amba-pl08x.c 57.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (c) 2006 ARM Ltd.
 * Copyright (c) 2010 ST-Ericsson SA
 *
 * Author: Peter Pearse <peter.pearse@arm.com>
 * Author: Linus Walleij <linus.walleij@stericsson.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
22 23
 * The full GNU General Public License is in this distribution in the file
 * called COPYING.
24 25
 *
 * Documentation: ARM DDI 0196G == PL080
26
 * Documentation: ARM DDI 0218E == PL081
27
 *
28 29
 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
 * channel.
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 *
 * The PL080 has 8 channels available for simultaneous use, and the PL081
 * has only two channels. So on these DMA controllers the number of channels
 * and the number of incoming DMA signals are two totally different things.
 * It is usually not possible to theoretically handle all physical signals,
 * so a multiplexing scheme with possible denial of use is necessary.
 *
 * The PL080 has a dual bus master, PL081 has a single master.
 *
 * Memory to peripheral transfer may be visualized as
 *	Get data from memory to DMAC
 *	Until no data left
 *		On burst request from peripheral
 *			Destination burst from DMAC to peripheral
 *			Clear burst request
 *	Raise terminal count interrupt
 *
 * For peripherals with a FIFO:
 * Source      burst size == half the depth of the peripheral FIFO
 * Destination burst size == the depth of the peripheral FIFO
 *
 * (Bursts are irrelevant for mem to mem transfers - there are no burst
 * signals, the DMA controller will simply facilitate its AHB master.)
 *
 * ASSUMES default (little) endianness for DMA transfers
 *
56 57 58 59 60 61 62 63 64 65 66 67 68
 * The PL08x has two flow control settings:
 *  - DMAC flow control: the transfer size defines the number of transfers
 *    which occur for the current LLI entry, and the DMAC raises TC at the
 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
 *    to both the BREQ and SREQ signals (contrary to documented),
 *    transferring data if either is active.  The LBREQ and LSREQ signals
 *    are ignored.
 *
 *  - Peripheral flow control: the transfer size is ignored (and should be
 *    zero).  The data is transferred from the current LLI entry, until
 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
 *    will then move to the next LLI entry.
 *
69 70 71
 * Global TODO:
 * - Break out common code from arch/arm/mach-s3c64xx and share
 */
72
#include <linux/amba/bus.h>
73 74
#include <linux/amba/pl08x.h>
#include <linux/debugfs.h>
75 76 77 78
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
V
Vinod Koul 已提交
79
#include <linux/dma-mapping.h>
80 81 82
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
83
#include <linux/pm_runtime.h>
84
#include <linux/seq_file.h>
85
#include <linux/slab.h>
86 87
#include <asm/hardware/pl080.h>

88 89
#include "dmaengine.h"

90 91
#define DRIVER_NAME	"pl08xdmac"

92
static struct amba_driver pl08x_amba_driver;
93
struct pl08x_driver_data;
94

95
/**
96
 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
97
 * @channels: the number of channels available in this variant
98
 * @dualmaster: whether this version supports dual AHB masters or not.
99 100 101
 * @nomadik: whether the channels have Nomadik security extension bits
 *	that need to be checked for permission before use and some registers are
 *	missing
102 103 104 105
 */
struct vendor_data {
	u8 channels;
	bool dualmaster;
106
	bool nomadik;
107 108 109 110
};

/*
 * PL08X private data structures
111
 * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
112 113
 * start & end do not - their bus bit info is in cctl.  Also note that these
 * are fixed 32-bit quantities.
114
 */
115
struct pl08x_lli {
116 117
	u32 src;
	u32 dst;
118
	u32 lli;
119 120 121
	u32 cctl;
};

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
/**
 * struct pl08x_bus_data - information of source or destination
 * busses for a transfer
 * @addr: current address
 * @maxwidth: the maximum width of a transfer on this bus
 * @buswidth: the width of this bus in bytes: 1, 2 or 4
 */
struct pl08x_bus_data {
	dma_addr_t addr;
	u8 maxwidth;
	u8 buswidth;
};

/**
 * struct pl08x_phy_chan - holder for the physical channels
 * @id: physical index to this channel
 * @lock: a lock to use when altering an instance of this struct
 * @signal: the physical signal (aka channel) serving this physical channel
 * right now
 * @serving: the virtual channel currently being served by this physical
 * channel
 */
struct pl08x_phy_chan {
	unsigned int id;
	void __iomem *base;
	spinlock_t lock;
	int signal;
	struct pl08x_dma_chan *serving;
};

/**
 * struct pl08x_sg - structure containing data per sg
 * @src_addr: src address of sg
 * @dst_addr: dst address of sg
 * @len: transfer len in bytes
 * @node: node for txd's dsg_list
 */
struct pl08x_sg {
	dma_addr_t src_addr;
	dma_addr_t dst_addr;
	size_t len;
	struct list_head node;
};

/**
 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
 * @tx: async tx descriptor
 * @node: node for txd list for channels
 * @dsg_list: list of children sg's
 * @direction: direction of transfer
 * @llis_bus: DMA memory address (physical) start for the LLIs
 * @llis_va: virtual memory address start for the LLIs
 * @cctl: control reg values for current txd
 * @ccfg: config reg values for current txd
 */
struct pl08x_txd {
	struct dma_async_tx_descriptor tx;
	struct list_head node;
	struct list_head dsg_list;
	enum dma_transfer_direction direction;
	dma_addr_t llis_bus;
	struct pl08x_lli *llis_va;
	/* Default cctl value for LLIs */
	u32 cctl;
	/*
	 * Settings to be put into the physical channel when we
	 * trigger this txd.  Other registers are in llis_va[0].
	 */
	u32 ccfg;
};

/**
 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
 * states
 * @PL08X_CHAN_IDLE: the channel is idle
 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
 * channel and is running a transfer on it
 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
 * channel, but the transfer is currently paused
 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
 * channel to become available (only pertains to memcpy channels)
 */
enum pl08x_dma_chan_state {
	PL08X_CHAN_IDLE,
	PL08X_CHAN_RUNNING,
	PL08X_CHAN_PAUSED,
	PL08X_CHAN_WAITING,
};

/**
 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
 * @chan: wrappped abstract channel
 * @phychan: the physical channel utilized by this channel, if there is one
 * @phychan_hold: if non-zero, hold on to the physical channel even if we
 * have no pending entries
 * @tasklet: tasklet scheduled by the IRQ to handle actual work etc
 * @name: name of channel
 * @cd: channel platform data
 * @runtime_addr: address for RX/TX according to the runtime config
 * @pend_list: queued transactions pending on this channel
 * @at: active transaction on this channel
 * @lock: a lock for this channel data
 * @host: a pointer to the host (internal use)
 * @state: whether the channel is idle, paused, running etc
 * @slave: whether this channel is a device (slave) or for memcpy
 * @waiting: a TX descriptor on this channel which is waiting for a physical
 * channel to become available
 */
struct pl08x_dma_chan {
	struct dma_chan chan;
	struct pl08x_phy_chan *phychan;
	int phychan_hold;
	struct tasklet_struct tasklet;
235
	const char *name;
236
	const struct pl08x_channel_data *cd;
237
	struct dma_slave_config cfg;
238 239 240 241 242 243 244 245 246 247 248
	u32 src_cctl;
	u32 dst_cctl;
	struct list_head pend_list;
	struct pl08x_txd *at;
	spinlock_t lock;
	struct pl08x_driver_data *host;
	enum pl08x_dma_chan_state state;
	bool slave;
	struct pl08x_txd *waiting;
};

