqsave(&plchan->lock, flags);
	if (!plchan->phychan && !plchan->at) {
		spin_unlock_irqrestore(&plchan->lock, flags);
		return 0;
	}

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		plchan->state = PL08X_CHAN_IDLE;

		if (plchan->phychan) {
1561
			pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1562 1563 1564 1565 1566

			/*
			 * Mark physical channel as free and free any slave
			 * signal
			 */
1567
			release_phy_channel(plchan);
1568
			plchan->phychan_hold = 0;
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
		}
		/* Dequeue jobs and free LLIs */
		if (plchan->at) {
			pl08x_free_txd(pl08x, plchan->at);
			plchan->at = NULL;
		}
		/* Dequeue jobs not yet fired as well */
		pl08x_free_txd_list(pl08x, plchan);
		break;
	case DMA_PAUSE:
		pl08x_pause_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_PAUSED;
		break;
	case DMA_RESUME:
		pl08x_resume_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_RUNNING;
		break;
	default:
		/* Unknown command */
		ret = -ENXIO;
		break;
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return ret;
}

bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
{
1599
	struct pl08x_dma_chan *plchan;
1600 1601
	char *name = chan_id;

1602 1603 1604 1605 1606 1607
	/* Reject channels for devices not bound to this driver */
	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
		return false;

	plchan = to_pl08x_chan(chan);

1608 1609 1610 1611 1612 1613 1614 1615 1616
	/* Check that the channel is not taken! */
	if (!strcmp(plchan->name, name))
		return true;

	return false;
}

/*
 * Just check that the device is there and active
1617 1618 1619
 * TODO: turn this bit on/off depending on the number of physical channels
 * actually used, if it is zero... well shut it off. That will save some
 * power. Cut the clock at the same time.
1620 1621 1622
 */
static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
{
1623 1624 1625
	/* The Nomadik variant does not have the config register */
	if (pl08x->vd->nomadik)
		return;
1626
	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1627 1628
}

1629 1630 1631
static void pl08x_unmap_buffers(struct pl08x_txd *txd)
{
	struct device *dev = txd->tx.chan->device->dev;
1632
	struct pl08x_sg *dsg;
1633 1634 1635

	if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1636 1637 1638 1639 1640 1641 1642 1643
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_single(dev, dsg->src_addr, dsg->len,
						DMA_TO_DEVICE);
		else {
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_page(dev, dsg->src_addr, dsg->len,
						DMA_TO_DEVICE);
		}
1644 1645 1646
	}
	if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1647 1648 1649
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_single(dev, dsg->dst_addr, dsg->len,
						DMA_FROM_DEVICE);
1650
		else
1651 1652 1653
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_page(dev, dsg->dst_addr, dsg->len,
						DMA_FROM_DEVICE);
1654 1655 1656
	}
}

1657 1658 1659 1660
static void pl08x_tasklet(unsigned long data)
{
	struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
	struct pl08x_driver_data *pl08x = plchan->host;
1661
	struct pl08x_txd *txd;
1662
	unsigned long flags;
1663

1664
	spin_lock_irqsave(&plchan->lock, flags);
1665

1666 1667
	txd = plchan->at;
	plchan->at = NULL;
1668

1669
	if (txd) {
1670
		/* Update last completed */
1671
		dma_cookie_complete(&txd->tx);
1672
	}
1673

1674
	/* If a new descriptor is queued, set it up plchan->at is NULL here */
1675
	if (!list_empty(&plchan->pend_list)) {
1676 1677
		struct pl08x_txd *next;

1678
		next = list_first_entry(&plchan->pend_list,
1679 1680 1681
					struct pl08x_txd,
					node);
		list_del(&next->node);
1682 1683

		pl08x_start_txd(plchan, next);
1684 1685 1686 1687 1688 1689
	} else if (plchan->phychan_hold) {
		/*
		 * This channel is still in use - we have a new txd being
		 * prepared and will soon be queued.  Don't give up the
		 * physical channel.
		 */
1690 1691 1692 1693 1694 1695 1696
	} else {
		struct pl08x_dma_chan *waiting = NULL;

		/*
		 * No more jobs, so free up the physical channel
		 * Free any allocated signal on slave transfers too
		 */
1697
		release_phy_channel(plchan);
1698 1699 1700
		plchan->state = PL08X_CHAN_IDLE;

		/*
1701 1702 1703 1704
		 * And NOW before anyone else can grab that free:d up
		 * physical channel, see if there is some memcpy pending
		 * that seriously needs to start because of being stacked
		 * up while we were choking the physical channels with data.
1705 1706 1707
		 */
		list_for_each_entry(waiting, &pl08x->memcpy.channels,
				    chan.device_node) {
1708 1709
			if (waiting->state == PL08X_CHAN_WAITING &&
				waiting->waiting != NULL) {
1710 1711 1712 1713 1714 1715
				int ret;