249 250 251 252 253 254 255 256 257 258 259
/**
 * struct pl08x_driver_data - the local state holder for the PL08x
 * @slave: slave engine for this instance
 * @memcpy: memcpy engine for this instance
 * @base: virtual memory base (remapped) for the PL08x
 * @adev: the corresponding AMBA (PrimeCell) bus entry
 * @vd: vendor data for this PL08x variant
 * @pd: platform data passed in from the platform/machine
 * @phy_chans: array of data for the physical channels
 * @pool: a pool for the LLI descriptors
 * @pool_ctr: counter of LLIs in the pool
260 261
 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 * fetches
262
 * @mem_buses: set to indicate memory transfers on AHB2.
263 264 265 266 267 268 269
 * @lock: a spinlock for this struct
 */
struct pl08x_driver_data {
	struct dma_device slave;
	struct dma_device memcpy;
	void __iomem *base;
	struct amba_device *adev;
270
	const struct vendor_data *vd;
271 272 273 274
	struct pl08x_platform_data *pd;
	struct pl08x_phy_chan *phy_chans;
	struct dma_pool *pool;
	int pool_ctr;
275 276
	u8 lli_buses;
	u8 mem_buses;
277 278 279 280 281 282 283 284 285
};

/*
 * PL08X specific defines
 */

/* Size (bytes) of each LLI buffer allocated for one transfer */
# define PL08X_LLI_TSFR_SIZE	0x2000

286
/* Maximum times we call dma_pool_alloc on this pool without freeing */
287
#define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
288 289 290 291 292 293 294
#define PL08X_ALIGN		8

static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
{
	return container_of(chan, struct pl08x_dma_chan, chan);
}

295 296 297 298 299
static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct pl08x_txd, tx);
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
/*
 * Physical channel handling
 */

/* Whether a certain channel is busy or not */
static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
{
	unsigned int val;

	val = readl(ch->base + PL080_CH_CONFIG);
	return val & PL080_CONFIG_ACTIVE;
}

/*
 * Set the initial DMA register values i.e. those for the first LLI
315
 * The next LLI pointer and the configuration interrupt bit have
316 317
 * been set when the LLIs were constructed.  Poke them into the hardware
 * and start the transfer.
318
 */
319 320
static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
	struct pl08x_txd *txd)
321
{
322
	struct pl08x_driver_data *pl08x = plchan->host;
323
	struct pl08x_phy_chan *phychan = plchan->phychan;
324
	struct pl08x_lli *lli = &txd->llis_va[0];
325
	u32 val;
326 327

	plchan->at = txd;
328

329 330 331
	/* Wait for channel inactive */
	while (pl08x_phy_channel_busy(phychan))
		cpu_relax();
332

333 334
	dev_vdbg(&pl08x->adev->dev,
		"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
335 336
		"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
		phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
337
		txd->ccfg);
338 339 340 341 342

	writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
	writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
	writel(lli->lli, phychan->base + PL080_CH_LLI);
	writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
343
	writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
344 345 346 347

	/* Enable the DMA channel */
	/* Do not access config register until channel shows as disabled */
	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
348
		cpu_relax();
349

350 351
	/* Do not access config register until channel shows as inactive */
	val = readl(phychan->base + PL080_CH_CONFIG);
352
	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
353
		val = readl(phychan->base + PL080_CH_CONFIG);
354

355
	writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
356 357 358
}

/*
359
 * Pause the channel by setting the HALT bit.
360
 *
361 362 363
 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 * the FIFO can only drain if the peripheral is still requesting data.
 * (note: this can still timeout if the DMAC FIFO never drains of data.)
364
 *
365 366
 * For P->M transfers, disable the peripheral first to stop it filling
 * the DMAC FIFO, and then pause the DMAC.
367 368 369 370
 */
static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;
371
	int timeout;
372 373 374 375 376 377 378

	/* Set the HALT bit and wait for the FIFO to drain */
	val = readl(ch->base + PL080_CH_CONFIG);
	val |= PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);

	/* Wait for channel inactive */
379 380 381 382 383 384 385
	for (timeout = 1000; timeout; timeout--) {
		if (!pl08x_phy_channel_busy(ch))
			break;
		udelay(1);
	}
	if (pl08x_phy_channel_busy(ch))
		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
386 387 388 389 390 391 392 393 394 395 396 397
}

static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;

	/* Clear the HALT bit */
	val = readl(ch->base + PL080_CH_CONFIG);
	val &= ~PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);
}

398 399 400 401 402 403 404 405
/*
 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 * clears any pending interrupt status.  This should not be used for
 * an on-going transfer, but as a method of shutting down a channel
 * (eg, when it's no longer used) or terminating a transfer.
 */
static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
	struct pl08x_phy_chan *ch)
406
{
407
	u32 val = readl(ch->base + PL080_CH_CONFIG);
408

409 410
	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
	         PL080_CONFIG_TC_IRQ_MASK);
411 412

	writel(val, ch->base + PL080_CH_CONFIG);
413 414 415

	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
}

static inline u32 get_bytes_in_cctl(u32 cctl)
{
	/* The source width defines the number of bytes */
	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;

	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
	case PL080_WIDTH_8BIT:
		break;
	case PL080_WIDTH_16BIT:
		bytes *= 2;
		break;
	case PL080_WIDTH_32BIT:
		bytes *= 4;
		break;
	}
	return bytes;
}

/* The channel should be paused when calling this */
static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
{
	struct pl08x_phy_chan *ch;
	struct pl08x_txd *txd;
	unsigned long flags;
442
	size_t bytes = 0;
443 444 445 446 447 448

	spin_lock_irqsave(&plchan->lock, flags);
	ch = plchan->phychan;
	txd = plchan->at;

	/*
449 450
	 * Follow the LLIs to get the number of remaining
	 * bytes in the currently active transaction.
451 452
	 */
	if (ch && txd) {
453
		u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
454

455
		/* First get the remaining bytes in the active transfer */
456 457 458
		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));

		if (clli) {
459 460 461 462 463 464
			struct pl08x_lli *llis_va = txd->llis_va;
			dma_addr_t llis_bus = txd->llis_bus;
			int index;

			BUG_ON(clli < llis_bus || clli >= llis_bus +
				sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
465

466 467 468 469 470 471 472 473
			/*
			 * Locate the next LLI - as this is an array,
			 * it's simple maths to find.
			 */
			index = (clli - llis_bus) / sizeof(struct pl08x_lli);

			for (; index < MAX_NUM_TSFR_LLIS; index++) {
				bytes += get_bytes_in_cctl(llis_va[index].cctl);
474 475

				/*
476
				 * A LLI pointer of 0 terminates the LLI list
477
				 */
478 479
				if (!llis_va[index].lli)
					break;
480 481 482 483 484
			}
		}
	}

	/* Sum up all queued transactions */
485
	if (!list_empty(&plchan->pend_list)) {
486
		struct pl08x_txd *txdi;
487
		list_for_each_entry(txdi, &plchan->pend_list, node) {
488 489 490
			struct pl08x_sg *dsg;
			list_for_each_entry(dsg, &txd->dsg_list, node)
				bytes += dsg->len;
491 492 493 494 495 496 497 498 499 500
		}
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return bytes;
}

/*
 * Allocate a physical channel for a virtual channel
501 502 503 504
 *
 * Try to locate a physical channel to be used for this transfer. If all
 * are taken return NULL and the requester will have to cope by using
 * some fallback PIO mode or retrying later.
505 506 507 508 509 510 511 512 513 514 515 516 517 518
 */
static struct pl08x_phy_chan *
pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
		      struct pl08x_dma_chan *virt_chan)
{
	struct pl08x_phy_chan *ch = NULL;
	unsigned long flags;
	int i;

	for (i = 0; i < pl08x->vd->channels; i++) {
		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);

519
		if (!ch->locked && !ch->serving) {
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
			ch->serving = virt_chan;
			ch->signal = -1;
			spin_unlock_irqrestore(&ch->lock, flags);
			break;
		}

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	if (i == pl08x->vd->channels) {
		/* No physical channel available, cope with it */
		return NULL;
	}

	return ch;
}

static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
					 struct pl08x_phy_chan *ch)
{
	unsigned long flags;

542 543
	spin_lock_irqsave(&ch->lock, flags);

544
	/* Stop the channel and clear its interrupts */
545
	pl08x_terminate_phy_chan(pl08x, ch);
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572

	/* Mark it as free */
	ch->serving = NULL;
	spin_unlock_irqrestore(&ch->lock, flags);
}

/*
 * LLI handling
 */

static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
{
	switch (coded) {
	case PL080_WIDTH_8BIT:
		return 1;
	case PL080_WIDTH_16BIT:
		return 2;
	case PL080_WIDTH_32BIT:
		return 4;
	default:
		break;
	}
	BUG();
	return 0;
}

static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
573
				  size_t tsize)
574 575 576
{
	u32 retbits = cctl;

577
	/* Remove all src, dst and transfer size bits */
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;

	/* Then set the bits according to the parameters */
	switch (srcwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	switch (dstwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
	return retbits;
}

617 618 619 620 621
struct pl08x_lli_build_data {
	struct pl08x_txd *txd;
	struct pl08x_bus_data srcbus;
	struct pl08x_bus_data dstbus;
	size_t remainder;
622
	u32 lli_bus;
623 624
};

625
/*
626 627 628 629 630 631
 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
 * victim in case src & dest are not similarly aligned. i.e. If after aligning
 * masters address with width requirements of transfer (by sending few byte by
 * byte data), slave is still not aligned, then its width will be reduced to
 * BYTE.
 * - prefers the destination bus if both available
632
 * - prefers bus with fixed address (i.e. peripheral)
633
 */
634 635
static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
636 637
{
	if (!(cctl & PL080_CONTROL_DST_INCR)) {
638 639
		*mbus = &bd->dstbus;
		*sbus = &bd->srcbus;
640 641 642
	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
		*mbus = &bd->srcbus;
		*sbus = &bd->dstbus;
643
	} else {
644
		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
645 646
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
647
		} else {
648 649
			*mbus = &bd->srcbus;
			*sbus = &bd->dstbus;
650 651 652 653 654
		}
	}
}

/*
655
 * Fills in one LLI for a certain transfer descriptor and advance the counter
656
 */
657 658
static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
	int num_llis, int len, u32 cctl)
659
{
660 661
	struct pl08x_lli *llis_va = bd->txd->llis_va;
	dma_addr_t llis_bus = bd->txd->llis_bus;
662 663 664

	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);

665
	llis_va[num_llis].cctl = cctl;
666 667
	llis_va[num_llis].src = bd->srcbus.addr;
	llis_va[num_llis].dst = bd->dstbus.addr;
668 669
	llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
		sizeof(struct pl08x_lli);
670
	llis_va[num_llis].lli |= bd->lli_bus;
671 672

	if (cctl & PL080_CONTROL_SRC_INCR)
673
		bd->srcbus.addr += len;
674
	if (cctl & PL080_CONTROL_DST_INCR)
675
		bd->dstbus.addr += len;
676

677
	BUG_ON(bd->remainder < len);
678

679
	bd->remainder -= len;
680 681
}

682 683
static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
		u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
684
{
685 686 687
	*cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
	pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
	(*total_bytes) += len;
688 689 690 691 692 693 694 695 696 697 698
}

/*
 * This fills in the table of LLIs for the transfer descriptor
 * Note that we assume we never have to change the burst sizes
 * Return 0 for error
 */
static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
			      struct pl08x_txd *txd)
{
	struct pl08x_bus_data *mbus, *sbus;
699
	struct pl08x_lli_build_data bd;
700
	int num_llis = 0;
701
	u32 cctl, early_bytes = 0;
702
	size_t max_bytes_per_lli, total_bytes;
703
	struct pl08x_lli *llis_va;
704
	struct pl08x_sg *dsg;
705

706
	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
707 708 709 710 711 712 713
	if (!txd->llis_va) {
		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
		return 0;
	}

	pl08x->pool_ctr++;

714
	bd.txd = txd;
715
	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
716
	cctl = txd->cctl;
717

718
	/* Find maximum width of the source bus */
719
	bd.srcbus.maxwidth =
720 721 722 723
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
				       PL080_CONTROL_SWIDTH_SHIFT);

	/* Find maximum width of the destination bus */
724
	bd.dstbus.maxwidth =
725 726 727
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
				       PL080_CONTROL_DWIDTH_SHIFT);

728 729 730
	list_for_each_entry(dsg, &txd->dsg_list, node) {
		total_bytes = 0;
		cctl = txd->cctl;
731

732 733 734 735 736
		bd.srcbus.addr = dsg->src_addr;
		bd.dstbus.addr = dsg->dst_addr;
		bd.remainder = dsg->len;
		bd.srcbus.buswidth = bd.srcbus.maxwidth;
		bd.dstbus.buswidth = bd.dstbus.maxwidth;
737

738
		pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
739

740 741 742 743 744 745 746 747 748
		dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
			bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
			bd.srcbus.buswidth,
			bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
			bd.dstbus.buswidth,
			bd.remainder);
		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
			mbus == &bd.srcbus ? "src" : "dst",
			sbus == &bd.srcbus ? "src" : "dst");
749

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
		/*
		 * Zero length is only allowed if all these requirements are
		 * met:
		 * - flow controller is peripheral.
		 * - src.addr is aligned to src.width
		 * - dst.addr is aligned to dst.width
		 *
		 * sg_len == 1 should be true, as there can be two cases here:
		 *
		 * - Memory addresses are contiguous and are not scattered.
		 *   Here, Only one sg will be passed by user driver, with
		 *   memory address and zero length. We pass this to controller
		 *   and after the transfer it will receive the last burst
		 *   request from peripheral and so transfer finishes.
		 *
		 * - Memory addresses are scattered and are not contiguous.
		 *   Here, Obviously as DMA controller doesn't know when a lli's
		 *   transfer gets over, it can't load next lli. So in this
		 *   case, there has to be an assumption that only one lli is
		 *   supported. Thus, we can't have scattered addresses.
		 */
		if (!bd.remainder) {
			u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
				PL080_CONFIG_FLOW_CONTROL_SHIFT;
			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
775
					(fc <= PL080_FLOW_SRC2DST_SRC))) {
776 777 778 779
				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
					__func__);
				return 0;
			}
780

781
			if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
782
					(bd.dstbus.addr % bd.dstbus.buswidth)) {
783 784 785 786 787 788
				dev_err(&pl08x->adev->dev,
					"%s src & dst address must be aligned to src"
					" & dst width if peripheral is flow controller",
					__func__);
				return 0;
			}
789

790 791 792 793 794
			cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
					bd.dstbus.buswidth, 0);
			pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
			break;
		}
795 796

		/*
797 798 799
		 * Send byte by byte for following cases
		 * - Less than a bus width available
		 * - until master bus is aligned
800
		 */
801 802 803 804 805 806 807 808
		if (bd.remainder < mbus->buswidth)
			early_bytes = bd.remainder;
		else if ((mbus->addr) % (mbus->buswidth)) {
			early_bytes = mbus->buswidth - (mbus->addr) %
				(mbus->buswidth);
			if ((bd.remainder - early_bytes) < mbus->buswidth)
				early_bytes = bd.remainder;
		}
809

810 811 812 813 814 815
		if (early_bytes) {
			dev_vdbg(&pl08x->adev->dev,
				"%s byte width LLIs (remain 0x%08x)\n",
				__func__, bd.remainder);
			prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
				&total_bytes);
816 817
		}

818 819 820 821 822 823 824 825 826
		if (bd.remainder) {
			/*
			 * Master now aligned
			 * - if slave is not then we must set its width down
			 */
			if (sbus->addr % sbus->buswidth) {
				dev_dbg(&pl08x->adev->dev,
					"%s set down bus width to one byte\n",
					__func__);
827