				/* This should REALLY not fail now */
				ret = prep_phy_channel(waiting,
						       waiting->waiting);
				BUG_ON(ret);
1716
				waiting->phychan_hold--;
1717 1718 1719 1720 1721 1722 1723 1724
				waiting->state = PL08X_CHAN_RUNNING;
				waiting->waiting = NULL;
				pl08x_issue_pending(&waiting->chan);
				break;
			}
		}
	}

1725
	spin_unlock_irqrestore(&plchan->lock, flags);
1726

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	if (txd) {
		dma_async_tx_callback callback = txd->tx.callback;
		void *callback_param = txd->tx.callback_param;

		/* Don't try to unmap buffers on slave channels */
		if (!plchan->slave)
			pl08x_unmap_buffers(txd);

		/* Free the descriptor */
		spin_lock_irqsave(&plchan->lock, flags);
		pl08x_free_txd(pl08x, txd);
		spin_unlock_irqrestore(&plchan->lock, flags);

		/* Callback to signal completion */
		if (callback)
			callback(callback_param);
	}
1744 1745 1746 1747 1748
}

static irqreturn_t pl08x_irq(int irq, void *dev)
{
	struct pl08x_driver_data *pl08x = dev;
1749 1750 1751 1752 1753 1754 1755 1756
	u32 mask = 0, err, tc, i;

	/* check & clear - ERR & TC interrupts */
	err = readl(pl08x->base + PL080_ERR_STATUS);
	if (err) {
		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
			__func__, err);
		writel(err, pl08x->base + PL080_ERR_CLEAR);
1757
	}
1758
	tc = readl(pl08x->base + PL080_TC_STATUS);
1759 1760 1761 1762 1763 1764
	if (tc)
		writel(tc, pl08x->base + PL080_TC_CLEAR);

	if (!err && !tc)
		return IRQ_NONE;

1765
	for (i = 0; i < pl08x->vd->channels; i++) {
1766
		if (((1 << i) & err) || ((1 << i) & tc)) {
1767 1768 1769 1770
			/* Locate physical channel */
			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
			struct pl08x_dma_chan *plchan = phychan->serving;

1771 1772 1773 1774 1775 1776 1777
			if (!plchan) {
				dev_err(&pl08x->adev->dev,
					"%s Error TC interrupt on unused channel: 0x%08x\n",
					__func__, i);
				continue;
			}

1778 1779 1780 1781 1782 1783 1784 1785 1786
			/* Schedule tasklet on this channel */
			tasklet_schedule(&plchan->tasklet);
			mask |= (1 << i);
		}
	}

	return mask ? IRQ_HANDLED : IRQ_NONE;
}

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
{
	u32 cctl = pl08x_cctl(chan->cd->cctl);

	chan->slave = true;
	chan->name = chan->cd->bus_id;
	chan->src_addr = chan->cd->addr;
	chan->dst_addr = chan->cd->addr;
	chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
		pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
	chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
		pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
}

1801 1802 1803 1804 1805
/*
 * Initialise the DMAC memcpy/slave channels.
 * Make a local wrapper to hold required data
 */
static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1806
		struct dma_device *dmadev, unsigned int channels, bool slave)
1807 1808 1809 1810 1811
{
	struct pl08x_dma_chan *chan;
	int i;

	INIT_LIST_HEAD(&dmadev->channels);
1812

1813 1814 1815 1816 1817 1818
	/*
	 * Register as many many memcpy as we have physical channels,
	 * we won't always be able to use all but the code will have
	 * to cope with that situation.
	 */
	for (i = 0; i < channels; i++) {
1819
		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
		if (!chan) {
			dev_err(&pl08x->adev->dev,
				"%s no memory for channel\n", __func__);
			return -ENOMEM;
		}

		chan->host = pl08x;
		chan->state = PL08X_CHAN_IDLE;

		if (slave) {
			chan->cd = &pl08x->pd->slave_channels[i];
1831
			pl08x_dma_slave_init(chan);
1832 1833 1834 1835 1836 1837 1838 1839
		} else {
			chan->cd = &pl08x->pd->memcpy_channel;
			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
			if (!chan->name) {
				kfree(chan);
				return -ENOMEM;
			}
		}
1840
		dev_dbg(&pl08x->adev->dev,
1841 1842 1843 1844
			 "initialize virtual channel \"%s\"\n",
			 chan->name);

		chan->chan.device = dmadev;
1845
		dma_cookie_init(&chan->chan);
1846 1847

		spin_lock_init(&chan->lock);
1848
		INIT_LIST_HEAD(&chan->pend_list);
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
		tasklet_init(&chan->tasklet, pl08x_tasklet,
			     (unsigned long) chan);

		list_add_tail(&chan->chan.device_node, &dmadev->channels);
	}
	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
		 i, slave ? "slave" : "memcpy");
	return i;
}

static void pl08x_free_virtual_channels(struct dma_device *dmadev)
{
	struct pl08x_dma_chan *chan = NULL;
	struct pl08x_dma_chan *next;

	list_for_each_entry_safe(chan,
				 next, &dmadev->channels, chan.device_node) {
		list_del(&chan->chan.device_node);
		kfree(chan);
	}
}