828 829
				sbus->buswidth = 1;
			}
830 831

			/*
832 833
			 * Bytes transferred = tsize * src width, not
			 * MIN(buswidths)
834
			 */
835 836 837 838 839
			max_bytes_per_lli = bd.srcbus.buswidth *
				PL080_CONTROL_TRANSFER_SIZE_MASK;
			dev_vdbg(&pl08x->adev->dev,
				"%s max bytes per lli = %zu\n",
				__func__, max_bytes_per_lli);
840 841

			/*
842 843
			 * Make largest possible LLIs until less than one bus
			 * width left
844
			 */
845 846
			while (bd.remainder > (mbus->buswidth - 1)) {
				size_t lli_len, tsize, width;
847

848 849 850 851 852
				/*
				 * If enough left try to send max possible,
				 * otherwise try to send the remainder
				 */
				lli_len = min(bd.remainder, max_bytes_per_lli);
853

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
				/*
				 * Check against maximum bus alignment:
				 * Calculate actual transfer size in relation to
				 * bus width an get a maximum remainder of the
				 * highest bus width - 1
				 */
				width = max(mbus->buswidth, sbus->buswidth);
				lli_len = (lli_len / width) * width;
				tsize = lli_len / bd.srcbus.buswidth;

				dev_vdbg(&pl08x->adev->dev,
					"%s fill lli with single lli chunk of "
					"size 0x%08zx (remainder 0x%08zx)\n",
					__func__, lli_len, bd.remainder);

				cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
870
					bd.dstbus.buswidth, tsize);
871 872 873 874
				pl08x_fill_lli_for_desc(&bd, num_llis++,
						lli_len, cctl);
				total_bytes += lli_len;
			}
875

876 877 878 879 880 881 882 883 884 885
			/*
			 * Send any odd bytes
			 */
			if (bd.remainder) {
				dev_vdbg(&pl08x->adev->dev,
					"%s align with boundary, send odd bytes (remain %zu)\n",
					__func__, bd.remainder);
				prep_byte_width_lli(&bd, &cctl, bd.remainder,
						num_llis++, &total_bytes);
			}
886
		}
887

888 889 890 891 892 893
		if (total_bytes != dsg->len) {
			dev_err(&pl08x->adev->dev,
				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
				__func__, total_bytes, dsg->len);
			return 0;
		}
894

895 896 897 898 899 900
		if (num_llis >= MAX_NUM_TSFR_LLIS) {
			dev_err(&pl08x->adev->dev,
				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
				__func__, (u32) MAX_NUM_TSFR_LLIS);
			return 0;
		}
901
	}
902 903

	llis_va = txd->llis_va;
904
	/* The final LLI terminates the LLI. */
905
	llis_va[num_llis - 1].lli = 0;
906
	/* The final LLI element shall also fire an interrupt. */
907
	llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
908 909 910 911 912

#ifdef VERBOSE_DEBUG
	{
		int i;

913 914 915
		dev_vdbg(&pl08x->adev->dev,
			 "%-3s %-9s  %-10s %-10s %-10s %s\n",
			 "lli", "", "csrc", "cdst", "clli", "cctl");
916 917
		for (i = 0; i < num_llis; i++) {
			dev_vdbg(&pl08x->adev->dev,
918 919 920
				 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
				 i, &llis_va[i], llis_va[i].src,
				 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
921 922 923 924 925 926 927 928 929 930 931 932
				);
		}
	}
#endif

	return num_llis;
}

/* You should call this with the struct pl08x lock held */
static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
			   struct pl08x_txd *txd)
{
933 934
	struct pl08x_sg *dsg, *_dsg;

935
	/* Free the LLI */
936 937
	if (txd->llis_va)
		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
938 939 940

	pl08x->pool_ctr--;

941 942 943 944 945
	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
		list_del(&dsg->node);
		kfree(dsg);
	}

946 947 948 949 950 951 952 953 954
	kfree(txd);
}

static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
				struct pl08x_dma_chan *plchan)
{
	struct pl08x_txd *txdi = NULL;
	struct pl08x_txd *next;

955
	if (!list_empty(&plchan->pend_list)) {
956
		list_for_each_entry_safe(txdi,
957
					 next, &plchan->pend_list, node) {
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
			list_del(&txdi->node);
			pl08x_free_txd(pl08x, txdi);
		}
	}
}

/*
 * The DMA ENGINE API
 */
static int pl08x_alloc_chan_resources(struct dma_chan *chan)
{
	return 0;
}

static void pl08x_free_chan_resources(struct dma_chan *chan)
{
}

/*
 * This should be called with the channel plchan->lock held
 */
static int prep_phy_channel(struct pl08x_dma_chan *plchan,
			    struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_phy_chan *ch;
	int ret;

	/* Check if we already have a channel */
987 988 989 990
	if (plchan->phychan) {
		ch = plchan->phychan;
		goto got_channel;
	}
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

	ch = pl08x_get_phy_channel(pl08x, plchan);
	if (!ch) {
		/* No physical channel available, cope with it */
		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
		return -EBUSY;
	}

	/*
	 * OK we have a physical channel: for memcpy() this is all we
	 * need, but for slaves the physical signals may be muxed!
	 * Can the platform allow us to use this channel?
	 */
1004
	if (plchan->slave && pl08x->pd->get_signal) {
1005
		ret = pl08x->pd->get_signal(plchan->cd);
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
		if (ret < 0) {
			dev_dbg(&pl08x->adev->dev,
				"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
				ch->id, plchan->name);
			/* Release physical channel & return */
			pl08x_put_phy_channel(pl08x, ch);
			return -EBUSY;
		}
		ch->signal = ret;
	}

1017
	plchan->phychan = ch;
1018 1019 1020 1021 1022
	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
		 ch->id,
		 ch->signal,
		 plchan->name);

1023 1024 1025 1026 1027 1028 1029
got_channel:
	/* Assign the flow control signal to this channel */
	if (txd->direction == DMA_MEM_TO_DEV)
		txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
	else if (txd->direction == DMA_DEV_TO_MEM)
		txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;

1030
	plchan->phychan_hold++;
1031 1032 1033 1034

	return 0;
}

1035 1036 1037 1038 1039
static void release_phy_channel(struct pl08x_dma_chan *plchan)
{
	struct pl08x_driver_data *pl08x = plchan->host;

	if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
1040
		pl08x->pd->put_signal(plchan->cd, plchan->phychan->signal);
1041 1042 1043 1044 1045 1046
		plchan->phychan->signal = -1;
	}
	pl08x_put_phy_channel(pl08x, plchan->phychan);
	plchan->phychan = NULL;
}

1047 1048 1049
static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
1050
	struct pl08x_txd *txd = to_pl08x_txd(tx);
1051
	unsigned long flags;
1052
	dma_cookie_t cookie;
1053 1054

	spin_lock_irqsave(&plchan->lock, flags);
1055
	cookie = dma_cookie_assign(tx);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

	/* Put this onto the pending list */
	list_add_tail(&txd->node, &plchan->pend_list);

	/*
	 * If there was no physical channel available for this memcpy,
	 * stack the request up and indicate that the channel is waiting
	 * for a free physical channel.
	 */
	if (!plchan->slave && !plchan->phychan) {
		/* Do this memcpy whenever there is a channel ready */
		plchan->state = PL08X_CHAN_WAITING;
		plchan->waiting = txd;
1069 1070
	} else {
		plchan->phychan_hold--;
1071 1072
	}

1073
	spin_unlock_irqrestore(&plchan->lock, flags);
1074

1075
	return cookie;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
}

static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
		struct dma_chan *chan, unsigned long flags)
{
	struct dma_async_tx_descriptor *retval = NULL;

	return retval;
}

/*
1087 1088 1089
 * Code accessing dma_async_is_complete() in a tight loop may give problems.
 * If slaves are relying on interrupts to signal completion this function
 * must not be called with interrupts disabled.
1090
 */
1091 1092
static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
		dma_cookie_t cookie, struct dma_tx_state *txstate)
1093 1094 1095 1096
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	enum dma_status ret;

1097 1098
	ret = dma_cookie_status(chan, cookie, txstate);
	if (ret == DMA_SUCCESS)
1099 1100 1101 1102
		return ret;

	/*
	 * This cookie not complete yet
1103
	 * Get number of bytes left in the active transactions and queue
1104
	 */
1105
	dma_set_residue(txstate, pl08x_getbytes_chan(plchan));
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

	if (plchan->state == PL08X_CHAN_PAUSED)
		return DMA_PAUSED;

	/* Whether waiting or running, we're in progress */
	return DMA_IN_PROGRESS;
}

/* PrimeCell DMA extension */
struct burst_table {
1116
	u32 burstwords;
1117 1118 1119 1120 1121 1122
	u32 reg;
};

static const struct burst_table burst_sizes[] = {
	{
		.burstwords = 256,
1123
		.reg = PL080_BSIZE_256,
1124 1125 1126
	},
	{
		.burstwords = 128,
1127
		.reg = PL080_BSIZE_128,
1128 1129 1130
	},
	{
		.burstwords = 64,
1131
		.reg = PL080_BSIZE_64,
1132 1133 1134
	},
	{
		.burstwords = 32,
1135
		.reg = PL080_BSIZE_32,
1136 1137 1138
	},
	{
		.burstwords = 16,
1139
		.reg = PL080_BSIZE_16,
1140 1141 1142
	},
	{
		.burstwords = 8,
1143
		.reg = PL080_BSIZE_8,
1144 1145 1146
	},
	{
		.burstwords = 4,
1147
		.reg = PL080_BSIZE_4,
1148 1149
	},
	{
1150 1151
		.burstwords = 0,
		.reg = PL080_BSIZE_1,
1152 1153 1154
	},
};

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
/*
 * Given the source and destination available bus masks, select which
 * will be routed to each port.  We try to have source and destination
 * on separate ports, but always respect the allowable settings.
 */
static u32 pl08x_select_bus(u8 src, u8 dst)
{
	u32 cctl = 0;

	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
		cctl |= PL080_CONTROL_DST_AHB2;
	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
		cctl |= PL080_CONTROL_SRC_AHB2;

	return cctl;
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
static u32 pl08x_cctl(u32 cctl)
{
	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
		  PL080_CONTROL_PROT_MASK);

	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
	return cctl | PL080_CONTROL_PROT_SYS;
}

1182 1183 1184 1185 1186 1187 1188 1189 1190
static u32 pl08x_width(enum dma_slave_buswidth width)
{
	switch (width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		return PL080_WIDTH_8BIT;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		return PL080_WIDTH_16BIT;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		return PL080_WIDTH_32BIT;
1191 1192
	default:
		return ~0;
1193 1194 1195
	}
}

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
static u32 pl08x_burst(u32 maxburst)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
		if (burst_sizes[i].burstwords <= maxburst)
			break;

	return burst_sizes[i].reg;
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
	enum dma_slave_buswidth addr_width, u32 maxburst)
{
	u32 width, burst, cctl = 0;

	width = pl08x_width(addr_width);
	if (width == ~0)
		return ~0;

	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;

	/*
	 * If this channel will only request single transfers, set this
	 * down to ONE element.  Also select one element if no maxburst
	 * is specified.
	 */
	if (plchan->cd->single)
		maxburst = 1;

	burst = pl08x_burst(maxburst);
	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;

	return pl08x_cctl(cctl);
}

1234 1235
static int dma_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
1236 1237 1238
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
1239
	u32 src_cctl, dst_cctl;
1240 1241 1242

	if (!plchan->slave)
		return -EINVAL;
1243

1244 1245 1246
	dst_cctl = pl08x_get_cctl(plchan, config->dst_addr_width,
				  config->dst_maxburst);
	if (dst_cctl == ~0 && config->direction == DMA_MEM_TO_DEV) {
1247
		dev_err(&pl08x->adev->dev,
1248
			"bad runtime_config: alien address width (M2D)\n");
1249
		return -EINVAL;
1250 1251
	}

1252 1253 1254
	src_cctl = pl08x_get_cctl(plchan, config->src_addr_width,
				  config->src_maxburst);
	if (src_cctl == ~0 && config->direction == DMA_DEV_TO_MEM) {
1255
		dev_err(&pl08x->adev->dev,
1256
			"bad runtime_config: alien address width (D2M)\n");
1257
		return -EINVAL;
1258 1259
	}

1260 1261
	plchan->dst_cctl = dst_cctl;
	plchan->src_cctl = src_cctl;
1262 1263
	plchan->cfg = *config;

1264
	return 0;
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
}

/*
 * Slave transactions callback to the slave device to allow
 * synchronization of slave DMA signals with the DMAC enable
 */
static void pl08x_issue_pending(struct dma_chan *chan)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&plchan->lock, flags);
1277 1278 1279
	/* Something is already active, or we're waiting for a channel... */
	if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
		spin_unlock_irqrestore(&plchan->lock, flags);
1280
		return;
1281
	}
1282 1283

	/* Take the first element in the queue and execute it */
1284
	if (!list_empty(&plchan->pend_list)) {
1285 1286
		struct pl08x_txd *next;

1287
		next = list_first_entry(&plchan->pend_list,
1288 1289 1290 1291 1292
					struct pl08x_txd,
					node);
		list_del(&next->node);
		plchan->state = PL08X_CHAN_RUNNING;

1293
		pl08x_start_txd(plchan, next);
1294 1295 1296 1297 1298 1299 1300 1301 1302
	}

	spin_unlock_irqrestore(&plchan->lock, flags);
}

static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
					struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
1303 1304
	unsigned long flags;
	int num_llis, ret;
1305 1306

	num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1307
	if (!num_llis) {
1308 1309 1310
		spin_lock_irqsave(&plchan->lock, flags);
		pl08x_free_txd(pl08x, txd);
		spin_unlock_irqrestore(&plchan->lock, flags);
1311
		return -EINVAL;
1312
	}
1313

1314
	spin_lock_irqsave(&plchan->lock, flags);
1315 1316 1317 1318 1319 1320 1321 1322

	/*
	 * See if we already have a physical channel allocated,
	 * else this is the time to try to get one.
	 */
	ret = prep_phy_channel(plchan, txd);
	if (ret) {
		/*
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
		 * No physical channel was available.
		 *
		 * memcpy transfers can be sorted out at submission time.
		 *
		 * Slave transfers may have been denied due to platform
		 * channel muxing restrictions.  Since there is no guarantee
		 * that this will ever be resolved, and the signal must be
		 * acquired AFTER acquiring the physical channel, we will let
		 * them be NACK:ed with -EBUSY here. The drivers can retry
		 * the prep() call if they are eager on doing this using DMA.
1333 1334 1335
		 */
		if (plchan->slave) {
			pl08x_free_txd_list(pl08x, plchan);
1336
			pl08x_free_txd(pl08x, txd);
1337
			spin_unlock_irqrestore(&plchan->lock, flags);
1338 1339 1340 1341
			return -EBUSY;
		}
	} else
		/*
1342 1343 1344 1345
		 * Else we're all set, paused and ready to roll, status
		 * will switch to PL08X_CHAN_RUNNING when we call
		 * issue_pending(). If there is something running on the
		 * channel already we don't change its state.
1346 1347 1348 1349
		 */
		if (plchan->state == PL08X_CHAN_IDLE)
			plchan->state = PL08X_CHAN_PAUSED;

1350
	spin_unlock_irqrestore(&plchan->lock, flags);
1351 1352 1353 1354

	return 0;
}

1355 1356
static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
	unsigned long flags)
1357
{
1358
	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1359 1360 1361

	if (txd) {
		dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1362
		txd->tx.flags = flags;
1363 1364
		txd->tx.tx_submit = pl08x_tx_submit;
		INIT_LIST_HEAD(&txd->node);
1365
		INIT_LIST_HEAD(&txd->dsg_list);
1366 1367 1368 1369