#ifdef CONFIG_DEBUG_FS
static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
{
	switch (state) {
	case PL08X_CHAN_IDLE:
		return "idle";
	case PL08X_CHAN_RUNNING:
		return "running";
	case PL08X_CHAN_PAUSED:
		return "paused";
	case PL08X_CHAN_WAITING:
		return "waiting";
	default:
		break;
	}
	return "UNKNOWN STATE";
}

static int pl08x_debugfs_show(struct seq_file *s, void *data)
{
	struct pl08x_driver_data *pl08x = s->private;
	struct pl08x_dma_chan *chan;
	struct pl08x_phy_chan *ch;
	unsigned long flags;
	int i;

	seq_printf(s, "PL08x physical channels:\n");
	seq_printf(s, "CHANNEL:\tUSER:\n");
	seq_printf(s, "--------\t-----\n");
	for (i = 0; i < pl08x->vd->channels; i++) {
		struct pl08x_dma_chan *virt_chan;

		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);
		virt_chan = ch->serving;

1908 1909 1910 1911
		seq_printf(s, "%d\t\t%s%s\n",
			   ch->id,
			   virt_chan ? virt_chan->name : "(none)",
			   ch->locked ? " LOCKED" : "");
1912 1913 1914 1915 1916 1917 1918 1919

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1920
		seq_printf(s, "%s\t\t%s\n", chan->name,
1921 1922 1923 1924 1925 1926 1927
			   pl08x_state_str(chan->state));
	}

	seq_printf(s, "\nPL08x virtual slave channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1928
		seq_printf(s, "%s\t\t%s\n", chan->name,
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
			   pl08x_state_str(chan->state));
	}

	return 0;
}

static int pl08x_debugfs_open(struct inode *inode, struct file *file)
{
	return single_open(file, pl08x_debugfs_show, inode->i_private);
}

static const struct file_operations pl08x_debugfs_operations = {
	.open		= pl08x_debugfs_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
	/* Expose a simple debugfs interface to view all clocks */
1950 1951 1952
	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
			S_IFREG | S_IRUGO, NULL, pl08x,
			&pl08x_debugfs_operations);
1953 1954 1955 1956 1957 1958 1959 1960
}

#else
static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
}
#endif

1961
static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1962 1963
{
	struct pl08x_driver_data *pl08x;
1964
	const struct vendor_data *vd = id->data;
1965 1966 1967 1968 1969 1970 1971 1972
	int ret = 0;
	int i;

	ret = amba_request_regions(adev, NULL);
	if (ret)
		return ret;

	/* Create the driver state holder */
1973
	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	if (!pl08x) {
		ret = -ENOMEM;
		goto out_no_pl08x;
	}

	/* Initialize memcpy engine */
	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
	pl08x->memcpy.dev = &adev->dev;
	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
	pl08x->memcpy.device_control = pl08x_control;

	/* Initialize slave engine */
	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
	pl08x->slave.dev = &adev->dev;
	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
	pl08x->slave.device_issue_pending = pl08x_issue_pending;
	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
	pl08x->slave.device_control = pl08x_control;

	/* Get the platform data */
	pl08x->pd = dev_get_platdata(&adev->dev);
	if (!pl08x->pd) {
		dev_err(&adev->dev, "no platform data supplied\n");
		goto out_no_platdata;
	}

	/* Assign useful pointers to the driver state */
	pl08x->adev = adev;
	pl08x->vd = vd;

2012 2013 2014 2015 2016 2017 2018 2019
	/* By default, AHB1 only.  If dualmaster, from platform */
	pl08x->lli_buses = PL08X_AHB1;
	pl08x->mem_buses = PL08X_AHB1;
	if (pl08x->vd->dualmaster) {
		pl08x->lli_buses = pl08x->pd->lli_buses;
		pl08x->mem_buses = pl08x->pd->mem_buses;
	}

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	/* A DMA memory pool for LLIs, align on 1-byte boundary */
	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
			PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
	if (!pl08x->pool) {
		ret = -ENOMEM;
		goto out_no_lli_pool;
	}

	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
	if (!pl08x->base) {
		ret = -ENOMEM;
		goto out_no_ioremap;
	}