		/* Always enable error and terminal interrupts */
		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
			    PL080_CONFIG_TC_IRQ_MASK;
1370 1371 1372 1373
	}
	return txd;
}

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
/*
 * Initialize a descriptor to be used by memcpy submit
 */
static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
		size_t len, unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
1384
	struct pl08x_sg *dsg;
1385 1386
	int ret;

1387
	txd = pl08x_get_txd(plchan, flags);
1388 1389 1390 1391 1392 1393
	if (!txd) {
		dev_err(&pl08x->adev->dev,
			"%s no memory for descriptor\n", __func__);
		return NULL;
	}

1394 1395 1396 1397 1398 1399 1400 1401 1402
	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
	if (!dsg) {
		pl08x_free_txd(pl08x, txd);
		dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
				__func__);
		return NULL;
	}
	list_add_tail(&dsg->node, &txd->dsg_list);

1403
	txd->direction = DMA_MEM_TO_MEM;
1404 1405 1406
	dsg->src_addr = src;
	dsg->dst_addr = dest;
	dsg->len = len;
1407 1408

	/* Set platform data for m2m */
1409
	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1410 1411
	txd->cctl = pl08x->pd->memcpy_channel.cctl &
			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1412

1413
	/* Both to be incremented or the code will break */
1414
	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1415 1416

	if (pl08x->vd->dualmaster)
1417 1418
		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
					      pl08x->mem_buses);
1419 1420 1421 1422 1423 1424 1425 1426

	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

1427
static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1428
		struct dma_chan *chan, struct scatterlist *sgl,
1429
		unsigned int sg_len, enum dma_transfer_direction direction,
1430
		unsigned long flags, void *context)
1431 1432 1433 1434
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
1435 1436 1437
	struct pl08x_sg *dsg;
	struct scatterlist *sg;
	dma_addr_t slave_addr;
1438
	int ret, tmp;
1439 1440
	u8 src_buses, dst_buses;
	u32 cctl;
1441 1442

	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1443
			__func__, sg_dma_len(sgl), plchan->name);
1444

1445
	txd = pl08x_get_txd(plchan, flags);
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	if (!txd) {
		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
		return NULL;
	}

	/*
	 * Set up addresses, the PrimeCell configured address
	 * will take precedence since this may configure the
	 * channel target address dynamically at runtime.
	 */
	txd->direction = direction;
1457

1458
	if (direction == DMA_MEM_TO_DEV) {
1459
		cctl = plchan->dst_cctl | PL080_CONTROL_SRC_INCR;
1460
		slave_addr = plchan->cfg.dst_addr;
1461 1462
		src_buses = pl08x->mem_buses;
		dst_buses = plchan->cd->periph_buses;
1463
	} else if (direction == DMA_DEV_TO_MEM) {
1464
		cctl = plchan->src_cctl | PL080_CONTROL_DST_INCR;
1465
		slave_addr = plchan->cfg.src_addr;
1466 1467
		src_buses = plchan->cd->periph_buses;
		dst_buses = pl08x->mem_buses;
1468
	} else {
1469
		pl08x_free_txd(pl08x, txd);
1470 1471 1472 1473 1474
		dev_err(&pl08x->adev->dev,
			"%s direction unsupported\n", __func__);
		return NULL;
	}

1475 1476 1477 1478 1479 1480 1481
	if (cctl == ~0) {
		pl08x_free_txd(pl08x, txd);
		dev_err(&pl08x->adev->dev,
			"DMA slave configuration botched?\n");
		return NULL;
	}

1482 1483
	txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);

1484
	if (plchan->cfg.device_fc)
1485
		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1486 1487
			PL080_FLOW_PER2MEM_PER;
	else
1488
		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1489 1490 1491 1492
			PL080_FLOW_PER2MEM;

	txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	for_each_sg(sgl, sg, sg_len, tmp) {
		dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
		if (!dsg) {
			pl08x_free_txd(pl08x, txd);
			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
					__func__);
			return NULL;
		}
		list_add_tail(&dsg->node, &txd->dsg_list);

		dsg->len = sg_dma_len(sg);
1504
		if (direction == DMA_MEM_TO_DEV) {
1505
			dsg->src_addr = sg_dma_address(sg);
1506 1507 1508
			dsg->dst_addr = slave_addr;
		} else {
			dsg->src_addr = slave_addr;
1509
			dsg->dst_addr = sg_dma_address(sg);
1510 1511 1512
		}
	}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
			 unsigned long arg)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	unsigned long flags;
	int ret = 0;

	/* Controls applicable to inactive channels */
	if (cmd == DMA_SLAVE_CONFIG) {
1530 1531
		return dma_set_runtime_config(chan,
					      (struct dma_slave_config *)arg);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	}

	/*
	 * Anything succeeds on channels with no physical allocation and
	 * no queued transfers.
	 */
	spin_lock_irqsave(&plchan->lock, flags);
	if (!plchan->phychan && !plchan->at) {
		spin_unlock_irqrestore(&plchan->lock, flags);
		return 0;
	}

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		plchan->state = PL08X_CHAN_IDLE;

		if (plchan->phychan) {
1549
			pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1550 1551 1552 1553 1554

			/*
			 * Mark physical channel as free and free any slave
			 * signal
			 */
1555
			release_phy_channel(plchan);
1556
			plchan->phychan_hold = 0;
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
		}
		/* Dequeue jobs and free LLIs */
		if (plchan->at) {
			pl08x_free_txd(pl08x, plchan->at);
			plchan->at = NULL;
		}
		/* Dequeue jobs not yet fired as well */
		pl08x_free_txd_list(pl08x, plchan);
		break;
	case DMA_PAUSE:
		pl08x_pause_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_PAUSED;
		break;
	case DMA_RESUME:
		pl08x_resume_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_RUNNING;
		break;
	default:
		/* Unknown command */
		ret = -ENXIO;
		break;
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return ret;
}

bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
{
1587
	struct pl08x_dma_chan *plchan;
1588 1589
	char *name = chan_id;

1590 1591 1592 1593 1594 1595
	/* Reject channels for devices not bound to this driver */
	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
		return false;

	plchan = to_pl08x_chan(chan);

1596 1597 1598 1599 1600 1601 1602 1603 1604
	/* Check that the channel is not taken! */
	if (!strcmp(plchan->name, name))
		return true;

	return false;
}

/*
 * Just check that the device is there and active
1605 1606 1607
 * TODO: turn this bit on/off depending on the number of physical channels
 * actually used, if it is zero... well shut it off. That will save some
 * power. Cut the clock at the same time.
1608 1609 1610
 */
static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
{
1611 1612 1613
	/* The Nomadik variant does not have the config register */
	if (pl08x->vd->nomadik)
		return;
1614
	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1615 1616
}

1617 1618 1619
static void pl08x_unmap_buffers(struct pl08x_txd *txd)
{
	struct device *dev = txd->tx.chan->device->dev;
1620
	struct pl08x_sg *dsg;
1621 1622 1623

	if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1624 1625 1626 1627 1628 1629 1630 1631
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_single(dev, dsg->src_addr, dsg->len,
						DMA_TO_DEVICE);
		else {
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_page(dev, dsg->src_addr, dsg->len,
						DMA_TO_DEVICE);
		}
1632 1633 1634
	}
	if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1635 1636 1637
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_single(dev, dsg->dst_addr, dsg->len,
						DMA_FROM_DEVICE);
1638
		else
1639 1640 1641
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_page(dev, dsg->dst_addr, dsg->len,
						DMA_FROM_DEVICE);
1642 1643 1644
	}
}

1645 1646 1647 1648
static void pl08x_tasklet(unsigned long data)
{
	struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
	struct pl08x_driver_data *pl08x = plchan->host;
1649
	struct pl08x_txd *txd;
1650
	unsigned long flags;
1651

1652
	spin_lock_irqsave(&plchan->lock, flags);
1653

1654 1655
	txd = plchan->at;
	plchan->at = NULL;
1656

1657
	if (txd) {
1658
		/* Update last completed */
1659
		dma_cookie_complete(&txd->tx);
1660
	}
1661

1662
	/* If a new descriptor is queued, set it up plchan->at is NULL here */
1663
	if (!list_empty(&plchan->pend_list)) {
1664 1665
		struct pl08x_txd *next;

1666
		next = list_first_entry(&plchan->pend_list,
1667 1668 1669
					struct pl08x_txd,
					node);
		list_del(&next->node);
1670 1671

		pl08x_start_txd(plchan, next);
1672 1673 1674 1675 1676 1677
	} else if (plchan->phychan_hold) {
		/*
		 * This channel is still in use - we have a new txd being
		 * prepared and will soon be queued.  Don't give up the
		 * physical channel.
		 */
1678 1679 1680 1681 1682 1683 1684
	} else {
		struct pl08x_dma_chan *waiting = NULL;

		/*
		 * No more jobs, so free up the physical channel
		 * Free any allocated signal on slave transfers too
		 */
1685
		release_phy_channel(plchan);
1686 1687 1688
		plchan->state = PL08X_CHAN_IDLE;

		/*
1689 1690 1691 1692
		 * And NOW before anyone else can grab that free:d up
		 * physical channel, see if there is some memcpy pending
		 * that seriously needs to start because of being stacked
		 * up while we were choking the physical channels with data.
1693 1694 1695
		 */
		list_for_each_entry(waiting, &pl08x->memcpy.channels,
				    chan.device_node) {
1696 1697
			if (waiting->state == PL08X_CHAN_WAITING &&
				waiting->waiting != NULL) {
1698 1699 1700 1701 1702 1703
				int ret;

				/* This should REALLY not fail now */
				ret = prep_phy_channel(waiting,
						       waiting->waiting);
				BUG_ON(ret);
1704
				waiting->phychan_hold--;
1705 1706 1707 1708 1709 1710 1711 1712
				waiting->state = PL08X_CHAN_RUNNING;
				waiting->waiting = NULL;
				pl08x_issue_pending(&waiting->chan);
				break;
			}
		}
	}

1713
	spin_unlock_irqrestore(&plchan->lock, flags);
1714

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	if (txd) {
		dma_async_tx_callback callback = txd->tx.callback;
		void *callback_param = txd->tx.callback_param;

		/* Don't try to unmap buffers on slave channels */
		if (!plchan->slave)
			pl08x_unmap_buffers(txd);

		/* Free the descriptor */
		spin_lock_irqsave(&plchan->lock, flags);
		pl08x_free_txd(pl08x, txd);
		spin_unlock_irqrestore(&plchan->lock, flags);

		/* Callback to signal completion */
		if (callback)
			callback(callback_param);
	}
1732 1733 1734 1735 1736
}

static irqreturn_t pl08x_irq(int irq, void *dev)
{
	struct pl08x_driver_data *pl08x = dev;
1737 1738 1739 1740 1741 1742 1743 1744
	u32 mask = 0, err, tc, i;

	/* check & clear - ERR & TC interrupts */
	err = readl(pl08x->base + PL080_ERR_STATUS);
	if (err) {
		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
			__func__, err);
		writel(err, pl08x->base + PL080_ERR_CLEAR);
1745
	}
1746
	tc = readl(pl08x->base + PL080_TC_STATUS);
1747 1748 1749 1750 1751 1752
	if (tc)
		writel(tc, pl08x->base + PL080_TC_CLEAR);

	if (!err && !tc)
		return IRQ_NONE;

1753
	for (i = 0; i < pl08x->vd->channels; i++) {
1754
		if (((1 << i) & err) || ((1 << i) & tc)) {
1755 1756 1757 1758
			/* Locate physical channel */
			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
			struct pl08x_dma_chan *plchan = phychan->serving;

1759 1760 1761 1762 1763 1764 1765
			if (!plchan) {
				dev_err(&pl08x->adev->dev,
					"%s Error TC interrupt on unused channel: 0x%08x\n",
					__func__, i);
				continue;
			}

1766 1767 1768 1769 1770 1771 1772 1773 1774
			/* Schedule tasklet on this channel */
			tasklet_schedule(&plchan->tasklet);
			mask |= (1 << i);
		}
	}

	return mask ? IRQ_HANDLED : IRQ_NONE;
}

1775 1776 1777 1778 1779 1780
static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
{
	u32 cctl = pl08x_cctl(chan->cd->cctl);

	chan->slave = true;
	chan->name = chan->cd->bus_id;
1781 1782
	chan->cfg.src_addr = chan->cd->addr;
	chan->cfg.dst_addr = chan->cd->addr;
1783 1784
	chan->src_cctl = cctl;
	chan->dst_cctl = cctl;
1785 1786
}

1787 1788 1789 1790 1791
/*
 * Initialise the DMAC memcpy/slave channels.
 * Make a local wrapper to hold required data
 */
static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1792
		struct dma_device *dmadev, unsigned int channels, bool slave)
1793 1794 1795 1796 1797
{
	struct pl08x_dma_chan *chan;
	int i;

	INIT_LIST_HEAD(&dmadev->channels);
1798

1799 1800 1801 1802 1803 1804
	/*
	 * Register as many many memcpy as we have physical channels,
	 * we won't always be able to use all but the code will have
	 * to cope with that situation.
	 */
	for (i = 0; i < channels; i++) {
1805
		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
		if (!chan) {
			dev_err(&pl08x->adev->dev,
				"%s no memory for channel\n", __func__);
			return -ENOMEM;
		}

		chan->host = pl08x;
		chan->state = PL08X_CHAN_IDLE;

		if (slave) {
			chan->cd = &pl08x->pd->slave_channels[i];
1817
			pl08x_dma_slave_init(chan);
1818 1819 1820 1821 1822 1823 1824 1825
		} else {
			chan->cd = &pl08x->pd->memcpy_channel;
			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
			if (!chan->name) {
				kfree(chan);
				return -ENOMEM;
			}
		}
1826
		dev_dbg(&pl08x->adev->dev,
1827 1828 1829 1830
			 "initialize virtual channel \"%s\"\n",
			 chan->name);

		chan->chan.device = dmadev;
1831
		dma_cookie_init(&chan->chan);
1832 1833

		spin_lock_init(&chan->lock);
1834
		INIT_LIST_HEAD(&chan->pend_list);
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
		tasklet_init(&chan->tasklet, pl08x_tasklet,
			     (unsigned long) chan);

		list_add_tail(&chan->chan.device_node, &dmadev->channels);
	}
	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
		 i, slave ? "slave" : "memcpy");
	return i;
}

static void pl08x_free_virtual_channels(struct dma_device *dmadev)
{
	struct pl08x_dma_chan *chan = NULL;
	struct pl08x_dma_chan *next;

	list_for_each_entry_safe(chan,
				 next, &dmadev->channels, chan.device_node) {
		list_del(&chan->chan.device_node);
		kfree(chan);
	}
}

#ifdef CONFIG_DEBUG_FS
static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
{
	switch (state) {
	case PL08X_CHAN_IDLE:
		return "idle";
	case PL08X_CHAN_RUNNING:
		return "running";
	case PL08X_CHAN_PAUSED:
		return "paused";
	case PL08X_CHAN_WAITING:
		return "waiting";
	default:
		break;
	}
	return "UNKNOWN STATE";
}

static int pl08x_debugfs_show(struct seq_file *s, void *data)
{
	struct pl08x_driver_data *pl08x = s->private;
	struct pl08x_dma_chan *chan;
	struct pl08x_phy_chan *ch;
	unsigned long flags;
	int i;

	seq_printf(s, "PL08x physical channels:\n");
	seq_printf(s, "CHANNEL:\tUSER:\n");
	seq_printf(s, "--------\t-----\n");
	for (i = 0; i < pl08x->vd->channels; i++) {
		struct pl08x_dma_chan *virt_chan;