	/* Turn on the PL08x */
	pl08x_ensure_on(pl08x);

2037
	/* Attach the interrupt handler */
2038 2039 2040 2041
	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);

	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
2042
			  DRIVER_NAME, pl08x);
2043 2044 2045 2046 2047 2048 2049
	if (ret) {
		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
			__func__, adev->irq[0]);
		goto out_no_irq;
	}

	/* Initialize physical channels */
2050
	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
			GFP_KERNEL);
	if (!pl08x->phy_chans) {
		dev_err(&adev->dev, "%s failed to allocate "
			"physical channel holders\n",
			__func__);
		goto out_no_phychans;
	}

	for (i = 0; i < vd->channels; i++) {
		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];

		ch->id = i;
		ch->base = pl08x->base + PL080_Cx_BASE(i);
		spin_lock_init(&ch->lock);
		ch->signal = -1;
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

		/*
		 * Nomadik variants can have channels that are locked
		 * down for the secure world only. Lock up these channels
		 * by perpetually serving a dummy virtual channel.
		 */
		if (vd->nomadik) {
			u32 val;

			val = readl(ch->base + PL080_CH_CONFIG);
			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
				ch->locked = true;
			}
		}

2082 2083
		dev_dbg(&adev->dev, "physical channel %d is %s\n",
			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	}

	/* Register as many memcpy channels as there are physical channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
					      pl08x->vd->channels, false);
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			 "%s failed to enumerate memcpy channels - %d\n",
			 __func__, ret);
		goto out_no_memcpy;
	}
	pl08x->memcpy.chancnt = ret;

	/* Register slave channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2099
			pl08x->pd->num_slave_channels, true);
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to enumerate slave channels - %d\n",
				__func__, ret);
		goto out_no_slave;
	}
	pl08x->slave.chancnt = ret;

	ret = dma_async_device_register(&pl08x->memcpy);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register memcpy as an async device - %d\n",
			__func__, ret);
		goto out_no_memcpy_reg;
	}

	ret = dma_async_device_register(&pl08x->slave);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register slave as an async device - %d\n",
			__func__, ret);
		goto out_no_slave_reg;
	}

	amba_set_drvdata(adev, pl08x);
	init_pl08x_debugfs(pl08x);
2126 2127 2128
	dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
		 amba_part(adev), amba_rev(adev),
		 (unsigned long long)adev->res.start, adev->irq[0]);
2129

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	return 0;

out_no_slave_reg:
	dma_async_device_unregister(&pl08x->memcpy);
out_no_memcpy_reg:
	pl08x_free_virtual_channels(&pl08x->slave);
out_no_slave:
	pl08x_free_virtual_channels(&pl08x->memcpy);
out_no_memcpy:
	kfree(pl08x->phy_chans);
out_no_phychans:
	free_irq(adev->irq[0], pl08x);
out_no_irq:
	iounmap(pl08x->base);
out_no_ioremap:
	dma_pool_destroy(pl08x->pool);
out_no_lli_pool:
out_no_platdata:
	kfree(pl08x);
out_no_pl08x:
	amba_release_regions(adev);
	return ret;
}

/* PL080 has 8 channels and the PL080 have just 2 */
static struct vendor_data vendor_pl080 = {
	.channels = 8,
	.dualmaster = true,
};

2160 2161 2162 2163 2164 2165
static struct vendor_data vendor_nomadik = {
	.channels = 8,
	.dualmaster = true,
	.nomadik = true,
};

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
static struct vendor_data vendor_pl081 = {
	.channels = 2,
	.dualmaster = false,
};

static struct amba_id pl08x_ids[] = {
	/* PL080 */
	{
		.id	= 0x00041080,
		.mask	= 0x000fffff,
		.data	= &vendor_pl080,
	},
	/* PL081 */
	{
		.id	= 0x00041081,
		.mask	= 0x000fffff,
		.data	= &vendor_pl081,
	},
	/* Nomadik 8815 PL080 variant */
	{
2186
		.id	= 0x00280080,
2187
		.mask	= 0x00ffffff,
2188
		.data	= &vendor_nomadik,
2189 2190 2191 2192
	},
	{ 0, 0 },
};

2193 2194
MODULE_DEVICE_TABLE(amba, pl08x_ids);

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
static struct amba_driver pl08x_amba_driver = {
	.drv.name	= DRIVER_NAME,
	.id_table	= pl08x_ids,
	.probe		= pl08x_probe,
};

static int __init pl08x_init(void)
{
	int retval;
	retval = amba_driver_register(&pl08x_amba_driver);
	if (retval)
		printk(KERN_WARNING DRIVER_NAME
2207
		       "failed to register as an AMBA device (%d)\n",
2208 2209 2210 2211
		       retval);
	return retval;
}
subsys_initcall(pl08x_init);