		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);
		virt_chan = ch->serving;

1894 1895 1896 1897
		seq_printf(s, "%d\t\t%s%s\n",
			   ch->id,
			   virt_chan ? virt_chan->name : "(none)",
			   ch->locked ? " LOCKED" : "");
1898 1899 1900 1901 1902 1903 1904 1905

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1906
		seq_printf(s, "%s\t\t%s\n", chan->name,
1907 1908 1909 1910 1911 1912 1913
			   pl08x_state_str(chan->state));
	}

	seq_printf(s, "\nPL08x virtual slave channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1914
		seq_printf(s, "%s\t\t%s\n", chan->name,
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
			   pl08x_state_str(chan->state));
	}

	return 0;
}

static int pl08x_debugfs_open(struct inode *inode, struct file *file)
{
	return single_open(file, pl08x_debugfs_show, inode->i_private);
}

static const struct file_operations pl08x_debugfs_operations = {
	.open		= pl08x_debugfs_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
	/* Expose a simple debugfs interface to view all clocks */
1936 1937 1938
	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
			S_IFREG | S_IRUGO, NULL, pl08x,
			&pl08x_debugfs_operations);
1939 1940 1941 1942 1943 1944 1945 1946
}

#else
static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
}
#endif

1947
static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1948 1949
{
	struct pl08x_driver_data *pl08x;
1950
	const struct vendor_data *vd = id->data;
1951 1952 1953 1954 1955 1956 1957 1958
	int ret = 0;
	int i;

	ret = amba_request_regions(adev, NULL);
	if (ret)
		return ret;

	/* Create the driver state holder */
1959
	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	if (!pl08x) {
		ret = -ENOMEM;
		goto out_no_pl08x;
	}

	/* Initialize memcpy engine */
	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
	pl08x->memcpy.dev = &adev->dev;
	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
	pl08x->memcpy.device_control = pl08x_control;

	/* Initialize slave engine */
	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
	pl08x->slave.dev = &adev->dev;
	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
	pl08x->slave.device_issue_pending = pl08x_issue_pending;
	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
	pl08x->slave.device_control = pl08x_control;

	/* Get the platform data */
	pl08x->pd = dev_get_platdata(&adev->dev);
	if (!pl08x->pd) {
		dev_err(&adev->dev, "no platform data supplied\n");
		goto out_no_platdata;
	}

	/* Assign useful pointers to the driver state */
	pl08x->adev = adev;
	pl08x->vd = vd;

1998 1999 2000 2001 2002 2003 2004 2005
	/* By default, AHB1 only.  If dualmaster, from platform */
	pl08x->lli_buses = PL08X_AHB1;
	pl08x->mem_buses = PL08X_AHB1;
	if (pl08x->vd->dualmaster) {
		pl08x->lli_buses = pl08x->pd->lli_buses;
		pl08x->mem_buses = pl08x->pd->mem_buses;
	}

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	/* A DMA memory pool for LLIs, align on 1-byte boundary */
	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
			PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
	if (!pl08x->pool) {
		ret = -ENOMEM;
		goto out_no_lli_pool;
	}

	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
	if (!pl08x->base) {
		ret = -ENOMEM;
		goto out_no_ioremap;
	}

	/* Turn on the PL08x */
	pl08x_ensure_on(pl08x);

2023
	/* Attach the interrupt handler */
2024 2025 2026 2027
	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);

	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
2028
			  DRIVER_NAME, pl08x);
2029 2030 2031 2032 2033 2034 2035
	if (ret) {
		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
			__func__, adev->irq[0]);
		goto out_no_irq;
	}

	/* Initialize physical channels */
2036
	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
			GFP_KERNEL);
	if (!pl08x->phy_chans) {
		dev_err(&adev->dev, "%s failed to allocate "
			"physical channel holders\n",
			__func__);
		goto out_no_phychans;
	}

	for (i = 0; i < vd->channels; i++) {
		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];

		ch->id = i;
		ch->base = pl08x->base + PL080_Cx_BASE(i);
		spin_lock_init(&ch->lock);
		ch->signal = -1;
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067

		/*
		 * Nomadik variants can have channels that are locked
		 * down for the secure world only. Lock up these channels
		 * by perpetually serving a dummy virtual channel.
		 */
		if (vd->nomadik) {
			u32 val;

			val = readl(ch->base + PL080_CH_CONFIG);
			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
				ch->locked = true;
			}
		}

2068 2069
		dev_dbg(&adev->dev, "physical channel %d is %s\n",
			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	}

	/* Register as many memcpy channels as there are physical channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
					      pl08x->vd->channels, false);
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			 "%s failed to enumerate memcpy channels - %d\n",
			 __func__, ret);
		goto out_no_memcpy;
	}
	pl08x->memcpy.chancnt = ret;

	/* Register slave channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2085
			pl08x->pd->num_slave_channels, true);
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to enumerate slave channels - %d\n",
				__func__, ret);
		goto out_no_slave;
	}
	pl08x->slave.chancnt = ret;

	ret = dma_async_device_register(&pl08x->memcpy);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register memcpy as an async device - %d\n",
			__func__, ret);
		goto out_no_memcpy_reg;
	}

	ret = dma_async_device_register(&pl08x->slave);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register slave as an async device - %d\n",
			__func__, ret);
		goto out_no_slave_reg;
	}

	amba_set_drvdata(adev, pl08x);
	init_pl08x_debugfs(pl08x);
2112 2113 2114
	dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
		 amba_part(adev), amba_rev(adev),
		 (unsigned long long)adev->res.start, adev->irq[0]);
2115

2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
	return 0;

out_no_slave_reg:
	dma_async_device_unregister(&pl08x->memcpy);
out_no_memcpy_reg:
	pl08x_free_virtual_channels(&pl08x->slave);
out_no_slave:
	pl08x_free_virtual_channels(&pl08x->memcpy);
out_no_memcpy:
	kfree(pl08x->phy_chans);
out_no_phychans:
	free_irq(adev->irq[0], pl08x);
out_no_irq:
	iounmap(pl08x->base);
out_no_ioremap:
	dma_pool_destroy(pl08x->pool);
out_no_lli_pool:
out_no_platdata:
	kfree(pl08x);
out_no_pl08x:
	amba_release_regions(adev);
	return ret;
}

/* PL080 has 8 channels and the PL080 have just 2 */
static struct vendor_data vendor_pl080 = {
	.channels = 8,
	.dualmaster = true,
};

2146 2147 2148 2149 2150 2151
static struct vendor_data vendor_nomadik = {
	.channels = 8,
	.dualmaster = true,
	.nomadik = true,
};

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
static struct vendor_data vendor_pl081 = {
	.channels = 2,
	.dualmaster = false,
};

static struct amba_id pl08x_ids[] = {
	/* PL080 */
	{
		.id	= 0x00041080,
		.mask	= 0x000fffff,
		.data	= &vendor_pl080,
	},
	/* PL081 */
	{
		.id	= 0x00041081,
		.mask	= 0x000fffff,
		.data	= &vendor_pl081,
	},
	/* Nomadik 8815 PL080 variant */
	{
2172
		.id	= 0x00280080,
2173
		.mask	= 0x00ffffff,
2174
		.data	= &vendor_nomadik,
2175 2176 2177 2178
	},
	{ 0, 0 },
};

2179 2180
MODULE_DEVICE_TABLE(amba, pl08x_ids);

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
static struct amba_driver pl08x_amba_driver = {
	.drv.name	= DRIVER_NAME,
	.id_table	= pl08x_ids,
	.probe		= pl08x_probe,
};

static int __init pl08x_init(void)
{
	int retval;
	retval = amba_driver_register(&pl08x_amba_driver);
	if (retval)
		printk(KERN_WARNING DRIVER_NAME
2193
		       "failed to register as an AMBA device (%d)\n",
2194 2195 2196 2197
		       retval);
	return retval;
}
subsys_initcall(pl08x_init);